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Abstract

Background: Identifying spatial clusters of chronic diseases has been conducted over the past several decades.
More recently these approaches have been applied to physical activity and obesity. However, few studies have
investigated built environment characteristics in relation to these spatial clusters. This study’s aims were to detect
spatial clusters of physical activity and obesity, examine whether the geographic distribution of covariates affects
clusters, and compare built environment characteristics inside and outside clusters.

Methods: In 2004, Nurses’ Health Study participants from California, Massachusetts, and Pennsylvania completed
survey items on physical activity (N = 22,599) and weight-status (N = 19,448). The spatial scan statistic was utilized to
detect spatial clustering of higher and lower likelihood of obesity and meeting physical activity recommendations
via walking. Clustering analyses and tests that adjusted for socio-demographic and health-related variables were
conducted. Neighborhood built environment characteristics for participants inside and outside spatial clusters were
compared.

Results: Seven clusters of physical activity were identified in California and Massachusetts. Two clusters of obesity
were identified in Pennsylvania. Overall, adjusting for socio-demographic and health-related covariates had little
effect on the size or location of clusters in the three states with a few exceptions. For instance, adjusting for
husband’s education fully accounted for physical activity clusters in California. In California and Massachusetts,
population density, intersection density, and diversity and density of facilities in two higher physical activity clusters
were significantly greater than in neighborhoods outside of clusters. In contrast, in two other higher physical activity
clusters in California and Massachusetts, population density, diversity of facilities, and density of facilities were
significantly lower than in areas outside of clusters. In Pennsylvania, population density, intersection density,
diversity of facilities, and certain types of facility density inside obesity clusters were significantly lower
compared to areas outside the clusters.

Conclusions: Spatial clustering techniques can identify high and low risk areas for physical activity and obesity.
Although covariates significantly differed inside and outside the clusters, patterns of differences were mostly
inconsistent. The findings from these spatial analyses could eventually facilitate the design and implementation
of more resource-efficient, geographically targeted interventions for both physical activity and obesity.
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Background
High rates of physical inactivity and the obesity epidemic
continue to pose major public health burdens that not
only influence children and adults, but also affect older
adults in developed countries such as the United States
[1-3]. Despite the health benefits of physical activity [1],
U.S. national data collected objectively with accelerome-
ters showed that older adults attained the lowest levels
of physical activity among all age groups [2]. Further-
more, a U.S. national survey from 1999–2008 on the
prevalence of obesity among adults indicated that 37%
of men (≥60 years; highest among all age groups) and
34% of women (≥60 years) were obese [4]. Among older
adults, weight gain is associated with declines in func-
tional performance and daily abilities, which in turn can
lead to more sedentary lifestyles [5].
To address these issues, the U.S. Department of

Health and Human Services [1] and the World Health
Organization [6] have strongly emphasized the import-
ance of physical activity-friendly environments [7] and
neighborhoods with better access to healthy foods [8].
The influence of environmental exposures on individ-
ual health may increase with age as older adults spend
longer periods of time in or near residential areas [9].
A review of the neighborhood influences among older
adults indicated that neighborhood environments can
affect the older population’s health and functioning
[10]. The majority of the literature indicates that there
are positive relationships between neighborhood built
environment characteristics (e.g., land use mix, population
density, street connectivity, and access to recreational
facilities) and physical activity among older adults [11-14].
Certain characteristics of neighborhood environments
(e.g., a higher density of fast-food restaurants) are posi-
tively associated with obesity [15,16] and body weight
[17]. In contrast, neighborhood walkability (i.e., de-
scribing the extent to which an environment is condu-
cive to walking and an active lifestyle) and land use
mix are negatively associated with obesity [13], body
mass index (BMI) [18], and body weight [17] among older
adults. However, results from other studies indicate null
associations of neighborhood walkability, green spaces,
street connectivity, and urban sprawl with BMI [19,20]
and obesity [9,20,21] among older adults.
The majority of the studies cited above utilized geo-

graphically referenced data (e.g., participant’s geocoded
home address) in the analyses. If participants in a given
study live close to each other, their corresponding envir-
onmental characteristics would tend to be more similar
[22]. Thus, relationships between the built environment
and physical activity and obesity are clearly embedded in
a spatial context [22]. However, most built environment
studies have not taken these spatial relationships into
consideration in the analysis.
Spatial analytic techniques are needed to better under-
stand the geographic patterns of physical activity and obes-
ity in relation to the built environment. Spatial clustering
analysis, which tests for unusually concentrated areas with
high or low prevalence of specified outcomes, is one tech-
nique that can be used to investigate spatial patterns of
physical activity and obesity. Spatial clustering techniques
have been applied in studies of chronic diseases, such as
certain cancers [23-29] and type II diabetes [30], in order
to identify specific geographic areas where public health
professionals may need to increase disease screenings and
other prevention-related activities.
Recently, researchers have begun to apply spatial

clustering techniques to physical activity [31-33] and
weight-related outcomes, such as obesity [32,34-36] and
BMI [37,38]. Spatial clusters were consistently identified
across these studies despite differences in cluster detection
methods, participant characteristics, and geographic areas
[31-38]. Collectively, these studies demonstrate the utility
of spatial clustering techniques for studying physical activ-
ity and obesity.
Nevertheless, these spatial clustering studies [31-38]

have certain limitations. First, adjustment for the geo-
graphic distribution of covariates, sometimes referred
to as spatial confounders, has been limited to age
[31,34,37] and race [37]. Failure to examine other co-
variates (e.g., education and income), is a key limita-
tion since the geographic distribution of these factors
could account for spatial clusters. Additionally, only
one study examined differences in participants’ built
environment attributes inside and outside spatial clus-
ters of transportation-related physical activity [31].
Lastly, investigators have not yet tested for clusters of
physical activity and obesity among older adults, a
population known to be at greater risk for physical in-
activity [39] and obesity [40]. Therefore, the objectives
of this study were to: 1) determine whether or not
meeting recommended levels of physical activity and
obesity were spatially clustered among older women in
California, Massachusetts, and Pennsylvania; 2) examine
whether the geographic distribution of demographic and
health-related variables account for spatial clusters; and 3)
compare demographic, health-related, and built environ-
ment attributes for participants living inside and outside
spatial clusters.

Methods
Participants
The Nurses’ Health Study (NHS) is an ongoing cohort
study that began in 1976 with 121,700 female registered
nurses (ages 30–55 years at recruitment, 97% Caucasians)
from 11 states. Currently NHS participants live in all U.S.
states. The initial focus of the NHS study was to prospect-
ively examine risk factors for chronic diseases, such as
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cardiovascular disease and cancer [41]. Participants are
mailed follow-up questionnaires biennially, which assess
potential risk factors and health outcomes. The current
study builds on an exploratory study of NHS partici-
pants in California, Massachusetts, and Pennsylvania
that involved developing objective built environment
measures and testing associations with physical activity
and obesity [42]. Thus, the current study involved
22,599 NHS participants from these three states who
completed the 2004 NHS survey and met the following
criteria: 1) had a geocoded home address; 2) had complete
information on physical activity, body weight, and walking
limitations; 3) reported they were able to walk; and 4) did
not live in a nursing home. All procedures for this study
were approved by the Institutional Review Boards at Pur-
due University, West Lafayette, Indiana, and the Human
Subjects Committee at Brigham and Women’s Hospital,
Boston, Massachusetts.

Physical activity and obesity
Participants reported their average time per week engaged
in walking for exercise or to work during the previous
year. Participants were also asked to provide their walking
pace (i.e., easy/casual [<2.0 mph]; normal/average [2.0-2.9
mph]; brisk [3.0-3.9 mph]; and very brisk [≥4.0 mph]).
Consistent with previous NHS studies using physical
activity data, walking metabolic equivalent (MET) mi-
nutes/week was calculated by multiplying duration by
the assigned MET value based on reported walking
pace. A binary physical activity outcome was created
indicating whether the participant met the current U.S.
physical activity recommendation of 500 MET mi-
nutes/week of activity via walking (i.e., equivalent to
150 minutes/week of moderate-intensity activity) [1].
Self-reported height in 1976 (last time reported by
NHS participants) and weight reported in 2004 were
used to calculate BMI = (weight in kg)/(height in m2).
Obesity was defined as a BMI ≥ 30.0. Underweight
(BMI < 18.5) participants were excluded from all ana-
lyses (n = 473). The reproducibility and validity of the
physical activity [43] and weight [44] variables have
been shown previously.

Built environment
Eleven objective built environment variables were cre-
ated using ArcGIS 9.3 software (ESRI, Redland, CA)
and employed methods described more fully in earlier
work [42]: population density, intersection density, di-
versity of facilities, and eight facility density variables.
Built environment variables were created within a 1200
meter line-based road network buffer (i.e., residential
buffer) that extended from the geocoded home address
of each participant [42]. In the previous work by this
group, they created both 800 meter and 1200 meter
buffers and found that differences in built environment
variables for two buffer sizes were negligible [42]. Popu-
lation density was calculated as the number of persons
per square kilometer of area within the buffer using
Landscan data [45]. Intersection density was computed
by dividing the number of 3-way or greater intersec-
tions by the total length of roads [46] within the buffer
using StreetMapUSA [47]. A 2006 InfoUSA™ facility
database, containing North American Industrial Classifi-
cation System (NAICS) codes and longitude and latitude
for each facility [48] was used to create the diversity of fa-
cilities and facility density variables within each buffer.
Using five categories of facilities (food, retail, services,
cultural/educational, and physical activity), diversity of
facilities was calculated with an entropy formula [49,50]
that estimates the mixture of facility types. Possible scores
range from 0 (no diversity) to 1 (maximum diversity).
Eight facility density variables were created for retail (e.g.,
book store), services (e.g., post office), cultural/educational
(e.g., school), physical activity (e.g., gym, golf course), as
well as the density of food facilities further classified
into four different types of densities, including fast-food
restaurants, full-service restaurants (e.g., table-service
restaurant), convenience stores, and grocery stores (e.g.,
supermarkets). These variables were calculated by divid-
ing the number of facilities by kilometers of road within
each 1200 meter buffer.

Covariates
A number of socio-demographic and health-related fac-
tors were examined as potential spatial confounders.
For each covariate, values were averaged for all partici-
pants in a given county, resulting in one aggregate value
for the county. Individual-level socio-demographic vari-
ables included age and both nurse’s and husband’s educa-
tion (only assessed in 1992). At the census tract level,
socio-demographic variables included proportion of the
population without a high school education and median
family income. Health-related variables consisted of
physical activity (yes/no: meeting or not meeting phys-
ical activity recommendations), obesity (yes/no: obese
or not obese), walking limitations (yes: limited a lot or
a little for walking from one to several blocks; no: not
limited at all), smoking status (past, current, never),
history of chronic diseases (yes/no; had heart disease,
cancer, diabetes), and the Alternate Healthy Eating Index
(AHEI assessed in 2002, a higher value indicating healthier
eating), which estimates adherence to U.S. dietary
guidelines [51]. The four continuous covariates, including
age, proportion of the population without a high school
education, median family income, and AHEI, were
expressed as quintiles. Quintiles are defined as a five-level
categorical covariate. These percentile ranges are: 0–20,
20.1-40, 40.1-60, 60.1-80, and 80.1-100.
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Statistical analyses
A spatial scan statistic [52,53] based on the Bernoulli
model was used to separately test for county-level spatial
clustering of women meeting current physical activity
recommendations and obesity. Unadjusted tests for clus-
tering were conducted separately for participants in each
of the three states. The null hypothesis was that no
spatial clusters of physical activity and obesity would be
detected [52,53]. If the null hypothesis was rejected, this
was interpreted to mean that participants inside of the
cluster have a higher or lower likelihood of meeting phys-
ical activity recommendations or being obese, compared
to participants outside of clusters. A relative risk (RR) was
generated for each cluster along with a radius of the clus-
ter. Calculations of the sizes and locations of the clusters
were based on the centroids of each county. Tests for
clustering were then conducted adjusting for the geo-
graphic distribution of one covariate at a time, including
demographic and health-related covariates (i.e., test for
spatial confounding). This analytic approach was used due
to the challenge of interpreting clustering results when
more than one covariate was included. In other words, in
cases where a cluster was altered by covariate adjustment,
it would not be possible to determine which covariate was
affecting the cluster (e.g., its size or location). This ap-
proach is consistent with the recent clustering research on
active transportation and obesity [31,37]. Age, nurse’s and
husband’s education, educational attainments and median
household income at the census tract level, walking limita-
tions, previous chronic disease and obesity were included
as covariates in physical activity analyses. For obesity
analyses, covariates were age, nurse’s and husband’s
education, educational attainments and median household
income at the census tract level, walking limitations, pre-
vious chronic diseases, AHEI, smoking status, and phys-
ical activity. Since potential effects of the neighborhood
built environment on weight-status may take longer to ap-
pear than the effects on physical activity behaviors, obesity
analyses were restricted to women who had lived at their
address ≥ 4 years (N = 19,448). Obesity analyses with the
full sample were also performed. However, the differences
in locations and sizes of the clusters were minor.
Monte Carlo testing was utilized to determine statistical

significance of clusters. Statistical significance of the clus-
ters was defined as a p-value less than 0.05 [52,53]. To
better understand the characteristics of physical activity
and obesity clusters, socio-demographic, health-related,
and objective built environment characteristics of partici-
pants were compared inside and outside the clusters using
t-tests for continuous variables and chi-square tests for
categorical variables. Socio-demographics, health-related
factors, and built environment attributes were compared
between participants living inside and outside clusters.
Analyses were conducted with SaTScan™ version 9 and
SAS version 9 for UNIX. Maximum window sizes were
tested from 10-50% (in 10% increments) of participants at
risk. Since these different window sizes did not affect the
results, all reported results were based on the 30% max-
imum window size.
All analyses were carried out at the county level to

maximize available cases and controls. According to
SaTScan guidelines [54], if cases or controls are missing
in a given row of data within a county, that row of data
must be deleted to properly run SaTScan. To avoid fur-
ther missing data caused by using finer geographic
scales, the county boundary was used. Missing data at a
finer scale would reduce the analytic sample and might
distort the development of a spatial cluster due to arti-
facts of the missing data [54].

Results
Participant characteristics
The average age of participants in 2004 was 69.9 ± 6.8 years
and was similar for women living in Massachusetts,
Pennsylvania, and California. Overall, 23% of the women
met current physical activity recommendations via walk-
ing (25.6% in California, 24.0% in Massachusetts, and
20.2% in Pennsylvania). Approximately 21% of participants
were obese (16.8% in California, 21.8% in Massachusetts,
and 24.4% in Pennsylvania).

Spatial clusters of physical activity
Spatial clusters of women meeting physical activity recom-
mendations via walking were identified in California and
Massachusetts, but not in Pennsylvania. In California, four
statistically significant spatial clusters of physical activity
were identified (Table 1 and Figure 1).
Participants inside clusters 1 and 2 had a 51% (RR = 1.51,

p = 0.0024) and 17% (RR = 1.17, p = 0.035) higher likelihood
of meeting physical activity recommendations, respectively,
as compared to participants outside of clusters. In contrast,
participants inside clusters 3 and 4 had a 58% (RR = 0.42,
p = 0.0027) and 29% (RR = 0.71, p = 0.047) lower likelihood
of meeting recommendations, respectively, relative to
women living outside of clusters. Separately, participant’s
and husband’s education, and obesity fully accounted for
both clusters 2 and 4. Adjusting for other covariate adjust-
ments, the size or location of the clusters changed. For in-
stance, when adjusting for age, husband’s education, and
obesity, cluster 1 became larger and cluster 3 became
smaller. When adjusting for walking limitations, cluster 2
became smaller and the location moved to somewhat
north in the San Francisco Bay Area. Adjusting for previ-
ous chronic diseases had little effect on the size or location
of the clusters 1–3 in California.
In Massachusetts, one statistically significant cluster of

physical activity and two borderline statistically significant
clusters were detected (Table 1 and Figure 2). Participants



Table 1 Characteristics of spatial clusters of physical activity in California and Massachusetts and obesity in
Pennsylvania

Area: Counties Radius (km) Participants Casesa Relative risk P-value

Physical activity clusters in California

Cluster 1 Coastal area: San Luis Obispo, Santa Barbara 96.74 232 88 1.51 0.0024

Cluster 2 Bay Area: San Francisco, Santa Clara, Santa Cruz,
Alameda, San Mateo, Marin, Contra Costa

73.19 1837 527 1.17 0.035

Cluster 3 South inland: Tulare, Kern Kings 121.09 129 14 0.42 0.0027

Cluster 4 North inland: Lassen, Shasta, Tehama, Plumas, Butte,
Glenn, Sierra, Yuba, Nevada, Placer, Sutter, El Dorado

139.21 385 71 0.71 0.047

Physical activity clusters in Massachusetts

Cluster 5 Cape Cod: Barnstable, Dukes, Nantucket 50.67 427 138 1.39 0.0003

Cluster 6 Boston: Suffolk 0b 122 43 1.48 0.053

Cluster 7 Central/Western Massachusetts: Berkshire, Franklin,
Hampshire, Hampden Worcester

117.08 1432 306 0.86 0.06

Obesity clusters in Pennsylvania

Cluster 8 Western Pennsylvania: Allegheny, Armstrong, Beaver,
Butler, Cambria, Clarion, Forest, Indiana, Jefferson,
Lawrence, Venango, Washington, Westmoreland

82.93 2424 657 1.17 0.029

Cluster 9 Near Philadelphia: Montgomery, Chester, Delaware 36.54 1335 268 0.8 0.01
aCases are defined as participants meeting physical activity recommendations and as obese participants.
bSince Suffolk County was the only county identified as cluster 5, the radius was 0.

Tamura et al. BMC Public Health 2014, 14:1322 Page 5 of 16
http://www.biomedcentral.com/1471-2458/14/1322
inside clusters 5 and 6 had 39% (RR = 1.39, p = 0.0003) and
48% (RR = 1.48, p = 0.053) higher likelihood of meeting rec-
ommendations, respectively, compared to women outside
of clusters. Participants inside cluster 7 had a 14% (RR =
0.86, p = 0.060) lower likelihood of meeting physical activity
recommendations compared to participants outside the
cluster. Adjusting for covariates had no effect on the three
spatial clusters of physical activity in Massachusetts.

Spatial clusters of obesity
Two statistically significant spatial clusters of obesity were
identified in Pennsylvania (Table 1 and Figure 3), whereas
no obesity clusters were identified in Massachusetts and
California. Participants inside cluster 8 had a 17% (RR =
1.17, p = 0.029) higher likelihood of obesity and in cluster
9, a 20% (RR = 0.80, p = 0.010) lower likelihood of obesity,
as compared to participants outside of clusters. None of
the covariate adjustments accounted for the two spatial
clusters of obesity in Pennsylvania, nor did these adjust-
ments affect the size or location of the two clusters, except
for four cases. For instance, when adjusting for age, the
proportion of the population without a high school educa-
tion, median family income, and AHEI, cluster 9 became
slightly smaller, but was at the same location.

Comparison of demographic and health-related factors
inside and outside clusters
In California there were several statistically significant dif-
ferences in demographic and health-related factors. How-
ever, the magnitude of the differences in some covariates
(e.g., age) was relatively small and no consistent patterns
in the covariates were observed, except for median family
income at the census tract level (Table 2). The two low
physical activity clusters 3 and 4 in California had lower
family income than did areas outside the clusters.
In Massachusetts, there were statistically significant

differences in demographic and health-related factors
(Table 3). For example, educational attainments at the cen-
sus tract level was significantly greater inside high physical
activity cluster 5, compared to outside this cluster; and it
was significantly lower in clusters 6 and 7, compared to
outside these clusters. The results are inconsistent that
higher education might contribute to the development of
high physical activity cluster 5, but not in cluster 6. Census
tract level median family income was significantly lower in-
side high and low physical activity clusters 5–7.
In Pennsylvania, there were statistically significant

higher percentages of participants in high obesity cluster
8 with walking limitations and chronic diseases, a higher
percentage of participants who never smoked, as well as
lower family income, compared to areas outside of clus-
ters (Table 4). Both individual and census tract educa-
tional levels and AHEI were significantly higher in the
lower obesity cluster 9 compared to outside the cluster.

Comparison of built environment factors inside and
outside clusters
Physical activity outcome
In California and Massachusetts, women living in two
of the four higher physical activity clusters 2 and 6,



1

2 3

4

Figure 1 Spatial clusters of higher and lower likelihood of women meeting physical activity recommendations in California. The red
color represents higher physical activity levels (clusters 1 and 2), whereas blue represents lower physical activity levels (clusters 3 and 4). All
clusters are from unadjusted tests. Since the analyses were conducted at the county-level, clusters were visualized using a county boundary. The
radius for each cluster was reported in Table 1.
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respectively, had statistically significant higher popula-
tion density (e.g., 2252 versus (vs.) 2003 persons/km2),
intersection density (e.g., 6.08 vs. 4.01), and diversity of
facilities (e.g., 0.77 vs. 0.52) and facility density (consistent
with higher walkability), compared to outside of clusters.
Alternatively, the values for these built environment charac-
teristics were significantly lower for women in three lower
physical activity clusters (clusters 3 and 4 in California and
cluster 7 in Massachusetts).
Contrary to expectations, higher physical activity cluster

1 in California and cluster 5 in Massachusetts had built
environment characteristics that indicated lower walkabil-
ity, in comparison to the areas outside of clusters. In the
California cluster 1, which encompassed San Luis Obispo
and Santa Barbara counties, values for several variables,
such as population density (i.e., 1219 vs. 2003 persons/
km2), intersection density (i.e., 3.98 vs. 4.14), and diversity
of facilities (i.e., 0.47 vs. 0.55) were significantly lower than
outside of clusters. This pattern existed despite the fact
that women in the cluster had 159 more MET minutes/
week of walking than those outside the clusters (Table 2).
In Massachusetts, participants in cluster 5 (Cape Cod
area) had statistically significant lower values for most
built environment attributes (i.e., the differences were in
unexpected directions), yet women in this cluster had 110
more MET minutes/week of walking than outside the
clusters (Table 3).

Obesity outcome
In Pennsylvania, the values for built environment char-
acteristics inside obesity clusters tended to be lower
compared to outside the clusters, regardless of whether
or not it was a higher or lower obesity cluster (Table 4).
In the higher obesity cluster 8, values for built environ-
ment characteristics, such as population density (i.e., 942
vs. 1,175 persons/km2), intersection density (i.e., 3.90 vs.
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Figure 2 Spatial clusters of higher and lower likelihood of women meeting physical activity recommendations in Massachusetts. The
red color represents higher physical activity levels (clusters 5 and 6), whereas blue indicates a lower physical activity level (cluster 7). All clusters
were from unadjusted tests. Since the analyses were conducted at the county-level, clusters were visualized using a county boundary. The radius
for each cluster was reported in Table 1.

9

8

Figure 3 Spatial clusters of higher and lower likelihood of obesity in Pennsylvania. The red color represents a higher obesity level (cluster
8), whereas blue indicates a lower obesity level (cluster 9). Both clusters are from unadjusted tests. Since the analyses were conducted at the
county-level, clusters were visualized using a county boundary. The radius for each cluster was reported in Table 1.
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Table 2 Participant characteristics inside and outside of recommended levels of physical activity clusters in California
(N = 7153)

Factors Higher recommended levels
of PA clusters

Lower recommended
levels of PA clusters

Outside clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 (n = 4570)

(n = 232) (n = 1837) (n = 129) (n = 385)

Socio-demographics

Individual level

Age, %a

57.5 – 64.9 years 15.95 21.94** 17.05 17.92 19.67

64.9 – 69.4 years 23.71 21.45 20.16 22.6 18.84

69.4 – 73.5 years 23.28 19.22 20.16 18.96 19.89

73.5 – 78.1 years 19.4 18.56 20.16 22.6 20.18

78.1 – 85.4 years 17.67 18.84 22.48 17.92 21.42

Nurse’s education, %

RN degree 61.64 52.42 55.81 58.44 53.26

Bachelors 22.41 29.01 26.36 27.01 26.87

Graduate degree 8.19 11.7 6.98 8.83 11.9

Missing 7.76 6.86 10.85 5.71 7.96

Husband’s education, %

High school graduate or less 28.88 22.81** 28.68 29.09 26.37

Bachelors 27.16 24.93 18.6 28.83 24.86

Graduate degree 25.43 29.23 23.26 23.12 25.73

Missing 18.53 23.03 29.46 18.96 23.04

Census tract level

Proportion of population without
high school education, %a

0 – 20% 4.74*** 33.86*** 2.33*** 13.25*** 16.24

20.1 – 40% 28.02 26.84 5.43 14.03 17.79

40.1 – 60% 24.57 17.15 17.83 26.23 20.46

60.1 – 80% 31.47 14.53 26.36 28.83 20.72

80.1 – 100% 11.21 7.62 48.06 17.66 24.79

Median family income, %a

$18917 – 50034 18.10*** 2.67*** 54.26*** 41.30*** 24.25

$50034 – 61942 35.34 7.57 27.91 37.92 22.47

$61942 – 76251 29.31 16.82 10.85 7.01 22.21

$76251 – 94702 13.36 28.31 3.88 9.61 18.32

$94702 – 200001 3.88 44.64 3.1 4.16 12.76

Health-related factors

Walking limitations, %

Yes 25.43* 26.29*** 37.21 32.73 33.13

No 74.57 73.71 62.79 67.27 66.87

Previous chronic diseases, %

Yes 31.47 28.91*** 34.11 33.77 34.42

No 68.53 71.09 65.89 66.23 65.58

Walking MET min/wk, mean (SD) 533.40 (607.40)*** 431.50 (586.10)*** 216.60 (339.20)*** 331.60 (505.00) 374.40 (540.10)

BMI, mean (SD) 25.64 (4.27) 25.59 (4.73)* 26.60 (4.99) 26.18 (5.21) 25.89 (4.75)
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Table 2 Participant characteristics inside and outside of recommended levels of physical activity clusters in California
(N = 7153) (Continued)

Built environment, mean (SD)

Population densityb 1218.90 (812.00)*** 2252.40 (1768.20)*** 1358.50 (942.30)*** 743.50 (748.30)*** 2003.20 (1335.80)

Intersection densityc 3.98 (1.11)* 4.41 (0.89)*** 3.73 (1.21)*** 3.22 (1.23)*** 4.14 (1.04)

Diversity of facilitiesd 0.47 (0.34)** 0.59 (0.29)*** 0.46 (0.34)** 0.28 (0.33)*** 0.55 (0.31)

Facility density (total)e 1.31 (1.56)* 1.89 (2.25)*** 0.90 (0.97)*** 0.64 (1.21)*** 1.59 (1.82)

Retail 0.42 (0.60)*** 0.70 (0.98)*** 0.29 (0.40)*** 0.22 (0.49)*** 0.59 (0.80)

Services 0.08 (0.15) 0.09 (0.15)*** 0.04 (0.07)*** 0.03 (0.10)*** 0.07 (0.14)

Cultural/educational 0.31 (0.31) 0.36 (0.32)*** 0.21 (0.21)*** 0.14 (0.22)*** 0.29 (0.27)

Physical activity 0.05 (0.09) 0.08 (0.10)*** 0.04 (0.05)*** 0.03 (0.06)*** 0.06 (0.09)

Fast-food restaurants 2.48 (3.77)* 4.20 (7.68)*** 1.43 (2.09)*** 1.00 (2.58)*** 3.14 (5.33)

Full-service restaurants 0.88 (1.49) 0.88 (1.47)*** 0.87 (1.59) 0.41 (1.52)*** 1.04 (1.66)

Convenience stores 0.21 (0.42) 0.21 (0.42) 0.28 (0.45) 0.16 (0.45)** 0.23 (0.43)

Grocery stores 0.37 (0.67) 0.41 (0.72)** 0.17 (0.37)*** 0.13 (0.46)*** 0.35 (0.65)

Note: P-values are based on the t-test for continuous variables and chi-square test for categorical variables. The values are compared between participants in a
specific cluster and those outside the cluster. SD = standard deviation. PA = physical activity. *p < 0.05; **p < 0.01; ***p ≤ 0.001.
aA five-level categorical covariate expressed as quintiles.
bPopulation density (number of persons per km2 of area within residential buffer) was averaged inside and outside of clusters.
cIntersection density (number of intersections divided by total road length within residential buffer) was averaged inside and outside of clusters.
dDiversity of facilities within residential buffer (ranging from 0 [no diversity] to 1 [max diversity]) was averaged inside and outside of clusters.
eFacility density (number of facilities divided by kilometers of road within residential buffer) was averaged inside and outside of clusters.
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4.07), diversity of facilities (i.e., 0.50 vs. 0.56) and most
facility density variables were significantly lower than
outside the cluster. Among eight statistically significant
differences in built environment characteristics inside
and outside the lower obesity cluster, differences in three
attributes were in the expected direction was lower in-
side the cluster compared to outside (e.g., fast-food facil-
ity density; 1.92 vs. 2.20).

Discussion
The present study applied spatial scan statistics to
identify spatial clusters of physical activity and obesity
among approximately 20,000 older women in California,
Massachusetts, and Pennsylvania. High and low phys-
ical activity clusters were identified in California and
Massachusetts, while none were identified in Pennsylvania.
High and low obesity clusters were detected only in
Pennsylvania. The majority of the adjustments for demo-
graphics and health-related factors did not fully account
for physical activity and obesity clusters, suggesting that
other factors may be contributing to the development of
these spatial clusters. Although some statistically signifi-
cant differences in demographic and health-related char-
acteristics inside and outside of clusters were found, not
all patterns in differences were consistent. Furthermore,
built environment characteristics inside and outside
clusters of physical activity and obesity generally
showed statistically significant differences. In a number
of cases, higher physical activity clusters had higher
values of population density and intersection density,
expected to be associated with higher walkability. This
finding is supported by a previous study on spatial
clustering of active transportation in California [31].
However, in several other cases, built environment factors
typically associated with higher neighborhood walkability
were lower in high physical activity clusters, particularly
along coastal areas in California and Massachusetts.
Identification of higher physical activity clusters in areas

adjacent to the ocean in California and Massachusetts is
generally consistent with findings from two previous U.S.
studies [31,36]. In a recent investigation of active transpor-
tation in California, researchers detected clusters of higher
transportation-related walking near coastal areas around
Long Beach and Santa Monica in Los Angeles County
[31]. Another study, using data from the Behavioral Risk
Factor Surveillance System (BRFSS) from 2000–2006,
showed higher physical activity clusters in parts of the San
Francisco Bay Area, northwest coastal states (Washington
and Oregon), and by Lake Michigan [36]. Collectively, the
results from these recent U.S. studies [31,36], earlier stud-
ies in Australia, which indicated a positive influence of
coastal areas on physical activity [55,56], and the present
study, suggest that living near large bodies of water has a
positive relationship with physical activity. However, since
all of this evidence is from cross-sectional studies, the
direction of these effects cannot be determined. A plaus-
ible alternative explanation is that more active, outdoor-
oriented, and health conscious adults, including older
adults such as those in the present study, seek to live in
areas closer to lakes and oceans.



Table 3 Participant characteristics inside and outside of recommended levels of physical activity clusters in
Massachusetts (N = 5329)

Factors Higher recommended Lower recommended Outside
clusterslevels of PA clusters levels of PA clusters

Cluster 5 Cluster 6 Cluster 7 (n = 3348)

(n = 427) (n = 122) (n = 1432)

Socio-demographics

Individual level

Age, %a

57.5 – 62.4 years 12.88*** 22.95 19.41** 20.91

62.4 – 66.4 years 17.8 19.67 17.6 21.21

66.4 – 70.7 years 21.55 20.49 19.76 20.13

70.7 – 75.7 years 23.19 18.03 20.95 19.27

75.7 – 83.4 years 24.59 18.85 22.28 18.49

Nurse’s education, %

RN degree 65.11 56.56 71.37*** 65.29

Bachelors 18.74 21.31 11.8 17.89

Graduate degree 8.43 9.02 8.45 8.99

Missing 7.73 13.11 8.38 7.83

Husband’s education, %

High school graduate or less 25.29 22.13 38.06*** 30.35

Bachelors 25.53 25.41 22 25.81

Graduate degree 23.42 24.59 17.04 20.58

Missing 25.76 27.87 22.91 23.27

Census tract level

Proportion of population without high school education, %a

0 – 20% 29.51*** 12.30*** 8.10*** 24.07

20.1 – 40% 27.87 5.74 14.46 22.1

40.1 – 60% 20.61 18.03 17.81 20.58

60.1 – 80% 17.33 22.13 30.03 16.16

80.1 – 100% 4.68 41.8 29.61 17.08

Median family income, %a

$17246 – 55125 47.31*** 34.43*** 36.59*** 8.87

$55125 – 64456 39.58 21.31 27.3 14.22

$64456 – 73101 6.32 21.31 19.27 21.54

$73101 – 86110 6.79 9.84 12.02 25.96

$86110 – 191062 0 13.11 4.82 29.42

Health-related factors

Walking limitations, %

Yes 32.79 30.33 37.57*** 32.5

No 67.21 69.67 62.43 67.5

Previous chronic diseases, %

Yes 33.72 31.15 28.84 29.48

No 66.28 68.85 71.16 70.52

Walking MET minutes/wk, mean (SD) 474.90 (600.50)*** 484.60 (591.60)* 338.80 (516.90) 364.90 (515.70)

BMI, mean (SD) 25.92 (4.53)** 26.62 (5.67) 26.87 (5.13) 26.63 (5.02)
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Table 3 Participant characteristics inside and outside of recommended levels of physical activity clusters in
Massachusetts (N = 5329) (Continued)

Built environment, mean (SD)

Population densityb 396.70 (294.00)*** 5530.70 (7422.20)*** 813.60 (879.70)*** 1214.90 (1271.30)

Intersection densityc 4.14 (0.95)* 6.08 (1.13)*** 3.38 (1.30)*** 4.01 (1.34)

Diversity of facilitiesd 0.35 (0.35)*** 0.77 (0.09)*** 0.44 (0.36)*** 0.52 (0.33)

Facility density (total)e 0.69 (1.08)*** 4.21 (4.75)*** 0.97 (1.14)*** 1.22 (1.36)

Retail 0.21 (0.42)*** 1.22 (1.22)*** 0.30 (0.42)*** 0.41 (0.54)

Services 0.04 (0.09)*** 0.24 (0.38)*** 0.06 (0.11)*** 0.08 (0.12)

Cultural/educational 0.13 (0.18)*** 0.91 (1.05)*** 0.25 (0.28)* 0.27 (0.28)

Physical activity 0.04 (0.07)*** 0.12 (0.14)*** 0.04 (0.07)*** 0.06 (0.09)

Fast-food restaurants 1.44 (3.00)*** 15.69 (27.58)*** 1.53 (2.68)*** 2.20 (3.52)

Full-service restaurants 0.26 (0.72)*** 1.70 (2.13)*** 0.53 (0.96) 0.53 (1.10)

Convenience stores 0.27 (0.64)*** 2.43 (2.35)*** 0.44 (0.81) 0.48 (0.76)

Grocery stores 0.14 (0.38)*** 0.57 (1.02)*** 0.15 (0.43)*** 0.21 (0.52)

Note: P-values are based on the t-test for continuous variables and chi-square test for categorical variables. The values are compared between participants in a
specific cluster and those outside the cluster. SD = standard deviation. PA = physical activity. *p < 0.05; **p < 0.01; ***p ≤ 0.001.
aA five-level categorical covariate expressed as quintiles.
bPopulation density (number of persons per km2 of area within residential buffer) was averaged inside and outside of clusters.
cIntersection density (number of intersections divided by total road length within residential buffer) was averaged inside and outside of clusters.
dDiversity of facilities within residential buffer (ranging from 0 [no diversity] to 1 [max diversity]) was averaged inside and outside of clusters.
eFacility density (number of facilities divided by kilometers of road within residential buffer) was averaged inside and outside of clusters.
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The detection of higher and lower obesity clusters
among participants in western and eastern Pennsylvania
contrasts findings from two recent U.S. studies that used
BRFSS data [36,37]. In one study of U.S. adults, ages 22
to 74 years, researchers applied the spatial scan statistic
to data from 1999 to 2003 and detected clusters of high
and low BMI prevalence in southern (e.g., Louisiana)
and western (e.g., California) states of the U.S., respect-
ively [37]. However, they found no clusters of high or low
BMI prevalence in Pennsylvania [37]. In another study of
U.S. adults (aged ≥18 years) investigators used the local
Moran’s I to identify clusters using BRFSS data from 2000
to 2006 [36]. They found significantly low obesity clusters
in mountain regions of the U.S. (e.g., Colorado) and in
some New England (e.g., Massachusetts) states as well as
high obesity clusters in southern states (e.g., Texas) [36].
However, they did not detect significant clusters of obesity
in Pennsylvania [36]. The present study’s findings may
vary from these previous investigations due to differences
in sample characteristics (e.g., older adults, women only,
predominantly white), use of different spatial analytic
techniques, the geographic scope of the study area (i.e.,
three states vs the entire U.S.), and the scale differences
for the analyses (i.e., individual’s and census tract level var-
iables at county level analyses for each state vs. county
level variables for the analyses at the entire U.S.).
Although a number of socio-demographic and health-

related factors were examined as spatial confounders in
the current study, there was limited evidence that these
covariates accounted for spatial clusters of physical activity
and obesity. The issue of spatial confounding has received
little attention in previous cluster analyses of physical ac-
tivity and weight status. In two investigations of active
transportation and BMI, only participants’ age [31,37] and
race [37] were evaluated as potential confounders. In these
studies, there was mixed evidence that age was a spatial
confounder. In one study adjusting for age fully accounted
for a lower BMI cluster (i.e., disappearance of the cluster
after adjustment), but only partially accounted for a higher
BMI cluster (i.e., size of the cluster became larger, and
location moved further south) [37]. However, in a study
of active transportation clusters in San Diego County in
California, age adjustment did not account for clusters
[31]. Race fully explained spatial clusters of high and
low BMI detected in the U.S. [37]. The limited investiga-
tion of spatial confounders suggests the need for testing
other types of factors that might account for spatial clus-
ters of physical activity and obesity. For example, these
studies could include psychosocial variables (e.g., social
support, self-efficacy, psychosocial hazards) that have been
assessed in recent built environment studies [16,57-60] as
well as eating behaviors (e.g., eating habits in the past year,
eating-out behavior since it is hypothesized that obesity
would be influenced by an individual’s past eating behav-
iors or habits) [16,57].
To the best of this group’s knowledge, this study is

only the second to compare objective built environment
characteristics inside and outside of spatial clusters of
physical activity and the first to do so with obesity. Gener-
ally, a mixed pattern of differences in built environment



Table 4 Participant characteristics inside and outside of obesity clusters in Pennsylvania (N = 8598)

Factors Higher obesity cluster Lower obesity cluster Outside clusters

Cluster 8 (n = 2424) Cluster 9 (n = 1335) (n = 4839)

Socio-demographics

Individual-level

Age, %a

57.5 – 62.4 years 19.93 21.42 19.05

62.4 – 66.8 years 19.60 19.40 20.40

66.8 – 71.1 years 21.16 18.50 19.98

71.1 – 76.2 years 20.13 19.78 20.40

76.2 – 83.5 years 19.18 20.90 20.17

Nurse’s education, %

RN degree 69.6 66.37*** 72

Bachelors 13.78 14.38 12.69

Graduate degree 6.64 10.19 5.95

Missing 9.98 9.06 9.36

Husband’s education, %

High school graduate or less 41.46 30.04*** 42.28

Bachelors 20.87 25.47 20.15

Graduate degree 15.35 21.57 16.28

Missing 22.32 22.92 21.29

Census tract level

Proportion of population without high school education, %a

0 – 20% 21.95*** 49.66*** 11.94

20.1 – 40% 25.95 23.07 17.23

40.1 – 60% 22.81 11.69 20.56

60.1 – 80% 18.81 8.46 22.42

80.1 – 100% 10.48 7.12 27.84

Median family income, %a

$10461 – 42667 22.57** 1.12*** 23.25

$42667 – 50341 25.70 2.77 21.49

$50341 – 58152 21.20 10.94 22.32

$58152 – 70096 18.65 22.25 20.79

$70096 – 200001 11.88 62.92 12.15

Health-related factors

Walking limitations, %

Yes 35.60** 30.71 32.32

No 64.4 69.29 67.68

Previous chronic diseases, %

Yes 33.25** 31.69 29.68

No 66.75 68.31 70.32

Healthy eating index, %a

22.5 – 44.5 18.89 17.30* 19.74

44.5 – 50.8 19.64 17.30 19.22

50.8 – 56.8 19.35 19.25 18.43

56.8 – 63.8 19.02 18.43 18.64
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Table 4 Participant characteristics inside and outside of obesity clusters in Pennsylvania (N = 8598) (Continued)

63.8 – 93.8 16.67 22.25 18.43

Missing 6.44 5.47 5.54

Smoking status, %

Previous smoker 47.73* 44.42* 49.37

Current smoker 43.19 47.34 43.36

Never smoked 8.99 8.09 7.11

Missing 0.08 0.15 0.17

Walking MET min/wk, mean (SD) 309.40 (492.90) 300.60 (460.60)* 331.90 (513.90)

BMI, mean (SD) 27.41 (5.32) 26.47 (5.16)*** 27.18 (5.28)

Built environment, mean (SD)

Population densityb 941.60 (997.40)*** 1253.70 (913.20)* 1174.90 (1525.60)

Intersection densityc 3.90 (1.54)*** 3.69 (1.16)*** 4.07 (1.59)

Diversity of facilitiesd 0.50 (0.34)*** 0.53 (0.35)** 0.56 (0.33)

Facility density (total)e 0.97 (1.08)*** 1.17 (1.16) 1.18 (1.24)

Retail 0.30 (0.43)*** 0.39 (0.49) 0.37 (0.47)

Services 0.06 (0.10)*** 0.08 (0.13) 0.08 (0.11)

Cultural/educational 0.27 (0.26)*** 0.28 (0.23)*** 0.32 (0.30)

Physical activity 0.04 (0.07) 0.05 (0.08)*** 0.04 (0.06)

Fast-food restaurants 1.65 (2.68)*** 1.92 (2.47)** 2.20 (4.65)

Full-service restaurants 0.66 (1.26)* 0.59 (1.16)*** 0.73 (1.25)

Convenience stores 0.30 (0.54)*** 0.32 (0.52)*** 0.46 (0.64)

Grocery stores 0.16 (0.39)*** 0.26 (0.55) 0.26 (0.59)

Note: P-values are based on the t-test for continuous variables and chi-square test for categorical variables. The values are compared between participants in a
specific cluster and those outside the cluster. SD = standard deviation. *p < 0.05; **p < 0.01; ***p ≤ 0.001.
aA five-level categorical covariate expressed as quintiles.
bPopulation density (number of persons per km2 of area within residential buffer) was averaged inside and outside of clusters.
cIntersection density (number of intersections divided by total road length within residential buffer) was averaged inside and outside of clusters.
dDiversity of facilities within residential buffer (ranging from 0 [no diversity] to 1 [max diversity]) was averaged inside and outside of clusters.
eFacility density (number of facilities divided by kilometers of road within residential buffer) was averaged inside and outside of clusters.
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characteristics was found, in some cases consistent with
what would be hypothesized (e.g., higher connectivity in
higher physical activity clusters) and in others contradic-
ting these expectations. In contrast to the present study,
Huang and colleagues found a consistent and expected
pattern of built environment differences inside and outside
clusters, for example, where inside high active trans-
portation clusters the values of population density and
intersection density index were higher than in areas
outside of clusters in Los Angeles and San Diego coun-
ties in California [31]. The findings from the present
study highlight the complexity of built environment
and physical activity relationships, resulting in consistent
and inconsistent patterns in the built environment factors.
There were consistent patterns in the built environmen-

tal attributes in the two high physical activity clusters 2
and 6 in California and Massachusetts, respectively. The
majority of the built environment variables, including
population density, intersection density, diversity of facil-
ities, and most facility densities, were consistently higher
compared to outside of clusters. These two clusters were
located in more populous areas (San Francisco Bay Area
and Boston) compared to the other two high physical ac-
tivity clusters 1 and 5. In contrast, low physical activity
clusters 3, 4, and 7 were located in inland California and
middle to western Massachusetts, and most of the built
environment values for these clusters were consistently
lower than outside of clusters. Inconsistent patterns of
built environment factors across the clusters were also
found, for example, the average level of walking for partic-
ipants in higher physical activity cluster 1 in California
with lower built environment values, including population
density, intersection density, diversity of facilities and
some densities of facilities (i.e., hypothetically less favor-
able for walking) was 102 MET minutes/week higher than
for women in higher physical activity cluster 2 with higher
built environment values. One possible explanation for
these findings is that certain unmeasured built environ-
ment characteristics, such as availability and condition of
sidewalks, aesthetics, outdoor recreational facilities includ-
ing trails and parks, or neighborhood safety (e.g., crime
rates), may account for the differences in walking between
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these two clusters. Future analyses of physical activity
clusters should examine a more comprehensive list of
both perceived and objective built environment variables.
The present study has several limitations. The findings

may not be applicable to more diverse groups of older
women in the U.S., since the sample is predominantly
Caucasian, moderately well-educated, and generally aware
of health issues due to their background in nursing. The
walking measure did not differentiate between walking for
leisure and transportation. If separate measures of walking
for recreation and transportation had been available, dif-
ferent clusters might have been detected and patterns in
built environment characteristics inside and outside of
spatial clusters might have been different for the two types
of walking. Thus, inconsistencies in built environment
characteristics might have been observed in this study.
This study examined clustering at the county level and the
actual spatial clustering of physical activity and obesity
may not coincide with geo-political boundaries [61,62].
Obesity estimates may be biased since self-reported height
from 1976 was used to calculate BMI, resulting in misclas-
sifying some participants as either obese or non-obese. As
individual level income was not available, median family
income at the census tract level was used in the analyses.
Since the geographic distribution of individual level in-
come would differ from the distribution of median family
income, this scale difference may influence the existence
of the physical activity and obesity clusters. A scan statistic
based on the Bernoulli model restricts the type of the co-
variate adjustment to only categorical variables. In the
present study, continuous covariates (e.g., median family
income) were categorized into quintiles. Depending on
arbitrary categories for these covariates, the assessment of
the spatial clusters may be impacted with respect to the
size or location, or disappearance of the cluster. The re-
sults from covariates expressed as binary and quartiles
were compared to those of quintile covariates. However,
the differences in results were minor.

Conclusions
The present study contributes to the sparse literature on
spatial clustering of physical activity and obesity among
older women, including the limited assessments of spatial
confounders, and comparisons of built environment char-
acteristics inside and outside of clusters. Although spatial
clusters of physical activity were detected, the majority of
the spatial confounders examined did not explain the
identified clusters. The patterns of the built environment
values inside and outside of clusters revealed complex re-
lationships. Higher street connectivity was consistently
found in higher physical activity clusters 2 and 6, whereas
inconsistent patterns even among high physical activity
clusters 1 and 2 were found (i.e., a higher level of walk-
ing for cluster 1 with unsupportive built environment
characteristics, compared to cluster 2). These findings
were not fully consistent with existing built environment
literature. The spatial clustering methods and findings
have implications for future directions in public health re-
search and practice. For example, the findings from this
study and others [31,37] suggest that further examination
of factors that contribute to the development of spatial
clusters of physical activity and obesity is needed. One
way to address this gap would be to examine space-time
clustering of physical activity and obesity, which may have
the potential to shed new light on determinants, including
neighborhood built environment factors. In terms of pub-
lic health practice, where surveillance data on physical ac-
tivity and obesity are available along with geographic
identifiers, public health officials could take advantage of
existing cluster detection software, such as SaTScan™ [63],
to identify clusters. Results of these spatial analyses could
facilitate the design and implementation of more geo-
graphically targeted, resource-efficient interventions for
both physical activity and obesity.
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