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Complexity in physiological outputs is believed to be a hallmark of healthy physiological control. How to
accurately quantify the degree of complexity in physiological signals with outliers remains a major barrier
for translating this novel concept of nonlinear dynamic theory to clinical practice. Here we propose a new
approach to estimate the complexity in a signal by analyzing the irregularity of the sign time series of its
coarse-grained time series at different time scales. Using surrogate data, we show that the method can
reliably assess the complexity in noisy data while being highly resilient to outliers. We further apply this
method to the analysis of human heartbeat recordings. Without removing any outliers due to ectopic beats,
the method is able to detect a degradation of cardiac control in patients with congestive heart failure and a
more degradation in critically ill patients whose life continuation relies on extracorporeal membrane
oxygenator (ECMO). Moreover, the derived complexity measures can predict the mortality of ECMO
patients. These results indicate that the proposed method may serve as a promising tool for monitoring
cardiac function of patients in clinical settings.

M
any physiological variables such as motor activity and heart rate display seemingly irregular fluctuations
over a wide range of time scales1,2. Under normal healthy conditions, these physiological fluctuations are
neither random nor too regular, possessing robust, multi-scale dynamic patterns that are independent of

external influences3–5. Such a complexity in physiological fluctuations has been accepted as a hallmark of healthy
physiology and is believed to reflect system adaptability in response to constant changes of internal and external
inputs. Numerous studies have supported this theory of complexity by showing that physiological fluctuations
become either too random or too regular with aging and under pathological breakdowns6–10.

Despite the physiological importance of the complexity theory, its application to clinical studies has been
hindered by the lack of algorithms that can be easily implemented for accurate estimation of the degree of
complexity in physiological fluctuations3,4. One generic challenge for algorithm design is to account for the
effects of ‘‘outliers’’, which often exist in clinical recordings due to not only external random influences but also
intrinsic physiological/pathological incidence such as ectopic beats in ECG recordings5 (Fig. 1). For example,
multiscale entropy analysis (MSE)11 is a useful tool for estimating the complexity of heartbeat fluctuations; and it
can detect alterations in cardiac control with aging and predict clinical outcomes of patients with heart dis-
eases10,12. However, MSE results are not reliable when heartbeat signals consist of outliers13,14. Thus, those data
segments contaminated by outliers must be identified and excluded before performing MSE14. Such heavy-duty
pre-processing is time consuming, thus compromising the clinical application of the analysis at the bedside. In
addition, ignoring the segments with arrhythmia-related outliers may lead to loss of important information about
the pathology of cardiac control. Therefore, there is an urgent need for the development of complexity analyses
that can reliably quantify the degree of complexity in noisy physiological recordings with outliers.

In general, the change of a variable at a time point can be decomposed into two parts: the magnitude (absolute
value) and the direction (sign)15. We hypothesize that dynamics in the sign time series can adequately reflect the
complexity in raw data and that the complexity estimation based on the sign time series is more resilient to
outliers as compared to raw data. Based on the hypothesis, we propose a new complexity analysis termed
‘multiscale symbolic entropy analysis’ (MSSE) that assesses the multiscale entropy of a signal from its sign time
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series. We also hypothesize that the new method can reliably detect
pathological alterations of cardiac control based on the complexity of
heartbeat fluctuations even when the signals are contaminated by
ectopic beats. To test these hypotheses, we conducted numeric simu-
lations and theoretical derivations to examine the performance of the
new method for the analysis of signals with and without outliers. We
also applied the method on human heartbeat recordings and exam-
ined whether complexity can be used to detect the alterations of
cardiac control in patients with congestive heart failure (CHF) and
in critically ill patients with certain dysfunctional organ(s) and life
continuation relying on a mechanical circulatory support system,
namely, extracorporeal membrane oxygenator (ECMO)16. Moreover,
we compared the MSSE results with those of the traditional MSE.

Results
Assessment of complexity requires the examination of
fluctuations at different time scales. The theoretical concept
behind the MSE and MSSE as well as many other complexity
analyses is that the complexity of a time series cannot be reliably
determined by statistical properties such as fluctuation amplitude
and entropy at a fixed time scale because these properties can vary
with time scale11. To demonstrate this concept, we considered MSE
results of (1) white noise that simply consists of uncorrelated data
points, and (2) 1/f noise that is believed to represent the most
complex fluctuation patterns in physical systems and is observed
in many physiological systems under healthy conditions (see
Methods). As shown in Fig. 2, the entropy value of a white noise
can be smaller, equal to, or greater than that of a 1/f noise, depending
on the time scale (and their standard deviations). Note that the
entropy of a coarse-grained white noise at a time scale l is
decreased by ln(l)/2 while the entropy of a coarse-grained 1/f noise
remains approximately constant at all different times scales (Fig. 2
and Supplementary Material I). Thus, for the assessment of
complexity, the entropy as the function of time scale (e.g., both the
absolute values and the slope of the function) should be considered.

MSSE provides the similar information as MSE for signals without
outliers. To better account for the influence of outliers, we proposed
a new algorithm, namely, multiscale symbolic entropy analysis, which
quantifies entropies of fluctuations at different time scales (Fig. 3 and
see details in Methods). For generated noise with different temporal
correlations (Fig. 4 a to c), the two proposed MSSE measures (i.e., eSC
and eEC) provided consistent results as the MSE measure does. For
instance, eSC and eEC remained the same at different time scale for
1/f noise, decayed quickly at larger time scales for white noise,

and decayed faster for anti-correlated noise. For noise with Hurst
exponent .1 (stronger correlations as compare to 1/f noise), the
entropy measures slightly increased with increasing time scales).
Indeed both MSSE measures were highly correlated with the MSE
measure at all time scales (Fig. 5). We further applied MSE and MSSE
to heartbeat recordings of 26 healthy human individuals without
outliers (Physionet: mean age: 31.7 6 3.5 years old) (Red line in
Fig. 6 a, g and j). Consistent with previous findings13, we found
that all the entropy measures remained relatively constant at
different time scales (except for very small time scales).

MSSE is more resilient to outliers. To examine how outliers impact
the performances of MSE and MSSE, we generated surrogate data by
randomly replacing some data points in the normal heartbeat
intervals of those healthy subjects with three different types of
outliers that are due to the arrhythmic beats or QRS detection
error (Fig. 7) (see details in Methods). The outliers significantly
affected MSE, leading to overestimated entropies at time scales
from 1–15 beats. The degree of overestimation depends on the
time scales, i.e., more overestimation at smaller time scales. As a
result, the MSE function became more like that of white noise
(Fig. 6 a to c). Certain automatic filtering procedure24 has been
proposed to address the time consuming procedure of manual
filtering of outliers (Fig. 7, see details in Methods). Our simulation
results showed that the automatic filtering could not suppress the
effect of outliers on MSE (Fig. 6 d to f). This may be expected because
many of simulated outliers were still present after the filtering
(Fig. 7). In contrast, the results of MSSE remained virtually the
same as those of the raw data, even when 45% artificial outliers
were imposed (Fig. 6 g to l).

Complexity reveals altered cardiac dynamics in diseases. We next
applied the MSSE and MSE to human heartbeat recordings of four
additional older groups (see Methods): (1) 46 older control subjects;
(2) 29 patients with congestive heart failure (CHF) who still
maintained daily activities; (3) 33 critical ill patients who were
hospitalized with the support of extracorporeal membrane
oxygenator (ECMO) and eventually survived, and (4) 31 ECMO
patients who died. We selected the four older groups because (i)
their clinical health conditions are clearly distinguishable (i.e., as
compared to the controls, health is reduced in CHF patients,
further reduced in ECMO patients, and mostly reduced in ECMO
patients who did not survived), and (ii) ectopic beats are very
common in these subjects (Fig. 1), especially in ECMO patients.
Thus, without filtering the ectopic beats, the data of the four
groups allowed us to test whether or not the introduced
complexity analysis as well as the traditional MSE can enable a

Figure 1 | An ECG recording (upper) and derived heartbeat intervals
(lower) of a critical ill patient using ECMO. The frequent arrhythmias in

the recording lead to many outliers in the derived heartbeat signal.

Figure 2 | Sample entropies of surrogate data with Hurst exponent (H 5
0.4–1.2) at different time scales.

www.nature.com/scientificreports
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reliable assessment of complexity in RR time series with outliers and
detect the alterations in cardiac dynamic under different health
conditions.

Overall there were significant group differences in all entropy
measures. The differences between the control and CHF subjects
were present exclusively at small time scales (,,5 heartbeats).
Specifically, the mean eEC at ,,5 beats showed a significant differ-
ence between the two groups (i.e., the CHF group has smaller eEC);

and the slopes of MSE and eEC functions at ,,5 beats were con-
sistently reduced in the CHF patients as compared to the controls
(Table 1). In addition, the dependences of entropy measures on time
scales in CHF patients behaved (Fig. 8) more like that of correlated
signals with H . 1 (Fig. 4 b to c), e.g., the slope of eEC at scales 2–10
(0.084 6 0.10) was larger than that of the older controls (0.048 6

0.063, p , 0.05). These results are consistent with the MSE results as
reported previously10,11,13, indicating reduced complexity in heart-
beat fluctuations in CHF patients.

As compared to the older controls, the ECMO patients had much
lower values of MSSE measures at all time scales (p , 0.0001),
suggesting significantly reduced heartbeat variability (see Table 1
and Fig. 8). Similar to the older controls, the ECMO patients also
displayed a crossover in the MSSE functions (e.g., see the profile of
eEC in Fig. 8). However, unlikely the controls, the slope of eEC
function at time scales below the crossover was negative in ECMO
patients, resembling those observed in white noise or anti-correlated
noise (Figs. 4b–c). These results suggest altered/disrupted cardiac
control in these ECMO patients. Moreover, the changes of MSSE
results in the ECMO group (i.e., reduced entropy values at all time
scales and reduced slope at small time scales) were much more pro-
nounced in those patients who died as compared to those who sur-
vived (see Table 1), suggesting more degraded cardiac control in the
ECMO patients with fatal outcomes. At time scales .5 beats, eEC of
ECMO survivors slightly increased with time scales (Fig. 8), suggest-
ing a behavior similar to fractional Brownian noise with Hurst expo-
nent .1.

Consistent with the MSSE results, the MSE function of ECMO
patients also showed a negative slope at small time scales. But the
slope was not different between the survived and the deceased
patients (Table 1). The most unexpected results were that the
MSE-derived entropy values of the ECMO patients, especially the
survived patients, were close to or even larger than those of the older
controls at all time scales (see Table 1). This discrepancy is likely due
to arrhythmia-related outliers in these signals that can significantly
affect the performance of MSE, leading to artificial increases in
entropy values as shown in the simulations (Fig. 6 a). Thus, the
results of ECMO data provide further evidence for the limitation
of MSE.

It should be noted that MSSE as well as the traditional MSE have
the issue of threshold effect (see the details in Supplementary III).
The variation between two normal heartbeat intervals in the critically
ill patients usually becomes very small, likely as a consequence of
reduced autonomic nervous activity. Thus, the difference between
two consecutive data points in the coarse-grained time series at large
scales hardly exceeds the quantization error such that the sign series
contain mainly zeros. Consequently, entropy measures are expected
to become relatively stable at very large time scales, which was
observed at scales .7 beats in ECMO patients (Fig. S3).

Discussion
With the emergence of the interdisciplinary field of nonlinear
dynamics in medicine, how to extract health-related information
in ECG-derived heartbeat fluctuations has attracted more and more
attentions. It is hypothesized that complexity in heartbeat fluctua-
tions reflects healthy cardiac control and reduced complexity in the
fluctuations indicates degraded cardiac control as occurred with
aging and under pathological conditions10,12,13,15. Our results confirm
this hypothesis and further show that cardiac complexity can predict
survival of the critically ill patients who used ECMO to sustain their
lives.

Complex heartbeat fluctuations is believed to stem from the inter-
connectedness of physiological mechanisms that is facilitated by a
network of control nodes with feedback interactions1. Such complex-
ity is manifested by many nonlinear features, including strong cor-
relations at multiple time scales17,18 that can be assessed by fractal

Figure 3 | Diagram of the procedure for the multiscale symbolic entropy
analysis. (a) To coarse grain a signal at a chosen scale (e.g., the cases for

scale 5 2 and 3 are shown in the top two panels, respectively), the original

data series is first divided into non-overlapped boxes with the size of the

scale. Then the median of all points in each box is calculated. The sign series

of a coarse grained signal is generated by considering the direction of

change at each point (i.e., 1 for increasing and 0 otherwise). (b) The sign

series is divided into m-bit sequences that are then categorized based on

their patterns. To avoid assigning sequences with similar patterns to

different categories, m-bit sequences are categorized and ranked according

to their conditional probabilities. In this example, m 5 8 and there are 13

possible categories. Finally, based on the distribution of the sequences in

different categories, the Shannon entropy eSC and the mean rank (namely,

symbolic sample entropy) eEC are obtained for the sign time series.

www.nature.com/scientificreports
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analysis such as detrended fluctuation analysis (DFA)19–21. Based on
the estimation of randomness, multiscale entropy analyses such as
MSE and MSSE also can be used to determine multiscale correlations
by examining the relationship between entropy and time scale
(Figs. 2, 4). For example, a negative slope of the entropy function
indicates anti-correlated (i.e., simple oscillation, a repetitive pattern
of an increase follow by a decrease) or uncorrelated fluctuations with
the loss of feedback interactions13. Thus, the negative slope in the
entropy function of the deceased ECMO patients suggests signifi-
cantly reduced correlations in heartbeat fluctuations that are expect-
edly caused by the loss of feedback interactions in cardiac control of
these patients. This finding provides evidence that reduced heartbeat
correlations could predict the outcome of severely ill patients.

The proposed complexity analysis is based on the examination of
the sign time series of a signal and its coarse-grained signals at dif-
ferent time scales. As we showed in our simulations, this approach
can minimize the effect of randomly distributed outliers, thus help-
ing to reveal the true dynamics in signals. Regarding the approach
and simulations, there are a few points worth clarifying. First we note
that ectopic beats do not necessarily occur randomly22. Thus, it is
likely that the temporal distribution of ectopic beats in a real heartbeat
signal may reflect certain aspects of cardiac control and/or patho-
logical changes. More systemic studies are required to test how those
ectopic beats contribute to complexity in heartbeat fluctuations.
Second, by focusing on sign series, we do not imply that the magni-
tudes of a signal contain no useful information. Indeed the magnitude

time series of a signal may contain dynamic information that is com-
plementary to that in the sign series15. We sacrificed the possible
useful information in the magnitude series because it can be easily
contaminated by outliers. Finally, in MSSE, we proposed to use two
entropy measures (i.e., eEC and eSC) to estimate the irregularity of the
sign series at each time scale. Actually the MSSE results appear to be
not sensitive to the method of estimating the irregularity, and similar
results can be obtained using an alternative approach for the estima-
tion of entropy in sign time series (see Supplementary Material II).

The number and severity of critically ill patients increase world-
wide such that it is crucial for critical care professionals to make
prudent and objective decisions on the allocation or termination of
costly and risky treatments such as ECMO for these patients.
Currently, only about half of the adult patients receive ECMO23.
Due to the high cost of the treatment, it is important to identify
patients who are likely to benefit from ECMO and to determine
the appropriate timing of stopping ECMO. Physiology-based risk-
classification tools are therefore needed to support decisions for or
against continuous ECMO usage. Monitoring ECG is a routine pro-
cedure in clinical setting. Successfully applying the research findings
of complexity in heartbeats to clinical practice (e.g., the use of ECMO)
will have huge impacts on healthcare and medicine (e.g., ECMO
usage). However, such a potentially important application has been
impeded by the fact that, exclusively all previous complexity analyses
require heartbeat signals without outliers or ectopic beats. This
requirement is important because outliers can change significantly

Figure 4 | MSSE results of generated noise and human heartbeat fluctuations. (a) The probability distributions of 8-bit sequences for noise with

different correlations as characterized by Hurst exponent (H) 5 0.4, 0.5, 1.0, and 1.2, respectively. For all signals, data length 5 30,000 points and m 5 8-

bit. There are 13 possible categories as shown in Fig. 3b. The gray scales indicate the probabilities in these categories. For white noise, more and more 8-bit

sequences follow certain patterns as time scale increases; and 1/f signal has basically the same probability distribution of sequence patterns at different time

scales. (b–c) MSSE results of generated noise used in (a). Both proposed MSSE measures as well as the MSE (Fig. 2) remain virtually unchanged at

different time scale for 1/f noise, and decay fast as time scale increases for H , 1. For H . 1, the two different symbolic entropies slightly increase with time

scales but stay below the values of 1/f noise.

Figure 5 | MSSE measures are correlated with the MSE measure. The scatter plots of (a) sample entropies vs eEC and (b) sample entropies vs eSC at

different time scales (1–20) for signals with different Hurst exponent (H 5 0.4–1.2).

www.nature.com/scientificreports
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the estimated complexity based on the traditional complexity analyses
such as MSE (Fig. 6a).

Removing outliers or ectopic beats is not trivial, not only requiring
specific expertise in ECG waveforms but also being very time-con-
suming. The recursive automatic filtering proposed by Molina–Picó et
al. has been shown to be able to reduce the effect of outliers on some
heart rate variability measures24. However, the automatic filtering only
slightly improved the MSE results while the effect of outliers on MSE
mostly remained (see Fig. 6 d to f). Moreover, it is worth noting that
the threshold-based filtering only works in the signals with the occa-
sional and isolated ectopic beats but may not be applicable in the data

with numerous and often continuous ectopic beats as occurred in
ECG data of ECMO patients (see lower panel of Fig. 7). The proposed
MSSE was specially designed to resolve these problems. With its reli-
ability and high resilience to outliers, the method raises the possibility
of applying the theory of complexity in clinical practice. Further valid-
ation of the method using a large sample size is warranted.

Methods
Multiscale entropy analysis. As described previously11, MSE calculates the degree of
irregularity in the fluctuations of a signal, {Xi}, at different time scales l. For each time
scale, the time series is first coarse-grained to produce a new time series

Figure 6 | Influences of outliers on MSE and MSSE. (a–c) MSE of heartbeat recordings of 26 healthy young subjects and the corresponding surrogate data

with different types of outliers: (a) arrhythmic beats selected based on arrhythmia heartbeat intervals of 29 patients with CHF (Congestive heart failure RR

interval database in Physionet), (b) simulated premature ectopic beats, and (c) spurious peaks due to R wave detection errors. (d–f) MSE results after the

recursive autonomic filtering (iteration number is 5). (g–i) eEC and (j–l) eSC of heartbeat signals and surrogate data that are used in (a–c). Results are

shown as group mean 6 standard error.

Figure 7 | An RR series of a healthy young subject (red) and surrogate data from the RR series (dotted grey lines). Surrogate data were generated by

randomly replacing 20% of data points in the RR series with different artificial outliers which are (a) simulating premature ectopic beats, (b) arrhythmic

beats selected based on arrhythmia heartbeat intervals of the patients with CHF in Physionet database and (c) spurious peaks due to R wave detection

errors. The surrogate data after autonomic filtering (see Methods) are provided in the lower panels.

www.nature.com/scientificreports
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i~n{lz1 Xi
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� �
, where n 5 l 3 j. Then the degree of irregularity in {Yj} is

estimated using sample entropy (SpEn).

Multiscale symbolic entropy analysis. To better account for the influence of outliers,
we propose a new algorithm, namely MultiScale Symbolic Entropy (MSSE) analysis.

Different from MSE, MSSE considers the sign time series bl
j

n o
of each coarse-grained

series at a time scale l. (Fig. 3a), where bl
j is either 1 when the corresponding yl

i is
increasing or 0 otherwise. To consider the quantization error in digital signals (e.g.,
4 msec for signals with a sampling rate of 250 Hz), let bl

j~0 if the amplitude of a
change is less than the quantization error. In addition, median values rather than
mean values in non-overlapped windows are used to construct coarse-grained time
series in order to minimize the impact of outliers (Fig. S4).

To quantify the irregularity of a sign time series, the signal is first divided into
sequences each with the same length m — the sequence length that is pre-selected (by
default, m 5 8 in this study). These m-bit sequences are divided into different
categories based on their temporal patterns using the similar concept of the
approximate/sample entropy25. Specifically, an m-bit sequence is divided into mul-
tiple vectors, each consisting of D consecutive bits {(b1, b2…bD);(b2, b3…bD11);…},
where D is the dimension of vectors. The number of paired vectors consisting of the
exactly same binary codes is then obtained and is denoted as n(D). The conditional
probability of the sequence is determined by n(D 1 1)/n(D). All sequences are
assigned to different categories based on their conditional probabilities (i.e.,
sequences in a category have the same conditional probability). Categories are created
using all possible m-bit sequences (not only the sequences present in a sign time
series) and ranked based on the conditional probability, i.e., the conditional prob-
ability is the highest for the category with Rank 5 1 and lower for the categories with
lower ranks (Fig. 3). Then, based on the distribution of the sequences in different
categories, the Shannon entropy eSC(l) and the mean rank (namely, symbolic sample
entropy) eEC(l) can be obtained for the sign time series. Conceptually, eSC describes
the information richness of a signal while eEC indicates the degree of uncertainty of
the fluctuations.

Human heartbeat recordings. To test the performances of complexity analyses, we
utilized existing heartbeat recordings of three groups of human subjects: (1) 26
healthy young subjects without outliers at age of 31.7 6 3.5 (SE) years old; (2) 46 older
control subjects at age of 65.9 6 4.0 (SE) years old (24 hours); (3) 29 patients with
congestive heart failure (CHF) at age of 55.2 6 11.6 (SE) years old (24 hours); and (4)
64 critically ill patients at age of 53.5 6 18.2 (SE) years old who had severe dysfunction
in certain organ(s) (i.e., fulminant myocarditis, severe respiratory failure, cardiogenic
shock after cardiac surgery and septic shock)16,26,27 and relied on the extracorporeal
membrane oxygenator (ECMO) to maintain life continuation (24 hours). Within the
64 ECMO patients, 33 survived while the others died.

The data of the first three groups are from the existing databases that are publically
available in Physionet.org18. The data of Group 4 were collected in the National
Taiwan University (NTU) Hospital between March 2008 and March 2010. Patients
were eligible for the present study if they were 18 years or older and had received
ECMO for circulatory or respiratory failure that required mechanical support. The
decision to use ECMO was made by experienced intensive care specialists or cardiac
surgeons. The primary endpoint is death or urgent cardiac transplantation during the
index admission. The patients were followed until discharge or death of the index
admission. The Institutional Review Board of the NTUH approved the study and

Figure 8 | MSSE results of heartbeat recordings collected from older
controls, CHF patients, and ECMO patients (survived and expired).
Results were obtained without ectopic beat rejections. Data are shown as

group averages and error bars indicate standard errors.
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informed consent was obtained from each patient’s next-of-kin in ECMO group and
from each subject in control group in accordance with the NTU’s human subject’s
research polices.

Surrogate data. We generated noise with different correlation properties by using a
modified Fourier filtering method28. The generated signals possess the desired power-
law correlation functions that asymptotically behave as fractional Brownian motion
(fBM) processes with different Hurst exponent (H) (see Supplementary I): white
noise (Hurst exponent 5 0.5), 1/f noise (Hurst exponent 5 1), noise with stronger
correlations (Hurst exponent 5 1.2), and signals with anticorrelations (Hurst
exponent 5 0.4). For each type of noise, we generated 1000 signals each with 30,000
points.

Human heartbeat recordings with artificial ectopic beats are generated from total
24-hour heartbeat signals collected from 26 healthy young individuals. The signals
have been previously reviewed and contain no abnormal beats (www.physionet.
org\…). For each recording, three different ways were adopted to simulate the ectopic
beats. We randomly selected certain percentage (e.g., 20% and 45%) of RR intervals.
Then we replaced the normal beats with either (1) intervals imitating premature
ectopic beats, i.e., each simulated ectopic beat leads to an abnormal RR interval that is
,65 percent (30%–100% in uniform distribution) of the mean value of the four
normal hear beat intervals proceeding to the ectopic beat29 (Fig. 7 a); or (2) artificial
outliers that are selected based on arrhythmia heartbeat intervals of the patients with
CHF in Physionet database (Fig. 7 b). In addition, we also consider the influence of the
spike train that simulates the spurious peaks due to R wave detection errors24. The
spike trains were generated using a Bernoulli process of probability p (e.g., 0.2 and
0.45):

X
i
Aid t{tið Þ where Ai is the spike amplitude and ti is the temporal location

of the spike. The positive and negative spikes indicate the missing and false positive
heart beat detection, receptively. In this study, the amplitude of each spike was
assigned to be a value randomly selected from a normal distribution with mean equal
to half the median of 10 adjacent RR intervals and standard deviation equal to that of
the same 10 referencing beats.

Autonomic filter. Certain automatic filtering procedure has been proposed in
previous studies to address the time consuming procedure of manual filtering. For
example, Molina–Picó et al. proposed a recursive filtering procedure24 in which a
signal is scanned with a sliding window of the size 5 10 beats and an RR interval is
identified as an outlier if its value significantly deviates from the mean value of its
nearby points (i.e., 5 beats preceding and 5 beats following the point). The degree of
deviation is a predetermined threshold, e.g., (25% and 50% of the mean for upper and
lower bounds respectively). For an identified outlier, the RR value is replaced by the
linear interpolation of two adjacent beats (see Fig. 7). It is necessary to scan the time
series multiple times (i.e., iteration number . 1) in order to identify certain clustered
outliers29.

1. Buchman, T. G. The community of the self. Nature 420, 246–251 (2002).
2. Goldberger, A. L. et al. Fractal dynamics in physiology: alterations with disease

and aging. Proc Natl Acad Sci 99, 2466–2472 (2002).
3. Chen, Z., Ivanov, P. C., Hu, K. & Stanley, H. E. Effect of nonstationarities on

detrended fluctuation analysis. Phys Rev E 65, 041107 (2002).
4. Hu, K., Ivanov, P. C., Chen, Z., Carpena, P. & Stanley, H. E. Effect of trends on

detrended fluctuation analysis. Phys Rev E 64, 011114 (2001).
5. Huikuri, H. V. et al. Measurement of heart rate variability: a clinical tool or a

research toy? J Am Coll Cardiol 34, 1878–1883 (1999).
6. Liang, W.-K. et al. Revealing the brain’s adaptability and the transcranial direct

current stimulation facilitating effect in inhibitory control by multiscale entropy.
NeuroImage 90, 218–234 (2014).
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