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mGlu5 receptors and cellular prion protein mediate
amyloid-b-facilitated synaptic long-term
depression in vivo
Neng-Wei Hu1, Andrew J. Nicoll2, Dainan Zhang1, Alexandra J. Mably3, Tiernan O’Malley3, Silvia A. Purro2,

Cassandra Terry2, John Collinge2, Dominic M. Walsh3 & Michael J. Rowan1

NMDA-type glutamate receptors (NMDARs) are currently regarded as paramount in the

potent and selective disruption of synaptic plasticity by Alzheimer’s disease amyloid

b-protein (Ab). Non-NMDAR mechanisms remain relatively unexplored. Here we describe

how Ab facilitates NMDAR-independent long-term depression of synaptic transmission in the

hippocampus in vivo. Synthetic Ab and Ab in soluble extracts of Alzheimer’s disease brain

usurp endogenous acetylcholine muscarinic receptor-dependent long-term depression, to

enable long-term depression that required metabotropic glutamate-5 receptors (mGlu5Rs).

We also find that mGlu5Rs are essential for Ab-mediated inhibition of NMDAR-dependent

long-term potentiation in vivo. Blocking Ab binding to cellular prion protein with antibodies

prevents the facilitation of long-term depression. Our findings uncover an overarching role

for Ab-PrPC-mGlu5R interplay in mediating both LTD facilitation and LTP inhibition,

encompassing NMDAR-mediated processes that were previously considered primary.
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I
ncreasing our understanding of how amyloid-b protein (Ab)
causes synaptic dysfunction should provide new means of
therapeutically targeting early Alzheimer’s disease (AD)1. It is

now well established that Ab has rapid, profound and selective
disruptive effects on synaptic plasticity of excitatory synaptic
transmission in vulnerable brain regions, including the
hippocampus2. In addition to causing strong inhibition of long-
term potentiation (LTP), Ab has been reported to enhance long-
term depression (LTD). Most research has focused on the actions
of Ab on forms of LTP and LTD that require NMDA-type
glutamate receptors (NMDARs)3–6. Indeed, as NMDAR-
dependent LTP is likely to underlie synaptic memory
mechanisms7, the inhibition of this form of LTP by Ab is
highly congruent with the ability of Ab to impair learning and
memory8,9. Somewhat similarly, excessive enhancement of LTD
that requires NMDARs can cause memory retrieval deficits10,11.
Remarkably, the disruption of NMDAR-dependent synaptic
plasticity by Ab is itself mediated through NMDARs, in
particular, those containing the GluN2B subunit12–15.

In contrast, little is known about how Ab affects forms of
synaptic plasticity that do not require NMDARs. Whereas
Ab potently inhibits acetylcholine-induced LTP16, NMDAR-
independent LTP induced by strong high-frequency conditioning
stimulation (HFS) appears to be resistant to disturbance by Ab17

in the hippocampus in vitro. Recently, Ab was reported to enable
an NMDAR-independent LTD that was blocked by metabotropic
glutamate-5 receptor (mGlu5R) antagonists in hippocampal

slices5,8. Indeed, synaptically evoked activation of mGlu5R or
other similar G-protein coupled receptors including M1
muscarinic acetylcholine receptors (mAChRs) can induce LTD
that does not require NMDARs11,18–20. Moreover, mAChR-
dependent LTD has been proposed to underlie visual recognition
memory in the perirhinal cortex21 and to provide a
neurophysiological basis for preserved memory function in the
ageing hippocampus22. Considering the early vulnerability of
cholinergic pathways and related signalling in AD23,24, we
hypothesize that Ab would inhibit mAChR-dependent LTD.

Remarkably, in vivo exposure to low-dose Ab facilitated an
NMDAR-independent form of LTD but does not appear to affect
mAChR-dependent LTD. This Ab-facilitated LTD is found to be
mGlu5R-dependent. Moreover, Ab-mediated inhibition of
LTP is also dependent on metabotropic glutamate-5 receptors
(mGlu5Rs), indicating a key overarching role of this glutamate
receptor subtype. We also discover that cellular PrP, a receptor
for certain synaptotoxic Ab assemblies25,26, is necessary for Ab to
facilitate LTD. These data are strongly congruent with recent
molecular evidence that Ab and cellular prion protein (PrPC)
form a complex with mGlu5R at the postsynaptic density27 and
thereby disrupt synaptic plasticity.

Results
In vivo induction of mAChR-dependent LTD. In order to study
the effects of Ab on mAChR-dependent LTD in vivo, we
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Figure 1 | Low-frequency stimulation induces input-selective and reversible long-term depression at CA3-to-CA1 synapses in vivo. (a,b) Application of

strong LFS (horizontal bar, LFS-900; 900 pulses at 1 Hz) induced robust and stable LTD. Three hours after LTD induction, application of high-frequency

stimulation (arrow, HFS; 200 Hz) induced potentiation of synaptic transmission such that LTD was completely reversed. As summarized in (b), the EPSP

decreased to 74.2±3.9%, at 3 h post LFS (3 h), n¼ 5, Po0.05 compared with pre-LFS baseline (Pre); one-way ANOVA-Tukey. At 1 h post HFS (4 h) the

EPSP reverted to 99.1±3.7%, n¼ 5, P40.05 compared with Pre; Po0.05 compared with LFS). (c,d) In four animals, two stimulation electrodes (S1, black

and S2, purple) were implanted in different locations in the stratum radiatum to allow independent activation of the Schaffer collateral-commissural

pathway. One hour after stable baseline recording from both S1 and S2 pathways, application of LFS-900 to S1 induced LTD in the S1 pathway but not in the

S2 pathway. Conversely, 1 h after the first LFS, a second LFS was applied to S2 pathway that only induced LTD in pathway S2. As summarized in (d) One

hour after application of LFS1, the EPSP in pathway S1 decreased to 67.4±5.6% (Po0.05 compared with Pre; one-way ANOVA-Tukey) but did not change

significantly in the S2 pathway (103.6±4.5%, P40.05 compared with Pre; Po0.05 compared with S1 pathway; t-test). In contrast, 1 h after application of

LFS2, the EPSP was significantly reduced in the S2 pathway (61.1±10.4%, Po0.05 compared with Pre) but no further change was seen in the S1 pathway

(75.4±4.1%, P40.05 compared with EPSP amplitude pre-LFS2). Values are expressed as % mean baseline EPSP amplitude±s.e.m. Insets show

representative EPSP traces at the times indicated. Calibration bars: vertical, 2 mV; horizontal, 10 ms. *Po0.05.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4374

2 NATURE COMMUNICATIONS | 5:3374 | DOI: 10.1038/ncomms4374 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


developed a novel induction protocol that makes use of the
reported requirement for high-intensity pulses to ensure robust
synaptic ACh release during low-frequency conditioning stimu-
lation (LFS) in the neocortex28. We found that application
of strong LFS, consisting of 900 high-intensity pulses at
1 Hz (LFS-900), in the stratum radiatum of anaesthetized rats

triggered synaptic LTD that (i) was stable for B3 h (Fig. 1a,b),
(ii) was readily reversible by HFS (Fig. 1a,b) and (iii) was input
specific (Fig. 1c,d).

Consistent with the essential requirement for activation of
cholinergic mechanisms in the induction of this form of LTD,
LFS-900 failed to induce LTD of synaptic transmission after
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Figure 2 | Muscarinic receptor-dependence of LTD in vivo. (a,b) Systemic injection of scopolamine (0.2 mg kg� 1, i.p.), a muscarinic acetylcholine

receptor antagonist, completely prevented LFS-induced LTD, whereas application of the nicotinic acetylcholine receptor antagonist mecamylamine

(5 mg kg� 1, i.p.) did not affect LTD induction. Open triangle, i.p.; hash, intracerebroventricular (i.c.v.). As summarized in (b) the EPSP decreased

significantly to 72.0±4.4% in the vehicle control group and the mecamylamine group (67.1±4.9%, n¼4, Po0.05 compared with Pre, P40.05 compared

with vehicle) but not in the scopolamine group (96.5±6.4%, n¼6, P40.05 compared with Pre, Po0.05 compared with vehicle); paired t and one-way

ANOVA-Tukey. (c,d) LFS-900-induced LTD was also significantly reduced by treatment with the M1-selective mAChR antagonist pirenzepine (triangle,

50 nmol in 5 ml). As summarized in (d), the EPSP decreased to 67.5±4.5% and 90.4±2.1%, n¼4, in vehicle- and pirenzepine-injected animals,

respectively (Po0.05 compared with Pre and between groups; t-test). (e,f) Application of LFS-900 before the injection of scopolamine (triangle,

0.2 mg kg� 1, i.p.) induced robust LTD (71.7±7.2%, n¼6, Po0.05 compared with Pre; paired t). (g,h) The acetylcholinesterase inhibitor donepezil lowered

the threshold to induce LTD. (g) The application of weak LFS (bar, LFS-300; 300 high-intensity pulses at 1 Hz) induced a transient synaptic depression

in vehicle-injected animals (triangle), whereas the same protocol triggered a robust and stable LTD after acute injection of donepezil (1 mg kg� 1,

subcutaneously). (h) Veh: 101.8±6.3%; donepezil: 70.5±7.1% at 3 h after LFS. *Po0.05, t-test, n¼4 per group. Values are mean±s.e.m. Calibration

bars: vertical, 2 mV; horizontal, 10 ms.
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pretreatment with the mAChR antagonist scopolamine
(Fig. 2a,b). In contrast, the LTD was not dependent on the
activation of nicotinic AChRs, the magnitude of LTD being
unaffected by injection of the nicotinic AChR antagonist
mecamylamine before LFS-900 (Fig. 2a,b). Consistent with a role
for the M1 subtype of mAChR in LTD induction19, the
M1-selective antagonist pirenzepine significantly reduced
the magnitude of LTD (Fig. 2c,d). mAChR activation did not
appear to be required for LTD maintenance/expression, as
injection of scopolamine after the conditioning stimulation,
using the same dose that completely prevented LTD induction,
did not significantly affect the magnitude of LTD (Fig. 2e,f).
Further evidence that physiological release of ACh is a key factor
in LTD induction in vivo was the ability of an agent that enhances
the effects of endogenously released ACh, the acetylcholinesterase
inhibitor donepezil, to lower the threshold of LTD induction.
Thus, we found that a relatively weak LFS conditioning protocol,
consisting of 300 high-intensity pulses at 1 Hz (LFS-300) that was

at or just below the threshold to induce significant LTD in
vehicle-pretreated animals, triggered a large and robust LTD that
was stable for at least 3 h in animals pretreated with donepezil
(Fig. 2g,h). Moreover, as described below, the induction of this
in vivo synaptically evoked mAChR-dependent LTD did not
require the activation of NMDA or mGlu5Rs.

Because Ab can interfere with mAChR-related signalling29, we
went on to examine the ability of Ab to disrupt this form of LTD.

Ab enhances an mAChR-independent form of LTD. We
investigated the effects of Ab on synaptically evoked mAChR-
dependent LTD in vivo by the injection of Ab into the lateral
cerebral ventricle via a cannula. Initially, we used a soluble
synthetic Ab1–42 preparation that had been centrifuged to
remove any fibril aggregates. We chose a dose (160 pmol) of
soluble Ab1–42 that did not affect baseline synaptic transmission
but strongly inhibited NMDAR-dependent LTP, as described
below and previously30. To our surprise, in animals pre-injected
with soluble Ab1–42 the application of LFS-900 triggered an LTD
that was more stable than the control LTD induced in the absence
of Ab. Thus, LTD induced in the presence of Ab was stable
during the 5-h recording period, whereas control LTD decayed
significantly between 3 and 5 h post LFS (Fig. 3a,b). Although we
had hypothesized that mAChR-dependent LTD would be
inhibited by Ab, we wondered whether this Ab-facilitated LTD
required mAChRs. We therefore pretreated the rats with
scopolamine before Ab. In contrast to control LTD, which was
completely abrogated by the mAChR antagonist (Fig. 2a,b), the
time course and magnitude of LTD was only partly reduced by
scopolamine in Ab-treated animals (Fig. 3a,b). These findings
indicate that Ab had enabled an additional LTD that was more
stable and independent of mAChRs while at the same time
leaving a residual mAChR-dependent LTD relatively unscathed.

We wondered whether this Ab-facilitated additional, mAChR-
independent, LTD was due to the ability of Ab to lower the
threshold for LTD induction in vivo. We therefore used the weak
LFS conditioning protocol (LFS-300). In addition to our standard
soluble Ab1–42 preparation we also tested a preparation of soluble
Ab1–42 enriched with protofibrils (Fig. 4). We combined the
results obtained with the two synthetic Ab1–42 preparations
because there was no quantitative difference in their effects on
LTD. The application of weak LFS-300 induced a large and robust
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LTD that was stable for at least 3 h in animals injected with
Ab1–42 (Fig. 5a,b), but not vehicle or a control, reverse sequence
peptide Ab42–1 (Fig. 5a,b). This dose (160 pmol) of Ab1–42 did not
affect baseline synaptic transmission (Fig. 5a,b) and consistent
with a relatively selective action of Ab on the mechanisms
underlying LTD induction, the same dose applied after the LFS-
300 conditioning stimulation failed to facilitate LTD (Fig. 5c,d).
Moreover, the LTD induced by weak LFS-300 in the presence of
Ab, like the additional LTD induced by the strong LFS-900
protocol, was also mAChR-independent, not being blocked by
scopolamine pretreatment (Fig. 5e,f).

Although synthetic Ab is most commonly used in studies of
synaptic plasticity disruption, it is important to determine
whether similar effects are caused by natural Ab. The presence
of water-soluble SDS-stable Ab dimer in post-mortem brain
extracts is highly correlated with ante-mortem dementia status31

and such Ab can inhibit LTP and promote LTD in vitro5,8. It is
therefore of great interest to assess whether AD brain-derived Ab
can also facilitate LTD induction in vivo. Consequently, we tested

the ability of Ab in water-soluble extracts of two different AD
brains to mimic the ability of synthetic Ab1–42 to lower the
threshold for LTD induction in vivo. As can be seen from
the western blot of one of the AD brain extracts (Fig. 6a), Ab runs
on SDS gel predominantly as either monomer or dimer. These
water-soluble SDS-stable species include a wide distribution of
assemblies when analysed by size exclusion chromatography
(SEC), ranging from monomer to Z70 kDa (ref. 8). Similar to
synthetic Ab, the injection of Ab-containing AD brain soluble
extract enabled the induction of robust and stable LTD by LFS-
300 (Fig. 6b,c). Importantly, immunodepletion of Ab from the
AD brain sample abrogated its ability to enable LTD induction.
This finding indicates that soluble Ab is responsible for the
lowering of the LTD induction threshold by the AD brain extract.
Which SDS-stable Ab assembly is responsible for the facilitation
of LTD by AD TBS brain extract remains to be determined.

Ab-facilitated LTD is NMDAR-independent. Because Ab has
been reported to promote NMDAR-dependent LTD5,6, we
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postulated that activation of NMDARs in the presence of Ab may
bypass the need for mAChRs in the induction of LTD in vivo.
Contrary to our prediction, the NMDAR antagonist CPP, at a
dose (10 mg kg� 1, intraperitoneal (i.p.)) that completely blocks
HFS-induced LTP32, did not affect the induction of LTD by LFS-
300 in the presence of soluble Ab1–42 (Fig. 7a,b). As CPP is a
competitive antagonist and NMDARs containing GluN2B
subunits are particularly implicated in Ab-mediated synaptic
plasticity disruption12–15, we also tested the GluN2B-selective
negative allosteric modulator Ro 25-6981 (ref. 33). Using a dose
(6 mg kg� 1, i.p.) that prevents Ab-mediated inhibition of LTP12,
Ro 25–6981 had no effect on the facilitation of LTD by Ab
(Fig. 7c,d). We concluded that like control LTD induced by
LFS-900 (Fig. 7e,f), Ab-facilitated LTD induced by LFS-300 is
NMDAR-independent.

HFS-induced de-depression of LTD is NMDAR-dependent. In
the light of the contrasting findings regarding the involvement of
NMDARs in the disruptive effects of Ab on LFS-induced LTD
(present study) and HFS-induced LTP12–15, we also examined the
effect of Ab on another form of synaptic plasticity, HFS-induced
de-depression. De-depression is the persistent reversal of LTD by
conditioning stimulation and is believed to be an essential
component of bidirectional synaptic plasticity34,35. Although the
induction of control LTD did not require activation of NMDARs,
the reversal of this LTD by HFS in vivo was NMDAR-dependent.
Thus, whereas the NMDAR antagonist CPP did not affect control
LTD induced by LFS-900, it completely prevented the reversal of
this mAChR-dependent LTD by HFS conditioning stimulation
(Fig. 7e,f). To our surprise, HFS-induced de-depression was not
prevented by Ab. Thus, HFS rapidly and persistently reversed
Ab-facilitated LTD (Fig. 7a,b). Moreover, HFS-induced
de-depression of Ab-facilitated LTD, like the persistent reversal
of control LTD, was NMDAR-dependent, being abrogated in
animals pretreated with CPP (Fig. 7a,b). This indicates that HFS-
induced NMDAR-dependent de-depression is resistant to Ab,
unlike HFS-induced NMDAR-dependent LTP, as described
previously3,4 and below. This lack of effect of Ab on NMDAR-
dependent de-depression, taken together with the inability of
NMDAR antagonists to prevent the facilitation of LTD by Ab,
underlines the potential importance of non-NMDAR
mechanisms in mediating the synaptic plasticity disrupting
effects of Ab in vivo.

Ab-facilitated LTD is mGlu5R-dependent. Apart from
NMDARs, metabotropic glutamate receptors, in particular the
mGlu5R subtype, have been implicated in the synaptic plasticity
disrupting actions of Ab in vitro5,8,36. Bearing in mind the
apparently differential roles of NMDARs in the effects of Ab on
different forms of synaptic plasticity, next we assessed the
involvement of mGlu5R in both Ab-mediated inhibition of LTP
as well as Ab-facilitated LTD in vivo. Remarkably, systemic
administration of the selective mGlu5R antagonist (negative
allosteric modulator) MTEP prevented both of these disruptive
actions of Ab without affecting either control LTP or control
LTD. Thus, in animals administered with MTEP before
intracerebroventricular (i.c.v.). injection of either synthetic or
AD brain-derived Ab the application of LFS-300 failed to induce
LTD (Fig. 8a–d). Importantly, the same dose of MTEP had no
effect on control LTD induced by LFS-900 (Fig. 8e,f), indicating
that whereas Ab-facilitated LTD is mGlu5R-dependent, this was
not the case for the control mAChR-dependent LTD. Somewhat
similarly, whereas Ab1–42 strongly inhibited LTP in vehicle-
pretreated animals, an identical HFS-triggered robust LTP in
animals injected with MTEP followed by Ab (Fig. 8g,h). These
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findings strongly indicate that Ab enables LTD induction in vivo
with an essential role of mGlu5, bypassing a requirement for
activation of muscarinic ACh receptors. Moreover as MTEP
prevented Ab’s effects on both LTP and LTD, mGlu5Rs appear to
be more pivotal to the synaptic plasticity disrupting actions of Ab
than NMDARs.

Cellular prion protein mediates Ab-facilitated LTD. The
question arises as to whether or not the facilitation of LTD by Ab
shares other common mechanisms with LTP inhibition by Ab.
Ab oligomers can bind very potently and selectively to cellular
prion protein especially in a region that encompassed the amino-
acid sequence 95–105, and thereby mediate inhibition of LTP by
synthetic Ab1–42 (ref. 25). The disease relevance of this finding is

underscored by the PrPC-dependence of the inhibition of LTP by
Ab oligomer-containing soluble extract of AD brain37. We
examined the role of PrPC in mediating the facilitation of LTD by
AD brain Ab and synthetic Ab1–42 using monoclonal antibodies
to PrPC. We started with the previously characterized anti-PrPC

antibody 6D11, with an epitope that falls within the amino-acid
93–109 sequence, thereby preventing Ab1–42 oligomer binding
and inhibition of LTP25. Pretreatment with 6D11 completely
prevented the facilitation of LTD by Ab-containing soluble AD
brain extract (Fig. 9a,b). In order to further explore the role of
PrPC, we compared the effect of two other high-affinity anti-
PrPC antibodies (Fig. 9c,d). ICSM18, an antibody directed to
helix-1 of PrPC, is known to inhibit Ab binding to PrPC and to
prevent the LTP disrupting effect of AD brain extracts37. ICSM41
is an antibody to the structured region of PrPC with an undefined

E
P

S
P

 (
%

)
E

P
S

P
 (

%
)

140

120

100

80

60

40

20
180120600–60

Veh+Veh  n= 6 CPP+Veh  n= 5

1,4

2,5

3,6

LFS-900 HFS

1,4

2,5

3,6

1 2 3 4 5 6

1 2 3 4 5 6

Time (min)

#Δ

120

100

80

60

40

120

100

80

60

40

P
re

1.
5 

h

4.
5 

h

P
re

1.
5 

h

4.
5 

h

* *
*

*

Veh+Aβ    n= 5

CPP+Aβ   n= 7LFS-300 HFS

140

120

100

80

60

20

40 #Δ

1.
5 

h

3 
h

P
re

P
re

1.
5 

h

3 
h

* * *
*

Veh+Veh

E
P

S
P

 (
%

)
E

P
S

P
 (

%
)

180120600–60

1,3

2,4

1 2 3 4

LFS-300
#Δ Veh+Aβ n= 5

Ro+Aβ n= 4

E
P

S
P

 (
%

)

140

120

100

80

60

40

20

Time (min)

Time (min)
180120600–60 240 CPP+AβVeh+Aβ

120

100

80

60

40

P
re

3 
h

P
re

3 
h

* *

E
P

S
P

 (
%

)

Ro+AβVeh+Aβ

CPP+Veh

Figure 7 | NMDAR antagonists do not affect LTD but prevent LTD reversal. (a,b) LFS-300 (bar) after Ab1–42 (i.c.v., hash) triggered LTD that was reversed

by HFS. The competitive antagonist CPP (open triangle; 10 mg kg� 1, i.p.) did not affect Ab-facilitated LTD but prevented de-depression. (b) Thus LTD at

1.5 h measured 75.9±4.0% (n¼ 5) and 66.5±5.8% (n¼ 7) in the vehicleþAb group and CPPþAb group, respectively (Po0.05 compared with Pre,

one-way ANOVA-Tukey, P40.05 between groups; two-way ANOVA followed by unpaired t). The EPSP measured 102.7±5.1% in the vehicleþAb group

(at 3 h, P40.05 compared with Pre and Po0.05 compared with 1.5 h post LFS) and 73.3±7.6% in the CPPþAb group (P40.05 compared 1.5 h post LFS,

Po0.05 compared with the vehicleþAb group). (c,d) Injection of Ro 25-6981 (open triangle; 6 mg kg� 1, i.p.), a negative allosteric modulator of

GluN2B-containing NMDARs, did not prevent Ab1–42 (hash)-facilitated LTD (75.5±6.3% at 3 h, n¼ 5, Po0.05 compared with Pre, P40.05 compared with

68.6±4.0% in the vehicleþAb injection group; t-tests). (e,f) Control LTD, induced by LFS-900 (bar) was also reversed by HFS (arrow). CPP failed to

significantly affect control LTD, but blocked de-depression. (f) Thus, LFS-900 induced LTD in controls (71.1±5.3% at 1.5 h, n¼ 6, Po0.05 compared

with Pre; one-way ANOVA-Tukey) and CPP-injected rats (59.9±8.0%, n¼ 5, Po0.05 compared with Pre, P40.05 compared with vehicle; two-way

ANOVA followed by unpaired t). The EPSP measured 92.9±5.8% at 90 min in controls (P40.05 compared with Pre) and 68.0±8.0% in the CPP group

(P40.05 compared with 1.5 h post LFS, Po0.05 compared with vehicle). Values are mean±s.e.m. Calibration: vertical, 2 mV; horizontal, 10 ms.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4374 ARTICLE

NATURE COMMUNICATIONS | 5:3374 | DOI: 10.1038/ncomms4374 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


epitope that does not map to the Ab-binding region38,39.
Although ICSM41 binds with similar high affinity to
recombinant PrPC as ICSM18 (IC50: 0.41±0.04 and 0.3±0.1 nM,
respectively, n¼ 9, mean±s.e.m.), unlike ICSM18, ICSM41 did
not prevent Ab1–42 protofibril binding to PrPC (Fig. 10b,c).
Consistent with the differential ability of these two antibodies to
prevent Ab1–42 binding to PrPC, ICSM18 abrogated the
facilitation of LTD by soluble AD brain extract, whereas the

same dose of ICSM41 had no effect (Fig. 9c,d). These findings
provide strong evidence that PrPC is required for the enablement
of LTD by the most disease relevant form of soluble Ab, Ab from
AD brain. We also tested the ability of ICSM18 to prevent the
facilitation of LTD by synthetic Ab1–42. Ab from water-soluble
extracts of AD brain contain a mixture of high- and low-
molecular weight components8, some of which bind to PrPC with
high affinity40,41. In the case of synthetic Ab, protofibrillar
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assemblies bind most avidly to PrPC (ref. 26) (see also Fig. 10a).
We tested an eightfold lower dose of ICSM18 in this study
because we found that ICSM18 bound to N2A cells, which
express glycosylated mature PrPC, with an approximately
eightfold higher affinity than ICSM41 (XC50 4±1 and
33±7 nM, respectively) (Fig. 10d). We found that this dose of
ICSM18 completely abrogated the facilitation of LTD by
protofibril Ab1–42 (Fig. 9e,f). On the basis of the present and
our previous37 findings, PrPC appears to be a key site of binding
and action for Ab-mediated disruption of both NMDAR-
dependent and independent synaptic plasticity in vivo.

Discussion
We describe here for the first time the in vivo induction by
synaptic stimulation of an mAChR-dependent homosynaptic

LTD. The induction of mAChR-dependent LTD does not require
NMDA or mGlu5R activation. Moreover, both chemically
synthesized and human brain-derived Ab enhanced synaptically
induced LTD in vivo. Remarkably, in Ab-treated animals the
additional LTD does not require mAChRs, leaving mAChR-
dependent LTD relatively intact. However, like mAChR-depen-
dent LTD, the Ab-facilitated LTD is NMDAR-independent. We
found evidence that mGlu5R activation usurps the requirement
for mAChRs to enable LTD induction via a process dependent on
PrPC. Furthermore, Ab-mediated inhibition of LTP also requires
mGlu5R and PrPC, placing Ab–PrPC–mGlu5R interactions
central to the synaptic plasticity disrupting actions of Ab in vivo.

LTD that requires mAChR activation has been proposed to be
essential for certain forms of learning21, and the preservation of
mAChR-dependent hippocampal LTD as animals age may be
critical for maintaining cognitive performance22. The apparent
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dearth of studies of mAChR-dependent LTD in vivo may be
owing to difficulties in optimizing suitable synaptic stimulation
protocols. The present approach utilizes the insights gained from
investigations of mAChR-dependent LTD in slices of cerebral
cortex28. Currently used in vitro synaptic stimulation protocols to
induce mAChR-dependent LTD at CA3-to-CA1 synapses have
been reported to induce an LTD that is at least partly inhibited by
mAChR antagonists19. The present finding that synaptic
conditioning stimulation can induce LTD that is completely
blocked by scopolamine provides strong evidence that mAChR-
dependent LTD that lasts for over 5 h can be induced by
endogenously released ACh in vivo and therefore supports its
proposed role in synaptic information storage.

Because previous reports had indicated that in vitro, Ab
strongly impairs mAChR-mediated signalling29 that may underlie
mAChR-dependent LTD in the cerebral cortex28, we predicted
that mAChR-dependent LTD in the hippocampus would be
inhibited by Ab in vivo. To our surprise, Ab enabled additional
LTD while at the same time leaving a scopolamine sensitive
component of LTD relatively unscathed. It was apparent that Ab
usurped mAChR-dependent LTD by lowering the synaptic
stimulation threshold to induce another form of LTD that was
mAChR-independent. The mechanisms of the additional LTD,
however, appear to be at least partly shared with mAChR-
dependent LTD, as the initial phase of the control LTD was partly
occluded by the Ab-enabled LTD.

Particularly surprising was the apparent lack of involvement of
NMDARs in the facilitation of LTD by Ab, especially in view of
the presumed essential role of NMDARs in the relatively selective
binding of Ab oligomers to synapses42. Moreover, antagonists
of GluN2B subunits prevent Ab-mediated facilitation of
NMDAR-dependent LTD5,6 and inhibition of NMDAR-
dependent LTP12–15. These findings have led to the elucidation
of a key role of GluN2B subunits in mediating the synaptic
plasticity disrupting actions of Ab and have been extended to
include many other deleterious effects of Ab40,43. However, based
on the present results, targeting GluN2B is unlikely to prove to be
an effective therapeutic strategy on its own and underlines the
need to also explore non-NMDAR mechanisms.

Further undermining the putative primacy of NMDARs in the
synaptic actions of Ab was the finding that Ab did not
significantly affect NMDAR-dependent de-depression. This is
all the more remarkable considering that Ab strongly inhibited
NMDAR-dependent LTP at these same synapses using the same
HFS induction protocol. Previous research has found that the
persistent reversal of LTD by conditioning stimulation requires
the recruitment of different signalling pathways to those usually
necessary for LTP induction44,45. Thus the lack of inhibition of
NMDAR-dependent de-depression at these synapses indicates
that the inhibition of LTP by Ab is not due to the dependence of
LTP on NMDARs. Furthermore, the present findings indicate
that pharmacological inhibition of NMDARs may prevent
potentially physiological reversal of LTD and leave any
deleterious effects of Ab-facilitated NMDAR-independent LTD
unopposed.

The present findings underscore a much more central role for
the mGlu5R in mediating the synaptic plasticity disrupting effects
of Ab and suggest that the lowering of the threshold for LTD and
inhibition of LTP are two sides of one coin. Our finding that Ab-
facilitated LTD, like Ab-mediated inhibition of LTP, is blocked by
antibodies that prevent Ab binding to PrPC provides an
explanation for the pivotal role of mGlu5Rs. Previous research46

has revealed that Ab acts as an extracellular scaffold to promote
the inappropriate synaptic mobilization and activation of
mGlu5R on cultured neurons. The membrane binding of Ab is
prevented by both anti-mGlu5R and anti-PrPC antibodies in a
non-additive manner46, consistent with the key role of PrPC in
the binding of the Ab oligomer to plasmalemma25. The aberrant
clustering of mGlu5R at synapses by Ab by binding to PrPC may
trigger disruptive signalling activity that can enable LTD and
inhibit LTP induction. Very recently direct evidence that PrPC

mediates multiple effects of Ab oligomers, including dendritic
spine loss in cultured neurons, by a direct physical linkage of
PrPC with mGlu5Rs at or near the postsynaptic membrane was
reported27. If the formation of Ab–PrPC–mGlu5R complexes is
primary, then the requirement for NMDARs that contain
GluN2B subunits in the inhibition of LTP by Ab is likely to
be a downstream consequence. Indeed, mGlu5Rs provide a
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Figure 10 | Characterization of the interactions between Ab and PrPC and anti-PrPC antibodies. (a) Both Ab1–42 and biotinylated Ab1–42 protofibrils bind

recombinant PrPC at low nanomolar concentrations (n¼ 3±s.e.m.). (b,c) Unlike ICSM18, ICSM41 did not prevent Ab1–42 protofibril binding to PrPC

(b, n¼ 3; c, n¼ 9, mean±s.e.m.). *Po0.05 compared to control IgG (BRIC222), Kruskal–Wallis one-way ANOVA with Dunn’s multiple comparison test.

(d) FACS analysis revealed that ICSM18 bound to N2A cells, which express glycosylated mature PrPC, with an approximately eightfold higher affinity than

ICSM41 (XC50 4±1 nM and 33±7 nM, respectively, n¼4, mean±s.e.m.).
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transduction link in the Ab–PrPC complex-mediated trans-
membrane coupling to NR2B subunits via activation of the
tyrosine kinase Fyn27,40,47. In addition to Fyn, an Ab–PrPC–
mGlu5R-mediated dysregulation of intracellular Ca2þ ,
eukaryotic elongation factor 2 and Arc27 may contribute to
synaptic plasticity disruption11 by Ab in vivo.

Overall, the present research provides strong evidence that an
Ab–PrPC–mGlu5R triad is critical for synaptic plasticity disrup-
tion, enabling an NMDAR-independent LTD to usurp mAChR-
dependent LTD and inhibit NMDAR-dependent LTP. Selectively
targeting this Ab–PrPC–mGlu5R triad offers many possible
means of preventing dysfunction of critical brain plasticity
mechanisms in early AD.

Methods
Animals and surgery. Adult (250–350 g, 8–11 weeks old) male Wistar rats
(BioResources Unit, Trinity College, Dublin) were used in all experiments.
The animals were housed under a 12-h light-dark cycle at room temperature
(19–22 �C). Before the surgery, animals were anesthetized with urethane
(1.5–1.6 g kg� 1, i.p.). Lignocaine (10 mg, 1% adrenaline, subcutaneously) was
injected over the area of the skull, where electrodes and screws were to be
implanted. The body temperature of the rats was maintained at 37–38 �C with a
feedback-controlled heating blanket. The animal care and experimental protocol
were approved by the Department of Health, Republic of Ireland.

Cannula implantation. In order to inject drugs or Ab into the brain, a stainless-
steel cannula (22 gauge, 0.7 mm outer diameter) was implanted above the right
lateral ventricle (1 mm lateral to the midline and 4 mm below the surface of the
dura). i.c.v. injection was made via an internal cannula (28 gauge, 0.36 mm outer
diameter). The solutions were injected in a 5 ml volume over a 3-min period or
10ml volume over a 6-min period. Verification of the placement of cannula was
performed post mortem by checking the spread of ink dye after i.c.v. injection.

Electrode implantation. Monopolar recording electrodes were constructed from
Teflon-coated tungsten wires (75 mm inner core diameter, 112 mm external
diameter) and twisted bipolar stimulating electrodes were constructed from Teflon-
coated tungsten wires (50mm inner core diameter, 75 mm external diameter)
separately12. Field excitatory postsynaptic potentials (EPSPs) were recorded from
the stratum radiatum in the CA1 area of the right hippocampus in response to
stimulation of the ipsilateral Schaffer collateral-commissural pathway. Electrode
implantation sites were identified using stereotaxic coordinates relative to bregma,
with the recording site located 3.4 mm posterior to bregma and 2.5 mm lateral to
midline, and stimulating site 4.2 mm posterior to bregma and 3.8 mm lateral to
midline. In some animals, another stimulating electrode was implanted at a site
located 2.5 mm posterior to bregma and 2.2 mm lateral to the midline. The final
placement of electrodes was optimized by using electrophysiological criteria and
confirmed via post-mortem analysis.

Electrophysiology. Test EPSPs were evoked by a single square-wave pulse (0.2 ms
duration) at a frequency of 0.033 Hz and an intensity that triggered a 50%
maximum EPSP response. LTD was induced using 1 Hz LFS consisting of 900
pulses (0.2 ms duration). During the LFS the intensity was raised to trigger EPSPs
of 95% maximum amplitude. A relatively weak LFS protocol, used to study the
Ab-mediated facilitation of LTD, consisted of 300 pulses (0.2 ms duration) at 1 Hz,
with an intensity that evoked 95% maximum amplitude. LTP was induced using
200 Hz HFS consisting of one set of 10 trains of 20 pulses (inter-train interval of
2 s). The stimulation intensity was raised to trigger EPSPs of 75% maximum during
the HFS. None of the conditioning stimulation protocols elicited any detectible
abnormal changes in background EEG, which was recorded from the hippocampus
throughout the experiments.

Compounds and antibodies. Scopolamine (Sigma), mecamylamine (Sigma),
(R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP, Ascent Scien-
tific, Weston-Super-Mare, UK) and 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine
hydrochloride (MTEP hydrochloride, Ascent Scientific) were prepared in distilled
water and diluted with saline to the required concentration. Pirenzepine (Ascent
Scientific) was prepared in distilled water. (aR,bS)-a-(4-hydroxyphenyl)-b-methyl-
4-(phenylmethyl)-1-piperidinepropanol hydrochloride (Ro 25–6981, Sigma) was
dissolved in DMSO (dimethylsulphoxide) and diluted in saline. The following
monoclonal antibodies, prepared in phosphate-buffered saline (PBS), were used in
this study: 6D11 (Covance, # SIG-39810); ICSM18, ICSM41 and BRIC222 (D-Gen,
UK, # ICSM18, ICSM41 and BRIC222)).

Synthetic Ab. We made two main different preparations of synthetic Ab, soluble
and protofibril Ab1–42. Our standard, soluble Ab1–42 (Bachem or Biopolymer

Laboratory, UCLA Medical School) was prepared as a stock solution of 64 mM in
mild alkali (0.1% ammonium hydroxide) in milliQ water (Millipore Corporation,
Ireland) to avoid isoelectric precipitation and then centrifuged at 100,000 g for 3 h
to remove any fibril aggregates. An aliquot of the supernatant was taken to estimate
peptide concentration using the micro BCA protein assay (Thermo-Fisher Scien-
tific Life Science Research Products, Rockford, IL) and the remaining supernatant
was stored at � 80 �C until required. Whereas the test dose (160 pmol) of soluble
Ab1–42 did not affect baseline transmission in the absence of LFS (see Results),
double this dose (320 pmol, i.c.v.) caused a small (B15%) decrease in baseline
at 3 h.

Differentially aggregated protofibril Ab1–42 and biotinylated Ab1–42 were
synthesized, and purified by Dr James I. Elliott at Yale University (New Haven,
CT). Peptide (B10–20 mg) was weighed into a screw-cap 50-ml Sterilin tube,
dissolved in anhydrous DMSO with gentle mixing for 2 min to produce a 5-mM
solution and then diluted to 100mM in phenol red-free Ham’s F12 medium
(Caisson Labs) and vortexed for 15 s. Samples were aggregated without shaking for
48 h, transferred to a 2-ml eppendorf tube, centrifuged at 16,100 g for 20 min to
remove any large preformed aggregates and the upper 90% for each solution
collected, aliquoted, snap frozen in liquid N2 and stored at � 80 �C. Samples were
then tested for the presence of large protofibrillar assemblies, known to bind avidly
to PrP and cause PrP-dependent toxicity26. Ab1–42 protofibrils used for
electrophysiology were further dialysed against 2� 5 l of PBS in an 8000 MWCO
semi-permeable membrane to ensure all DMSO and cell media were exchanged
before freezing and characterization.

Electron microscopy. Five microlitre of peptide solution was applied to glow-
discharged carbon-coated copper grids and left to bind for 60 s. Excess solution was
removed using grade 4 Whatman filter paper. Samples were negatively stained with
2% uranyl acetate for 30 s, blotted then allowed to air dry. Images were acquired on
an FEI Tecnai T10 electron microscope operating at 100 kV and recorded on a
1k� 1k charged couple device camera (Gatan) at a typical magnification of 34,000
with a pixel size of 5.03 Å.

SEC and multi-angle light scattering. Aliquots (0.33 ml) of Ab1–42 protofibrils
were injected onto a Superdex 200 10/30 column (GE Healthcare) and eluted with
PBS at a flow rate of 0.5 ml min� 1 using an Agilent HPLC and peptide elution
monitored by absorbance at 275 nm. Light scattering was performed using a Wyatt
DAWN HELEOS II multi-angle light scattering module with Ab concentrations
calculated using the refractive index.

TBS extract of human brain. AD brain 1 was obtained and used in accordance
with the UCD Human Research Ethics Committee guidelines (under approval
LS-E-10-10-Walsh). AD brain 2 was obtained and used in accordance with the
Partner’s Institutional Review Board (Walsh BWH 2011). In both cases informed
consent was obtained from subjects. Samples of temporal cortex were obtained
from 2 AD cases referred to as AD1 and AD2. AD1 was from an 85-year-old male
with dementia and fulminant amyloid and tangle pathology (Braak stage¼ 4) and
was provided by Drs Dykoski and Cleary of Minneapolis VA Health Care System,
and potently inhibits LTP48. AD2 was from an 81-year-old female who died with
severe AD and was kindly provided by Dr Cindy Lemere of Brigham and Women’s
Hospital. Frozen cortex (0.9 g) was allowed to thaw on ice, chopped into small
pieces and homogenized in 4.5 ml of ice-cold 20 mM Tris–HCl, pH 7.4, containing
150 mM NaCl with 25 strokes of a Dounce homogenizer (Fisher, Ottawa, Ontario,
Canada)31,48. Water-soluble Ab was separated from membrane-bound and plaque
Ab by centrifugation at 91,000 g and 4 �C in a TLA 55 rotor (Beckman Coulter,
Fullerton, CA, USA) for 78 min. To eliminate bioactive small molecules the
supernatant was exchanged into ammonium acetate. Thereafter, extracts were
divided into two parts: one aliquot was immunodepleted of Ab by three rounds of
12-h incubations with our anti-Ab antibody, AW8 (ref. 31), and protein A at 4 �C.
The second portion was not manipulated in any way and is simply referred to as
AD. Aliquots of samples were stored at � 80 �C or used to assess Ab content with a
sensitive immunoprecipitation/western blot procedure. Our rabbit polyclonal
antibody, AW8, was used (at a dilution of 1:80) for immunoprecipitation and a
combination of the anti-Ab40 and Ab42 monoclonal antibodies, 2G3 and 21F12
(each at 1 mg ml� 1) for western blot. Ab concentration was estimated by reference
to known quantities of synthetic Ab1–42. Antibodies 2G3 and 21F12 were kindly
provided by Drs P. Seubert and D. Schenk (Elan Pharmaceuticals).

Ab-binding DELFIA. Ab binding to our recombinant PrPC (refs 26,37) was
determined by an enzyme-linked immunosorbent assay (ELISA)-based protocol
detected by the dissociation-enhanced lanthanide fluorescent immunoassay
(DELFIA). Fifty microlitres of 1 mM human huPrP23–231 (10 mM sodium
carbonate, pH 9.6) was bound to medium binding 96-well white plates (Greiner)
with shaking at 400 r.p.m. for 1 h at 37 �C, washed with 3� 300 ml of PBS (0.05%
Tween-20), blocked with 300 ml Superblock (Thermo Scientific) with shaking at
400 r.p.m. at 37 �C for 1 h and washed with 3� 300 ml of PBS (0.05% Tween-20).
Fifty microlitres of Ab1–42 protofibrils were incubated in PBS (0.05% Tween-20,
0.1% BSA) for 1 h at 25 �C with shaking at 400 r.p.m. and washed with 3� 300ml of
PBS (0.1% Tween-20). Ab was detected using 50 ml of 1 mg ml� 1 6E10 (Covance,
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# SIG-39320) in DELFIA assay buffer (PerkinElmer) for 1 h at 25 �C with shaking
at 400 r.p.m., washed with 3� 300 ml of PBS (0.05% Tween-20) and incubated for
1 h at 25 �C with shaking at 400 r.p.m. with 300 ng ml� 1 of DELFIA Eu-N1
anti-mouse antibody in DELFIA assay buffer (PerkinElmer, # 4002-0010), washed
with 3� 300ml of PBS (0.05% Tween-20) before enhancing with 100ml of DELFIA
Enhancement Solution (PerkinElmer)49. Biotinylated Ab1–42 protofibrils were
detected using a 1:2,000 dilution of DELFIA Eu-N1 streptavidin (PerkinElmer,
# 1244-360), washed with 3� 300ml of PBS (0.05% Tween-20) before enhancing
with 100ml of DELFIA Enhancement Solution (PerkinElmer, # 4001-0010). Plates
were scanned for time-resolved fluorescence intensity of the europium probe
(lex¼ 320 nm, lem¼ 615 nm) using a PerkinElmer EnVision plate reader.
Apparent XC50 values were calculated using a four-parameter XC50 curve with the
maximum plateau signal for a given series used to define full occupancy.

Anti-PrP antibody binding DELFIA. Fifty microlitres of 150 nM of our
huPrP23–231

26,37 (10 mM sodium carbonate, pH 9.6) was bound to high-binding
96-well white plates (Greiner) with shaking at 400 r.p.m. for 1 h at 37 �C, washed
with 3� 300 ml of PBS (0.05% Tween-20), blocked with 300 ml Superblock (Thermo
Scientific) with shaking at 400 r.p.m. at 37 �C for 1 h and washed with 3� 300 ml of
PBS (0.05% Tween-20). Fifty microlitres of ICSM18 or ICSM41 (concentration-
response curve, D-Gen, # ICSM18 and ICSM41) were incubated in DELFIA assay
buffer (PerkinElmer) for 1 h at 25 �C with shaking at 400 r.p.m. and washed with
3� 300ml of PBS (0.1% Tween-20). ICSM antibodies were detected by 50 ml of
100 ng ml� 1 of DELFIA Eu-N1 anti-mouse antibody (PerkinElmer, # AD0207) in
DELFIA assay buffer (PerkinElmer), washed with 3� 300 ml of PBS (0.05%
Tween-20) before enhancing with 100 ml of DELFIA Enhancement Solution
(PerkinElmer)49.

Anti-PrP antibody-mediated Ab-inhibition DELFIA. Fifty microlitres of 1 mM
human huPrP23–231 (10 mM sodium carbonate, pH 9.6) was bound to medium-
binding 96-well white plates (Greiner) with shaking at 400 r.p.m. for 1 h at 37 �C,
washed with 3� 300 ml of PBS (0.05% Tween-20), blocked with 300 ml Superblock
(Thermo Scientific) with shaking at 400 r.p.m. at 37 �C for 1 h and washed with
3� 300ml of PBS (0.05% Tween-20). Fifty microlitres of ICSM18 or ICSM41
(1mg ml� 1) were incubated in PBS (0.05% Tween-20, 0.1% BSA) for 1 h at 25 �C
with shaking at 400 r.p.m. and washed with 3� 300ml of PBS (0.1% Tween-20).
Biotinylated Ab1–42 protofibrils were incubated in PBS (0.05% Tween-20, 0.1%
BSA) for 30 min at 25 �C with shaking at 400 r.p.m. and washed with 3� 300 ml of
PBS (0.1% Tween-20). Ab was detected using a 1:2,000 dilution of DELFIA Eu-N1
streptavidin (PerkinElmer), washed with 3� 300 ml of PBS (0.05% Tween-20)
before enhancing with 100ml of DELFIA Enhancement Solution (PerkinElmer).

FACS. N2a cells (mouse neuroblastoma, ATCC) were harvested and washed with
PBS, blocked with FcgRIIb/CD16-2 (1mg ml� 1, #18867, Santa Cruz) for 30 min at
4 �C. Cells were incubated with different concentrations of ICSM18 or ICSM41
antibodies (concentration response from 0.05–75 mg ml� 1) for 45 min at 4 �C.
Subsequently, rinsed cells were stained with Alexa488- or FITC-conjugated anti-
mouse antibodies (2 mg ml� 1, # A-11001 and # F 2761, respectively, Invitrogen),
fixed in 2% PFA for 10 min at 22 �C, stained with DAPI and kept at 4 �C until
analysis. Samples were analysed on a CyAn ADP High Performance Flow
Cytometer equipped with a 488 nm argon laser.

Data analysis. The magnitude of LTD is expressed as the percentage of pre-LFS
baseline EPSP amplitude (±s.e.m.). The sample size was chosen based on our
knowledge of what is appropriate for in vivo electrophysiology to determine
whether synaptic plasticity is induced or affected by Ab or other interven-
tions3,6,10,12. No data were excluded, and control experiments were interleaved
randomly throughout. Two-tailed paired Student’s t-tests (paired t) or one-way
ANOVA with Tukey’s multiple comparison test (one-way ANOVA-Tukey) were
used to evaluate LTD within groups, and two-way ANOVAor unpaired Student’s
t-tests (unpaired t) were used to compare between groups. Kruskal–Wallis one-way
ANOVA with Dunn’s multiple comparison test was used to compare the effects
of antibodies on Ab binding to recombinant PrPC. A Po0.05 was considered as
statistically significant.
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