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T
he advent of nanotechnology has
produced novel forms of engineered
nanoparticles (ENPs), which have

broad utility in numerous nanoenabled
commercial products. In fact, according to
the Woodrow Wilson Center Project for
Emerging Nanotechnologies, the amount of
nanoenabled consumer products available

commercially has risen by ∼500% since
2006.1 Increased availability and use of
nanoenabled products such as cosmetics,
sunscreens,2 and toner formulations3 has
potentially contributed to unintentional
exposures experienced by adults and
children.4,5 Likewise, the probability of in-
tentional exposures has grown due to the
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ABSTRACT

The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products.

Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the

consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study,

we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA

breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves

efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening

five industrially relevant ENP exposures (SiO2, ZnO, Fe2O3, Ag, and CeO2) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary

(H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range

of 5, 10, and 20μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO > Ag> Fe2O3 > CeO2 > SiO2 in TK6 cells

at 4 h and Ag > Fe2O3 > ZnO > CeO2 > SiO2 in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement

of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies.

KEYWORDS: nanotoxicology . genotoxicity . comet . DNA damage . CometChip . engineered nanoparticles
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development of nanoenabled drug delivery systems,
diagnostic tools, or cancer therapies that bring promise
to revolutionize the medical field.6

Although the applications and benefits of ENPs
appear limitless, there is growing concern about the
consequences of ENP exposures.7�10 Several studies
have indicated that exposure to ENPs via inhalation,
dermal, or oral routes can pose adverse health
effects.11,12 A well-known paradigm of metal or metal
oxide ENP toxicity is the production of reactive oxygen
species (ROS), which can overwhelm innate antioxi-
dants, thereby producing oxidative stress.13,14 Oxida-
tive stress can in turn lead to the formation of a wide
range of DNA lesions, many of which can be either
cytotoxic or mutagenic.15 Thus, there is an established
link between excess oxidative stress and associated
DNA damage, aging, and the increased risk of can-
cer.16�18 However, despite the importance of nano-
particle exposure-induced DNA damage as a potential
cancer risk factor, relatively few studies have focused
on the DNA-damaging potential of ENPs. This knowl-
edge gap has been largely driven by the fact that
existing ENP genotoxicity in vitro cellular assays are
not equipped to undertake the vast libraries of ENPs
that currently exist or are being developed.
Presently, the genotoxicity assays that are employed

for ENP assessments are adaptations of chemical gen-
otoxic assays such as the Ames test, in vitro micro-
nucleus, and the single-cell electrophoresis or comet
assays. For example, Li and co-authors utilized the
Ames test along with the in vitro micronucleus assay
(measurement of double-strand breaks/aneuploidy) to
evaluate the mutagenic and genotoxic potential of
5 nm silver nanoparticles, respectively.19 Within that
study, the authors found that the Ames test was not as
sensitive as the micronucleus assay when evaluating
the genotoxicity of silver ENPs in TK6 cells. The de-
creased sensitivity of the Ames test, which uses bacter-
ial cells to assess mutagenicity, may be attributed to
the fact that bacterial cells are not endocytic, suggest-
ing that the Ames test is not suitable for the evalu-
ation of certain nanoparticles.20,21 The micronucleus
assay has also been utilized in many studies to assess
nanoparticle-mediated chromosomal damage.22�25

However, the assay has been found to be problematic
due to issues with reagent interference (i.e., cytocha-
lasin B) with cellular uptake of nanoparticles, thus
generating false negatives.26,27 Other assays such
as the 8-oxoguanine (8-oxo-dG) ELISA have been
employed to measure nanoparticle-mediated DNA
damage.28 Although high-throughput can be achieved
with the 96-well plate design, this assay only measures
8-oxo-dG, a biomarker of DNA oxidation, and does not
provide information on other classes of DNA damage
(e.g., double- and single-strand breaks, abasic sites, and
alkali-sensitive sites), which can be detected using the
comet assay.

The most widely used assay for evaluating DNA
damage associated with ENP exposures is the comet
assay.29 Briefly, the underlying principle of the comet
assay is that, during electrophoresis, damaged DNA
migrates more readily in an agarose matrix than
undamaged DNA. The comet-like structures that are
formed during this process are fluorescently stained,
and imaging software is used for quantitative analysis
to determine the amount of DNA damage on a cell-
by-cell basis.30,31 However, similar to the aforemen-
tioned genotoxicity assays, issues with nanoparticle
interference have been reported with traditional co-
met assay efficacy. Stone et al. suggested that artifacts
could occur when residual nanoparticles interacted
with naked DNA after cell lysis, thus generating
“artificial” damage.32 Yet, in a recent investigation,
where studies were conducted to evaluate the level
of strand breaks induced by close proximity nano-
particles versus whole cell exposures, such issues of
nanoparticle interferences with the comet assay
were disproven.33

While the comet assay has been found to be effec-
tive in assaying ENPs, the technique suffers from low-
throughput and poor reproducibility, due in part to
sample-to-sample variation (e.g., different results for
the same sample when analyzed on two separate glass
slides).34 These inherent issues make the comet assay
inefficient in conducting comprehensive investiga-
tions that are needed for assessing not only multiple
ENPs but alsomultiple parameters such as size, charge,
and shape. Thus, there is a significant need for a high-
throughput screening tool for assessing ENP-mediated
DNA damage.35

Here we describe an efficient screening platform for
assessing DNA damage associated with ENP expo-
sures. Our approach is based upon the CometChip,
developed in the laboratories of Bevin Engleward and
Sangeeta Bhatia,36,37 which uses microfabrication
technology to create a microarray of precisely ordered
microwells within a bed of agarose, each with an
adjustable diameter as small as a single cell. Ultimately,
we have created amore effective and high-throughput
platform, which could help to overcome current limita-
tions in our ability to assess the vast libraries of new
and existing ENPs and would thus reduce potentially
serious public health issues associated with ENP-
induced genotoxicity. Such a rapid screening assay
can also be pivotal in our quest for developing safer-
by-design nanomaterials38 and help in understand-
ing the structure�activity relationships in terms of
genotoxicity.

RESULTS AND DISCUSSION

Characterization of ENP Powders. To explore the utility
of the CometChip platform and to learn about the
genotoxic potential of ENPs, we elected to study
a variety of industrially relevant ENPs, including
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amorphous silica (SiO2), silver (Ag), iron oxide (Fe2O3),
zinc oxide (ZnO), and cerium oxide (CeO2). These
particular ENPs were selected in part because they
are currently under investigation by the Organization
for Economic Cooperation and Development (OECD)
but also because they are widely used in many na-
noenabled products.39 The panel of industrially rele-
vant ENPs was synthesized in-house using the flame
spray pyrolysis based Harvard VENGES system.40,41

Each ENP underwent detailed physicochemical
and morphological characterization in powder form
including Brunauer�Emmett�Teller (dBET) to deter-
mine the specific surface area (SSA) and particle
crystal diameter (dXRD) using X-ray diffraction
(Table 1) (see Methods section for details). As shown
in Table 1, the primary particle size of the ENPs is in the
nanoscale. The TEM images provided in Supporting
Information Figure S1 depict ENP aggregates (distin-
guished by their fractal geometry and sinter necks) as
well as agglomerates (particle units composed of
several aggregates that might be formed due to van
der Waals forces encountered during particle suspen-
sion in ethanol for TEM grid sample preparation). The
ENPs in nanopowder form appeared to form chain-
like aggregates, typical of metal oxides generated in a
flame pyrolysis process (Figure S1).42 More specifi-
cally, silver and cerium ENPs resembled more sphe-
rical morphologies, whereas iron oxide ENPs had
more of a hexagonal shape. Zinc oxide ENPs utilized
in this studywere rod-shaped, and silica waswithout a
definitive shape, thus amorphous.

Dispersion and Characterization of ENP Suspensions. The
measured properties of ENP suspensions (hydro-
dynamic diameter (dH), polydispersity index (PDI),
zeta-potential (ζ), and specific conductance (σ), in DI
H2O and the cell culture media are summarized in
Table 1. In general, most ENPs utilized in this study
formed fairly monodisperse suspensions (PDI < 0.4) of
agglomerates ranging from 200�400 nm in diameter
in DI H2O and media containing serum. Fe2O3 formed
larger agglomerates and slightly higher PDI values
of 0.459 and 0.477 in MEM and RPMI containing
serum, respectively, likely attributable to interparticle
magnetic forces common to this material at similar

primary particle size.43,44 These values are similar to
values previously measured for similar metal oxide
ENPs.45

Development of a High-Throughput ENP Genotoxicity Screen-
ing Assay Using the CometChip Technology. The following
steps were performed as part of the development
of the assay.

Microfabrication of a Microwell Array. Patterned arrays of
microwells were created using a silicon stamp which
consists of micrometer-scale posts (Figure 1A). The
microposts, created by photolithography, have a
tunable diameter, ranging from∼10 to 50 μm, in order
to accommodate different-sized cells.36 The microfab-
ricated stamp is placed into molten agarose, which is
applied to a sheet of GelBond film, then allowed to
solidify to create a bed of microwells once the stamp is
removed. A bottomless 96-well plate is then pressed
onto the surface of microwells to create 96macrowells,
each of which has 200�300 microwells on its bottom
surface (Figure 1A). Cells are captured in themicrowells
to create an array of cells embedded in agarose
(Figure 1D), which can then be processed using the
samemethods as the traditional comet assay (e.g., lysis
and electrophoresis). For the purposes of the studies
presented here, we created microwells with 40 μm
diameters that are effective for capture of non-
adherent TK6 cells and adherent cell line H9T3.

Throughput is a major limitation for the traditional
comet assay, wherein for each condition or exposure,
treated cell suspensions are embedded in low melting
point agarose and placed on a glass slide. Glass slides
are awkward to handle, thus limiting the number of
samples that canbe run inparallel, introducing significant
experimental noise between samples.46 The microfabri-
cation approach of the CometChip enables analysis of 96
samples in parallel, which greatly reduces labor and also
suppresses variation due to sample handling.37

ENP Suspension Preparation and Cell Exposure. ENP sus-
pensions were prepared according to a protocol devel-
oped in our group (Figure 1B) (seeMethods for details).
Briefly, ENPs are sonicated in deionizedwater to ensure
dissociation of agglomerates and subsequently added
to cell culturemedia. ENPs inmedia are then combined
with cell suspensions or monolayers and incubated for

TABLE 1. Physicochemical Characterization of ENPs Used in DNA Damage Assessmentsa

DI H2O MEM/10%FBS RPMI/10%HS

material
SSA
(cm2)

dBET
(nm)

dXRD
(nm) dH (nm) PDI ζ (mV) dH (nm) PDI ζ (mV) dH (nm) PDI ζ (mV)

SiO2 154 14.7 NA 214 ( 4 0.324 �22 ( 1 227 ( 43 0.402 �21 ( 3.0 252 ( 16.1 0.372 �25.1 ( 3.2
CeO2 206 4.03 11.5 348 ( 8 0.270 �20 ( 1 277 ( 30 0.275 �21 ( 2.2 236 ( 3.7 0.294 �25.2 ( 7.1
ZnO 17.7 60.5 20 225 ( 24 0.224 19.1 ( 2.2 327 ( 71 0.232 �13.3 ( 2.4 232 ( 3.7 0.128 �12.4 ( 0.9
Ag 13.7 41.8 35 211 ( 68 0.399 �28 ( 0.9 179 ( 3 0.290 �11.5 ( 1.7 189 ( 3.1 0.290 �9.8 ( 0.83
Fe2O3 58.1 19.7 31.1 1444 ( 235 0.258 �28 ( 0.6 934 ( 158 0.459 �10.9 ( 0.28 1231 ( 173 0.477 �8.11 ( 2.1

a SSA (specific surface area), by nitrogen adsorption/Brunauer�Emmett�Teller (BET) method; dBET, primary particle diameter determined from SSA; dXRD, particle diameter as
determined by X-ray diffraction; dH, hydrodynamic diameter determined by DLS; PDI, polydispersity index measured by DLS; ζ, zeta-potential measured by DLS.
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4 or 24 h prior to loading the cells onto the CometChip
for DNA damage analysis. After exposure, cells are
separated from nanoparticle suspensions by centrifu-
gation and aspiration. Trypsin is added to adherent
cells to produce treated cell suspensions. Suspension
cells are then simply added to the macrowells of the
CometChip for cell loading into the arrayedmicrowells.

Agarose Encapsulation of Exposed Cells and Electrophoresis.
To study genotoxicity, log phase cells were exposed to
ENPs and loaded into the microwells by gravitational
settling. After 30 min, most of the microwells contain
cells (Figure 1D) and excess media/cells can be aspi-
rated. Residual cells and ENPs are rinsed from macro-
wells and agarose using three gentle washes of warm
phosphate buffered saline. To prevent cells from being
displaced during handling, a thin layer of low melting
point molten agarose is used to secure cells within
their microwells. Subsequently, the arrayed cells are
processed using conditions that are similar to the

traditional assay. Briefly, cells are lysed in a strong
surfactant and alkaline solution for 24 h at 4 �C and
then subjected to electrophoresis, which causes re-
laxed loops and fragments of DNA to migrate through
the agarose gel.

Comet Imaging. Due to the format of the CometChip,
96 ENP conditions can be readily imaged and analyzed
in parallel. In the traditional comet assay, imaging and/
or scoring 96 samples is arduous and time-consuming
due to possible sparse areas or clumped comets.47

Traditionally, the user is required to scan each treat-
ment or slide to detect usable comets, which can be
prone to bias. Obtaining quantitative data from the
customized CometChip system is simplified by exploit-
ing the array format, which prevents overlap and bias
and also enables maximization of the number of
comets per unit area. Images are collected using a
standard fluorescent microscope Nikon 80i upright
microscope coupled with an automatic scanning stage

Figure 1. Protocol for the CometChip (A) assembly of macrowell comet array. Agarose gel containing microwells is situated
on GelBond film sandwiched between a glass substrate and a bottomless 96-well plate, which is then sealed withmechanical
force. Approximately 300 arrayed microwells comprise the bottom of each macrowell. (B) Preparation of the nanoparticle
suspension according to theprotocol byCohen et al. (C) Protocol for exposing the cells to thenanoparticles. (D) Loadingof the
exposed cell samples in the macrowells and running the microwell assay.
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(ProScan II, Prior Scientific). The microfabrication ap-
proach used to create the microwell array offers an
additional significant advantage during imaging. Spe-
cifically, treated cells and subsequent comets are
located on one focal plane, which prevents the need
to adjust focus for each comet and thus enables
multiple comets to be captured in focus in a single
image, reducing imaging time significantly. In addition
to faster data collection, the CometChip approach also
increases throughput via automated data analysis. In
the traditional comet assay, for each condition, ∼100
independent comets need to be analyzed one-by-one
for every condition using a computer software pro-
gram, which is very time-consuming. For the CometCh-
ip, the fabricated microwells provide consistent or
fixed comet head size using custom software, which
simplifies the identification of head/tail transitions
enabling accurate comet analysis. Furthermore, the
custom software is designed to select and analyze
comets that lie specifically within the coded array
and excludes cells off the array that potentially have
overlapped. With imaging reduced to fewer than 10
images per condition and analysis done in batch form
using custom software, the speed of data collection
and analysis is orders of magnitude faster than the
traditional assay.36

Assessing Nanoparticle-Mediated DNA Damage Using the
Proposed CometChip Platform. To explore the versatility
and sensitivity of the CometChip platform, we per-
formed simultaneous DNA damage assessments of our
ENP panel using three concentrations (5, 10, 20 μg/mL)
and two cell lines, suspension (TK6) and adherent
(H9T3). The selected dose range of 5, 10, and 20 μg/mL
was determined to be lower than a predetermined
IC50 value of 25 μg/mL in the majority of the ENP panel
(data not shown). Human lymphoblastoid cells (TK6) and
Chinese hamster ovary cells were utilized in our assess-
ments as they have been historically used for genotoxi-
city evaluations and are the most commonly used cell
lines when performing the comet assay.48,49 It is worth
noting that the selected cell lines are used not as a
specific route of exposure or physiological relevance, but
rather to demonstrate the applicability of the developed
CometChip approach on the use of both suspended and
adherent cell lines.

In evaluating the DNA damage induced by ENP
exposures, the % DNA in tail was utilized as it is one
of the most preferred parameters in comet assess-
ments.50 With the CometChip method, we were able
to assess the induction of single-strand breakage in
TK6 and H9T3 cells after exposure to three concentra-
tions of a panel of five ENPs along with positive and
negative controls simultaneously. Given the reduction
in experimental noise that is associated with process-
ing samples on a single chip, this approach contri-
butes to the elucidation of subtle differences in DNA
damage levels and is one of a few studies in which the

genotoxicity of five industry relevant ENPs were eval-
uated concurrently.

Qualitative image data generated from the
CometChip analysis of TK6 cells exposed to the ENP
panel for 4 h are shown in Figure 2. Control or media-
treated nucleoid structures showwell-definedheads of
undamaged DNA (Figure 2A) in comparison to ENP-
exposed cells/nucleoids in Figure 2B with varying de-
grees of damage, whereas positive control cells ex-
posed to a known DNA-damaging agent (hydrogen
peroxide; 100 μM) revealed significant DNA damage
(Figure 2C). TK6 cells exposed to zinc oxide nanopar-
ticles and assayed using the traditional comet assay
method for comparison are shown in Figure 2D. The
qualitative data illustrated in Figure 2B were analyzed
using custom MATLAB (The Mathworks) software in
which the following quantitative assessments for each
nanoparticle in TK6 cells (Figure 3A) in addition to H9T3
cells (Figure 3D) (qualitative data not shown). In addi-
tion to the CometChip analyses, we utilized the MTT
and CyQuant NF to understand the affects of nanopar-
ticle exposures on cellular viability and proliferation.
The following observations were generated from the
proposed ENP-mediated DNA damage screening plat-
form and subsequent toxicity assays:

Cytotoxic and Genotoxic Influences of Amorphous Silica
Exposures. The likelihood of human exposure to amor-
phous silica is extremely high, as exposures can stem
from biogenic sources in addition to several nano-
enabled consumer products that contain silica.51

Amorphous silica ENPs were not anticipated to induce
DNA damage at this dose range, based on previous
studies.52 Although here there does appear to be a
slight increase in DNA damage induced by amorphous
silica ENPs in each dose, the difference was not statis-
tically significant compared tomedia alone (p= 0.39). It
is worth noting that the results for Ag ENPs, which will
be discussed in detail in the next section, appeared
qualitatively similar and statistically significant in com-
parison to media control (p = 0.0001) (Figure 3A).
Similar to our findings, reports of genotoxicity were
found in HT29 cells exposed to mesoporous silica.53

In contrast, negative genotoxicity results were found
in a study evaluating multiple sizes of amorphous
silica, ranging from 30 to 400 nm at 4 and 40 μg/mL on
T3T-LI fibroblasts for 4 h.54 Using the MTT assay, we
found that amorphous silica nanoparticles imposed
no reduction of metabolic activity in TK6 cells after 4 h
exposure (Figure 3B), which correlates with similar
studies using Balb/3T3 mouse fibroblasts in which no
cytotoxicity nor genotoxicity was found after amor-
phous silica exposure.52 Interestingly, a recent study
revealed that amorphous silica toxicity is influenced
by the doubling time of the cell, wherein normal
cells that proliferate slower than the tumor cells
tested had higher reduction in viability.55 How-
ever, we found that amorphous silica nanoparticle
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exposures did not alter TK6 cell proliferation after 4 h
exposure (Figure 3C).

Although we determined amorphous silica ENPs
to be nongenotoxic to H9T3 cells (Figure 3D), we did
observe reduced cellular viability and proliferation
after 24 h exposure at 10 and 20 μg/mL (Figure 3E,F).
This coincides with several reports that amorphous
silica can impose significant cellular toxicity.56�58 Over-
all, amorphous silica is considered biologically inert in
physiologically relevant doses, but the discrepancies in
literature and our own study could be attributed to
variations in particle preparation and dosimetry.

Silver ENPs Induce Single-Stranded DNA Damage and Reduc-
tion in Cellular Function. Silver ENPs have been incorpo-
rated into several personal hygiene and antimicrobial
products and are the most commercialized nano-
material.59 More specifically, nanoenabled antimicro-
bial materials have been developed in the effort
to combat several emerging or re-emerging drug-
resistant bacteria by using silver nanoparticles.60 How-
ever, alarmingly, several studies have determined their
DNA damage potential in mammalian cells,61 and our
findings using the CometChip analysis are consistent
with the published literature. Specifically, silver ENPs

induced DNA damage in TK6 cells at each concentra-
tion (5, 10, 20 μg/mL) producing 16, 19, and 21% DNA
in tail, respectively, which were statistically significant
in comparison to media-only cells (8% DNA in tail)
(Figure 3A). Previously, Asharani and co-workers uti-
lized the traditional comet assay for DNA damage
assessments of silver nanoparticle exposures in other
cell types, namely, normal human fibroblasts and
glioblastoma cells where dose-dependent increases
in DNA damage were found.62 Similar to other studies
that identified reduction in cellular viability after ex-
posure to silver, silver ENPs utilized in this study at the
dose of 20 μg/mL exerted a significant reduction
in viability (27%) in TK6 cells at 4 h post-exposure
(Figure 3B). In regards to possiblemechanism, Paio and
co-workers demonstrated that silver nanoparticles
were capable of disrupting mitochondrial membrane
potential through amitochondrial-dependent apopto-
tic pathway which is regulated by Bax and Bcl-2 genes.
The dysregulation of these two genes created a cas-
cade of events which eventually led to apoptosis in
human liver cells.63 Alternatively, a key mechanism for
silver nanoparticle toxicity has been reported to be the
reduction of mitochondrial function via inhibition of

Figure 2. Qualitative images of nanoparticle-mediated ENP DNA damage in TK6 cells using both CometChip and standard
comet assays. (A) Media-treated control cells. (B) TK6 cells were exposed to industrially relevant ENPs at concentrations of 5,
10, and 20 μg/mL for 4 h and evaluated using the CometChip technology. Expanded view illustrates the morphology of the
comet structure induced from 4 h exposure of zinc oxide ENP in TK6, revealing significant DNA damage. (C) Positive control
cells treated with H2O2 (100 μM) for 20 min. (D) Traditional comet assay of TK6 cells treated with ZnO (20 μg/mL) for 4 h for
comparison to CometChip qualitative assessments. Horizontal scale bar represents 100 μm.
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ATP synthesis.64 In reference to the proliferative effect
of silver nanoparticles on TK6 cells, each dose imposed
significant reductions in proliferation (Figure 3C).
Although the effects of nanosilver on cellular function
are not clearly understood, the concern over the use of
silver ENPs in consumer products is warranted. In H9T3
cells, nanosilver elicited significant levels of DNA
damage of 43, 51, and 59% DNA in tail for 5, 10, and
20 μg/mL doses, respectively at 24 h (Figure 3D). Silver
ENP exposures were also capable of inducing signifi-
cant reductions in H9T3 viability at 24 h post-exposure
(Figure 3E). It is important to note that excessive cyto-
toxicity could introduce confounders within the geno-
toxicity assessments. However, the proliferative capa-
city of the utilized cells remained at acceptable levels at
all concentrations of nanoparticles, which has been
shown to be a more sensitive index of cytotoxicity in
genotoxicity testing (Figure 3F).65 These data are in
agreement with the numerous reports of deleterious
effects of nanosilver not only in mammalian cells but
also in aquatic organisms.66�68 The use of silver ENPs
may have several benefits; however, understanding

the risks are essential to ensure product safety and
eliminate public and environmental health concerns.

Impact of Iron Oxide ENPs on DNA, Cellular Viability, and
Proliferation. Currently, there is great interest in iron
oxide ENPs, as their properties makes them useful in
numerous applications such as biomedical imaging
and possible tumor ablation therapies.69 In the present
study, iron oxide at 10 and 20 μg/mL resulted in 17 and
20% DNA in tail in TK6 cells after 4 h, respectively
(Figure 3A). This finding correlates well with a recent
study, in which nanoscale iron oxide (Fe2O3) signifi-
cantly induced DNA damage in human lung cells,70

which further calls into question the biocompatibility
of this highly utilized nanomaterial.

While the interest and application of hematite
continues to grow, conclusive evidence of its cytotoxi-
city is still under review. In our evaluations, we did not
observe any reduction in cellular viability after hema-
tite exposure for TK6 cells at 4 h (Figure 3B). Interest-
ingly, there was a reduction in cell proliferation of 20%
at 20 μg/mL (Figure 3C), which coincides with conflict-
ing reports of hematite toxicity within the literature.71

Figure 3. Evaluation of TK6 cells seeded at a density of 1� 106 cells/well and H9T3 cells seeded at a density of 1� 104 cells/
well exposed to 5, 10, and 20 μg/mL of ENPs where (A,D) DNA damage, (B,E) cellular viability, and (C,F) CyQuant NF
assessments were performed 4 and 24 h post-exposure, respectively. Data represent an average of three or more
independent experiments performed in triplicate. The p values were determined by one-way ANOVA followed by Dunnett's
post-test, where *p e 0.05, **pe 0.01, ***p e 0.001 vs media control.
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The majority of this conflict is primarily due to differ-
ences in material preparation and particle size. For
example, Freyia and co-workers found no relevant
toxicity in mouse alveolar macrophages and human
epithelial cells due to hematite exposures in the nano,
submicrometer, and micrometer scale, thus suggest-
ing that hematite regardless of size has little toxic
effect.71 In contrast, hematite in vivo exposures in
nanoscale and submicrometer scale have been asso-
ciated with lung injury.72 Thus, iron nanoparticles may
exhibit different biointeractions thanmicrometer-scale
iron, but both could have deleterious effects to DNA,
organelles, and biological processes.

Numerous model systems have been employed to
investigate iron oxide nanoparticles and the potential
novel toxicities they possess.73�75 Using the CometCh-
ip platform, exposure to 10 and 20 μg/mL of Fe2O3

ENPs was found to be substantially genotoxic to H9T3
cells at 24 h with results of 33 and 48% DNA in tail
(Figure 3D). These results differ from published find-
ings on the genotoxicity of iron oxide, where no
definitive genotoxic result was obtained from nano-
sized or micrometer-sized hematite particle exposures
in Syrian hamster embryo cells.76 Karlsson and co-
workers found similar negative results when evaluat-
ing hematite and magnetite nanoparticles.77 Certain
confounders such as cell type could be involved in
conflicting reports of toxicity as particle uptake can be
influenced by the cell phenotype.78 Recent reports
revealed that the redox state of hematite may also
affect particle uptake and genotoxicity.79 In addition to
the single-stranded DNA damage observed in this
study, hematite ENPs also reduced cellular viability in
H9T3 cells by 14%; however, only 10 μg/mL elicited
reductions that were statistically relevant (Figure 3E).
Additionally, H9T3 cells displayed a significant 30%
reduction in proliferation after iron oxide ENP expo-
sures (Figure 3F). Thus, iron oxide is an attractive nano-
material, due to its physicochemical properties and
applications; however, those unique attributes may
prove problematic in biological systems.

Zinc Oxide ENP Genotoxicity and Cytotoxicity. Zinc oxide
ENPs are currently a main component in many sun-
screen formulations due to its UVA and UVB absorptive
properties.80,81 However, several studies have corre-
lated the exposure to zinc oxide nanoparticles to
increased DNA damage, increased reactive oxygen
species, and reduction in cell viability.82,83 For the case
of zinc oxide nanoparticle generated with our VENGES
system, exposures at 10 and 20 μg/mL produced
considerable injury, 55 and 84%, respectively, to
DNA at 4 h in TK6 cells (Figure 3A). These findings are
consistent with several studies that report the impact
of zinc oxide nanoparticles.84�87 For example, Alarifi
and co-workers used low concentrations of zinc oxide
nanoparticles (5, 10, 20 μg/mL) on malignant human
melanoma skin cell line, A375, and found significant

levels of genotoxicity using the standard comet assay
along with chromosome condensation staining at 24 h
in comparison to control.88 From the data presented
here, it is clear that zinc oxide ENPs can cause DNA
damage; however, it is not clear if the observations can
be attributed to the properties of the particles or ion
dissolution.

Understanding the dissolution kinetics of partially
soluble ENMs is important in assessing the genotoxic
potential and toxicity mechanisms associated with
both ionic and particulate components.89 Recent stud-
ies have reported that only a few metal oxide nano-
particles are soluble in cell culture media, including
ZnO and Ag investigated in this study.90,91 For exam-
ple, previous studies have demonstrated that reducing
the solubility of ZnO particles leads to reduced cellular
toxicity92 and reduced inflammatory response when
instilled in the rat lung.93 The issue of dissolution be-
comes more complex considering the variety of intra-
cellular microenvironments and pH conditions that
will further influence solubility and intracellular
particle trafficking.94 Nevertheless, our data correlates
with recent zinc oxide nanoparticle genotoxicity
studies and confirm the hazardous nature of ZnO
nanoparticles.95,96

Several studies also suggest that the release of Zn2þ

ions from ZnO ENPs can damage other cellular orga-
nelles and their biological function.91,97 Our MTT anal-
ysis revealed zinc oxide ENP exposure impaired mito-
chondrial dehydrogenase activity in TK6 by 26% at the
high dose of 20 μg/mL (Figure 3B). These findings are
similar to other studies that evaluated comparable
concentrations of zinc oxide where the genotoxic
effects were found at 3�6 h in SH-SY5Y cells.98 The
authors found that zinc oxide nanoparticles weremore
toxic to rapidly proliferating fibroblast cells due to
increases in intracellular zinc concentrations.98 In the
present study, we observed similar trends viaMTT and
CyQuant NF analyses, where cellular viability inhibition
was demonstrated as well as a considerable reduction
in cellular proliferation by 23% after a 4 h exposure
to zinc oxide ENPs in our suspension cell line, TK6
(Figure 3C).

In the adherent cell type, H9T3, we found significant
levels of DNA damage due to zinc oxide ENP exposures
of 34 and 44% DNA in tail for 10 and 20 μg/mL
(Figure 3D). Additionally, zinc oxide ENP exposures
significantly decreased cellular viability at the low dose
of 5 μg/mL and drastically reduced H9T3 cells at 10 and
20 μg/mL, revealing 42 and 85% reduction in cell
viability, respectively (Figure 3E). Zinc oxide nanopar-
ticles impeded proliferation by 50% after 20 μg/mL
in comparison to media only treated or control cells
(Figure 3F), which correlates with our cellular viability
and other studies which evaluated the toxicity of
ZnO ENP exposures.99�101 Clearly, the use of safer
formulations of zinc ENP should be implemented in
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nanoenabled products to reduce deleterious effects on
biological systems.

Cerium Oxide ENP Exposure, DNA Damage, and the Cellular
Effects. Cerium oxide is a known additive in many
gasoline formulations, cosmetics, and a potential com-
ponent in some disease therapies.102 In regards to the
genotoxic potential of CeO2, we found that a dose of
20 μg/mL induced significant DNA damage (27%)
(Figure 3A). Thought to be a radical scavenger,103,104

cerium oxide's innate properties may act as a double-
edged sword when taken up by cells. For example,
Marzi and co-workers showed that, although cerium
oxide ENPs could protect A549 and HepG2 cells from
hydrogen-peroxide-mediated oxidative damage, the
presence of cerium oxide ENPs alone could adversely
affect cellular DNA.105 Furthermore, normal human
fibroblasts exposed to cerium ENPs incurred DNA dam-
age after 2 h exposure in a separate study.106 Con-
versely, a study conducted to evaluate the effects of
cerium oxide on human lens epithelial cells found no
induction of DNA damage after 24 h exposure.107 Thus,
the inherent properties of cerium may create complex
interactions with DNA in certain cell populations.
Although cerium oxide ENP exposures did not elicit a
high amount of DNA damage, TK6 cells were still
sensitive to low exposures of cerium oxide in which
significant decreases in viability (15, 23, 21%) were
found at 5, 10, and 20 μg/mL after 4 h exposure
(Figure 3B). Hussain and co-workers found similar
results when sublethal or low doses of cerium were
used on humanperipheral bloodmonocytes.108Within
that study, the authors found extensive mitochondrial
damage to cerium-exposed monocytes, including mi-
tochondrial elongation, swelling, and depolarization,
or decrease in membrane potential.108 The authors
suggested that cerium-mediated cytotoxicity was not
associated with reactive oxygen species generation,
which is the generally accepted cause of most metal
oxide ENP toxicity.108 Interestingly, there are limited
reports about the adverse effects of cerium oxide
nanoparticle exposures; in fact, many reports report
their cytoprotective and proliferative nature.109�111

However, in the present investigation, a reduction in
TK6 cell proliferation (Figure 3C) by 16% was observed
after 4 h exposure of cerium ENPs.

In regards to the genotoxicity of cerium oxide
exposures in the adherent cell line, H9T3, significant
DNA damage was found at 20 μg/mL (22% DNA in tail)
(Figure 3D). However, cerium ENP exposures at 24 h did
not interfere with cellular viability in H9T3 cells at
higher concentrations (Figure 3E). Cerium ENP ex-
posure at 20 μg/mL also did not reduce cellular
proliferation in H9T3 cells after 24 h (Figure 3F),
which correlates with cellular viability data men-
tioned previously. Therefore, in light of the complex
nature of cerium oxide ENPs, future studies are
warranted in order to retain the potential therapeutic

benefits cerium may possess but minimize the
health risks.

In summary, we have observed that the levels of
DNA damage obtained using the presented CometCh-
ip approach covaried with diminished cell survival. For
example, for zinc, in H9T3 cells, there was a dramatic
decrease in viability at doses that are highly genotoxic
according to the CometChip analysis. Silver and iron at
the lower doses tested induced significant DNA dam-
age, while retaining cell viability at levels 70�80% or
higher. Generally, 70�80% viability is accepted as a
level of cell death (determined by trypan blue dye
exclusion assay) that does not interfere with the ability
to assess DNA damage using the comet assay.112When
using ATP levels or cell proliferation as a measure of
cytotoxicity, cutoff levels of 50% viability or greater are
recommended.65,113 In regards to cerium oxide expo-
sures, the highest concentration in H9T3 cells induced
DNA damage but did not alter viability or cellular pro-
liferation. In contrast, a significant decrease in cellular
viability and proliferation was observed when TK6 cells
incurred DNA damage due to cerium oxide ENP ex-
posures. The variances in the correlation between
cellular toxicity and genotoxicity are in agreement with
reports in literature;77,114,115 however, additional stud-
ies are warranted.

More importantly, the use of the CometChip plat-
form revealed distinctive genotoxicity profiles for
suspension (TK6) and adherent (H9T3) cell lines. The
outcomes reported here are possibly due to cell-type-
dependent differences in cell growth and adhesion,
nanoparticle�cell interactions, and varying dosimetry
over time. Recently, studies to investigate particle�cell
interaction uncovered that not only was internalization
size-dependent but the same material in different cell
lines may display different uptake kinetics,116 which
could have implications on toxicity and ENP hazard
ranking. However, to properly rank the hazards of the
studied ENPs within and across cell lines, dosimetry
needs to be taken into consideration to fully assess the
toxicities observed. Although dosimetry or the mea-
surement of the delivered dose is extremely important
in this regard, rarely is it utilized in nanotoxicological
studies.117,118 This is primarily due to the fact that
in vitro dosimetry is still an evolving field and well-
accepted dosimetric tools are not readily available.
Although our group has developed a dosimetry tech-
nique for adherent cell lines,45 to the best of our
knowledge, there is no published dosimetry method
for suspension cells.27 Thus, the presented DNA dam-
age data presented here cannot be used for hazard
ranking but could be used for the identification of
genotoxic ENPs.

Another possible contributing factor in our obser-
vations is DNA repair. It is well-known that single-
stranded DNA breaks are usually rapidly repaired in
cells.119 Thus, the genotoxicity profiles reported for the
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H9T3 cell line, which were exposed for 24 h, could
possibly be the result of repaired breaks and/or un-
repaired breaks. Moreover, it is conceivable that genes
associated with DNA damage response could be af-
fected by the continued presence of ENPs within cells.
For example, Petkovic and co-workers described the
consequences of crystalline titanium in HepG2 cells
and thedeleterious downstreameffects onDNAdamage
response genes, revealing their genotoxicity and ability
to affect DNA repair.120 Thus, all of these confounding
factors could have contributed to the different ENP-
inducedDNAdamageprofiles reportedwithin this study.

Although this approach has clear advantages over
the traditional method in assessing DNA damage,
there are some limitations. No single genotoxicity
assay is perfect in its ability to detect the broad range
of possible genetic changes that are potentially in-
duced by environmental exposure.121 Thus, regulators
employ a range of genotoxicity tests, which generally
include the Ames test (bacterial cell mutation), MN
(in vitro micronucleus), and the TK (mammalian cell
mutation) assays.122 However, in the field of nano-
genotoxicity, the comet assay has excelled past the
previouslymentionedmethods due to its sensitivity.123

Unlike the Ames and TK assays, the comet assay
directly tests for DNA damage, as opposed to muta-
tions that arise as a result of damage, offering an
important advantage. Along the same line, a limitation
of the comet assay is that the evaluation of comets
does not allow discernment of the mechanism of
action or mutagenic potential of test substances.124

Recently, the incorporation of fluorescence in situ hy-
bridization (FISH) or specific fluorophore-labeled DNA
probes has enabled the simultaneous evaluation of
damaged chromatin material and gene regions,125,126

which could potentially provide insight into initial
mutagenic/carcinogenic events caused by ENP expo-
sure. Another limitation of the comet assay, which has
proved problematic in generating reproducible results
between different laboratories, is the lack of standar-
dization in methodology, interpretation, and particle
preparation.54,127 Thus, the demonstrated CometChip
protocol and platform could further the effort to pro-
vide harmonization for ENP genotoxicity assessments.

CONCLUSIONS

Here, we have demonstrated the efficacy of a high-
throughput platform for assessing DNA damage in
mammalian cells induced by ENP exposure. In addition
to its high-throughput nature, the proposed CometCh-
ip approach has advantages over the traditional comet
assay. The microfabricated cell array, 96-well plate
format, and automated image processing reduces
noise, bias, and labor but more importantly increases
throughput by approximately two orders of magni-
tude compared to the traditional assay. We observed
significant levels of single-stranded DNA damage in

both TK6 and H9T3 cells, demonstrating the efficacy of
this platform to produce robust sets of data to capture
initial molecular events, which could be useful as a
screening tool for various types of ENPs and potentially
used for hazard ranking when dosimetry is considered.
We envision that the proposed approach will be not

only an important tool for nanotoxicologists develop-
ing HT screening strategies for the assessment of
possible adverse health effects associated with ENMs
but also of great importance for material scientists
working on the development of novel ENMs and
safer-by-design approaches. For instance, the pro-
posed CometChip approach was used in one of our
recently published studies which focused on the de-
velopment of a “safer-by-design” concept for ZnO
NPs.2 In this study, a safer-by-design concept was
pursued by hermetically encapsulating ZnO nanorods
in a biologically inert, nanothin amorphous SiO2 coat-
ing during their gas-phase synthesis in an effort to
maintain their optoelectronic properties and reduce at
the same time the high DNA damage potential of ZnO
NPs. The proposed CometChip approach was instru-
mental in this study to screen for DNA damage poten-
tial in the vast libraries of coated and uncoated ZnO
NPs and derive the optimum nanoparticle/coating
properties. This resulted in the development of SiO2-
coated ZnO nanorods with 3 times lower DNA damage
potential compared to uncoated ZnO nanoparticles,
rendering them attractive in polymers and cosmetics.
For future directions, we plan to expand the utility of

the CometChip method to include the investigation of
physiologically relevant cell lines, double-stranded
DNA breaks, and specific DNA lesions using certain
enzymes, which may be influenced by different nano-
materials. Moreover, with this tool, we can also probe
for DNA damage in individual cells and in combination
with fluorescent in situ hybridization and detect gene-
specific regions, which may be altered or mutated by
the presence of ENPs. The Comet�FISH technique has
been utilized with great success in comparing the
damage and repair of genes such as p53 and hTERT,
thus providing a potential valuable method in clinical
settings.128

Of greater importance, there is evidence that the
in vitro comet assay can provide predictive information
for in vivo genotoxic events induced by nanoparticle
exposures. In a study performed by Ghosh and co-
workers, good correlations were revealed between
in vitro and in vivo silver nanoparticle (25 μg/mL)-
mediated genotoxicity in cultured human blood lym-
phocytes and in Swiss albino male mice exposed to
AgNPs via intraperitoneal injection (10 mg/kg) using
the comet assay approach. Within that study, the
authors also determined that silver nanoparticle ex-
posures could fragment Allium cepa and Nicotania

tabacum plant nuclear DNA using the comet assay
when the plantlets were fed water containing Ag
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nanomaterials for 24 h.129 Thus, in vitro genotoxicity
can be correlated to ENP-mediated DNA damage
in vivo using the comet assay technique. Taken to-
gether, the CometChip method could prove to be a
powerful tool in assessing DNA damage and possible

gene mutations of ENPs, enhancing our ability to
predict the consequences of ENP exposures in vivo.

Current studies within our lab are underway to reveal
the potential for predicting in vivo genotoxic outcomes
using the CometChip platform.

METHODS

ENP Synthesis and Characterization in Powder Form. ENPs investi-
gated in this study are listed in Table 1. ENP powders were
generated in-house using the Harvard Versatile Engineered
Nanomaterial Generation System (VENGES), as previously des-
cribed.40 Specific surface area, SSA, defined as the area permass
(m2/g), was determined by the nitrogen adsorption/Brunauer�
Emmett�Teller (BET) method (Monosorb by Quantachrome,
Boynton Beach, FL). The equivalent primary particle diameter,
dBET, was calculated, assuming spherical particles, as

dBET ¼ 6
SSA� FP

(1)

where Fp is the particle density, which was obtained for each
particle from the densities of component materials, at 20 �C,
reported in the CRC handbook of Chemistry and Physics.130

Particle crystal size and diameter were also determined by X-ray
diffraction using a Scintag XDS2000 powder diffractometer
(Scintag Inc., Cupertino, CA), reported here as dXRD. ENP powder
primary particle morphology and size were further character-
ized by transmission electron microscopy (TEM) using a Zeiss
Libra 120 microscope (Carl Zeiss GmbH, Jena, Germany).

ENP Dispersal and Characterization in Liquid Suspensions. Disper-
sions were prepared based on a protocol recently developed
by the authors.45 Sonication was performed in deionized water
(DI H2O) using the critical dispersion sonication energy (DSEcr),
which was determined as previously described for each ENP.45

ENPs were dispersed at 1 mg/mL in 3 mL of solute in 15 mL
conical polyethylene tubes using a Branson Sonifier S-450A
(Branson Ultrasonics, Danbury, CT), calibrated by the calori-
metric calibration method previously described,45,131 whereby
the power delivered to the sample was determined to be
1.25 W, fitted with a 3 in. cup horn (maximum power output
of 400 W at 60 Hz, continuous mode, output level 3) in which
tubes were immersed so that sample and cup water menisci
were aligned. Stock DI H2O suspensions were then diluted to
final desired concentrations (5, 10, or 20 μg/mL) in RPMI 1640 or
MEM cell culture media, each either alone or supplemented
with 10% heat-inactivated horse serum (HS) or fetal bovine
serum (FBS), respectively, 100 U/mL penicillin, and 100 μg/mL
streptomycin and vortexed for 30 s. Dispersions were analyzed
for hydrodynamic diameter (dH), polydispersity index (PDI),
zeta-potential (ζ), and specific conductance (σ) by DLS using a
Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK).

Cell Culture and Treatment. TK6 human lymphoblastoid and
H9T3 Chinese hamster ovary cell lineswere kind gifts fromBevin
Engelward of Massachusetts Institute of Technology. TK6 cells
were maintained in RPMI-1640 with L-glutamine supplemented
with 10% horse serum and 100 units/mL penicillin and strepto-
mycin. H9T3 cells were cultivated in minimum essential media
(MEM) with 10% fetal bovine serum and 100 units/mL penicillin
and streptomycin. Both cell lines were utilized for experimenta-
tion at passage 13. Cells were seeded at a density of 2 � 105

cells/well in a 96-well plate in 100 μL approximately 1 h before
treatment for TK6 cells. H9T3 cells were plated at a density of
1 � 104cells/well 1 day prior to nanoparticle treatment and
allowed to reach confluency before treatment. Nanoparticle
suspensions were prepared and sonicated as mentioned in
Figure 1 in 3 mg/mL concentrated stocks in sterile distilled
water. The stocks were then diluted in the appropriate media
containing 10% serum and adjusted to the correct concentra-
tion. Each suspension was vortexed prior to adding to the cell
suspension at a volume of 100 μL for 4 h for TK6 cells and 24 h

for H9T3 cells. We utilized longer exposure times for H9T3 cells
to ensure nanoparticle/cell interaction.

CometChip Preparation and Cell Loading. Negative silicon molds
of polydimethylsiloxane (PDMS) were used to pattern micro-
wells within the 96-well platform as described by Wood et al.
and Weingeist et al.36,37 The PDMS mold was allowed to set in
molten 1% normal melting point agarose applied to GelBond
film for 20 min. After agarose polymerization, the PDMS stamp
was removed, revealing a 300 μm thick gel consisting of arrayed
microwells. The gel was then clamped between a bottomless
96-well plate and a glass plate. Cells which were pre-exposed
with ENPs for 3.5 h were then added to the microwell array and
allowed to load for 30 min for a total 4 h exposure. In regards to
H9T3 cells, after 23 h of ENP exposure, spent medium was
aspirated and cell monolayers were washed with 1� phosphate
buffered saline (PBS). Cells were then trypsinized with 50 μL of
TrypLE reagent for 4 min. Complete media containing 10% fetal
bovine serum (50 μL) were added to wells to deactivate trypsin.
The treated cell suspensions were then transferred to the
CometChip for 30 min to 1 h. After gravitational settling of cells
into singlewells, excess cells were aspirated and thegelwas rinsed
three times with warm 1� PBS. Molten low melting 1% agarose
was used to cover microwell array/cells and allowed to set for
5 min at room temperature and 5 min at 4 �C. The gel was then
submerged into lysis solution (2.5 M NaCl, 100 mM Na2EDTA,
10mM Tris, pH 9.5 with 0.5% Triton X-100) overnight at 4 �C. After
lysis, gelswerewashed two times in PBS to remove surfactant. Gels
were then adhered to an electrophoresis inner tankwell (Trevigen)
withdouble-sided tapegel sideup. Electrophoresiswasperformed
using alkaline buffer (0.3M sodiumhydroxide and 1mMNa2EDTA
in distilled water) at 4 �C for 30 min at 21 V and 300 mA. After
neutralization with 0.4 M Tris-HCl buffer, Sybrgold (Invitrogen)
stain was used to detect fragmented DNA within microwells at a
concentration of 1:2000 in 1� TBE buffer.

Traditional Comet Assay. To prove the efficacy and efficiency of
the CometChip, comparison studies were performed using the
traditional comet assay. Briefly, TK6 cells which were exposed to
ZnO (20 μg/mL) for 4 h were submerged in 1% molten agarose
and placed on glass slides. Themolten agarose/cell mixture was
allowed to set and subsequently placed into lysis solution (2.5M
NaCl, 100 mM Na2EDTA, 10 mM Tris, pH 9.5 with 0.5% Triton
X-100) for 1 h at 4 �C. After lysis, exposed nucleoid structures
were placed in alkaline solution to allow unwinding. Slides
were then electrophoresed using alkaline buffer (0.3 M sodium
hydroxide and 1 mM Na2EDTA in distilled water) at 4 �C for
30 min at 21 V and 300 mA. Sybrgold stain (1:1000) was used to
stain damaged DNA, and an Axiovert inverted fluorescent
microscope was employed for imaging.

Cellular Viability Evaluation. TheMTT assay (Roche) was used to
assess the cell viability of TK6 and H9T3 cells exposed to
nanoparticles. TK6 cells, a suspension lymphoblastoid cell line,
were seeded into 96-well plates at a density of 1� 104 cells/well
in RPMI media in 100 μL containing 10% horse serum. Nano-
particle suspensions were added at 100 μL at twice the con-
centration needed to obtain 5, 10, and 20 μg/mL for 4 h at 37 �C
in 5% CO2. After exposure, cells were spun down at 250g, and
spent medium was aspirated. Fresh medium was then added,
and MTT reagent (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tet-
razoliumbromide) (10 μL) was added to eachwell for a period of
4 h at 37 �C. Solubilization reagent (100 μL) was added to
dissolve the formazan crystals produced from the reduction of
the tetrazolium salt or MTT reagent in viable cells. Absorbance
wasmeasured at 550 nmusing a fluorescencemicroplate reader
(Molecular Devices). Acellular experiments were performed to
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ensure reagent integrity and to rule out ENP interference. The
data obtained from acellular experiments revealed no inter-
action between test ENPs and MTT reagents during the 4 h
exposure time point in TK6 cells. For the 24 h time point utilized
in the H9T3 cells, no substantial nanoparticle interaction with
MTT reagents was observed. Percent cell viability (relative
viability compared to media-only cells) was calculated as mean
value ( standard error as a result of three independent experi-
ments performed in triplicate.

Cellular Proliferation Assay. To measure cellular proliferation
after nanoparticle exposure, the CyQuant NF assay was em-
ployed. Independent of metabolic function, this assay utilizes
the amount of DNA in correlation to cellular proliferation.
Briefly, cells were seeded in black 96-well plates at a density
of 1� 104 cells/well in the appropriate culturemedia containing
10%horse serumor 5% fetal bovine serum at a volumeof 100 μL
for TK6 and H9T3 cells, respectively. Nanoparticle suspensions
were added to the cell suspensions at twice the concentration
desired and incubated for 4 h at 37 �C at 5%CO2. After exposure,
plates containing cell and nanoparticle suspensions were spun
down at 250g, and medium was aspirated. CyQuant NF dye
reagent diluted in 1� HBSS (Hank's balanced salt solution)
buffer (100 μL) was added to cells and incubated for 30 min
at 37 �C. Negative controls were cells without nanoparticle sus-
pensions. Background autofluorescence of TK6 and H9T3 cells
from unstained cells were measured in addition to negative
controls. To account for possible nanoparticle interference with
reagents, plates with ENPs only were performed simulta-
neously. The ENP-only plates reflected slight background noise
and thus were subtracted from data collected from ENP/cell
proliferation evaluation. Fluorescence measurements were tak-
en immediately using a microplate reader (Molecular Devices)
at an excitation of 485 nm and emission detection of 530 nm. All
experiments were performed in triplicate for a total number of
three experiments. Values reported are the mean ( standard
error. One-way ANOVA was performed followed by Dunnett's
post test; p values less than 0.05 were considered significant.

Statistical Analysis. Experimental investigations were con-
ducted three times, and results were expressed as means ( SEM
for at least three biological experiments. Statistical differences
between the means were determined by performing one-way
analysis of variance (ANOVA) using Prism version 5 (GraphPad
Software, La Jolla, CA), and a treatment effect with a p value
of e0.05 was considered significant. Individual groups for comet
analysis were compared using the unpaired Dunnett's post test.

Chemicals and Reagents. All chemicals and reagents to synthe-
size metal nanoparticles used within this study were purchased
from Sigma Aldrich. RPMI-1640 and minimal essential media
(MEM) cell culture media, penicillin/streptomycin, horse serum,
and GelBond film were purchased from Lonza. Low and high
melting agarose plus all electrophoresis reagents and buffers
were purchased from Sigma Aldrich. MTT cellular viability assay
was purchased from Roche, and cell proliferation CyQuant NF
assay was acquired from Invitrogen.
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