Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.4161/gmic.27915

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14351165

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics

Henry J Haiser1, Kristen L Seim2, Emily P Balskus2, and Peter J Turnbaugh1,*

1Faculty of Arts and Sciences (FAS) Center for Systems Biology; Harvard University; Cambridge, MA USA; 2Department of Chemistry and Chemical Biology; Harvard University; Cambridge, MA USA

Keywords: digoxin, Eggerthella lenta, RNA-seq, gnotobiotics, metagenomics, pharmacokinetics, human microbiome

*Correspondence to: Peter J Turnbaugh; Email: pturnbaugh@fas.harvard.edu

Submitted: 1 1/26/2013
Revised: 01/10/2014
Accepted: 01/20/2014
Published Online: 01/23/2014
http://dx.doi.org/10.4161/gmic.27915

The human gut microbiota plays a key role in pharmacology, yet the mechanisms responsible remain unclear, impeding efforts toward personalized medicine. We recently identified a cytochrome-encoding operon in the common gut Actinobacterium Eggerthella lenta that is transcriptionally activated by the cardiac drug digoxin. These genes represent a predictive microbial biomarker for the inactivation of digoxin. Gnotobiotic mouse experiments revealed that increased protein intake can limit microbial drug inactivation. Here, we present a biochemical rationale for how the proteins encoded by this operon might inactivate digoxin through substrate promiscuity. We discuss digoxin signaling in eukaryotic systems, and consider the possibility that endogenous digoxin-like molecules may have selected for microbial digoxin inactivation. Finally, we highlight the diverse contributions of gut microbes to drug metabolism, present a generalized approach to studying microbe-drug interactions, and argue that mechanistic studies will pave the way for the clinical application of this work.

Introduction

Dating back to the 1960s, scientists and clinicians have been presenting sporadic reports that suggest the trillions of microbes that colonize the human gastrointestinal tract (the gut microbiota) can influence the fate of therapeutics.1-3 The emerging field of metagenomics, which employs an extensive array of experimental and computational techniques to study the aggregate genomes (the human microbiome) and metabolic activities of these microbial communities has now set the stage to delve deeper into the mechanisms responsible for microbial drug metabolism. This “metagenomic” view of pharmacology promises to elucidate novel biology, while also contributing to efforts at personalized or precision medicine.4-8 A seminal example of the value of such studies comes from work by Redinbo and colleagues.9-11 Their research has shown that inhibition of microbial β-glucuronidase activity ameliorates the enteric side effects of the chemotherapeutic drug, irinotecan, and multiple non-steroidal anti-inflammatory drugs. This work is the first to leverage mechanistic insight about microbial drug metabolism toward directly affecting a clinical outcome, as demonstrated by their in vivo mouse experiments, which show dramatic reductions in toxicity.

We sought to attain a similar degree of mechanistic insight into the bacterial inactivation of the cardiac drug, digoxin, with the long-term goal of discovering new ways of predicting or manipulating microbial drug metabolism. Digoxin is a natural cardiac glycoside that is used to treat atrial fibrillation and chronic heart failure. Positive inotropic effects of digoxin are realized by inhibition of the Na+/K+ ATPase in cardiac myocytes, causing an efflux of Na+ and a net increase in Ca2+ (see ref. 12). Digoxin is particularly noteworthy to microbiologists, as it is well established that...
a subset of individuals receiving digoxin therapy excrete the inactive metabolite, dihydrodigoxin, in which the lactone ring is reduced\(^1\) (Fig. 1). It has been over 40 years since Herrmann and Repke\(^2\) first proposed that the saturation of the lactone ring of digoxin might be catalyzed by the gut microbiome, after demonstrating drug inactivation following ex vivo incubation with rat and human fecal samples. Lindenbaum and colleagues furthered the work by showing that there was an increase in the excretion of reduced metabolites following the administration of prolonged release digoxin formulations\(^1\)6; and that following the administration of prolonged work by showing that there was an increase in the serum levels of the drug.\(^1\)6 Both broad spectrum antimicrobial therapy and the use of specific probiotics were shown to decrease the extent to which the enzyme processes digoxin and related cardiac glycosides, or if these compounds are cross-reacting with enzymes adapted to the active site of Cgp2 and undergo reduction by the Cgp1/Cgp2 complex.

Mechanistic Insights into Bacterial Drug Inactivation

We began by using RNA-seq to identify E. lenta genes that are differentially expressed in the presence of digoxin. This resulted in the identification of a two-gene cytochrome-encoding operon, that is significantly (≥100 fold) upregulated in the presence of digoxin.\(^1\)7 Comparative genomics supports the hypothesis that these genes encode the factors responsible for digoxin inactivation, as two E. lenta strains that lack the operon are unable to inactivate digoxin.\(^1\)8 We now refer to these genes as the cardiac glycoside reductase (Cgr) operon.

Based on sequence homology (PSI-BLAST)\(^1\)9 and secondary structure predictions (HHPredd),\(^2\)0 the cgr operon is predicted to encode a protein homologous to the NapC/NirT family of cytochrome c reductases (Cgp1), as well as a protein related to fumarate reductase (Cgp2). Cytochromes from the NapC/NirT family, such as the Nfr enzyme of Desulfosporosarcina vulgaris\(^2\)1 (Fig. 2A) are membrane-bound proteins that shuttle electrons from quinones to associated terminal electron reductase partner(s). As Cgp2 exhibits strong sequence and predicted structural homology to FAD-binding fumarate reductase enzymes, we propose that it serves as the soluble reductase partner that interacts with the heme-binding domain of Cgp1, either in a transient or stable complex on the extracytoplasmic side of the membrane (Fig. 2B). Given the structural and electronic similarities between the αβ-unsaturated carboxylic acid of fumarate and the αβ-unsaturated lactone of digoxin, it is hypothesized that digoxin and related cardiac glycosides can occupy the binding pocket of Cgp2 and undergo reduction by a similar mechanism. The use of digoxin as an alternative electron acceptor is also supported by the fact that reductase activities are generally induced by their substrate. Further biochemical characterization of the Cgp proteins is warranted. It will be particularly interesting to measure Cgp activity in the presence of related cardiac glycosides, as well as fumarate, to uncover the extent to which the enzyme processes these compounds and to confirm the natural and/or evolved role(s) for the proteins.

It may be useful to consider if the Cgp operon has evolved to utilize cardiac glycosides, or if these compounds are cross-reacting with enzymes adapted to
a natural substrate of similar chemical structure, such as fumarate. Our initial structure-function analyses suggest the cgr operon is broadly responsive to compounds containing a \(\alpha,\beta\)-unsaturated butyrolactone ring.\(^{18}\) One possibility is that the presence of endogenous digitalis-like factors in mammals may have selected for the cgr operon.\(^{18}\) Interestingly, these so-called "cardiotonic steroids" have also been shown to be present in the reduced state, and it has been hypothesized that these compounds may be attributable to the gut microbiota, perhaps supporting the idea that this reduction may simply result from promiscuous enzyme activity, or only provide a fitness advantage under specific conditions. This potential in vivo selective pressure of digoxin on \(E.\) \textit{lenta}, or lack thereof, might be better understood by studying the gut microbiota of patients or animal models receiving long-term digoxin therapy.

A Microbial Biomarker of Drug Pharmacokinetics

The Lindenbaum group attempted to correlate the presence and abundance of \(E.\) \textit{lenta} in human fecal samples with digoxin inactivation but found that many individuals deemed "non-reducers" harbored strains of \(E.\) \textit{lenta} in their feces.\(^{17}\) We reasoned that the cgr operon might be a more suitable predictor of the drug inactivation phenotype, especially given the strain variation of \(E.\) \textit{lenta} and the possibility that each individual might harbor multiple strains, as has been shown for other members of the gut microbiota.\(^{23-27}\) Quantitative PCR of community DNA isolated from fecal samples from 20 healthy volunteers demonstrated a significant correlation between the "cgr ratio" (cgr abundance normalized by \(E.\) \textit{lenta} 16S rDNA level) and ex vivo digoxin inactivation, discriminating low vs. high reducers with a sensitivity of 86%, specificity of 83%, and precision of 92%.\(^{18}\) There was no predictive value of the overall abundance of the \(E.\) \textit{trap} species.

This finding yields an intriguing scenario wherein clinical guidelines might be informed by the presence, abundance, and/or expression level of microbial genes known to play an important role in the metabolism of a given drug. In addition, clinicians might one day be able to rapidly identify patients and personalize care to identify individuals that are more likely to experience significant metabolism via their gut microbiota. If expanded to other drugs, this type of screening would almost certainly help manage clinical risk, and fill in some of the gaps that are seen with patient-to-patient variability with respect to drug responses in the clinic.

It is also noteworthy that digoxin, among other cardiac glycosides, has been implicated in several other signaling roles. Digoxin and ouabain were both recently shown to increase cholesterol synthesis by transcriptionally activating 3-hydroxy-3-methylglutaryl-coenzyme A reductase in human liver cells,\(^{26}\) cardiac glycosides were shown to be inhibitors of HIF-1α—a hypoxia responsive transcription factor involved in tumor proliferation—resulting in decreased growth of tumor xenografts in mice,\(^{27}\) and digoxin was identified as an inhibitor of RORγt transcription which blocks T\(_{\text{h}}\)\(_{17}\) differentiation, attenuating autoimmune disease.\(^{27}\) Together, these findings point to a general role for this class of compounds in mediating a wide variety of signaling cascades and suggest that their metabolism by \(E.\) \textit{lenta} may have much broader consequences than are currently appreciated.

Blocking Microbial Drug Metabolism via Dietary Interventions

While attempting to improve the laboratory growth of \(E.\) \textit{lenta}, Sperry and Wilkins\(^{27}\) discovered that growth of \(E.\) \textit{lenta} requires the amino acid arginine, and it is likely that arginine serves as the main source of nitrogen and carbon for \(E.\) \textit{lenta}. Dobkin et al.\(^{30}\) reported that while arginine enhances growth it simultaneously inhibits digoxin inactivation. Thus, elevated levels of arginine from dietary, host, or microbial sources might be exploited to prevent this undesirable microbial activity. To test this hypothesis, we colonized germ-free mice with \(E.\) \textit{lenta} prior to digoxin administration. The animals were split between two otherwise identical diets: one completely lacking a protein source, and the other providing 20% kcal from protein rapidly identify.\(^{30}\) We found that increasing dietary protein significantly elevates both serum and urinary digoxin levels, and that this only occurs in mice colonized with the type strain, which is capable of reducing digoxin.\(^{30}\) These results suggest that host diet might provide one avenue with which to tune the rate of microbial drug metabolism, and provide further evidence for the intimate links between nutritional status and our associated microbial communities.\(^{30,31}\) Of course, the two diets tested in this study reflect dramatic changes to protein consumption, which are unlikely to occur in human patients. Additional work is necessary to determine the relative impacts of diets designed with protein sources containing high or low arginine concentrations (e.g., soy vs. animal protein, respectively), supplemented with pure arginine, or subjected to various methods of food processing.

These studies also prompt some additional questions—why and how does arginine block digoxin metabolism? RNA-seq and qRT-PCR revealed that cgr expression is significantly elevated in low arginine conditions relative to high arginine; however, it remains unclear how arginine represses the cgr operon and the degree to which this is sufficient to explain the observed decrease in digoxin inactivation. These questions might be elucidated through the computational analysis of transcription factor binding sites, a more in-depth analysis of the transcriptional responses to arginine, screening \(E.\) \textit{lenta} genomic libraries for transcription factors, the use of tagged arginine (and digoxin) to isolate interacting proteins from cell lysates, or even manipulation of \(E.\) \textit{lenta}. Successful heterologous expression of the cgr operon, and subsequent purification of the
encoded proteins, would enable testing of any direct interactions with arginine. It will also be important to characterize the degree to which other members of the gut microbiota can promote or inhibit this activity through competition for arginine or other metabolic interactions. As has been demonstrated for the β-glucuronidase inhibitors, this type of mechanistic information might be used to design more sophisticated methods of targeting *E. lenta* in vivo.

A Framework for Studying Microbial Drug Metabolism

The high degree of inter-individual variation in the abundance of the *cgr* operon provides a contrast to other well-studied microbial drug metabolism enzymes (e.g., β-glucuronidases and azoreductases), which are considered to be more widely distributed across multiple bacterial taxa and consistently found in the human gut microbiome. Follow-up studies of healthy controls and cardiac patients will be necessary to determine the extent to which *cgr* abundance is predictive of in vivo digoxin pharmacokinetics and the degree to which this association is stable during the course of therapy. Human intervention studies might be designed to test the ability to limit microbial digoxin reduction by modifying dietary intake. Our results provide the first example of a host-associated microbial operon that predicts drug inactivation, although Westman et al. recently used an activity-based purification scheme to identify the enzyme complex responsible for the inactivation of the antineoplastic compound doxorubicin. An experimental and computational platform for the mechanistic dissection of microbial drug metabolism is now emerging (Fig. 3). This framework could be more broadly applied to drugs that impact the active members of the human gut microbiome, in addition to the >40 known drugs subject to microbial modification. A critical component to furthering this work will be to elucidate the molecular mechanisms responsible via functional metagenomics, single cell methods (e.g., flow cytometry and microfluidics), in-depth enzymatic characterization, and numerous other complementary approaches (Fig. 3). The insights gained from this work promise to aid in the rational design of companion diagnostics such as metabolite, gene, and organism screening, which will ultimately inform co-therapies aimed at modulating the microbiota in a clinically meaningful way (Fig. 4). These targeted therapies could provide an attractive alternative

Figure 3. Approaches for studying the role of the microbiome in therapeutic drug metabolism. Initial evidence often comes from clinical data such as unexplained patient-to-patient variation in the response to therapeutics and/or altered pharmacokinetics (PK) and pharmacodynamics (PD) in response to antibiotic treatment, dietary intake, IV vs. oral routes of drug administration, or varying oral formulations to delay absorption. Drug metabolites may then be identified directly from patient samples, from mouse or other animal models, or after ex vivo incubation with fecal samples. Mechanistic insight can be garnered by combining a number of complementary methods: functional metagenomics, microfluidics, and screening gut microbial communities for relevant enzymatic activities. Determining the signals that activate genes, and biochemical characterization of the relevant gene products, will enrich findings from these studies. From there, animal models will determine the translational potential, while human intervention trials could be utilized to work out co-therapy strategies.

Figure 4. Integrating the gut microbiome into personalized or precision medicine. Rapid personalized clinical diagnostics may one day include ex vivo incubation of a patient’s microbiota with potential drug therapy cocktails, or “microbiota typing” using culture-dependent or -independent methods (e.g., sequencing, quantitative PCR). Patient populations might be stratified based on the results from these tests, and appropriate co-therapies may be administered. Potential therapeutic strategies include dietary supplements, prebiotics, probiotics, fecal microbiota transplantation, small molecule modulators of microbial gene expression/enzyme activity, or antibiotics.

Gut Microbes

Volume 5 Issue 2

236
to broad-spectrum antibiotics, which, although they have been shown to prevent microbial drug inactivation in patients, can have rapid and long-lasting impacts on the gut microbiome. Considered in light of recent links between anticancer treatment and the gut microbiome,39,40 these studies emphasize that a comprehensive view of pharmacology must encompass the dynamic metabolic activities and structure of our associated microbial communities.

Disclosure of Potential Conflicts of Interest
No potential conflict of interest was disclosed.

Acknowledgments
This work was supported by grants from the National Institutes of Health (PSO GM068763) and the Harvard Digestive Diseases Center (2F30DK034854–36). HJH is supported by the Canadian Institutes of Health Research (MFE-112991).

References

