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Article Addendum

The human gut microbiota plays a 
key role in pharmacology, yet the 

mechanisms responsible remain unclear, 
impeding efforts toward personalized 
medicine. We recently identified a 
cytochrome-encoding operon in the 
common gut Actinobacterium Eggerthella 
lenta that is transcriptionally activated 
by the cardiac drug digoxin. These 
genes represent a predictive microbial 
biomarker for the inactivation of 
digoxin. Gnotobiotic mouse experiments 
revealed that increased protein intake 
can limit microbial drug inactivation. 
Here, we present a biochemical rationale 
for how the proteins encoded by this 
operon might inactivate digoxin 
through substrate promiscuity. We 
discuss digoxin signaling in eukaryotic 
systems, and consider the possibility 
that endogenous digoxin-like molecules 
may have selected for microbial digoxin 
inactivation. Finally, we highlight the 
diverse contributions of gut microbes to 
drug metabolism, present a generalized 
approach to studying microbe-drug 
interactions, and argue that mechanistic 
studies will pave the way for the clinical 
application of this work.

Introduction

Dating back to the 1960s, scientists 
and clinicians have been presenting 
sporadic reports that suggest the trillions 
of microbes that colonize the human 
gastrointestinal tract (the gut microbiota) 
can influence the fate of therapeutics.1-3 
The emerging field of metagenomics, 
which employs an extensive array 

of experimental and computational 
techniques to study the aggregate genomes 
(the human microbiome) and metabolic 
activities of these microbial communities 
has now set the stage to delve deeper into 
the mechanisms responsible for microbial 
drug metabolism. This “metagenomic” 
view of pharmacology promises to 
elucidate novel biology, while also 
contributing to efforts at personalized or 
precision medicine.4-8

A seminal example of the value 
of such studies comes from work by 
Redinbo and colleagues.9-11 Their 
research has shown that inhibition of 
microbial β-glucuronidase activity 
ameliorates the enteric side effects of the 
chemotherapeutic drug, irinotecan, and 
multiple non-steroidal anti-inflammatory 
drugs. This work is the first to leverage 
mechanistic insight about microbial drug 
metabolism toward directly affecting a 
clinical outcome, as demonstrated by their 
in vivo mouse experiments, which show 
dramatic reductions in toxicity.

We sought to attain a similar degree 
of mechanistic insight into the bacterial 
inactivation of the cardiac drug, digoxin, 
with the long-term goal of discovering 
new ways of predicting or manipulating 
microbial drug metabolism. Digoxin is 
a natural cardiac glycoside that is used 
to treat atrial fibrillation and chronic 
heart failure. Positive inotropic effects 
of digoxin are realized by inhibition of 
the Na+/K+ ATPase in cardiac myocytes, 
causing an efflux of Na+ and a net increase 
in Ca2+ (see ref. 12).

Digoxin is particularly noteworthy to 
microbiologists, as it is well established that 
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a subset of individuals receiving digoxin 
therapy excrete the inactive metabolite, 
dihydrodigoxin, in which the lactone ring 
is reduced13,14 (Fig. 1). It has been over 40 
years since Herrmann and Repke15 first 
proposed that the saturation of the lactone 
ring of digoxin might be catalyzed by the 
gut microbiome, after demonstrating drug 
inactivation following ex vivo incubation 
with rat and human fecal samples. 
Lindenbaum and colleagues furthered the 
work by showing that there was an increase 
in the excretion of reduced metabolites 
following the administration of prolonged 
release digoxin formulations16; and that 
broad spectrum antimicrobial therapy 
blocked the formation of reduced digoxin 
metabolites, with a concomitant increase 
in the serum levels of the drug.16 Both 
of these observations supported the 
hypothesis that the gut microbiota is 
responsible for digoxin inactivation. 
The final and key discovery of the 
Lindenbaum group was the isolation of 
Eggerthella lenta (originally classified as 
Eubacterium lentum), as the sole cultured 
gut bacterium capable of catalyzing the 
conversion to dihydrodigoxin in vitro.17

The isolation of E. lenta allowed us 
to frame our work around the following 
broad aims: (1) to identify the genes/gene 
products that encode digoxin inactivation 
capability; (2) to uncover the precise 
nature of the signals that control the 
expression of the digoxin inactivating 
genes; and (3) to determine if in vivo 
digoxin inactivation can be controlled by 
rational dietary interventions.

Mechanistic Insights into 
Bacterial Drug Inactivation

We began by using RNA-seq to identify 
E. lenta genes that are differentially 
expressed in the presence of digoxin. This 
resulted in the identification of a two-
gene cytochrome-encoding operon that 
is significantly (>100 fold) upregulated 
in the presence of digoxin.18 Comparative 
genomics supports the hypothesis that 
these genes encode the factors responsible 
for digoxin inactivation, as two E. lenta 
strains that lack the operon are unable to 
inactivate digoxin.18 We now refer to these 
genes as the cardiac glycoside reductase 
(cgr) operon.

Based on sequence homology (PSI-
BLAST)19 and secondary structure 
predictions (HHPred),20 the cgr operon is 
predicted to encode a protein homologous 
to the NapC/NirT family of cytochrome 
c reductases (Cgr1), as well as a protein 
related to fumarate reductase (Cgr2). 
Cytochromes from the NapC/NirT family, 
such as the Nrf enzyme of Desulfovibrio 
vulgaris21 (Fig. 2A) are membrane-bound 
proteins that shuttle electrons from 
quinones to associated terminal electron 
reductase partner(s). As Cgr2 exhibits 
strong sequence and predicted structural 

homology to FAD-binding fumarate 
reductase enzymes, we propose that it 
serves as the soluble reductase partner 
that interacts with the heme-binding 
domain of Cgr1, either in a transient or 
stable complex on the extracytoplasmic 
side of the membrane (Fig. 2B). Given 
the structural and electronic similarities 
between the α,β-unsaturated lactone of 
digoxin and the unsaturated carboxylic 
acid of fumarate (Fig. 2C), we hypothesize 
that digoxin and related cardiac glycosides 
can occupy the binding pocket of Cgr2 
and undergo reduction by a similar 
mechanism. The use of digoxin as an 
alternative electron acceptor is also 
supported by the fact that reductases 
are generally induced by their substrate. 
Further biochemical characterization of 
the Cgr proteins is warranted. It will be 
particularly interesting to measure Cgr 
activity in the presence of related cardiac 
glycosides, as well as fumarate, to uncover 
the extent to which the enzyme processes 
these compounds and to confirm the 
natural and/or evolved role(s) for the 
proteins.

It may be useful to consider if the 
cgr operon has evolved to utilize cardiac 
glycosides, or if these compounds are 
cross-reacting with enzymes adapted to 

Figure  1. chemical structures of digoxin 
(A) and its cardioinactive metabolite, 
dihydrodigoxin (B). the double bond in the 
lactone ring (highlighted) becomes saturated, 
which reduces the affinity for its target, a na+/
K+ AtPase expressed in heart tissue.

Figure  2. Predicted structures or cgr1 and cgr2, and their proposed interaction. (A) Genome 
mining revealed structural and sequence homology between the cgr1 protein and several 
structurally characterized members the napc/nirt family of cytochrome c reductases such as the 
nrfH enzyme from the Gram-negative bacterium Desulfovibrio vulgaris. this protein anchors as 
a dimer in the cytoplasmic membrane and shuttles quinone (Q)-derived electrons to associated 
periplasmic nitrite reductases (purple and gray). (B) cgr2 exhibits homology to FAd-binding 
fumarate reductases and may serve as the terminal electron reductase partner to cgr1 by forming 
an complex with cgr1 and receiving electrons from cgr1 at the active site FAd redox cofactor. (C) 
the structural and electronic similarities between the unsaturated dicarboxylic acid of fumarate 
and the α,β-unsaturated lactone of digoxin suggests that digoxin is able to occupy the active site 
of cgr2 and undergo reduction by the cgr1/cgr2 complex.
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a natural substrate of similar chemical 
structure, such as fumarate. Our initial 
structure-function analyses suggest the cgr 
operon is broadly responsive to compounds 
containing an α,β-unsaturated 
butyrolactone ring.18 One possibility is that 
the prevalence of endogenous digitalis-like 
factors in mammals may have selected 
for the cgr operon.22 Interestingly, these 
so-called “cardiotonic steroids” have also 
been shown to be present in the reduced 
state, and it has been hypothesized that 
these compounds may be attributable to 
the gut microbiota.23 However, there is no 
obvious selective advantage at play, since 
we did not detect an increase in the in vitro 
growth rate or carrying capacity in the 
presence of digoxin, perhaps supporting 
the idea that this reduction may simply 
result from promiscuous enzyme activity, 
or only provide a fitness advantage under 
specific conditions. This potential in vivo 
selective pressure of digoxin on E. lenta, or 
lack thereof, might be better understood 
by studying the gut microbiota of patients 
or animal models receiving long-term 
digoxin therapy.

A Microbial Biomarker of Drug 
Pharmacokinetics

The Lindenbaum group attempted 
to correlate the presence and abundance 
of E. lenta in human fecal samples with 
digoxin inactivation but found that 
many individuals deemed “non-reducers” 
harbored strains of E. lenta in their 
feces.17,24 We reasoned that the cgr operon 
might be a more suitable predictor of the 
drug inactivation phenotype, especially 
given the strain variation of E. lenta 
and the possibility that each individual 
might harbor multiple strains, as has 
been shown for other members of the 
gut microbiota.25-27 Quantitative PCR 
of community DNA isolated from fecal 
samples from 20 healthy volunteers 
demonstrated a significant correlation 
between the “cgr ratio” (cgr abundance 
normalized by E. lenta 16S rDNA 
level) and ex vivo digoxin inactivation, 
discriminating low vs. high reducers with 
a sensitivity of 86%, specificity of 83%, 
and precision of 92%.18 There was no 

predictive value of the overall abundance 
of the E. lenta species.

This finding yields an intriguing 
scenario wherein clinical guidelines might 
be informed by the presence, abundance, 
and/or expression level of microbial genes 
known to play an important role in the 
metabolism of a given drug. In addition, 
clinicians might one day be able to 
rapidly stratify patient populations and 
identify individuals that are more likely 
to experience significant metabolism via 
their gut microbiota. If expanded to other 
drugs, this type of screening would almost 
certainly help manage clinical risk, and 
fill in some of the gaps that are seen with 
patient-to-patient variability with respect 
to drug responses in the clinic.

It is also noteworthy that digoxin, 
among other cardiac glycosides, has been 
implicated in several other signaling roles. 
Digoxin and ouabain were both recently 
shown to increase cholesterol synthesis by 
transcriptionally activating 3-hydroxy-
3-methylglutaryl-coenzyme A reductase 
in human liver cells,28 cardiac glycosides 
were shown to be inhibitors of HIF-1α—a 
hypoxia responsive transcription factor 
involved in tumor proliferation—resulting 
in decreased growth of tumor xenografts 
in mice,29 and digoxin was identified as an 
inhibitor of RORγt transcription which 
blocks T

H
17 differentiation, attenuating 

autoimmune disease.30 Together, these 
findings point to a general role for this 
class of compounds in mediating a wide 
variety of signaling cascades and suggest 
that their metabolism by E. lenta may 
have much broader consequences than are 
currently appreciated.

Blocking Microbial Drug 
Metabolism via Dietary 

Interventions

While attempting to improve the 
laboratory growth of E. lenta, Sperry 
and Wilkins31 discovered that growth 
of E. lenta requires the amino acid 
arginine, and it is likely that arginine 
serves as the main source of nitrogen 
and carbon for E. lenta. Dobkin et al.17 
reported that while arginine enhances 
growth it simultaneously inhibits digoxin 
inactivation. Thus, elevated levels of 

arginine from dietary, host, or microbial 
sources might be exploited to prevent 
this undesirable microbial activity. To 
test this hypothesis, we colonized germ-
free mice with E. lenta prior to digoxin 
administration. The animals were split 
between two otherwise identical diets: one 
completely lacking a protein source, and 
the other providing 20% kcal from protein 
(i.e., casein). Remarkably, we found that 
increasing dietary protein significantly 
elevates both serum and urinary digoxin 
levels, and that this only occurs in mice 
colonized with the type strain, which is 
capable of reducing digoxin.18

These results suggest that host 
diet might provide one avenue with 
which to tune the rate of microbial 
drug metabolism, and provide further 
evidence for the intimate links between 
nutritional status and our associated 
microbial communities.32-34 Of course, 
the two diets tested in this study reflect 
dramatic changes to protein consumption, 
which are unlikely to occur in human 
patients. Additional work is necessary to 
determine the relative impacts of diets 
designed with protein sources containing 
high or low arginine concentrations (e.g., 
soy vs. animal protein, respectively), 
supplemented with pure arginine, or 
subjected to various methods of food 
processing.

These studies also prompt some 
additional questions—why and how 
does arginine block digoxin metabolism? 
RNA-seq and qRT-PCR revealed that 
cgr expression is significantly elevated in 
low arginine conditions relative to high 
arginine; however, it remains unclear 
how arginine represses the cgr operon and 
the degree to which this is sufficient to 
explain the observed decrease in digoxin 
inactivation. These questions might be 
elucidated through the computational 
analysis of transcription factor binding 
sites, a more in-depth analysis of the 
transcriptional responses to arginine, 
screening E. lenta genomic libraries 
for transcription factors, the use of 
tagged arginine (and digoxin) to isolate 
interacting proteins from cell lysates, or 
even mutagenesis of E. lenta. Successful 
heterologous expression of the cgr operon, 
and subsequent purification of the 
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encoded proteins, would enable testing 
of any direct interactions with arginine. 
It will also be important to characterize 
the degree to which other members of the 
gut microbiota can promote or inhibit 

this activity through competition for 
arginine or other metabolic interactions. 
As has been demonstrated for the 
β-glucuronidase inhibitors, this type of 
mechanistic information might be used 

to design more sophisticated methods of 
targeting E. lenta in vivo.

A Framework for Studying 
Microbial Drug Metabolism

The high degree of inter-individual 
variation in the abundance of the cgr operon 
provides a contrast to other well-studied 
microbial drug metabolism enzymes (e.g., 
β-glucuronidases and azoreductases), 
which are considered to be more widely 
distributed across multiple bacterial taxa 
and consistently found in the human 
gut microbiome.8 Follow-up studies of 
healthy controls and cardiac patients will 
be necessary to determine the extent to 
which cgr abundance is predictive of in 
vivo digoxin pharmacokinetics and the 
degree to which this association is stable 
during the course of therapy. Human 
intervention studies might be designed to 
test the ability to limit microbial digoxin 
reduction by modifying dietary intake.

Our results provide the first example 
of a host-associated microbial operon 
that predicts drug inactivation, although 
Westman et al.35 recently used an activity-
based purification scheme to identify 
the enzyme complex responsible for 
the inactivation of the antineoplastic 
compound doxorubicin. An experimental 
and computational platform for the 
mechanistic dissection of microbial drug 
metabolism is now emerging (Fig. 3). This 
framework could be more broadly applied 
to drugs that impact the active members 
of the human gut microbiome,36 in 
addition to the >40 known drugs subject 
to microbial modification.37 A critical 
component to furthering this work will 
be to elucidate the molecular mechanisms 
responsible via functional metagenomics, 
single cell methods (e.g., flow cytometry 
and microfluidics), in-depth enzymatic 
characterization, and numerous other 
complementary approaches (Fig. 3). The 
insights gained from this work promise to 
aid in the rational design of companion 
diagnostics such as metabolite, gene, and 
organism screening, which will ultimately 
inform co-therapies aimed at modulating 
the microbiota in a clinically meaningful 
way (Fig. 4). These targeted therapies 
could provide an attractive alternative 

Figure 3. Approaches for studying the role of the microbiome in therapeutic drug metabolism. 
initial evidence often comes from clinical data such as unexplained patient-to-patient variation 
in the response to therapeutics and/or altered pharmacokinetics (PK) and pharmacodynamics 
(Pd) in response to antibiotic treatment, dietary intake, iV vs. oral routes of drug administration, 
or varying oral formulations to delay absorption. drug metabolites may then be identified directly 
from patient samples, from mouse or other animal models, or after ex vivo incubation with fecal 
samples. mechanistic insight can be garnered by combining a number of complementary methods: 
functional metagenomics, microfluidics, and screening gut microbial communities for relevant 
enzymatic activities. determining the signals that activate genes, and biochemical characterization 
of the relevant gene products, will enrich findings from these studies. From there, animal models 
will determine the translational potential, while human intervention trials could be utilized to work 
out co-therapy strategies.

Figure  4. integrating the gut microbiome into personalized or precision medicine. rapid 
personalized clinical diagnostics may one day include ex vivo incubation of a patients’ microbiota 
with potential drug therapy cocktails, or “microbiota typing” using culture-dependent or 
-independent methods (e.g., sequencing, quantitative Pcr). Patient populations might be stratified 
based on the results from these tests, and appropriate co-therapies may be administered. Potential 
therapeutic strategies include dietary supplements, prebiotics, probiotics, fecal microbiota 
transplantation, small molecule modulators of microbial gene expression/enzyme activity, or 
antibiotics.
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to broad-spectrum antibiotics, which, 
although they have been shown to prevent 
microbial drug inactivation in patients16 
can have rapid36 and long-lasting38 impacts 
on the gut microbiome. Considered in 
light of recent links between anticancer 
treatment and the gut microbiome,39,40 
these studies emphasize that a 

comprehensive view of pharmacology 
must encompass the dynamic metabolic 
activities and structure of our associated 
microbial communities.
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