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Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations:

a chameleon for neuropathology and neuroimaging

Hereditary frontotemporal dementia associated with
mutations in the microtubule-associated protein tau gene
(MAPT) is a protean disorder. Three neuropathologic sub-
types can be recognized, based on the presence of inclu-
sions made of tau isoforms with three and four repeats,
predominantly three repeats and mostly four repeats. This
is relevant for establishing a correlation between struc-

tural magnetic resonance imaging and positron emission
tomography using tracers specific for aggregated tau. Lon-
gitudinal studies will be essential to determine the evolu-
tion of anatomical alterations from the asymptomatic
stage to the various phases of disease following the onset
of symptoms.

Keywords: FTDP-17 MAPT, tau aggregation, neurofibrillary tangle, Pick body, tau, [F18]-T807

Introduction

Inherited forms of frontotemporal dementia (FTD) have
been known for many years [1–4], but as the clinical and
pathological features are heterogeneous, the nomencla-
ture has been variable, with disorders being called familial
Pick disease, familial progressive subcortical gliosis, famil-
ial presenile dementia with tangles, autosomal-dominant
parkinsonism and dementia with pallido-ponto-nigral
degeneration. The major clinical manifestations include
behavioural disturbances, aphasia, cognitive impairment
and parkinsonism. Individuals from 13 families, with FTD

and genetic linkage to chromosome 17q21–22, were pre-
sented at a Consensus Conference at the University of
Michigan in 1996 [5]. It was agreed that the unifying
name should take into account the clinical features, as
well as the genetic linkage, rather than the neuropathol-
ogy, which was incomplete. Tau inclusions had been
described in affected individuals from only four of the 13
families. Thus, the concept of FTD and Parkinsonism
linked to Chromosome 17 (FTDP-17) was born. The dis-
order in one family had been named ‘multiple system
tauopathy with presenile dementia’ (MSTD) [6]. As a
result, the term ‘tauopathy’ was also introduced, and it is
often used to refer to disorders in which tau protein depo-
sition is the predominant feature.

In June 1998, mutations in the microtubule-associated
protein tau gene (MAPT) were reported in affected indi-
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viduals from nine of the 13 families [7–9]. They all suf-
fered from a dementia syndrome, whereas some also had
parkinsonism. The central neuropathologic feature was
the presence of filamentous hyperphosphorylated tau
protein in neurons or in both neurons and glia. The
remaining four families had mutations in the Granulin
gene (GRN), which is 1.54 megabase pairs centromeric to
MAPT [10,11]. Thus, FTDP-17 has been divided into
FTDP-17 MAPT and FTDP-17 GRN [12].

FTD associated with MAPT mutations is a disorder that
affects multiple domains including behaviour, language,
memory and motor function. It often begins with psychiat-
ric symptoms and can mimic Pick disease, primary pro-
gressive aphasia, Alzheimer disease (AD), progressive
supranuclear palsy (PSP) or corticobasal degeneration
(CBD). Neuropathology and neuroimaging reveal diverse
pictures, consistent with variability of the clinical pheno-
type. It is important for clinicians, neuropathologists and
imaging researchers to be aware that MAPT mutations can
cause such a protean disorder. Their discovery established
that tau dysfunction alone can cause neurodegeneration of
multiple neuronal systems and dementia.

Epidemiology

To date, 53 pathogenic MAPT mutations have been
reported in approximately 150 families [13] from Asia,
Australia, Europe, and both North and South America.
Molecular genetic analyses have demonstrated that some
families share a common founder [14].

FTDP-17 MAPT affects men and women equally. The
average age at symptom onset is 49 years, with a range
from the early 20s to late 70s, similar to sporadic
frontotemporal lobar degeneration (FTLD). The average
life expectancy after symptom onset is 8.5 years, with a
range from 1.5 to 26 years [15–17].

Disease phenotypes in patients with the same MAPT
mutation may vary significantly within and between
families, as well as between individuals with different
mutations [16,18,19]. Thus, genetic modifiers and/or
environmental factors may underlie the phenotypic vari-
ability in clinical presentation.

Genetics and molecular pathology

FTDP-17 MAPT is inherited in an autosomal-dominant
manner. The MAPT gene, located on chromosome 17q21,
encodes the tau protein, which was discovered in 1975

[20]. A decade later, the intraneuronal inclusions of AD
and Pick disease were found to be immunoreactive for
hyperphosphorylated tau [21–23]. The neurofibrillary
tangles (NFTs) of AD are composed of paired helical and
straight filaments. Their molecular characterization
established that they are made of tau protein [24–26].

In the adult human brain, six tau isoforms are gener-
ated from MAPT, the tau gene, through alternative mRNA
splicing (Figure 1) [27]. Alternative splicing of exon 10
gives rise to three isoforms with three microtubule-
binding repeats (3R) each and three isoforms with four
microtubule-binding repeats (4R) each. The repeats are
31 or 32 amino acids in length and are located towards
the carboxy-terminus. In addition, the presence of inserts
of 29 or 58 amino acids or no insert in the amino-
terminus gives rise to 1 N, 2 N or 0 N forms of each 3R
and 4R tau. Full-length tau assembles through the repeats
that form the core of paired helical and straight filaments.
In developing human brain, 3R tau predominates, while
in adult brain, the concentrations of 3R and 4R tau are
approximately equivalent. A normal ratio of wild-type
3R to 4R tau appears to be essential for preventing
neurodegeneration and dementia in the human brain in
mid-life.

Between 1994 and 1997, familial forms of FTD were
linked to chromosome 17q21–22, a region that contains
MAPT [28–30]. In parallel, neuropathological and bio-
chemical studies showed abundant tau deposits in
neurons and glia [31–34]. They highlighted the presence
of a tauopathy affecting grey and white matter in the
absence of amyloid beta deposition, and directed several
laboratories towards the search for mutations in MAPT. In
1998, the first mutations were reported in exons 9, 10 and
13, as well as in the splice site of intron 10 [7–9]. The vast
majority of known mutations occurring in the coding
region are in the repeats, with the mutant tau proteins

Figure 1. Schematic representation of the six tau isoforms
generated by alternative mRNA splicing of exons 2, 3 and 10.
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having a reduced ability to interact with microtubules
[35–37].

Exonic mutations are missense, silent or deletion. All
but two (R5H and R5L in exon 1) occur in exons 9–13.
Most intronic mutations are clustered in the 5′-splice site
of the intron following exon 10. These intronic mutations
and some exonic mutations located in exon 10 affect the
alternative mRNA splicing of exon 10, causing a relative
increase of 4R tau [8,9,38,39]. They destabilize a stem-
loop structure at the exon 10 5′-splice site intron junction
or disrupt cis-acting elements in exon 10. Existence of a
stem-loop structure was hypothesized [8,9] at the time of
the discovery of mutations in MAPT, in view of the self-
complementarity of this region, with subsequent work
supporting this hypothesis [40–42]. The determination of
the solution structure of an oligonucleotide correspond-
ing to the exon/intron junction refined the stem-loop
model, with the identification of an adenosine bulge
between the sixth and seventh base pairs [43]. Mutations
S305I, S305N, S305S, +3, +4, +11, +12, +13, +14 and
+16 destabilize the stem-loop, resulting in increased U1
snRNP binding, and enhanced exon 10 inclusion. Muta-
tions in exon 10, located outside the stem-loop, can also
increase exon 10 splicing, because of the strengthening of
exon splicing enhancers or the weakening of exon splicing
silencers [39,44].

Thus, the primary effect of the coding region muta-
tions may be equivalent to a partial loss of function. The
net effect of mutations, whose primary effect is at the
RNA level, is the overproduction of wild-type 4R tau,
which interacts more strongly with microtubules than
3R tau [45]. Some mutations, such as P301L, P301S
and P301T in exon 10, affect only 20–25% of tau mol-
ecules, with 75–80% being wild-type, arguing against a
simple loss of function mechanism as an important
disease determinant.

It is therefore possible that a partial loss of function of
tau is necessary for setting in motion the gain of toxic
function mechanism that will lead to neurodegeneration.
For MAPT mutations with a primary effect at the RNA
level, the overproduction of 4R tau may result in an excess
of tau over available binding sites on microtubules,
leading to the cytoplasmic accumulation of unbound 4R
tau. This would probably require the existence of different
binding sites on microtubules for 3R and 4R tau. Valida-
tion of this hypothesis will require structural information
at the atomic level. An imbalance in isoform ratios could
also affect tau aggregation directly. Studies in vitro have

shown that filament assembly is decreased in reactions
containing 3R and 4R tau when compared with those
containing only 4R tau [46].

Figure 2 shows the 53 mutations that are currently
known [6–9,14,16,33,34,38,39,47–132]. The most
common are N279K, P301L and intron 10+16.

Soluble and insoluble Tau

A central question revolves around the process by which
tau filaments form. In FTDP-17 MAPT, tau protein
isoforms have biochemical characteristics that differ from
those of the normal protein [133]. A mutation may result
in a structurally abnormal protein, an abnormal ratio of
3R to 4R tau, or both. Normally, tau is a soluble protein;
however, in FTDP-17 MAPT, it is found in both soluble and
insoluble forms. Tau accumulates in the cytoplasm and
becomes hyperphosphorylated, insoluble and assembles
into filaments. However, the order of events in relation
to hyperphosphorylation and filament formation is not
clearly understood.

Missense mutations in exons 1, 9, 11, 12 and 13 affect
all six tau isoforms. Missense and deletion mutations in
exon 10 affect the alternative mRNA splicing of exon 10,
altering isoform ratios in such a way that relatively more
4R than 3R tau is produced. A summary is given in
Table 1, row 1.

Hyperphosphorylation of Tau and
filament formation

Hyperphosphorylation of tau is believed to play a crucial
part in the pathogenesis of human tauopathies [133]. In
FTDP-17 MAPT, it is unlikely to be primary as none of the
known mutations influence phosphorylation directly.
Nevertheless, evidence has been adduced to suggest
that some MAPT mutations can lead to enhanced
phosphorylation [134], followed by filament formation.
Morphological evidence for the presence of the insoluble
form is provided by the finding that some tau deposits are
fluorescent using Thioflavin S, tau filaments are found in
neurons and glia and tau filaments can be visualized in
sarkosyl-insoluble tissue preparations.

Filament morphologies have been studied using fixed
tissues and preparations of dispersed filaments [135]. The
latter are particularly informative as they allow one to
correlate Western blot analysis with immunoelectron
microscopy. Tau filaments can be straight, ribbon-like or
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paired helical. Table 1 summarizes the characteristics of
abnormal tau as demonstrated by Western blot analysis,
the type of tau filament and the nature of the intra-
cytoplasmic inclusions.

Distribution of Tau inclusions

The neuropathological phenotypes associated with
FTDP-17 MAPT vary substantially; however, the invari-
able hallmark is the presence of tau protein deposits in
neurons or in both neurons and glia. No cases with only
glial tau inclusions have been described. Tau deposits are
abundant in cerebral cortex and white matter; subcortical
and brain stem nuclei, as well as the spinal cord, are vari-
ably affected.

Inclusions are labelled by antibodies specific for the
amino-terminus, the repeat region and the carboxy-
terminus of tau. In addition, phosphorylation-dependent
antibodies are used. According to the numbering of
the longest human brain tau isoform, prominent
phosphorylation sites are serines 202, 214, 235, 262,
356, 396, 404 and 422, and threonines 181, 205, 212
and 231. An antibody recognizing phosphorylated

S262 and/or S356 labels NFTs, but not classical Pick
bodies [136]. Antibody AT8, which recognizes tau
phosphorylated at S202 and T205, labels tau deposits in
neurons and glia. Some tau deposits are also immunore-
active for ubiquitin. RD3 and RD4 are anti-tau antibodies
that recognize 3R and 4R tau, respectively.

Inclusions may resemble those of AD with filaments
made of all six brain tau isoforms (see Table 1). This is the
case of mutations V337M (Exon 12) and R406W (Exon
13), as illustrated in Figure 3. The images highlight
neuronal involvement with tau immunopositivity revealed
by an antibody specific for phosphorylated tau (AT8,
Figure 3a,b), as well as by antibodies specific for 3R and 4R
tau (Figure 3c–f). Inclusions similar to Pick bodies are
often observed in association with mutations in exons 9,
11, 12 and 13. Straight filaments, with some twisted fila-
ments, are characteristic of Pick body-like structures that
are primarily composed of 3R tau, with a variable amount
of 4R tau (Figure 4, Table 1). The images highlight Pick
body-like inclusions immunopositive for phosphorylated
tau (Figure 4a,b) and 3R tau (Figure 4c,d). There is occa-
sional immunopositivity for 4R tau (Figure 4e,f). Muta-
tions in exons 9, 11, 12 and 13 lead to deposits of tau

Figure 2. Schematic representation of the exons and introns of the MAPT gene, where 53 mutations causing FTDP-17 have been found.
Intronic mutations −15 and +4 occur together.
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Figure 3. Tau pathology in the hippocampus of a patient carrying the R406W mutation. Dentate gyrus (a, c, e) and pyramidal layers
(b, d, f) of the hippocampus are immunolabeled with anti-tau antibodies, showing tau-immunoreactive neuropil threads and neurofibrillary
tangles with antibodies AT8 (a, b), 3R tau (c, d) and 4R tau (e, f).
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Figure 4. Tau immunohistochemistry in the frontal cortex from a case with the G389R mutation. AT8 labelling demonstrates
tau-immunoreactive deposits or Pick bodies in neurons of layers II-VI (a, b). The tau deposits are positive for 3R (c, d) and 4R (e, f) tau.
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filaments predominantly in neurons, while mutations in
exons 1 and 10, as well as those in the introns following
exons 9 and 10, are associated with neuronal and glial
deposits. The glial pathology is in the form of coiled bodies
in oligodendroglia, tufted astrocytes and astrocytic
plaques, reminiscent of that of PSP and CBD. Cytoplasmic
tau deposits affect the perikarya and dendrites of nerve
cells. There is strong and diffuse cytoplasmic immuno-
positivity, but in Thioflavin S preparations, fluorescence is
barely detectable, unlike what is seen in NFTs and Pick
body-like inclusions.Twisted ribbon filaments characterize
the neuronal and glial inclusions and are composed of 4R
tau. Highlighted in Figure 5 are affected nerve cells and
glial cells using antibodies specific for phosphorylated tau
(Figure 5a,b) and 4R tau (Figure 5e,f). 3R tau staining was
not observed (Figure 5c,d). Mutations in exon 10 only
affect 4R tau; some of these mutations also affect exon 10
splicing, altering the ratio of 3R/4R tau. This is illustrated
in Figure 6, where the immunohistochemical characteris-
tics of neuronal and glial involvement in the hippocampus
are revealed by antibodies specific for phosphorylated (a),
3R (b) and 4R (c) tau.

The anatomical distribution of tau in the various
regions of the central nervous system has been reported
with different details in relation to individual mutations.
In Table 2, the brain regions involved in FTDP-17 MAPT
are presented according to the mutation and grey matter
regions involved.

The data related to anatomical distribution are mostly
obtained in intermediate and late stage of FTDP-17 MAPT.
The degree of atrophy varies, with brain weights ranging
from 654 to 1290 g. Little is known about the early
neuropathologic stages. In the intermediate stages, atro-
phy of the cerebral hemispheres is mild, even though the
characteristic histopathological changes in cerebral
cortex, subcortical nuclei and white matter are already
prominent. There may be mild atrophy of the caudate
nucleus and a reduction in the pigmentation of the
substantia nigra and the locus coeruleus. In advanced
stages, the degree of atrophy varies and may be present
throughout the frontal and temporal lobes, caudate
nucleus, putamen, globus pallidus, amygdala, hippo-
campus and hypothalamus. Most often, the superior,
middle and inferior frontal gyri, as well as the superior,
middle and inferior temporal gyri, bear the brunt of the
disease, with the anterior portion of the temporal lobe
being particularly vulnerable. Brain atrophy may involve
the frontal and temporal lobes asymmetrically and can be

so severe that the gyri have a ‘knife edge’ appearance. The
orbital, cingulate and parahippocampal gyri may also be
involved. Parietal and occipital lobes are less frequently
affected. The white matter of the centrum semiovale and
the temporal lobes are often substantially reduced, as is the
thickness of the corpus callosum. Midbrain and pons may
also be reduced in bulk with particular involvement of the
descending fibers of the fronto-pontine and temporo-
pontine pathways. In addition, there is a reduction in the
nigro-striatal projections. In some instances, mild atrophy
of the cerebellar cortex and discoloration and atrophy of
the dentate nucleus are present. The lateral ventricles and
the third ventricle are enlarged.

Neuroimaging

Computerized tomography (CT) and magnetic resonance
imaging (MRI) of patients with MAPT mutations
reveal atrophy of the frontal and/or temporal lobes with
occasional involvement of the parietal lobes, accom-
panied by enlargement of the lateral ventricles
[16,74,82,96,121,137,138]. In some individuals, the
cortical atrophy is asymmetrical, but the majority of
cases have relatively symmetric patterns of atrophy. MRI
T2*-weighted images may show accumulation of para-
magnetic substances (iron) in mesencephalic nuclei
[137]. Increased T2-weighted signal changes have been
reported [139]; they are often seen in white matter,
reflecting the prominent white matter pathology present
in many cases. It is not yet clear if these changes are
due to a loss of myelinated axons; additional radio-
pathological studies are needed.

A few studies on familial FTD have begun to compare
neuroimaging features resulting from mutations in differ-
ent genes. MAPT mutations are associated with a rela-
tively symmetric atrophy of the anterior temporal lobe,
accompanied by lesser atrophy of orbitofrontal and lateral
prefrontal cortices. Preliminary findings indicate that
MAPT mutations affecting the splicing of exon 10 are pre-
dominantly associated with medial temporal lobe involve-
ment, while mutations in the coding region are mainly
associated with lateral temporal lobe involvement. This is
important because it begins to differentiate patients with
MAPT mutations from those with GRN or C9ORF72
mutations. GRN mutations tend to be associated with
markedly asymmetric atrophy of the temporal, inferior
frontal and inferior parietal lobes [138,140,141]. In con-
trast, C9ORF72 mutations tend to be associated with
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Figure 5. Tau pathology in the hippocampus of a patient carrying the IVS10+16 mutation. Dentate gyrus (a, c, e) and pyramidal layers
(b, d, f) of the hippocampus are immunolabeled with anti-tau antibodies, showing tau-immunoreactive inclusions with antibodies AT8
(a, b) and 4R tau (e, f), but not 3R tau (c, d).
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symmetric atrophy predominantly involving dorsolateral,
medial and orbitofrontal lobes, with additional loss in
anterior temporal, parietal and occipital lobes, as well as in
the cerebellum [141].

An attempt to correlate structural brain imaging with
the biological aspects of hereditary tauopathies may not
be successful because of the different rates of atrophy and
the sequences of anatomical involvement, which are
highly variable even in cases with the same mutation.
Figure 7 shows structural MRIs from patients who are car-
riers of MAPT mutations, V337M, G389R, IVS10+3 and
P301L, which are respectively associated with inclusions
containing 3R and 4R tau, predominantly 3R tau, pre-
dominantly 4R tau, and 4R with some 3R tau. An impor-
tant confound in these comparisons is that these images
are from individuals at different stages of disease, and spe-
cific details about the initial location of atrophy are no
longer discernible.

Longitudinal MRI studies of brain atrophy suggest that
MAPT mutations are associated with an atrophy rate
intermediate between those of GRN and C9ORF72
[142,143].

Functional imaging studies, such as single photon
emission CT (SPECT) and [F-18] fluorodeoxyglucose posi-
tron emissions tomography (FDG-PET), typically demon-
strate substantial abnormalities. FDG-PET often shows
reduced frontal and/or temporal uptake, similar to
the patterns seen in sporadic FTD [144]. PET with
dopaminergic (e.g. [F-18]-fluoro-L-dopa (6FD) and
[C-11]-raclopride) tracers reveals uptake abnormalities
different from those of Parkinson disease (PD) [145]. In
the MSTD family, a study of multiple members carrying
mutation IVS10+3 showed that structural changes, pre-
dominantly seen bilaterally in the medial temporal
lobes, substantially overlapped with the hypometabolism
observed with FDG-PET [146].

Investigations have begun to determine whether
neuroimaging abnormalities are present in asympto-
matic MAPT mutation carriers, with initial evidence sug-
gesting that abnormalities of brain structure [147],
connectivity [148,149] and white matter tract integrity
[148] may be detectable prior to the development of
symptoms. Longitudinal changes in an asymptomatic
MSTD mutation carrier showed that whole brain volume
(WBV) changes were −0.47%/year in the first 2 years of
assessment and −1.83%/year in the following 5 years,
indicating an acceleration of the rate of brain atrophy
and suggesting the approaching threshold of a clinically

Figure 6. Tau pathology in the hippocampus of a patient carrying
the P301L mutation. The dentate gyrus of the hippocampus is
labeled with AT8 (a) and 4R tau (c), but not 3R tau (b).
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Figure 7. Coronal T1-weighted magnetic resonance imaging (MRI). Panel a is from a 65-year-old male with behavioural-variant
frontotemporal dementia associated with the V337M MAPT mutation. Symptoms evolved over 20 years. Note the moderate to marked
bilateral frontal and temporal cortical atrophy, with a severe anterior temporal lobe atrophy. Panel b is from a 25-year-old male with
frontotemporal dementia and primary progressive aphasia associated with the G389R MAPT mutation. Symptoms rapidly developed over 1
year. Note the mild bilateral frontal and temporal cortical atrophy, with more pronounced medial and inferolateral anterior temporal
atrophy. Panel c is from a 51-year-old male with behavioural-variant frontotemporal dementia associated with the IVS10+3 MAPT
mutation. Symptoms evolved over 3 years. Note the mild bilateral frontal and temporal cortical atrophy with more pronounced mesial
temporal atrophy. Panel d is from a 62-year-old female with severe behavioural-variant frontotemporal dementia associated with the P301L
MAPT mutation. Symptoms evolved over 6 years. Note the striking bilateral prefrontal and anterior temporal atrophy with white matter
changes.
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recognizable symptomatology [150]. In five symptomatic
MSTD patients, the average WBV changes were −2.47%/
year. Findings from the Genetic FTD Initiative suggest
that structural changes can occur 25 years prior to
symptom onset in the hippocampus, 15 years in the
amygdala, 10 years in the temporal lobe and 5 years in
insula and cingulate [151].

PET ligands to study tau pathology in vivo have been
developed [152–157]. A series of compounds was tested
for selectivity of binding to tau pathology in post-mortem
brain tissue from patients with AD pathology [158].
Binding was compared against immunohistochemistry,
and based on more than 25-fold greater binding to tissue
sections with high tau burden relative to amyloid-β,
[F-18]-T807 was selected; the first set of images and quan-
titative binding data of [F-18]-T807 to specific brain
regions in a small group of patients with AD and normal
controls was very encouraging [159].

A study at the Massachusetts General Hospital has
begun to analyse MAPT mutation carriers with [F-18]-
T807 PET. A 56-year-old man with the P301L mutation
has been followed from prodromal FTD to bvFTD associ-
ated with an extrapyramidal syndrome. A [F-18]-T807
PET scan obtained 3.5 years from the onset of the behav-
ioural symptoms (Figure 8) demonstrates robust signal in
a classic frontotemporal distribution characteristic of
inherited tauopathies and with remarkable similarity to
the map of pathology described in the MSTD family by
Spina and colleagues [108]. Sparing of the occipital
cortex contrasts with severe involvement of the anterior
and temporal regions of the telencephalon. Although
involvement of the basal ganglia is variable in sporadic
FTLD-tau, many MAPT cases have prominent pathology
there. These studies are promising for the further charac-
terization of patients with MAPT mutations.

Comparative analysis of post-mortem tau immuno-
histochemistry with in vivo [F-18]-T807 PET is essential
for understanding the sensitivity of the tracer and the
evolution of hyperphosphorylated tau protein deposition.
The post-mortem pattern of tau distribution, in the tem-
poral cortex and hippocampus of a 62-year-old patient
carrying the P301L MAPT mutation and symptomatic
for 10 years, is shown in Figure 9. This image is com-
pared with a PET scan obtained in vivo using the [F-18]-
T807 tracer from the 56-year-old patient carrying
the MAPT P301L mutation just described. Images
obtained from immunohistochemistry and PET imaging
reveal tau involvement in the middle temporal gyrus,

parahippocampus, entorhinal cortex and hippocampus
in both cases, as well as the sparing of the superior tem-
poral gyrus.

In vivo tau imaging coupled with neuropathological
investigation will improve our understanding of tau
spreading in the brain and bring forward knowledge of the
large number of disorders characterized by tau deposition
[160,161].

Clinical features

The onset of FTDP-17 MAPT is typically insidious. Indi-
viduals with fully developed clinical syndromes usually
exhibit at least two of the three cardinal symptoms, which
are behavioural and personality disturbances, cognitive
impairment and/or motor dysfunction (most often in the
form of an extrapyramidal/parkinsonism plus syndrome).
Nevertheless, there is substantial heterogeneity. Moreover,
clinical variability is seen in individuals with the same
MAPT mutation, in different families or even within the
same family (for details about clinical presentation, see
Ghetti et al. [17]).

The behavioural and personality abnormalities include
disinhibition, apathy, loss of empathy, emotional flatness,
impulsive and/or compulsive behaviour, lack of regard for
personal hygiene, hyperorality including excessive use of
alcohol or other drugs, and in some cases verbal and/or
physical aggressiveness. The cognitive symptoms com-
monly observed in early stages of disease include inatten-
tion and executive dysfunction (e.g. difficulty initiating or
completing activities or tasks, disorganization, impaired
judgment and decision making) with relative preservation
of memory, orientation and visuospatial function, thus
fulfilling criteria for behavioral variant FTD (bvFTD) [162].
Family members may report memory loss in daily life, but
this is often a reflection of the effects of attentional or
executive dysfunction on encoding or retrieval. However,
some patients with FTDP-17 MAPT present with a pro-
found amnestic syndrome [33]. Similarly, the literature
contains statements about semantic dementia being a pos-
sible clinical phenotype of FTDP-17 MAPT, but all cases,
except one, also had a behavioural phenotype [163]. A
progressive loss of person-specific semantic memory with
prominent anomia and right temporal polar atrophy, as
well as other characteristics of semantic dementia, was
described in an individual with the V363I MAPT mutation
[119]. Thus, semantic memory in FTDP-17 deserves
further investigation.
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Figure 8. [F18]-T807 PET images from a 56-year-old individual with frontotemporal dementia and the P301L MAPT mutation. Coronal
(top row), sagittal (middle row) and axial (bottom row) views of prefrontal and anterior temporal atrophy with white matter signal change
on MRI (left column) and [F18]-T807 images (right column) showing elevated signal in frontal, anterior temporal and parietal cortex, as
well as in basal ganglia, consistent with expected tau inclusions. The PET reference region was the cerebellar grey matter.
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Progressive nonfluent aphasia may be seen initially
[118], but more commonly, an adynamic aphasia syn-
drome occurs in which the patient speaks very little due to
a loss of generative aspects of language. Later, progressive
deterioration of memory, orientation and visuospatial
function, as well as echolalia, palilalia, and verbal and
vocal perseverations, are encountered. Finally, progressive
dementia encompassing most cognitive domains develops,
and patients often become mute. Motor signs are domi-
nated by parkinsonism, which can be the presenting sign,
with some patients being misdiagnosed as having PD or
PSP. However, in some families, parkinsonism occurs late
or not at all. Parkinsonism associated with FTDP-17
MAPT is characterized by symmetrical bradykinesia,
postural instability and rigidity affecting axial and
appendicular musculature, absence of resting tremor, and
poor or no responsiveness to levodopa. Parkinsonism is an
early feature of the N279K mutation, and asymmetric
resting tremor and levodopa responsiveness have been
observed [14]. Other motor disturbances may include
dystonia, supranuclear gaze palsy, upper and lower motor
neuron dysfunction, myoclonus, postural and action
tremor, apraxia of eyelid opening and closing, dysphagia,
and dysarthria.

Although essentially no systematic work has been pub-
lished on genotype–phenotype correlations in FTDP-17
MAPT, anecdotal observations suggest that exonic muta-

tions that do not affect the splicing of exon 10 are usually
associated with a dementia-predominant phenotype. In
contrast, intronic and exonic mutations that affect exon
10 splicing and lead to an overproduction of four-repeat
tau tend to be associated with a parkinsonism plus-
predominant phenotype.

Conclusion

This review emphasizes the protean nature of FTD associ-
ated with MAPT mutations, as well as the need for corre-
lating longitudinal clinical and neuropsychological
studies with neuroimaging. Ideally, this research should
be carried out both before the onset of symptoms and
during the disease in individuals with mutations that dif-
ferentially affect tau isoforms. These studies, in conjunc-
tion with the neuropathological description of tau
inclusions, will provide a precise characterization of phe-
notypic variants and may clarify the anatomical and cel-
lular substrates of each phenotype, as well as the
evolution of tau aggregate propagation.
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