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Abstract

Background: The paradigm of resistance evolution to chemotherapeutic agents is that a key coding mutation in a
specific gene drives resistance to a particular drug. In the case of resistance to the anti-malarial drug chloroquine (CQ),
a specific mutation in the transporter pfcrt is associated with resistance. Here, we apply a series of analytical steps to
gene expression data from our lab and leverage 3 independent datasets to identify pfcrt-interacting genes. Resulting
networks provide insights into pfcrt’s biological functions and regulation, as well as the divergent phenotypic effects of
its allelic variants in different genetic backgrounds.

Results: To identify pfcrt-interacting genes, we analyze pfcrt co-expression networks in 2 phenotypic states -
CQ-resistant (CQR) and CQ-sensitive (CQS) recombinant progeny clones - using a computational approach that prioritizes
gene interactions into functional and regulatory relationships. For both phenotypic states, pfcrt co-expressed gene sets
are associated with hemoglobin metabolism, consistent with CQ’s expected mode of action. To predict the
drivers of co-expression divergence, we integrate topological relationships in the co-expression networks with
available high confidence protein-protein interaction data. This analysis identifies 3 transcriptional regulators from
the ApiAP2 family and histone acetylation as potential mediators of these divergences. We validate the predicted
divergences in DNA mismatch repair and histone acetylation by measuring the effects of small molecule inhibitors in
recombinant progeny clones combined with quantitative trait locus (QTL) mapping.

Conclusions: This work demonstrates the utility of differential co-expression viewed in a network framework to
uncover functional and regulatory divergence in phenotypically distinct parasites. pfcrt-associated co-expression
in the CQ resistant progeny highlights CQR-specific gene relationships and possible targeted intervention strategies.
The approaches outlined here can be readily generalized to other parasite populations and drug resistances.

Keywords: Plasmodium falciparum, Chloroquine resistance, pfcrt, Gene co-expression networks, Phenotypic states,
Functional interactions, Regulatory interactions, Rewiring of gene networks
Background
Drug resistance often results from a mutation in a specific
gene(s), such as a drug target or a drug transporter. The
emergence of a resistance-conferring mutation within an
evolutionary tuned system of functional and physical in-
teractions can present enormous physiological challenges
and can have broad phenotypic effects. For example,
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mutations in a single drug resistance gene can impact its
interactions with other genes, physically and/or func-
tionally, and can in turn constrain the evolution of
highly connected genes [1]. Such interactions can affect
the penetrance, expressivity and pleiotropic phenotypic
effects of a single mutation [2]. Moreover, the spread of
resistance alleles in populations creates novel interactions
with accompanying fitness implications, as mutations
recombine in new genetic backgrounds, sometimes de-
coupling co-evolved gene relationships. In some cases,
recombination brings together beneficial alleles into
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one genome while in others, suboptimal combinations
result [3]. The successful propagation of mutations from
small founder populations implies that cells have mecha-
nisms to buffer the impact of single gene mutations on
their interaction partners. Notably, even when phenotypes
such as drug resistance are controlled by a single major
gene, individuals carrying the same genotype at that locus
commonly present a range of phenotype levels [2,4-6].
Chloroquine (CQ) resistance is a prime example of the

complexity of the evolutionary impact of mutations in a
single drug resistance gene. All CQ-resistant (CQR) para-
sites reported to date contain a lysine to threonine substi-
tution (K76T) in the P. falciparum chloroquine resistance
transporter, pfcrt [7,8]. In spite of the high penetrance of
this mutation, CQR parasites exhibit a wide range of re-
sistance levels, indicating the involvement of additional
genes [9]. Furthermore, the lone example of selection of
CQ resistance in the laboratory was highly dependent on
the genetic background that was drug pressured [9]. Un-
fortunately, in more than a decade since the association
between pfcrt and CQ resistance was discovered [8,10,11],
information about its extended functions, regulation and
impact on other phenotypes or drug resistance evolution
Figure 1 Overview of the approach applied in this study to predict diver
resistance transporter gene, pfcrt. Genes significantly correlated topfcrt (FDR≤
data from the24hr developmental stage (trophozoites) [12]. Regulatory candidate
and functional partners of the gene were then predicted by applying th
study to assess the topological position of pfcrt correlated genes. Valida
associated with pfcrt in CQR or CQS were then performed by measuring
Additional information is provided in Additional file 1: section A.
remain largely unknown. An understanding of pfcrt’s inter-
action partners could reveal genetic modifiers of CQ resist-
ance and potential pleiotropic effects of the mutation.
The plasticity of gene regulation networks makes them

powerful readouts of genome-wide responses to perturba-
tions; moreover, global gene expression measurement is
relatively simple, highly quantitative and unbiased view of
regulatory outputs.
Here, we leverage gene expression data from CQR

and CQ-sensitive (CQS) recombinant progeny clones
to gain deeper insight into the biology of the pfcrt
gene. We extend our work on genome-wide transcrip-
tional profiling that found heritable regulatory vari-
ation controlling the expression of nearly 18% of the
transcriptome [12]. The genetic locus encoding pfcrt
emerged as a regulatory hotspot, suggesting that the
associated transcriptional networks can provide more
insights into its natural function and role in CQ resist-
ance [12]. We leverage pfcrt’s co-expression relation-
ships to examine its functional interactions in CQR vs
CQS parasites and to predict regulatory and pheno-
typic divergence across the phenotypically distinct re-
combinant progeny clones.
ging functional and regulatory interactions associated with the drug
0.20) inCQRor CQS recombinant cloneswereobtainedusing transcriptional
s associatedwith thepfcrt co-expressionnetwork inCQR or CQS parasites
e triangle inequality [22] based approach (TrIPI) developed in this
tions of the predicted regulatory and functional biological processes
dose responses to small molecules targeting the processes.
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Results
In this study, we determine and compare gene sets that
are co-expressed with the drug resistance transporter
gene, pfcrt, in CQR vs CQS malaria parasites (Figure 1
and Additional file 1: section A) for three key reasons:
i) genes showing similar patterns of co-expression often
are functionally related [13,14] such that pfcrt’s co-
expressed genes could highlight its endogenous roles
and functions beyond its role in resistance; ii) differen-
tially co-expressed genes could lead to divergent drug
response and other phenotypes[14-17]; iii) because dif-
ferential co-expression results from divergent regula-
tion [18,19], the topological relationships between
differentially co-expressed gene sets can reveal regula-
tory mediators of phenotypes [20,21]. Differential gene
expression, the usual method for analyzing transcrip-
tional data, cannot effectively address these questions
because that approach considers genes individually ra-
ther than in context of their relationships [18,20,21].
Recently, gene co-expression networks have been used
to distil information from transcriptional data to identify
functional and regulatory interactions between genes,
even when the key genes are not differentially expressed
[20]. Their usefulness notwithstanding, co-expression net-
works are prone to a high rate of false positive correlations
arising from indirect relationships between genes, requir-
ing that we establish rigorous thresholds and a layered (se-
quential) method (summary in Figure 1 and additional
details in Additional file 1: sections A, C and D) [22]. Spe-
cifically, to overcome false positive correlations, we de-
velop an approach - Triangle Inequality Prioritization of
Interactions (TrIPI) - that, given a correlation matrix of
genes significantly correlated to a gene of interest (correl-
ation coefficient, |r| ≥ 0.5, FDR ≤ 0.20), prioritizes sets of
correlated genes into ‘direct’ functional partners of the
gene and potential regulators of its co-expression network
(Methods, Additional file 1: sections C and D). This
method has 3 key advantages: i) it takes advantage of prior
biological information by focusing on a gene of interest
(here, pfcrt) to reduce the dimensionality of the hypothesis
search space for significant gene correlations (Additional
file 1: section C), ii) it prioritizes correlations between the
gene of interest and other genes by examining the
strength of the correlation in the context of how the two
genes correlate to other genes, paring out indirect associa-
tions and thereby reducing false positive associations
(Additional file 1: section C), and iii) it interrogates the
topological relationships to identify candidate regulatory
factors which are gene(s) that correlate significantly to a
high fraction of the direct neighbors of the gene of
interest (Additional file 1: section D). A comprehensive
overview of the approach is provided in the Additional
file 1: sections A, C and D. We apply this approach to
predict candidate functional partners of pfcrt, drivers of
its co-expression network and to provide molecular in-
sights for phenotypic divergence between CQR and
CQS parasite clones.

pfcrt co-expression networks in CQR and CQS recombinants
To determine the co-expression relationship between
pfcrt and other genes, we reanalyzed microarray data
from our lab that profiled transcripts at 18 hr post-
erythrocye invasion of 19 CQS and 17 CQR recombin-
ant progeny of a cross between the CQR parent Dd2
and the CQS clone HB3 (GSE12515) [12]. Each gene
was considered as co-expressed with pfcrt if the abso-
lute Spearman correlation coefficient threshold, |r|, be-
tween the transcript levels of the two genes exceeded a
threshold of 0.5 (|r| ≥ 0.5, FDR ≤ 0.20) across all CQR
or CQS parasites. Of the 5150 genes in the P. falciparum
genome for which transcript level data were available,
transcripts for 581 (11%) genes were co-expressed with
pfcrt in CQR progeny and 638 (12%) in CQS parasites
(Figure 2 A and Additional file 2: Table S1). Of the genes
that were co-expressed with pfcrt, 206 (30%) genes that
were co-expressed with pfcrt in CQS parasites also were
co-expressed with the gene in CQR; 70 (12%) would be
expected by chance (hypergeometric test P = 1.25 x 10−57).
We reasoned that if these observations are biologically
meaningful, then gene pairs under high evolutionary con-
straint would show limited co-expression divergence in
the two parasite groups. Synthetic lethal interactions are
known to be under such a constraint [23,24]: in such
cases, deletion of either single gene partner is compatible
with growth because the second gene can buffer the loss
of the first. However, the simultaneous deletion of the
interacting gene leads to death. The ability of such genes
to buffer mutations in their counterpart is influenced by
the negative regulatory relationships that exist between
them [23,25,26]. Of 14 synthetic lethal gene pairs deter-
mined by flux balance analysis [27], 2 are significantly
co-expressed (Spearman correlation, |r| ≥ 0.5) in CQS
parasites, and one of these 2 pairs also is co-expressed in
CQR parasites (Additional file 1 section B and Additional
file 3: Table S2). That is, when considering co-
expression between synthetic lethal pairs, half of the
observable co-expression relationships are conserved
between the 2 networks compared to 30% in 1000 ran-
dom gene pairs; however, given only two co-expressed
synthetic lethal pairs, this observation is of limited
value. To follow this point further, we observed that co-
expressed synthetic lethal pairs in both CQS and CQR
parasites are negatively correlated as expected for syn-
thetic lethal pairs (Additional file 1: section B). No such
skew towards negative correlation is observed in ran-
domly selected gene pairs (Wilcoxon test, P = 0.05,
Additional file 1: section B). This led us to hypothesize
that, if pfcrt genotype constrains pfcrt co-expression,



Figure 2 Co-expression of all genes with pfcrt gene in CQR and CQS parasites. (A) Correlation between the levels of each transcript in the
genome to that of pfcrt, determined separately for CQS (x-axis) and CQR (y-axis) parasites. Grey region indicates genes whose correlation to pfcrt
passed the threshold of FDR≤ 0.20. (B) Average correlation between pfcrt and each transcript in 100 pairs of randomly sampled subsets of CQS (x-axis)
and CQR (y-axis) parasites. Each subset of CQR or CQS parasites consists of transcriptional data from 8 parasite clones. (C) Average correlation between
the transcript level of each gene to that of pfcrt in 100 pairs of randomly sampled subsets of CQS parasites. (D) Comparison of average pfcrt
correlations in 100 pairs of randomly sampled subsets of CQR parasites. Like in (B), each randomly sampled subset of parasites consists of 8 parasites.
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then the divergence of pfcrt co-expression networks
should be much lower within subsets of CQS or CQR
progeny than between the two parasite groups. The di-
vergence between CQR and CQS progeny (Figure 2 A
and B) compared to within each parasite group (Figure 2
C and D) is much higher: While only 30% of pfcrt co-
expressed genes are similarly co-expressed between
CQR and CQS progeny, this percentage rises to 57%
when comparing co-expression between randomly sam-
pled subsets of CQR or CQS (60%). The divergence within
each group is not statistically significant (divergence
within CQS subsets Wilcoxon test, P = 0.35- Figure 2 C;
within CQR subsets Wilcoxon test, P = 0.43- Figure 2 D),
while the divergence between the groups is highly signifi-
cant (Wilcoxon test P = 6.61 × 10−5, Figure 2 A and B). In
addition, a very strong correlation is observed between the
correlations of pfcrt and other genes within CQR or CQS
subsets (r = 0.99 within CQS or CQR subsets, Figure 2 C
and D) compared to between CQR and CQS subsets (r =
0.49) (Figure 2 A and B). Together these observations in-
dicate that different pfcrt genotypes are associated with
functionally relevant differential co-expression.
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Co-expression partners of pfcrt suggest biological functions
Genes involved in related biological pathways are often
co-expressed and this co-expression can result from a
shared regulatory program such that co-regulated genes
are co-expressed (i.e. correlated). As a first step to con-
necting genes in a transcription network, a rigorous
threshold is often applied to identify non-random corre-
lations. However, even given this initial filter, relation-
ships between gene pairs have a strong potential to be
artifacts due to intermediate/ indirect correlations (i.e.
correlations of correlations, such that a gene may be sta-
tistically correlated with pfcrt by virtue of its strong correl-
ation with another gene that is more strongly correlated
with pfcrt). While these secondary correlations may be
biologically relevant, the rate of false positives is unaccept-
ably high for drawing functional inferences. Our TrIPI
method was developed to identify and remove these third
party interactions by leveraging the local network struc-
ture of gene neighborhoods to prioritize interactions
(Methods, Additional file 1: section C and D). Briefly, for a
given gene, R, TrIPI applies the triangle inequality [22] to
find gene nodes potentially indirectly linking R to pfcrt.
When no indirect links between R and pfcrt can be found,
R is regarded as a functional partner of pfcrt and
assigned a transitivity score, t, of zero with respect to pfcrt.
Using this method, we found 87 high-level candidate pfcrt
functional partners in CQS and 89 functional partners in
CQR parasites (Additional file 4: Table S3). A small but
significant set of 8 genes was present in both CQR and
CQS (hypergeometric test P = 0.0001, Table 1).
While pfcrt’s biological function is unknown, it has

been proposed to be associated with the catabolism of
hemoglobin-derived peptides in the parasite digestive
vacuole (DV) [28,29]. These peptides are released from
hemoglobin digestion by the action of proteases known
Table 1 Functional partners of the pfcrt gene that are
shared between CQR and CQS co-expression networks

Gene ID Annotation

PF3D7_1301700 Plasmodium exported protein (hyp8),
unknown function

PF3D7_1028000 methyltransferase, putative

PF3D7_1243600 translation initiation factor SUI1, putative

PF3D7_0814500 conserved Plasmodium protein, unknown
function

PF3D7_0216100;
PF3D7_0216200

conserved Plasmodium protein, unknown
function

PF3D7_0501400 interspersed repeat antigen

PF3D7_1425900 conserved Plasmodium protein, unknown
function

PF3D7_0104100 conserved Plasmodium membrane protein,
unknown function
as plasmepsins [30,31] and falcipains [32,33] in the DV.
Once outside the DV, the peptides are broken down into
amino acids for protein synthesis [34,35]. CQ interferes
with the detoxification of heme [36,37] and resistance to
CQ is associated with accumulation of hemoglobin de-
rived peptides in the DV of CQR parasites, implying that
hemoglobin catabolism is impaired in CQR [38].
In both CQR and CQS pfcrt functional partners, we

observed three genes encoding hemoglobin-degrading
aspartyl proteases. Two of these (plasmepsin VI-
PF3D7_1033800 and plasmepsin I- PF3D7_1407900)
were predicted by our method as pfcrt functional part-
ners in CQR parasites, while plasmepsin IX was iden-
tified as a functional partner in CQS lines. With only
10 plasmepsin genes in P. falciparum, this observation
is unlikely by chance (joint hypergeometric test P =
0.0017). The presence of distinct but functionally re-
lated hemoglobin-degrading enzymes in CQR and
CQS pfcrt functional partners is consistent with the
interpretation that this functional relationship is pre-
served in both co-expression networks. One explan-
ation for this could be that the link between pfcrt and
the plasmepsins is vital for growth supporting pro-
cesses. The paralogs may present alternative routes by
which parasite lines carrying different pfcrt alleles
could mediate this essential function. We further observed
other biological functions shared by pfcrt partners in both
CQR and CQS, including heme biosynthesis and lipoa-
mide biosynthesis, for which distinct but functionally re-
lated genes were identified as both CQR and CQS pfcrt
functional partners. For heme biosynthesis, pfcrt func-
tional partners in CQS contained the gene encoding the
enzyme ferrochelatase (PF3D7_1364900), which cata-
lyzes the terminal step in the pathway. CQR functional
partners contained two genes: delta aminolevulinic acid
dehydratase (PF3D7_1440300), a metabolic chokepoint in
the pathway, and a putative cytochrome b5-like heme/
steroid binding protein (PF3D7_0918100). Notably,
heme biosynthesis occurs in the mitochondrion and the
plastid organelle (apicoplast), while pfcrt is localized to
the DV. Both of these organelles are centers for heme
metabolism: heme is a byproduct of hemoglobin diges-
tion in the DV and a synthetic metabolite in the
mitochondrion.
A more surprising biological process showing func-

tional conservation in CQR and CQS was the shared
co-expression between pfcrt and lipoamide synthesis
genes. Lipoate ligase (PF3D7_0823600) was a direct (i.e.
predicted functional) partner of pfcrt in CQS and lipoa-
mide dehydrogenase (PF3D7_1232200) was a predicted
functional partner in CQR. The co-expression networks
are consistent with a functional association connecting
CQ, pfcrt and hemoglobin digestion, and also reveal
novel associations that will need future validations.
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AP2 transcription factors connect pfcrt co-expressed genes
Because topological relationships between genes in the
pfcrt co-expression networks can highlight potential reg-
ulators, we developed a scheme to identify candidate
regulators on the basis of their connections to a large
number of pfcrt neighbors in the network, reflecting the
tendency of regulatory genes to reside in the shortest
paths in networks [39,40]. The TrIPI method, in addition
to identifying direct partners (t = 0) is also suited to
identify genes with high transitivity to pfcrt; specifically,
these are genes that provide a short path connecting
pfcrt neighbors (Methods and Additional file 1: section
D). To prioritize candidate regulators, we ranked genes
by their transitivity.
Strikingly, out of 621 genes significantly correlated to

pfcrt in CQS, the gene with the highest transitivity (t =
108, see Additional file 4: Table S3 for t values for all
genes) in CQS parasites is an apicomplexan (Api) AP2
transcription factor (PF3D7_1007700), a member of the
developmentally regulated ApiAP2 transcription factor
family [41,42]. This gene was significantly correlated to
pfcrt in CQS parasites (r = 0.53) but not in CQR (r = −0.1)
parasites. In CQR parasites, a different AP2 transcription
factor gene, PF3D7_0420300, exhibited the third highest
transitivity (r = 0.50, t = 114 in CQR vs r = −0.09 in CQS)
of 578 genes significantly correlated to pfcrt. Given that 27
genes in the P. falciparum genome encode AP2 transcrip-
tion factors, the likelihood of randomly observing 2 AP2
genes within the top 3 genes from each list is extremely
small (hypergeometric test, joint P = 0.0001). These regu-
lators bind similar motifs [41]: the consensus motif for the
second domain of the CQR AP2 is GTGTTACAC com-
pared to GTGCAC of the third domain of the CQS AP2
[41], differing by a 3 bp central indel (TTA). It is plausible
that a minor mutational event that alters their target bind-
ing specificity could facilitate a swap of regulatory pro-
grams, and lead to broad physiological and phenotypic
effects mediated by their specific targets. Notably, a
third AP2 (PF3D7_0802100) was predicted as a direct
functional pfcrt partner (Additional file 4: Table S3) in
CQR but not CQS parasites (CQR r = −0.59, t = 0; CQS,
r = −0.3, FDR ≤ 0.20). In contrast to the two other AP2s,
this AP2 is directly connected to pfcrt, implying its
more restricted role within the immediate pfcrt co-
expression network.
Because transcription factors regulate many genes,

their divergent co-expression would also be expected to
have pleiotropic effects. Accordingly, we developed a
comprehensive gene co-expression network from an
independently-derived high-dimensional transcription
dataset that both validated and expanded our view of
potential targets of the candidate regulators of the co-
expression divergence (Methods). This network was con-
structed using the well-established reverse engineering
algorithm, ARACNE [32], applied to a transcriptional
data set obtained from 241 parasite samples cultured
under a wide range of conditions [33]; from this network
we computed the set of all direct links (‘regulons’) of the
candidate regulators. This approach offers several advan-
tages: it is outside of the constraints of the genetic cross
and is not dependent on pfcrt-anchored correlations; it
also provides a more general representation of genome-
wide interactions using a different statistical method
(mutual information rather than Spearman correlation).
The CQS-related AP2 (PF3D7_1007700) regulon

contains 59 genes and is enriched for functions we ob-
served in our pfcrt-based networks: hemoglobin degrading
enzymes plasmepsin I (PF3D7_1407900) and falcilysin
(PF3D7_1360800) as well as the heme biosynthesis enzyme
delta-aminolevunilic acid (PF3D7_1440300) (Additional
file 5: Table S4). The predicted regulon of the CQR
AP2 contains 78 genes enriched with DNA mismatch re-
pair (hypergeometric enrichment test P < 0.05, Additional
file 5: Table S4).

Candidate AP2 regulators are linked to histone
acetylation
The divergent co-expression of 3 AP2 transcription fac-
tor genes in the pfcrt co-expression networks led us to
investigate their functional relationships (Figure 3 A
and B). While limited information is available about
these regulators (PF3D7_0802100, PF3D7_0420300 and
PF3D7_1007700), [41-43], we were intrigued to note
that LaCount et al. [44] identified physical interactions
among them as part of a high confidence protein-pro-
tein interaction subnetwork centered on the histone
acetyltransferase, Gcn5, and containing additional chroma-
tin-modifying proteins (Figure 3 B) [44]. The interactions
among these transcription factors and Gcn5-containing
complexes suggest that the AP2s interface with histone
acetylation in their regulatory roles. These interactions also
have been observed in Toxoplasma [45] and Arabidopsis
[46]. That these associations may extend to regulatory rela-
tionships is implied by the up-regulation of the AP2 genes
following perturbations by apicidin, a histone deacety-
lase inhibitor (HDACi) [47]. Consistent with these ob-
servations, the predicted regulon of the AP2 in the
CQS pfcrt network (PF3D7_1007700) includes Gcn5,
CCR4 and two hypothetical proteins (PF3D7_1366900
and PF3D7_0817300) that are also members of the
Gcn5 protein-protein interaction sub-network [44].
Moreover, the Gcn5 regulon contains ADA2 and CCR4
associated factor 1 (CAF1) which are integral compo-
nents of the CCR4-NOT complex, a regulator of mRNA
stability and transcriptional regulation [48-51].
We hypothesized that the association between the

CQS AP2 (PF3D7_1007700) and Gcn5, found in both
the protein-protein interaction complex (Figure 3 B) and



Figure 3 Prediction and validation of regulatory mechanisms underlying diverging co-expression networks. (A) Potential regulators of the pfcrt
co-expression networks by interrogation of the topological relationships between pfcrt partners using the transitivity, t, score. Top scoring candidate
regulators- the AP2 transcription factor PF3D7_1007700 (AP2-3) has the highest score in CQS while in CQR the AP2 regulator PF3D7_0420300 (AP2-2) has
3rd highest score considering all genes correlated to pfcrt (FDR ≤ 0.20). The case of t =0 denotes functional (direct) pfcrt partners which
also includes another AP2 transcription factor, PF3D7_0802100 (AP2-1). (B) Top scoring regulators are all part of a previously published
high confidence protein-protein interaction sub-network [44] and interact with the histone acetyltransferase (Gcn5). Other transcriptional
regulators physically interacting with Gcn5 include CAF1- a component of the CCR4-NOT mRNA deadenylase complex- and adenosine deaminase
ADA2, leading to the hypothesis that the Gcn5 protein interaction network could be involved in integration of transcriptional regulation and mRNA
stability [44]. (C) Validation of dysregulated histone acetylation as a potential regulatory mechanism using drug response assays. QTL mapping
of quantitative dose responses to the HDACi apicidin in progeny of the Dd2 × HB3 genetic cross found significant association to genetic loci
on chromosome 5, 57.3 cM (LOD = 5.4) and 8, 77.5 cM (LOD 2.3). The chromosome 5 locus includes a gene encoding CCR4 while the chromosome 8
locus contains CAF1, which physically interacts with Gcn5. (D) Validation of dysregulated histone acetylation using data from previous studies [53].
Promoters of the top 100 genes that are not correlated to pfcrt in CQS but show positive correlation in CQR (gain of positive correlation) carry vastly
higher levels of H3K9ac compared to the average levels in all genes (Wilcoxon test P < 2.2 x 10−16). In contrast, H3K9ac levels of the top 100 genes that
gain negative correlation are significantly lower compared to the genome-wide promoter baseline (Wilcoxon test P = 3.4 x 10−16).
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in their regulons that were constructed independent of
the protein-protein network, predicts that dys-regulation
of histone acetylation in CQR parasites. This dysregula-
tion could manifest as differential sensitivity to perturba-
tions by histone acetylation/ deacetylation inhibitors. To
test this idea, we performed quantitative dose response
assays on the CQR and CQS recombinant progeny
clones using the HDACi- apicidin. The parasites exhib-
ited a range of sensitivities (Additional file 6: Table S5)
and QTL analysis (Figure 3 C) provided insights into the
molecular basis of this differential sensitivity. Two gen-
etic loci, on chromosome 5 (cM 57.3; LOD = 5.4, chi-
square P = 0.000001, genome-wide significance threshold
P < 0.01 [52]) and a suggestive peak on chromosome 8
(cM 77.5; LOD = 2.3, chi-square P = 0.001120, genome-
wide significance threshold P < 0.37) are associated with
the level of apicidin response (Figure 3 C). Genes lying
between genetic markers flanking the 95% confidence
range of each QTL peak were regarded as potential
candidates.
The chromosome 5 locus contains a putative CCR4

gene and the chromosome 8 locus includes the CAF1
gene. CAF1 physically interacts with both Gcn5 and the
AP2 predicted to be a functional partner of pfcrt in CQR
(PF3D7_0802100) [44]; it resides within a protein-
protein interaction complex that includes the two regu-
latory candidates identified in our networks (the AP2s
PF3D7_1007700 and PF3D7_0420300) (Figure 3 A and
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B). These data point to a possible role of these AP2s in
dysregulation of the Gcn5 network, resulting into an al-
tered response to HDACi. A better understanding of
how these AP2s interface with histone acetylation will
require functional assays of the interactions between
these components that differ in CQR and CQS parasites.

Promoters of differentially co-expressed genes have
distinct epigenetic profiles
The physical interactions between the AP2 regulators
with Gcn5 coupled to the heritable variation in dose re-
sponse to apicidin (Figure 3 C) collectively imply diver-
gent histone acetylation in the recombinant progeny
clones. Therefore, we hypothesized that differentially co-
expressed pfcrt interacting genes between CQR and
CQS parasites would differ in histone acetylation pat-
terns. To test this, we partitioned genes into categories
of extreme differential co-expression in CQR vs CQS.
Specifically, we identified genes that gained or lost corre-
lations (positive or negative) with pfcrt in CQR parasites
relative to CQS. We then asked whether the promoters
of genes that lost or gained correlation with pfcrt exhib-
ited distinct histone acetylation profiles. For each cat-
egory, we considered the top 100 genes and examined
histone acetylation patterns in the 1000 bp upstream of
translation start site using a publicly available dataset
[53]. Genes that gained positive correlation had higher
levels of the acetylated histone H3K9ac in their pro-
moters while those that gained negative correlation had
lower levels of this histone modification compared to
the genome baseline (Figure 3 D, Wilcoxon test P <
0.05). Promoters of genes that lost positive correlation
were no different from the genome baseline (Figure 3 D,
Wilcoxon test P = 0.27) while those that lost negative
correlation were significantly different from the base-
line, particularly in the -200 to -500 bp upstream region
(Figure 3D, Wilcoxon test P = 1.2 × 10−11). These data
further support our conclusion that the CQR and CQS
progeny have divergent regulatory processes involving
transcription factors and epigenetic modifications.

Divergent co-expression networks predict diverging
phenotypes
We reasoned that co-expression networks, particularly
the genes with marked differential co-expression be-
tween CQR and CQS could predict additional pheno-
typic differences between the two groups of recombinant
progeny, as was observed for the QTL associated with
apicidin dose response (Figure 3 C and Additional file 1:
section E). Besides differences in CQ susceptibility,
recombinants of the Dd2 ×HB3 genetic cross differ for
other phenotypes. For example, genetic association map-
ping of quantitative dose responses showed that the pfcrt
locus is associated with response to more than 200
compounds [54]. Other studies suggest that the H+

physiology of the DV is altered in CQR, although how
this affects compartmental pH [55] and vacuolar volume
[56] are still debated [57,58]. Evidence suggests that, in
CQR parasites, CQ effluxes from the DV in conjunction
with H+ via a verapamil-sensitive pathway [59].
An altered co-expression network could account for

some of these unexplained broader phenotypic changes
associated with the pfcrt mutation. In CQR but not
CQS networks, components of pH regulation were specif-
ically enriched in the pfcrt functional partners (hypergeo-
metric test P = 0.004, Additional file 4: Table S3). For
example, transcript levels of the V-type H+ translocating
pyrophosphatase (PF3D7_1456800), involved in pH regu-
lation was a functional partner of pfcrt (r = 0.61, FDR ≤
0.20, t = 0) in CQR but not CQS progeny. Co-expression
of the two genes could compensate for the loss of proton
levels during CQ efflux in CQR strains [59] by increasing
influx of hydrogen ions into the DV.

Altered co-expression networks are associated with MMR
dysregulation in CQR parasites
As outlined above (and additional details in Additional
file 1: section E), co-expression changes can compromise
normal functional associations between genes, thereby
altering cellular response to secondary perturbations and
exposing drug unique susceptibilities specifically in CQR
parasites. For example, the co-expression constraint de-
scribed for synthetic lethal gene pairs implies that dysreg-
ulation of their coordinated expression is incompatible
with their normal ability to compensate for each other
[25,60] (Additional file 1: section E). A well-documented
case of this effect involves the synthetic lethal gene pair
tbx-8 and tbx-9 in Caenorhabditis elegans [61,62]. Dele-
tion of tbx-9 results in an incompletely penetrant
phenotype in which individuals expressing high levels
of tbx-8 exhibit the wild-type phenotype, while those
expressing low levels produce an abnormal phenotype
[26]. High expression of tbx-8 buffers deletion of tbx-9.
This buffering effect is lost in individuals expressing
low levels of tbx-8, making these individuals vulnerable
to disruption of tbx-9 [26].
We searched the functional partners of pfcrt having an

altered co-expression in CQR vs CQS for genes encod-
ing druggable proteins or genes in pathways associated
with antimalarial drug resistance. The mismatch repair
(MMR) pathway meets these criteria: the gene encoding
the DNA MMR protein (msh6, PF3D7_0505500) is a
functional partner of pfcrt in CQS but not CQR parasites
(Figure 4 A, correlation coefficient between pfcrt and
msh6 for CQS, r = −0.6 and for CQR, r = −0.3, FDR ≤
0.20) and this pathway can be induced by small mole-
cules such as methyl methanesulfonate (MMS) [60]. We
predicted that the CQR genetic background may be



Figure 4 Validation of dysregulated DNA mismatch repair (MMR) pathway. (A) Divergent co-expression of pfcrt and the msh6 gene in CQR versus
CQS parasites. Each dot or triangle represents the transcript level of the 2 genes in CQR and CQS parasites, respectively. The solid line is a linear fit of the
data from CQR parasites and the dotted line is for data from CQS parasites. (B) Quantitative dose response variation in the response to the DNA damaging
agent MMS across the Dd2 ×HB3 genetic cross. (C) QTL mapping results for the MMS dose response reveals two candidate loci- chromosome 4, 60.3 cM
(LOD= 2.68, chi-square P= 0.00044) and 5, 20 cM (LOD= 3.02, chi-square P= 0.000194). (D) The predicted regulon of the candidate regulator AP2 in CQR
(PF3D7_0420300) is enriched with DNA repair genes including msh2 and rad51, providing further validation of MMR dysregulation. Prediction of potential
targets of this AP2 was performed using an independent transcriptional data set as described in methods [68].
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differentially susceptible to perturbations of this path-
way. To test this prediction, we performed quantitative
dose–response assays to MMS [63] and found that the
parental line Dd2 and the CQS line HB3 were similarly
sensitive to growth inhibition by MMS, but their pro-
geny clones exhibited a range of susceptibility to the
drug (Figure 4 B, Additional file 6: Table S5). QTL map-
ping of the quantitative susceptibility to MMS of the pro-
geny identified genetic loci on chromosomes 4, 60.3 cM
(LOD= 2.68) and 5, 20 cM (LOD= 3.02) (Figure 4 C).
Suggestive peaks also occurred at chromosome 10,
40.2 cM (LOD= 1.92) and 11, 23 cM (LOD= 1.8).
Importantly, msh6 resides within the physical location

of the chromosome 5 QTL (Figure 4 C, chi-square P =
0.00044). Strikingly, the chromosome 4 QTL includes
the AP2 transcription factor gene which we predicted
as a regulator of the CQR pfcrt co-expression network
(chi-square P = 0.000194). A closer examination of the
predicted targets of this transcription factor (its regu-
lon, see methods) identifies 78 genes functionally
enriched for DNA repair (hypergeometric test, P <
0.02, Additional file 5: Table S4). Target genes of this
transcription factor with a direct role in DNA repair
include an msh2 homolog (PF3D7_1427500), Rad51
homolog (PF3D7_1107400), deoxyuridine 5'-triphos-
phate nucleotidylhydrolase (PF3D7_1127100), nucleo-
side diphosphate kinase (PF3D7_1366500) and DNA
topoisomerase II (PF3D7_1433500). This independ-
ently-derived network strongly supports the prediction
that this AP2 transcription factor drives the connec-
tion between divergent pfcrt co-expression and MMS
response (Figure 4 D).
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The association between genetic loci encoding the pre-
dicted AP2 regulator of the pfcrt co-expression network,
PF3D7_0420300, and the divergently co-expressed msh6
with MMS response highlights the value of a generalized
application of divergent co-expression networks for pre-
dicting phenotypic outcomes, for example, drug re-
sponses of specific groups of parasites.

Discussion
We constructed pfcrt co-expression networks that differ
between CQR and CQS parasites and mined these net-
works to show that: i) consistently co-expressed gene
sets across the recombinant progeny clones of both drug
resistance states reflect core shared functions, chiefly
hemoglobin metabolism, in line with proposed pfcrt
function, CQ modes of action and resistance, ii) the top-
ologies of these 2 co-expression networks are held to-
gether by 2 transcriptional regulators from the same
family (AP2), possibly interfacing with histone acetyl-
ation (Figure 3), iii) divergent co-expression networks
can be useful predictors of phenotypic divergence, as
demonstrated here by the association between the gen-
etic loci encoding the divergent processes (DNA repair
and histone acetylation) and dose response variation to
small molecules targeting these processes (MMS and
apicidin, Figure 3 C and 4 C).
Our results indicate that co-expression networks can

generate extensive but cryptic variation. Such variation
would be undetectable by genome sequencing, the prin-
cipal method used to track parasite evolution and emer-
gence of drug resistance. The dysregulation of regulatory
networks can affect multiple target genes, thereby pro-
viding a molecular explanation for broad (pleiotropic)
phenotypic differences. We predicted and validated that
dysregulation of DNA repair is associated with divergent
co-expression of msh6. Interestingly, the CQR parental
clone Dd2 was derived from an Indochina clone, W2,
which exhibits an accelerated resistance to multiple drugs
(ARMD) in laboratory experiments [64]. Given that co-
expression relationships are known to buffer deleterious
mutations [25,26,60,65], we propose that differential co-
expression of genes associated with drug response can ex-
pose drug resistant parasites to susceptibilities to specific
drugs (Additional file 1: section E).
We envision that the regulatory divergence between

CQR and CQS could involve at least 2 mechanisms
(Additional file 1: section F): i) a regulon swap in which
the mutant pfcrt gene is recruited into a new regulatory
program by cis-mutations or by alterations of histone
acetylation marks in its promoter (Additional file 1: Figure
S5A), and/or ii) a physiologically mediated mechanism in
which mutant pfcrt has an additional metabolic effect, for
example the verapamil sensitive H+ associated leak [59],
that could activate downstream transcriptional regulators
(Additional file 1: Figure S5B). Genome sequence data of
the progeny clones combined with histone modification
data sets will be important in experimentally validating
the regulatory basis of the co-expression divergence in
CQR and CQS parasites.
Our observations are constrained by the fact that all

datasets used in this study were obtained from recom-
binant progeny clones from a single genetic cross.
Therefore, the genetic diversity observed in this data set
does not fully capture the diversity of CQR and CQS
parasites in the field. Further studies using field isolates
will be crucial in leveraging and extending co-expression
networks to understand molecular changes associated
with drug resistance, particularly the devastating emer-
gence of artemisinin resistance in Southeast Asia [66]
and other phenotypic states for which the primary causal
genes are known.

Conclusion
We have shown that pfcrt is differentially co-expressed
in CQR parasites as compared to CQS parasites. This
differential co-expression reveals biological pathways
that are divergent in CQR parasites and regulatory pro-
cesses underlying the differential co-expression. We
validate that two key biological processes associated
with the differentially co-expressed pfcrt partners –
DNA MMR pathway and histone acetylation- are linked
to differential responses to small molecules targeting
these processes. We conclude that co-expression diver-
gence can complement traditional genetic and molecu-
lar approaches to uncovering the molecular basis of
phenotypic divergence as well as predicting phenotypic
outcomes.

Methods
Construction of co-expression networks
Given transcript data at 18 hr post-invasion time-point
from 17 CQR and 19 CQS parasite clones derived from
the Dd2 × HB3 genetic cross [12], GSE12515, we com-
puted the Spearman rank correlation, r, between probes
representing the pfcrt gene to every other gene.
For each gene, correlation coefficients from each probe

were then used to compute an average correlation
between the gene and pfcrt. An absolute correlation
coefficient of 0.5 was regarded as significant (Benjamini-
Hochberg FDR ≤ 0.20). The FDR was determined as fol-
lows. For both CQR and CQS gene expression data we
computed the Spearman rank correlation, r, and a corre-
sponding P-value using a t-statistic between each pfcrt
probe to probes of each of the other genes. An absolute
correlation co-efficient cut-off of 0.5 was then chosen.
This corresponds to a False Discovery Rate (FDR) of
0.20 as calculated by the Benjamini-Hochberg method
[67]. In order to detect co-expression divergence, we
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considered both the sign and magnitude of correlation
between each transcript and pfcrt in CQS vs CQR. A
transcript was considered to gain a correlation to pfcrt if
the correlation in CQR but not CQS was significant and
a loss of correlation if the correlation was significant in
CQS but not CQR strains.

Co-expression analysis of synthetic lethal gene pairs
Synthetic lethal gene pairs were obtained from published
flux-balance analysis simulations [27]. Spearman correl-
ation was then computed for each of the synthetic lethal
gene pairs. A background distribution for Spearman cor-
relations between gene pairs was obtained by randomly
sampling 1000 gene pairs and computing correlations
between them. To compare the correlation distributions
in synthetic lethal gene pairs vs random gene pairs,
probability density plots were generated and compared
using Wilcoxon test.

Co-expression divergence between CQR and CQS vs
within the groups
To compare pfcrt co-expression divergence between
subsets of CQR and CQS parasites, we randomly sam-
pled 8 CQR and 8 CQS parasites. This subsampling pro-
cedure was repeated 100 times to obtain 100 pairs of
randomly sampled subsets of CQR and CQS parasites.
For each pair of the subsets, we determined the correl-
ation between pfcrt transcript levels to that of all other
genes and regarded genes with an absolute Spearman
correlation coefficient ≥ 0.5 as correlated to pfcrt. For
each gene, we compared its correlation to pfcrt in each
of the pairs of subsets and determined the number of
times it shows significant correlation to pfcrt in the pair
i.e. conserved between subsets of CQR and CQS para-
sites. To determine the co-expression divergence within
subsets of CQR parasites, we repeated the same proced-
ure in 100 random pairs of CQR parasite subsets. A
similar process was performed to compare co-expression
divergence within subsets of CQS parasites.

Prediction of pfcrt functional and regulatory candidates
All genes significantly correlated to pfcrt (FDR ≤ 0.20)
were further prioritized into functional partners using
TrIPI (Additional file 1: Figure S2). A correlation matrix
containing correlations between all pairs of genes signifi-
cantly correlated to pfcrt was generated. The association
between pfcrt and any given gene say R, was then
accessed in relation to each of the other remaining set of
genes, S, using triangle inequality. Genes with t = 0 were
regarded as functional partners of pfcrt since the correl-
ation between such genes and pfcrt cannot be accounted
for by transitive correlations. On the other hand, genes
with the highest t represent highly connected genes in
the neighborhood of pfcrt and are potential regulatory
candidates

Prediction of transcription factor regulons
Regulatory targets of the AP2 transcription factors were
predicted using independent transcriptional dataset con-
sisting of 241 arrays from multiple drug perturbations
for 3 different parasite strains [68] and the reverse en-
gineering algorithm ARACNE [69]. Briefly, we obtained
100 bootstrap samples of the transcriptional data and in
each bootstrap used ARACNE to compute the mutual
information between transcript levels of the AP2 and
all other genes. Potential false positives were pruned
using a data processing inequality (DPI) value of 0.15
and a P < 10−5. Only interactions predicted in multiple
bootstrap runs were retained (P < 10−5). Biological
function enrichments were performed using a hyper-
geometric test implemented on the MADIBA webserver
[70]. Biological function categories were regarded as
enriched at a corrected FDR of 0.05.

Promoter histone acetylation analysis
The histone acetylation levels of the promoters of gene
sets were obtained from a recent study [53], GSE2387.
The 1000 bp sequence upstream of the translation start
of genes was considered as the promoter region and data
representing the read coverage from ChIP-seq following
immuno-precipitation by antibodies against Ty1-tagged
version of H3K9ac antibodies were taken to reflect the
modified H3K9ac at 20 hrs post invasion [53]. Promoter
analysis considered the top 100 genes whose co-
expression to pfcrt was highly divergent between CQR
and CQS parasites. Gene categories were defined as gain
(positive or negative) or loss (positive or negative) of
correlation with respect to their correlation to pfcrt in
CQR vs CQS based on data provided in Additional file
2: Table S1. Promoter read coverage obtained from se-
quencing of the H3K9ac pull down was averaged across
promoters of each of the gene categories for compari-
sons. H3K9ac level between each category of genes to
the baseline (average across all promoters in the gen-
ome) was obtained using a t-test.

Validations using dose response assays and QTL
Parasite clones were cultured using standard methods in
human red blood cells (Indiana Regional Blood Center,
Indianapolis, Indiana) suspended in complete medium
containing RPMI 1640 with L-glutamine (Invitrogen
Corp.), 50 mg/L hypoxanthine (Sigma-Aldrich), 25 mM
HEPES (Cal Biochem), 0.5% Albumax II (Invitrogen
Corp.), 10 mg/L gentamicin (Invitrogen Corp.) and
0.225% NaHCO3 (Biosource)] at 5% hematocrit. Cultures
were grown separately in sealed flasks at 37 °C under an
atmosphere of 5% CO2, 5% O2, and 90% N2. Dose
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response assays were performed as previously described
[71]. QTL analysis for the dose responses in the Dd2 ×
HB3 genetic cross was performed using previously pub-
lished statistical methods in Pseudomarker Version 2.04
[72]. The statistical significance of the obtained log odds
scores (LOD) were obtained from a chi-square distribu-
tion, P = 1 - chi2cdf(2 × LOD score × Log10,degree of
freedom = 1) where chi2cdf is the Matlab chi-square cu-
mulative distribution function. The genome-wide signifi-
cance thresholds were computed using permutation
analysis as described by Doerge and Churchill [52] and
implemented in Pseudomarker [72] (genome-wide ad-
justed P < 0.37, suggestive; P < 0.05, significant; P < 0.01,
highly significant).
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Additional file 1: Section A-F Supplementary text and figures.
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Additional file 3: Table S2. Spearman correlation coefficients between
synthetic lethal gene pairs.

Additional file 4: Table S3. Transitivity scores for genes significantly
correlated to pfcrt in CQS or CQR parasites. GO enrichment analysis of
pfcrt functional partners.

Additional file 5: Table S4. Predicted regulons of the candidate AP2
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