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evolution of rhizomyine rodents
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1School of Earth Sciences, University of Bristol, Bristol, United Kingdom, 2School of Earth, Atmospheric & Environmental Sciences,
University of Manchester, Manchester, United Kingdom, 3Departamento de Paleobiologı́a, Museo Nacional de Ciencias Naturales-
CSIC, Madrid, Spain, 4Key Laboratory of Marine Geology and Environment, Institute of Oceanology-Chinese Academy of Science,
Qingdao, China, 5Department of Human Evolutionary Biology, Harvard University, Cambridge, USA.

The modern Asian monsoonal systems are currently believed to have originated around the end of the
Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon
possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been
provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in
conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary
dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with
biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were
surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate
causal relationships. We showed the existence of three drops in biodiversity during the evolution of
rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon
variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines
was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably
because at those intervals forest habitats declined, which triggered extinction and progressive specialization
toward a burrowing existence.

O
ngoing climatic perturbation is a foremost concern for biodiversity preservation. Recent results suggest
that global warming is likely to increase climatic variability and, therefore, impact the Asian monsoon1,
which is one of the most widespread and mighty climatic phenomena on Earth2. The monsoon system

comprises the East Asian and South Asian subsystems. The South Asian (or Indian) monsoon characterizes the
climate south of the Himalayas, and throughout Indochina and the South China Sea, whereas the East Asian
monsoon affects China and adjacent countries of eastern Asia3. The study of the Asian monsoon has attracted the
interest of the scientific community due to its contribution to and influence on global climate variability, possibly
as soon as its initiation around the Oligocene/Miocene boundary4. As a result, the evolution through time of
monsoon systems and its correlation with the tectonic evolution of Asia are becoming better known. However,
this does not hold true for our knowledge of the impact on resident faunas. Although drastic evolutionary
responses may be expected for species living under monsoon-driven climatic conditions, no supporting data
using phylogenetically constrained species-level information from the fossil record have been offered. By com-
paring rates of biodiversity change for a group of mammals studied by means of cladistic analyses, it is possible to
calculate the rates of taxonomic turnover, which will allow inferences concerning the times of biodiversity crisis
(net loss of biodiversity) and their causes (extinction or speciation decline)5. The growing knowledge of the fossil
record and the growth of phylogenetic information coupled with biogeographic and evolutionary rate studies
allow more detailed studies of the coevolution of the Earth and its biota6. Here, we unravel evolutionary rates and
biogeographic patterns within rhizomyines, a group of mainly Asian subterranean rodents, and correlate the
evolutionary history of these small mammals with fluctuations in monsoon strength since its origin in the Late
Oligocene.

Results
Cladistic analysis. A single most parsimonious tree (Supplementary Figure 1) has been generated (see material
and methods) with a length of 160, a Consistency index of 0.450, and a Retention index of 0.814.

Speciation mode. The cladogram with biogeographic states mapped to terminal taxa and nodes (Supplementary
Figure 1) shows that many of the transitions between nodes on the tree are not associated with major changes in
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geographic range. This indicates a predominance of differentiation
within the biogeographic region over vicariant or geodispersal
speciation in rhizomyine rodents. However, the evolu-
tionary history of this group also involves episodes of vicariance
and range expansion. In fact, since the Early Miocene the
rhizomyines have experienced various dispersal events from Asia
to Africa. The first would have taken place at approximately 19 Ma
and would have concerned the basal clade of the rhizomyines, giving
rise to the Libyan species Prokanisamys sp. During the Late Miocene,
the rhizomyines would have experienced 6 unidirectional dispersal
events (two from the Indian subcontinent to Africa and four from the
Indian subcontinent to southeastern Asia). With respect to the
intercontinental dispersals, the first would have given rise to the
Ethiopian species ‘‘Tachyoryctes’’ makooka, whereas the second
would have been at the origin of the African tribe Tachyoryctini
(Tachyoryctes spp.). This tribe includes the single African living
genus of the subfamily. As for the intra-continental dispersals, the
first would have been at the origin of the tribe Rhizomyini, which
encloses all Asian extant representatives of the subfamily (Rhizomys
and Cannomys). The second and third dispersal events may not have
taken place earlier than 9 Ma and concerned the taxa Miorhizomys
pilgrimi and M. tetracharax plus M. harii, respectively. These species
would have rapidly spread through southeastern Asia because similar
forms have been recorded in southern China at about 8 Ma7. Finally,
the last dispersal event would have given rise to the northern Chinese
species ‘‘Rhizomys (Brachyrhizomys)’’ shajius.

The diversification of rhizomyines has also involved episodes of
vicariance, particularly during the first two radiations. The first is
near the origin of this group and the second matches the Early-
Middle Miocene boundary (Fig. 1).

Biodiversity analyses. Phylogenetically constrained per-capita rates
(p̂, q̂, and d) and deterministic rates (R, S, and E) for the Rhizomyinae
have been calculated (see material and methods). Results from the
two sets of analyses have produced congruent patterns (Fig. 2).

Figure 2 shows that the biodiversity has changed during the course
of the history of this group of rodents. The stages characterized by an
increase in the biodiversity of the rhizomyines are the Burdigalian
(20.44–15.97 Ma) and Tortonian (11.63–7.25 Ma) in the Early and
Late Miocene, respectively, and the Zanclean (5.33–3.60 Ma) at the
beginning of the Pliocene. The biodiversity of these rodents drops in
the Serravallian (13.82–11.63 Ma, Middle Miocene), Messinian
(7.25–5.33 Ma, Late Miocene), and Piazenzian (3.60–2.58 Ma,
Pliocene). High speciation rates account for the increase in diversity
during the Burdigalian and Zanclean, whereas the rise in biodiversity
during the Tortonian is caused by elevated speciation rates coupled
with low extinction. The three drops in biodiversity are the product
of elevated extinction rates. The major biodiversity crisis endured by
this group of rodents took place during the Pliocene, but a limited
fossil record does not allow precise dating.

Discussion
Much evidence suggests that climate changed both in and near India
around 11–10 Ma, 8–7 Ma, and 4 Ma2,8–13. However, despite the fact
that the Asian monsoon system has been dominating the Asian
climate since its initiation close to the Oligocene/Miocene bound-
ary11,13–15, no attempts have been made to infer its influence on
specific mammal lineages. This is paradoxical because physical envir-
onmental factors are crucial in triggering evolution, particularly at
large geographic and temporal scales16. There is a strong causal link
among speciation, extinction, and environmental change, and one
would expect to find pulses of faunal turnover linked to external
factors such as climatic changes17. Combining the results of analyses
of biodiversity and phylogenetic biogeography can reveal mechan-
isms responsible for the fluctuations of biodiversity through time.

Early-Middle Miocene (23.03–11.63 Ma). The timing of develop-
ment of the South Asian monsoon is poorly constrained. Some
authors cautiously infer its initiation around the Oligocene/
Miocene boundary as proposed for the East Asian Monsoon13.
Numerous works11,15 suggest a strong monsoon during the Early
and Middle Miocene. Limited evidence indicates that southern
Asian Early Miocene environments were moist and subtropical18.
The late Early to early Middle Miocene, a period of warm global
conditions19 (Fig. 1), would have favoured stronger summer
monsoons2. Accordingly, the Middle Miocene faunas of Pakistan
suggest moist conditions and the existence of a relatively closed
rainforest20–23. Primitive rhizomyines (Prokanisamys spp.) show
bunodont and rather brachydont cheek teeth that are consistent
with the non-abrasive diet that is typical for moist habitats. Known
osteological features of the skull and postcrania of these early
rhizomyines do not support commitment to a fully fossorial lifestyle.

Late Miocene (11.63–5.33 Ma). During the early Late Miocene
(,10 Ma), an important faunal turnover is observed in Siwalik
rhizomyines (Fig. 1). The extinction of the primitive taxa with
weak or moderate lophodonty (transverse crests as high as cusps)
is concurrent with the diversification of the more derived, lophodont
species of the group, which showed adaptations to an abrasive diet
after 10.2 Ma (e.g., increase of the dentary depth, constriction of the
mure in the cheek teeth, Fig. 1) and progressive adoption of fossorial
features. This turnover is coincident with the end of the first
biodiversity crisis in rhizomyines (Serravallien) (Fig. 2). In fact, the
drop in the biodiversity of the group in the Serravallian (13.82–
11.63 Ma) is due to the disappearance during this interval of
nearly all the taxa that had crossed its lower boundary. This crisis
is followed by a rapid and ample diversification of this group during
the following interval, the Tortonian (11.63–7.25 Ma), that concerns
mainly members of the fully subterranean lineages (Fig. 2). A more
striking drop in biodiversity followed at the end of the Miocene,
during the Messinian (7.25–5.33 Ma), when most of the lineages
that originated and diversified during the Tortonian did not
survive into the following stage. Late Miocene rhizomyine bio-
diversity mostly concerns representatives from the Indian sub-
continent and southern Asia to the East, known today as the
Oriental Biogeographic Province. Outside this area a single species
is found in eastern Asia at the end of the Messinian24. Merely two taxa
have been recorded from the Late Miocene of the whole African
continent25,26.

The increase of lophodonty and hypsodonty in rhizomyines
points to a diet of coarser vegetation and, therefore, suggests an
increasing Asian climatic dryness around 10 Ma. At approximately
10.2 Ma, the dentary depth of rhizomyines increased from weak to
moderate in all taxa. The deepening of the dentary together with the
development of a heavy, flattened incisor is a good indicator of an
adaptation to fossorial lifestyle in this group because living rhizo-
myines use mainly the incisors and not the limbs in burrowing27,28. In
addition, at 9.8 Ma Tachyoryctes makooka and more derived taxa
have the mure of the molars constricted. The beginning of mure loss
can also be related to the adaptation to a fossorial way of life in
rodents that dig their burrows mainly by the incisors, and consume
subterranean plant structures. In such animals, the skull undergoes
structural specialization and the same holds true for the dentition.
Most subterranean rodents subsist on coarse food (e.g., roots, rhi-
zomes, young twigs). Because simple crushing is no longer sufficient
for these substances to be reduced, shearing and slicing dominate.
Therefore, subterranean rodents feed by incision, followed by grind-
ing with their molars, in contrast with arboreal forms, which gen-
erally eat by gnawing and then crushing29. Additionally, the rate of
dental wear by attrition increases because the coarseness of food is
greater and more grit is encountered in the subterranean diet. This is
responsible for changes in dental pattern. The incisors become
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broader and chisel-shaped and the low crowned cuspidate molars
become more hypsodont with flattened crown surfaces due to the
submergence of the main tubercles into transverse folds29.

The beginning of the development of a subterranean way of life in
open environments is advantageous for small mammals. The bur-
rows provide shelter from predators, prevent excess water loss and
permit controlled ambient temperature fluctuations. The triggering
effect of open environments on fossoriality has been evidenced in
caviomorph rodents30–32. For rhizomyines, the development of open
environments in which food resources are reduced and the risk of
predation is higher presumably drove primitive lineages to extinction
and prompted the diversification of more derived ones with nascent
adaptations to burrowing. The appearance of a subterranean lifestyle
is, therefore, the chief factor that allowed rhizomyines to radiate after
11 Ma. The members of this radiation, the Tribe Rhizomyini, would
have built underground burrow systems to avoid predators, and
possibly would have begun to exploit underground plant structures.

Weakening of South Asian summer monsoon (weaker summer
rains) and associated drying since the beginning of the Late Miocene
would have shifted accordingly the habitat of rhizomyine rodents.
The uplift and eastern expansion of the Tibetan Plateau over the past
15–10 Ma seem to have played a decisive role in the evolution of the
South Asian monsoon12,33, which controls the climate of northwes-
tern India and Pakistan. Since the beginning of the Late Miocene,
climatic changes affected the Asian continent in general and the
Indian subcontinent in particular, with increasing seasonality. An
increase in seasonal aridity seems to be tied to the growth of eastern
Tibet33. However, whether these climatic changes reflected a mon-
soonal strengthening (i.e., heavier summer rains) or, conversely, a
weakening of monsoon rains is controversial. In fact, the formerly-
accepted strengthening of the monsoon at this time is being increas-
ingly questioned11,13,33–37. The benchmark works of Kroon et al.8 and
Prell et al.9 on foraminifera and radiolarian assemblages in the west-
ern Arabian Sea have been particularly influential in this respect. The

Figure 1 | Calibrated phylogeny of rhizomyine rodents and their recorded temporal ranges (black). Grey bars represent missing ranges and missing

ancestral lineages. Error bars indicate age uncertainty. Chronostratigraphical data from Sabatier83, De Bruijn et al.84, Flynn28,51,63,68, Flynn et al.57,60,69,

Sen85, Wessels et al.86, Chaimanee et al.87, Wesselman et al.88, and Wessels89. Vicariance (V) and geodispersion (D) events are circled at the corresponding

nodes. Red and blue dots correspond to K/Al ratios and Chemical Index of Alteration (CIA) data from cuttings from Indus Marine A-1 industrial well;

black rectangles reflect the total sediment flux into the Indus fan; green surface to the probability densities for 40Ar/39Ar muscovite dates from the

Himalayan hinterland (dark green) and proximal foreland (light green) (all taken from Clift et al.11). Global deep-sea oxygen isotope and temperature

curves (red line) are from Zachos et al.19. Vertical bars provide approximation of ice volume in each hemisphere relative to the Last Glacial Maximum

(LGM); dashed and full bars represent periods of minimal ice coverage (,50%) and maximal ice coverage (.50%), respectively. Blue arrows

indicate periods of weakening of the South Asian summer monsoon. Red arrows point to the time of appearance of ‘‘key innovations’’ in rhizomyines

(see text). Brown vertical bar indicates a phase of uplift and eastern expansion of the Tibetan Plateau.
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sharp increase in the abundances of Globigerina bulloides and
Actinomma sp. at about 8–9 Ma indicates an intensification of
upwelling strength in the Arabian Sea, which suggests monsoon
strengthening at that time. Subsequent findings from the Indian
subcontinent, including isotopic, faunal, and floral data have been
assimilated into that view10,23,38–40. However, other works41 in the
same area identified no marked increase in G. bulloides abundance
at this time but important changes in carbon and hydrogen isotopic
ratios of leaf waxes, which indicate an increase of the regional aridity.
An emerging view that is more consistent with an increase in aridity
over the northwestern Indian subcontinent is that the monsoon did
not strengthen but weaken at this time. For example, Clift et al.11

identified slower erosion rates in the Himalayas since 10.5 Ma that
correlated with a decrease in precipitation. This corresponds to a
weakening of the Asian Summer Monsoon, possibly linked to a
strong global cooling19 (Fig. 1). This interpretation was based on
the observation that the regions of the Himalayas with the heaviest
precipitation have maximal erosion rates today (see discussion in
Clift & Plumb2). Consequently, Clift & Plumb2 interpreted the sharp
drop in the rate of clastic accumulation in the Bengal fan and in some
parts of the Himalayan foreland basin after 8 Ma found by Burbank
et al.42 as a weakening of the monsoon. Furthermore, Chemical Index
of Alteration values of sediments eroded from regions in which the
South Asian monsoon dominates the climate, which represent chem-
ical weathering in the western Himalayas over the period 17.0–
3.0 Ma, have also generally been decreasing since the Middle
Miocene, confirming the weakening trend of South Asian summer
monsoon11,13 (see Fig. 1). Climate modelling results are perfectly
consistent with a Late Miocene decrease in continental humidity43–45.
A weakened South Asian summer monsoon would have limited the
penetration of moisture from the ocean to the continent and, hence,
increased the aridity in northwestern India and Pakistan, with far-
reaching ecological and environmental shifts.

There are numerous palaeontological studies that support an
important climatic change in the Himalayan area since the beginning
of the Late Miocene. For instance, after 12 Ma, the d18O of fossil large
mammal tooth enamel records a shift toward a drier environment in
Pakistan23. In addition, the exceptional Siwalik fossil record has
allowed the identification of a period of high faunal turnover at about
10.3 Ma that is characterized by a high level of disappearance46. In
fact, more than 30% of the whole mammal fauna disappeared (11 out
of 36 taxa) and 17 new taxa appeared (Fig. 3). Furthermore, the most
significant faunal change in bovids occurs not long after 11 Ma47,
nearly coinciding with the arrival of hipparionine horses. The rodent

fossil record shows important changes such as the decline of crice-
tids, which had dominated the Siwalik Miocene since 18 Ma, and the
local extinction of ctenodactylines48. Furthermore, Kimura et al.49

identified at this time (10.5 to 10.2 Ma) the first significant diver-
gence in molar shape between the two murines Karnimata and
Progonomys, which could be linked to environmental changes.
Flynn68,50,51 observed an increase in hypsodonty in Late Miocene
rhizomyines from the Pakistan Siwaliks. This has been tentatively
correlated with a transition to a drier and more seasonal climate
beginning around 9.2 Ma, which intensified by 7.8 Ma, as evidenced
by changes in the floodplain deposition and vegetation46. The change
in rodent fauna evidenced in the area by Flynn & Jacobs52 at about
this time also supports an increase in aridity and a change in forest
ecology.

A weakening of the South Asian summer monsoon would also
explain the 7.3 to 7.0 Ma faunal turnover found by Barry et al.46 and
Badgley et al.53. However, the decline of the C3-dominated vegetation
(mostly trees and shrubs) and the dominance of plant communities
with predominantly C4 vegetation (warm season grasses) around
7.4 Ma46, which has been attributed to monsoon intensification, is
now believed to be rather due to the global cooling effects of a
decrease in atmospheric CO2 at this time54. Similar changes have
been identified in North America, far from the influence of the
Asian monsoon2. Finally, the analyses carried out by Dettman
et al.10 on isotopes of fossil bivalves and teeth from Nepal and
Pakistan suggested a significant shift in climate toward a harsher
aridity starting ca. 7.5 Ma.

Pliocene (5.33–2.58 Ma). The third and last biodiversity crisis
experienced by the rhizomyines is recorded in the Piazencian (3.6–
2.58 Ma). This is the major crisis endured by this group of rodents
and is characterized by elevated extinction coupled with low
speciation rates (Fig. 2). This drop in diversity occurred after a
shift in climate toward drier conditions and a decrease of the
South Asian summer monsoon at about 4–3 Ma, possibly linked to
additional global cooling that reflects the onset of successive
Northern Hemisphere Glaciations19 (see Fig. 1). This climatic
change is supported by diverse results using different climatic
proxies11,14,55. The closure of the Indonesian seaway by 4–3 Ma
may have played a role in the intensification of Asian aridity,
which would have resulted in not only a general decrease of the
South Asian summer monsoon14 but also in an increase in the
aridity of eastern Africa56. By 3 Ma, rhizomyines had suffered an
important decline in the Indian subcontinent and surrounding

Figure 2 | Instantaneous deterministic (A) and per-capita (B) rates for rhizomyine speciation, extinction, and biodiversity change calculated using
phylogenetically constrained species ranges (see material and methods). Biodiversity rises in the Burdigalian, Tortonian, and Zanclean are driven by an

increase in the speciation rates coupled with a lower extinction rate during the Tortonian. The three drops in biodiversity in the Serravallian,

Messinian, and Zanclean are the result of elevated extinction rates.

www.nature.com/scientificreports
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areas, where they nearly disappeared. At that time, only two taxa
survived in this area: the single bispecific genus Anepsirhizomys
Flynn, 198268 in Pakistan and India68,57 and Rhizomyides Bohlin,
194658 in Afghanistan and northern India59,60. Both lineages show
some significant adaptations in line with an increase in aridity.
For instance, by 3.5 Ma the lineage of Anepsirhizomys developed
hypsodont teeth and lost the mure on the second molars68.
Rhizomyides platytomeus (3 Ma) also shows high crowned teeth, a
dentary of moderate depth, and chisel-shaped incisors. Additional
palaeontological data support the presence of open and arid or
semiarid environments at this time in the region61. Increasing
aridity possibly provoked the decline in biodiversity and local
extinction of rhizomyines in the northern Indian subcontinent,
where they would never return.

Paradoxically, while rhizomyines declined, the crown group
survived north of its present range, dispersing into Shanxi, China.
The Pliocene Brachyrhizomys lineage is preserved in deposits
of the Yushe Basin, and the mid-Pliocene species Rhizomys
(Brachyrhizomys) shansius24,62,63 is well known. By 4 Ma, this basal
taxon of the crown Rhizomyini64, developed hypsodonty, the dentary
depth and skull height increased from moderate to deep, and the
ventral slit of the infraorbital foramen was eliminated by expansion
of the masticatory musculature. All these characters point to an
adaptation to a subterranean lifestyle, consistent with an increase
in aridity.

From the Pliocene to the present, African rhizomyines have
remained restricted to the single genus Tachyoryctes (T. pliocaenicus
1 more derived taxa), which shows discontinuous spatial distri-
bution in the central and, especially, eastern parts of the continent.
Recent studies in eastern Africa support the occurrence of an import-
ant shift in the vegetation at this time, consistent with an increase in
aridity and seasonality and, therefore, an opening of the environment
in this area by 3 Ma65,66.

Successive species of Tachyoryctes show an increase in hypsodonty
through time67. Furthermore, the members of this clade share the

synapomorphic loss of the mure on the molars by 4 Ma. As seen
above, the loss of the mure and an increase in hypsodonty are con-
sistent with the acquisition of burrowing habits, which were advant-
ageous for these small mammals in open environments.

Conclusion
Phylogenetic corrections of diversity estimates provide continuously
improving paleontological data with a huge potential for under-
standing the macroevolutionary impact of environmental changes.
A comprehensive cladistic analysis of rhizomyine rodents and sub-
sequent estimates of speciation and extinction rates as well as divers-
ity changes of the various lineages show that monsoon variations
impacted the evolutionary history of this group of mammals. Thus,
our data and analyses provide the first evidence of a correlation
between monsoon variations and the evolution of a group of mam-
mals in southern Asia. Counterintuitively, these are the phases of
weakening of the monsoons (which began at about 10.5 Ma), not of
strengthening, that have triggered the evolution in this part of the
world in this specialized clade because they provoked a decline of
forest habitats that precipitated their extinctions and progressive
commitment toward a burrowing mode of life, which would have
provided them with not only underground resources but also refuge
from predators in an opening environment. The high rate of spe-
ciation of rhizomyines, particularly since the beginning of the Late
Miocene, has been possibly exacerbated by isolating mechanisms
correlated with a solitary lifestyle and small home ranges. The sol-
itary way of life of the rhizomyines may have impacted the survival of
these animals in an increasingly arid environment, provoking their
dispersal and local extinction in much of South Asia during Pliocene
time.

It is likely that on the scale of millions of years the monsoon system
drove the evolution of many other taxa than rhizomyid rodents.
Unfortunately, there is a limited phylogenetic framework to defend
this for most other mammals. Hence, we are forced to rely only on a
fossil record of uneven quality. The most thorough southern Asian

Figure 3 | Biostratigraphic ranges of mammalian lineages from the Siwalik record (first and last occurrence inferred), late Miocene of the Potwar
Plateau, after data from Barry et al.46 (A) and Badgley et al.53 (B). Species that went extinct between 10.4 and 9.8 Ma are in red, whereas appearances at

that time are in green. The horizontal line in excess of 10 Ma indicates the initiation of the weakening of the monsoon, and coincides with the beginning of

radiation of fossorial rhizomyine rodents.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9008 | DOI: 10.1038/srep09008 5



paleobiological analyses, which have taken the fossil record at face
value, are consistent with our results and offer evidence of some
important faunal turnovers in the Siwaliks since the Late
Miocene (particularly after 10.5 Ma). Many initiatives focus on
climatic events to explain the faunal change from 8.5 Ma to
6 Ma, but the earlier important faunal turnover (at about
10.3 Ma), in which a third of the whole Siwalik mammal fauna
disappeared and numerous new taxa appeared46, has been
neglected. This event is synchronous with the most significant
turnover that we found in rhizomyine rodents. Our hypotheses
based on paleobiological analyses using phylogenetically con-
strained species-level information coupled with biogeographic
and evolutionary rate studies offer a new perspective to conser-
vation biologists working in Monsoon-dominated lands.

Methods
Rodents are a choice study material because they are the most abundant mammals in
the terrestrial fossil record, they generally show rapid evolution, and they are habitat-
sensitive. This makes them the most informative group of mammals from a
paleoenvironmental viewpoint. Amongst rodents, we chose to turn our attention to
rhizomyines because (1) their phylogeny has been recently elucidated by means of
cladistic analyses64, and (2) their evolutionary history took place mostly in southern
Asia, where their fossil record is well known particularly thanks to the Miocene
deposits of the Siwaliks68,69. Rhizomyines are, therefore, at one and the same time a
group whose phylogenetic topology is well known, but whose driving evolutionary
forces are unidentified even though the South Asian monsoon can be suspected a
priori to have played a role.

Cladistic analysis. The calculation of speciation rates and the assessment of
speciation patterns require a detailed knowledge of the temporal framework and
phylogenetic relationships of the considered taxa. This kind of information is
supplied by cladograms calibrated in time (stratocladograms) in which the
operational taxonomic units are species5. The evolutionary relationships of
rhizomyine rodents have been studied in detail by López-Antoñanzas et al.64. The
analyses of the evolutionary rates and paleobiogeography of rhizomyines that we
present in this work build upon the character/taxon matrix from therein. As running
that data matrix produced several trees64 and there is evidence of the improvement of
phylogenetical analyses of morphological datasets when applying implied
weighting70, we have downweighted characters according to their homoplasy. The
matrix has been processed with the phylogenetic reconstruction software TNT71

under weak implied weighting with a concavity value of 8 (k 5 8). Branch support was
estimated through two complementary indices: Bremer Support72 and Relative
Bremer Support73.

The resultant cladogram (Supplementary Figure 1) has been chronostratigraphi-
cally calibrated as a ‘‘stratocladogram’’ (Fig. 1), in which the chronostratigraphic
range of any given taxon in the fossil record is completed backward to its origin
according to the tree topology. Rhizomyine species range from Late Oligocene to
present. This time span has been subdivided into 13 temporal intervals following the
international chronostratigraphic chart of 201374, from which numerical ages are
taken.

Speciation mode determination. Species level phylogenies are a key source of
explanation for fossil record biogeographic patterns75,76. So as to determine the
speciation events involving rhizomyines, the cladogram resulting from our analysis
has been transformed into an area cladogram (Supplementary Figure 1). For this, the
names of the terminal taxa and the ancestral nodes have been replaced with their
geographic areas75. The geographical areas used in this work are specified in
Supplementary Figure 1. A modified version of Fitch parsimony algorithm77 has been
applied to determine geographic locations for the ancestral nodes. The nodes and
terminal taxa are numbered as follows: the node at the root of the cladogram (n) was
assigned a rank of one and each descendant node is given a rank of n 1 1
(Supplementary Figure 1).

Speciation by vicariance has been recognized at nodes where the descendants
occupy only a subset of the ancestral range, whereas speciation by dispersal has
been identified at nodes where the descendants occupy geographic regions
additional to or different from the ancestral range. Sympatric speciation has been
identified at nodes where the descendants occupy the same biogeographic regions
as the ancestral range5,75,78–80. The area-cladogram, in which the events of
vicariance and geodispersal are marked, has been transformed into an area-
stratocladogram (Fig. 1) so as to assess approximately the timing of each
speciation event.

Biodiversity rates. The combination of cladistic and biodiversity analyses highlights
the phenomena of speciation, extinction, and diversity changes in a given group over
time5,81. This allows establishing the timing of biodiversity crises and, thus, deducing
possible causes.

Per-capita rates for speciation (q̂), extinction (p̂), and diversity change (d) have
been calculated (Supplementary Table 1) following the equations given by Foot82

according to which:

p̂ ~ {Ln Nbt= NbtzNFtð Þð Þ=Dt

q̂ ~ {Ln Nbt= NbtzNbLð Þð Þ=Dt

d ~ p̂{q̂

where Nbt indicates the number of species that cross both the upper and lower
interval boundaries, NFt the number of species that originate within the interval and
cross over the upper interval boundary and NbL the number of species that cross the
lower interval boundary, but become extinct during the interval, and Dt the duration
of the interval t1 2 t0.

Rates of biodiversity change (R), speciation (S), and extinction (E) have been
calculated (Supplementary Table 1) with the following equations81:

R~ ln N1{ ln N0ð Þ=Dt

S~ ln N0zo0ð Þ{ ln N0ð Þ=Dt

E~ ln N0zo0ð Þ{ ln N1ð Þ=Dt

where N0 is the initial number of species in a clade at time t0, N1 the number of species
in a clade at time t1, o0 the number of speciation events during the interval t1 2 t0, and
Dt the duration of the interval t1 2 t0.

All rates were calculated for each temporal interval using the phylogenetically
corrected species ranges obtained from the stratocladogram (Fig. 1). Values calcu-
lated from the first and last intervals have been excluded from the analysis to remove
edge effects, following the criterion of Stigall5.
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C. R. Acad. Sci. Sér. 2 297, 687–690 (1983).

29. Agrawal, V. C. Skull adaptations in fossorial rodents. Mammalia 31, 300–312
(1967).

30. Fernández, M. E., Vassallo, A. I. & Zárate, M. Functional morphology and
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