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ABSTRACT
Background Mutations in microtubule-regulating
genes are associated with disorders of neuronal
migration and microcephaly. Regulation of centriole
length has been shown to underlie the pathogenesis of
certain ciliopathy phenotypes. Using a next-generation
sequencing approach, we identified mutations in a novel
centriolar disease gene in a kindred with an embryonic
lethal ciliopathy phenotype and in a patient with primary
microcephaly.
Methods and results Whole exome sequencing data
from a non-consanguineous Caucasian kindred exhibiting
mid-gestation lethality and ciliopathic malformations
revealed two novel non-synonymous variants in CENPF,
a microtubule-regulating gene. All four affected fetuses
showed segregation for two mutated alleles [IVS5-2A>C,
predicted to abolish the consensus splice-acceptor site
from exon 6; c.1744G>T, p.E582X]. In a second
unrelated patient exhibiting microcephaly, we identified
two CENPF mutations [c.1744G>T, p.E582X; c.8692
C>T, p.R2898X] by whole exome sequencing. We found
that CENP-F colocalised with Ninein at the subdistal
appendages of the mother centriole in mouse inner
medullary collecting duct cells. Intraflagellar transport
protein-88 (IFT-88) colocalised with CENP-F along the
ciliary axonemes of renal epithelial cells in age-matched
control human fetuses but did not in truncated cilia of
mutant CENPF kidneys. Pairwise co-immunoprecipitation
assays of mitotic and serum-starved HEKT293 cells
confirmed that IFT88 precipitates with endogenous
CENP-F.
Conclusions Our data identify CENPF as a new
centriolar disease gene implicated in severe human
ciliopathy and microcephaly related phenotypes. CENP-F
has a novel putative function in ciliogenesis and cortical
neurogenesis.

INTRODUCTION
Centrioles are microtubule (MT)-derived structures
that play an essential role in centrosome and
cilia formation.1 Mutations in centrosomal and
MT-regulating genes have been described in cancer,
disorders of neuronal migration2 3 and microceph-
aly (MCPH) including Majewski osteodysplastic

primordial dwarfism type II.4 5 Disrupted processes
include abnormalities of centriole duplication,
centrosome maturation and spindle pole forma-
tion6 with defective asymmetric divisions of neur-
onal progenitors and failure of cortical
neurogenesis.7 8

Following mitosis, the distal appendages of the
mother centriole become the transition fibres of the
ciliary basal body.9 Transition fibres promote cilio-
genesis by recruiting intraflagellar transport (IFT)
proteins which traffic tubulin subunits and other
proteins to the ciliary tip.10 Mutations in genes
regulating centriole length have recently been
described in ciliopathic disorders characterised by
heterotaxia, retinal degeneration, skeletal dysplasia,
renal disease and cerebral anomalies including
microcephaly.11–13 These findings support emer-
ging evidence that certain centriolar protein com-
plexes have dual roles in spindle orientation and
ciliogenesis.8 14

In the current study, we identify CENPF, the
MT-regulating gene, as a new centriolar disease
gene implicated in severe human ciliopathy and
MCPH-related phenotypes. Our data suggests a
novel putative function for CENP-F in ciliogenesis
as well as cortical neurogenesis.

Methods
In order to determine the genetic basis of a novel
congenital malformation disorder and MCPH, we
employed a next-generation sequencing approach
using whole exome sequencing combined with
genome-wide linkage analysis.

Research subjects
Approval for research involving human subjects was
obtained from the Institute of Child Health research
ethics board, University College London, and the
Scottish multicentre research ethics committee.

Linkage analysis
For genome-wide SNP mapping, the GeneChip
Human Mapping 500 k Array from Affymetrix was
used. Genotypes from DNA of the three affected
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and two unaffected children in the index kindred in addition to
the parents were generated. Genotypes were examined with the
use of a multipoint parametric linkage analysis, and haplotype
reconstruction performed with GENEHUNTER V.2.1 through
stepwise use of a sliding window with sets of 110 SNPs and the
program, ALLEGRO, in order to identify regions of homozy-
gosity as described using a disease allele frequency of 0.0001
and Caucasian marker allele frequencies.

Exome capture
Targeted capture was performed on genomic DNA from one
affected and one unaffected sibling of the index kindred with the
EZ Exome Library (Roche Nimblegen, V.1) and sequenced on a
single lane of a Solexa/Illumina Genome Analyser II. Reads were
aligned to the human reference genome (GRC37 release, down-
loaded from the ENSEMBL database). Three different software
programs were used for sequence evaluation: Maq, BWA and
Novoalign. The coverage along the genome was calculated using
BEDtools (GenomeCoverageBed function), without omitting zero
values. Variant calling was undertaken using UnifiedGenotyper.15

The final output was then converted to variant call format. On
average, we obtained about 43 million single short reads per lane
with 91.8% of reads correctly mapped to the genome. The median
sequencing depth per coding nucleotide was 23, with 90% of the
targeted exons covered at least once. Variants from all samples were
annotated and prioritised to identify pathogenic mutations as previ-
ously described.16 Variants annotated in dbSNP132 and the 1000
Genomes project or in our in-house databases with an allele fre-
quency above 0.5% were removed. An autosomal recessive inherit-
ance model was applied for gene identification in both kindreds,
with known ciliopathy and MCPH genes manually analysed using
the Integrative Genomics Viewer (http://www.broadinstitute.org/
igv/). Candidate pathogenic variants were validated and assessed
for familial segregation by Sanger sequencing.

Sanger sequencing
Mutations were analysed by Sanger sequencing. CENPF primer
pairs are described in online supplementary table S1.

Immunofluorescence microscopy
NIH 3T3 fibroblasts, mouse inner medullary collecting duct
(mIMCD3) and retinal pigmentary epithelial (RPE) cells were
seeded onto glass coverslips and grown in Dulbecco’s modified
eagle medium (DMEM) with 10% fetal bovine serum (FBS) and
penicillin/streptomycin, until they reached 70% confluency, after
which the medium was replaced with DMEMwithout serum over-
night. Cells were stained with antibodies against CENP-F (1:200,
ab 90, Abcam; sheep anti-CENP-F, 1:500, courtesy of Stephen
Taylor, University of Manchester, rabbit anti-CENP-F,1:500,
courtesy of Tim Yen, University of Pennsylvania), anti-IFT88
(1:800, 13967-1-AP Proteintech), anti-KIF3B (1:50, ab42494,
Abcam), anti-α-acetylated-tubulin (1:800, T6793-clone 6-11B-1,
Sigma-Aldrich), anti-γ-tubulin (1:500, T6557, Sigma-Aldrich),
anti-GT335 (1:800, Novus Biologicals), anti-Ninein (1:200, ab
4447 Abcam), as previously described.17 Alexa-488, Alexa-594
and Alexa-647 conjugated secondary antibodies were obtained
from Invitrogen. Confocal imaging was performed using a Zeiss
LSM-710 system with an upright DM6000 compound micro-
scope, and the images were processed with Zen software suite.

Immunohistochemistry
Kidneys from 22-week-old control fetuses (phenotypically
normal without karyotypical abnormality and normal kidney
histology) and fetuses with CENPF mutations were fixed in 4%

paraformaldehyde (PFA), dehydrated, embedded in paraffin and
sectioned at 20 μm. Sections were stained with H&E. For
immunofluorescent studies, microwave antigen retrieval and
immunostaining were carried out as previously described.18

Confocal imaging was performed using a Zeiss LSM-710 system
with an upright DM6000 compound microscope, and images
were processed with Zen software suite. Z stacks were acquired
at 0.5 μm intervals and converted to single planes by maximum
projection with FiJi software.

Electron microscopy
For immunogold labelling of RPE cells, the cells were serum-
starved at 70% confluency for 3 days and then fixed in 0.25%
glutaraldehyde +4% formaldehyde in 0.1 M cacodylate buffer,
pH 7.4, and processed for embedment in LR White. Ultrathin
sections (70 nm) were labelled with primary antibody, followed
by secondary antibody conjugated to 12 nm gold particles.

Co-immunoprecipitation studies
HEKT293, NIH 3T3 fibroblasts and RPE cells were plated onto
tissue culture 100 mm dishes with 10 mL of DMEM medium
containing 10% FBS and 1% penicillin/streptomycin. Cells were
lysed after 48 h in a radio-immunoprecipitation assay buffer and
were incubated with a monoclonal antibody to CENP-F (ab90,
Abcam, 1:100) for 24 h at 4°C. After incubation, the lysates
containing the Ag-Ab complexes were resolved by SDS-PAGE.
Protein interactions were assessed by immunoblotting with
affinity-purified polyclonal anti-IFT88 and anti-KIF3B anti-
bodies (1:100). Enhanced chemiluminescence was used to
detect specific proteins using secondary rabbit and mouse-
conjugated horseradish peroxidase antibodies (dilution 1:2000).

Gel filtration studies
Gel filtration was performed as previously described.19

Zebrafish studies
Wild-type zebrafish, from AB×Tupfel long fin and transgenic
cardiac myosin light chain (cmlc2); GFP—zebrafish were staged
and housed as previously described.20 Groups of 25–50 stage-
matched embryos were collected at 8-somite and 18-somite
stages, 24, 48, 72 and 120 h postfertilisation (hpf). For cenpf
knockdown, antisense morpholino oligonucleotides (MO)
(GeneTools) were designed against the 25 bps upstream of tran-
script start codon of cenpf and against the splice junction of the
intron 3–exon 4 boundary (see online supplementary table S2).
For controls, a standard control MO (50-CCT CTT ACC TCA
GTT ACA ATT TAT A 30) was injected into wild-type embryos.
Specificity of splice MO was confirmed by RT-PCR (see online
supplementary figure S1). RNA was extracted from 25 mor-
phants and 25 controls at 48 hpf using the TRIzol (Invitrogen)
method. First-strand cDNA was synthesised using random hex-
amers (Sigma-Aldrich) and Omniscript transcriptase (QIAGEN),
according to the manufacturer’s instructions. Fertilised eggs
were injected with MO (2 ng/embryo) at the 1-cell to 2-cell
stage and allowed to develop at 28.5°C to the desired stages.
For rescue experiments, full-length human CENPF plasmids
were linearised with Not1 and mRNA synthesised using
Ambion mMessage mMachine SP6 kit. Wild-type mRNA
(75 pg) was injected into the cytosol of one-cell-stage embryos
with cenpf MO. For whole-mount in situ hybridisation (WISH)
studies, groups of 25–50 stage-matched embryos were collected
at 18-somite stages and were fixed in 4% PFA/phosphate buf-
fered saline overnight at 4°C. WISH for southpaw mRNA
expression was undertaken with standard protocols.
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Statistical analysis
Statistical analyses were performed in GraphPad Prism V.5
(GraphPad Prism Software, USA). Numbers were reported as
median values and comparison was made using the two-sample
Wilcoxon rank sum test for non-parametric data. Where
numbers are reported as mean values, comparison was made
using the Student t test for parametric data. p<0.05 was consid-
ered statistically significant.

RESULTS
Mutations in human CENPF cause a novel congenital
malformation syndrome and MCPH
We identified a non-consanguineous Caucasian kindred with
four affected fetuses exhibiting mid-gestation lethality and dys-
morphic craniofacial features (figure 1A, B; table 1). Autopsy
findings revealed ciliopathy features, such as cerebellar vermis
hypoplasia, corpus callosum agenesis, cleft palate, duodenal
atresia and bilateral renal hypoplasia.

A search of several validated dysmorphology databases includ-
ing the London Dysmorphology Database failed to show pheno-
typical identity with any known syndrome. Genome-wide SNP
analysis using high-density SNP arrays (Affymetrix 500 k
Marshfield V.2) was undertaken on all except one family member
(CIL 1.1). Linkage analysis using GENEHUNTER V.2 lr5 (multi-
point) revealed 10 regions with a maximum positive HLOD of
1.32. Linked intervals were identified on chromosome 1 (2 inter-
vals), 2, 6, 7, 8, 13, 19 and 20. One of the intervals on chromo-
some 1 and the interval on Chromosome 19 were the largest and
contained the most homozygous markers covering a total of 839
genes (see online supplementary figure S2).21 Using Identity by
Descent Finder, significant regions of homozygosity were not
present, consistent with declared non-consanguinity. Given that
the linked regions were large, spanning up to 15 Mb on 19p13.3,
whole exome capture and consecutive massive parallel deep
sequencing of one affected and one unaffected offspring was
employed as a strategy to identify the underlying genetic aeti-
ology of this novel phenotype. Variants were prioritised for ana-
lysis on the basis of novel coding non-synonymous SNPs, splice
variants, truncating variants and InDels (see online supplemen-
tary table S3). A further variant filtering strategy based on an
autosomal recessive mode of inheritance, as suggested by the
pedigree, identified two novel homozygous and 40 novel com-
pound heterozygous mutations in 20 genes that were unique to
the affected offspring. Only one of the 22 candidate genes was
present in a linked interval located on chromosome 1. Two novel
non-synonymous variants in the CENPF gene (NM_016343.3),
involving a heterozygous IVS5-2A>C nucleotide change, which
was predicted to abolish the consensus splice-acceptor site from
exon 6, and a second heterozygous c.1744G>T nucleotide
change in exon 12 were identified (figure 2A, B). Sanger sequen-
cing of both variants confirmed segregation with affected off-
spring and revealed that each parent carried a single variant (see
online supplementary figure S3A). The variant was detected
neither in the 200 ethnically-matched control alleles nor in the
200 control in-house exomes. The protein-truncating non sense
variant, c.1744G>T, p.E582*, was predicted to be disease-
causing in the Mutation Taster programme (score 6.0). The
expected damaging effect provides strong support for its likely
pathogenic effect. Furthermore, the mutated amino acid
sequence is conserved among vertebrates (see online supplemen-
tary figure S3B). The canonical splice-site variant (IVS5-2A>C)
disrupts the exon 6 acceptor splice site probably ablating exon 6
and leading to a 97 amino acid in-frame deletion affecting the

MT-binding domain at the N-terminus of the protein. Another
possible consequence of this mutation is that a cryptic splice site
might be recruited downstream with resulting frameshift and the
introduction of a premature stop codon (p.Lys191fs*). Non-
sense-mediated decay would probably lead to loss of function. As
all four affected fetuses died in utero, there was no RNA available
to determine the effect of the canonical splice-site variant
(IVS5-2A>C). Human CENPF consists of 20 coding exons that
encode at least two protein-coding transcripts (see online supple-
mentary table S4). Neither mutation is present in the second
protein-coding transcript which overlaps its sequence with amino
acids 2610–2774. The longest coding transcript of CENPF
encodes a 350 kDa protein consisting of 3114 amino acid resi-
dues and mainly coiled coil domains. Other domains include MT
binding domains at both the N and C termini, in addition to
Nudel (Nde) binding, activating transcription factor-4
(ATF4)-binding and Nup133-binding domains (figure 2C).

Nde-1, the protein product of the centrosomal gene, mutated
in microcephaly, has previously been shown to interact with
CENP-F.22–26 We, therefore, investigated, by whole exome
sequencing, a large cohort of patients (n=1000) with microceph-
aly (MCPH) for CENPF mutations, where no deleterious or
potentially pathogenic variants were identified in known MCPH
genes (CEP135, ASPM, WDR62, MCPH1, CEP152, STIL, CEP63
and CENPJ). We identified two CENPF mutated alleles
[c.1744G>T, p.E582*, c.8692 C>T, p.R2898*] in a patient with
MCPH associated with mild to moderate learning difficulties
(occipital head circumference (OFC) at birth: 29.5 cm, below
0.4th centile; adult OFC 45.5 cm, below 0.4th centile, figures
1C, D and 2A, B; see online supplementary figure S4). The other
body systems were unaffected and overall growth was normal. Of
note, MCPH was evident by mid-gestation in affected fetuses of
Family 1 (figure 1D). The protein-truncating non sense variant,
c.8692 C>T, p.R2898* was predicted to be disease-causing in
the Mutation Taster programme (score 6.0). The expected dam-
aging effect provides strong support for its likely pathogenic
effect. The mutation c.1744G>T, p.E582* was shared between
the two kindreds. Western blot analysis of protein lysates from
CENPF mutant MCPH fibroblasts revealed a much greater
reduction in CENP-F protein levels compared with wild-type
controls (see online supplementary figure S5). The presence of
residual protein could be explained by incomplete nonsense-
mediated decay. Truncation of the residual protein as a result of
the p.R2898* mutation is possible but the estimated difference in
molecular weight of 23.7 kDa (estimated by loss of 216 amino
acids) was difficult to resolve by SDS-PAGE gel electrophoresis
owing to the high molecular weight of CENP-F (see online sup-
plementary figure S9).

Mutational screening did not identify mutations in CENPF in
12 consanguineous patients with Meckel Grüber syndrome
(MKS) who had compatible clinical features, potential autozy-
gous regions and did not have a mutation in known MKS genes
and in three patients with isolated nephronophthisis (NPHP)
who showed homozygosity by descent at the CENPF locus out
of a cohort of 150 families with NPHP or Joubert syndrome
( JBTS). We also conducted mutational screening of 96 unrelated
patients with Bardet Biedl syndrome (BBS) who were not prese-
lected based on known BBS mutations. We did not detect reces-
sive CENPF mutations in any of the MKS, NPHP, JBTS or BBS
families, and because of the small sample size, we were unable
to conclude that the heterozygous mutations in CENPF detected
in BBS pedigrees act as phenotypical modifiers as has been
described for other ciliopathy disease genes (see online supple-
mentary table S5).
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CENP-F is localised to the subdistal appendages of the
mother centriole
The findings of mid-gestation fetal lethality together with abnor-
mal craniofacial, cerebellar, palate, foregut and renal develop-
ment, and the known role of Hedgehog signalling in

organogenesis,27 suggested that these features may represent a
ciliopathy disorder. Immunofluorescence microscopy of ciliated
NIH 3T3 fibroblasts revealed a basal body localisation for
CENP-F (figure 3A). Furthermore, CENP-F colocalised with
Ninein at the subdistal appendages of the mother centriole of

Figure 1 Pedigrees and clinical features of families with CENPF mutations. (A) The pedigree shows Family 1 with novel ciliopathy disorder
consisting of non-consanguineous unaffected parents with six offspring, of which four were affected and died in utero, and two were unaffected and
are healthy. (B) Gross morphological features of an affected fetus with dysmorphic craniofacial features such as a high nasal bridge, short columella,
micrognathia, wide mouth and low-set ears. Examination of a dissected gastrointestinal tract from the same affected fetus revealed complete
duodenal atresia. (C) The pedigree of Family 2 with a single affected case of microcephaly (MCPH) and unaffected parents and two unaffected
siblings. (D) Chart demonstrating the occipital head circumference (OFC) data for the affected fetuses of kindred 1 (1.1, 1.3 and 1.4, at or below 3rd
percentile) at gestational age at the time of autopsy in addition to the OFC at birth for the patient with MCPH of Family 2 which is below the 3rd
percentile at 40 weeks gestation.

Table 1 Clinical characteristics of index kindred with novel ciliopathy phenotype

Pedigree ID Cerebral Craniofacial Gastrointestinal Genitourinary

I.1*
XY
TOP
21 weeks

Hydrocephalus
Cerebellar hypoplasia
Agenesis of corpus callosum

Cleft palate
Micrognathia
Rounded head
Low-set ears

Duodenal atresia Bilateral renal hypoplasia

I.2*
XX
IUD
17 weeks

Hydrocephalus Prominent nose
High nasal bridge
Short columella
Wide mouth

Duodenal atresia Bilateral renal hypoplasia

I.3
XX

Normal Normal Normal Normal

I.4*
XX
Twin1
IUD
22 weeks

Hydrocephalus
Agenesis of corpus callosum

Cleft palate Duodenal atresia
Malrotation
Accessory spleens

Bilateral renal hypoplasia

I.5*
XY
Twin 2
IUD
22 weeks

Hydrocephalus
Agenesis of corpus callosum

Microcrania
Hypertelorism
Broad nasal root
Low-set ears

Duodenal atresia
Multiple SI atresia
Malrotation

Bilateral renal hypoplasia

I.6
XY

Normal Normal Normal Normal

*Affected.
SI, small intestine.
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mIMCD3 cells (figure 3B). Transmission electron microscopy
following immunogold labelling of CENP-F in serum-starved
human RPE cells confirmed a centriolar localisation for CENP-F
at the subdistal appendages and the distal end of the mother
centriole (figure 3C).

Zebrafish cenpf knockdown results in ciliopathy phenotypes
To understand the functional relevance of CENP-F in relation to
its localisation at the basal body, we performed knockdown
experiments using both translation-blocking and splice-blocking
antisense MO against zebrafish cenpf which shares 60%

Figure 2 (A and B) CENPF genomic organisation, depicting locations of the identified heterozygous essential splice site non-synonymous mutation,
IVS5-2A>C, and the heterozygous non-synonymous non-sense mutations, c.1744G>T and c.8692C>T (blue). For details on segregation, see also
online supplementary figures S3 and S4. (C) CENPF encodes a protein of 350 kDa, consisting of 3114 amino acid residues. CENP-F protein consists
of mainly coiled coil domains (blue), several leucine heptad repeats (purple), microtubule (MT)-binding domains at both the N and C termini in
addition to Nudel (Nde) binding, kinetochore (KT)-binding and Nup133-binding domains. The kinetochore localisation domain and a bipartite
nuclear localisation sequence reside in the C-terminal region.

Figure 3 CENP-F is expressed at basal bodies of ciliated cells. (A) Shown are representative micrographs of cilia following dual
immunofluorescence labelling of ciliated NIH 3T3 fibroblasts with anti-CENPF and anti-α-acetylated tubulin antibodies which demarcates cilia.
CENP-F is localised to the basal bodies (arrows) of ciliated NIH 3T3 fibroblasts. Scale bar, 10 μm. (B) CENP-F colocalises with Ninein (arrows) at the
subdistal appendages of the mother centriole of ciliated IMCD3 cells. Scale bar 5 μm. (C) Ultrastructural localisation of CENP-F in serum-starved
retinal pigmentary epithelial cells. Black arrows point to immunogold particles along the microtubules and subdistal appendages of the mother
centriole. Scale bar 100 nm.
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Figure 4R2 (A) Zebrafish cenpf morphants display increased body axis curvature at 24 h postfertilisation (hpf ) compared with control embryos
(black arrow). Cenpf knockdown in cardiac myosin light chain (cmlc2)-gfp transgenic zebrafish causes laterality heart defects at 48 hpf.
Hydrocephalus (arrow) is evident at 72 hpf in cenpf morphants compared with control embryos. At 96 hpf, pronephric cysts (arrow) are evident in
cenpf morphants compared with control embryos. (B) Quantitative graph showing increased occurrence of axis curvature defects, laterality
malformations, hydrocephalus and pronephric cysts in cenpf morphants (blue bars) compared with control embryos (red bars) and compared with
cenpf morphants injected with human CENPF RNA (black bars). Bars represent an average of three experiments. Error bars denote SE of the mean
(SEM). [Std-MO (n=266) % ventral axis curvature at 24 hpf vs cenpf-MO (n=173) 12.7±1.5 vs 88.7±1.4, *p<0.001; cenpf-MO (n=173) vs cenpf-MO
with human CENPF RNA (n=256) 88.7±1.4 vs 38.7±2.0, *p<0.001; Std-MO (n=223) % laterality defects at 48 hpf vs cenpf-MO (n=152) 4.0±0.6 vs
81.7±2.8, *p<0.001; cenpf-MO (n=152) vs cenpf-MO with human CENPF RNA (n=229) 81.7±2.8 vs 28±2.6, ***p<0.01; Std-MO (n=204) %
hydrocephalus at 72 hpf vs cenpf-MO (n=93) 1±0.6 vs 68.3±1.7, *p<0.001; cenpf-MO (n=93) vs cenpf-MO with human CENPF RNA (n=197) 68.3
±1.7 vs 40.3±1.7, *p<0.001; Std-MO (n=158) % pronephric cysts at 120 hpf vs cenpf-MO (n=76) 1.2±0.9 vs 96±0.6, ****p<0.0001; cenpf-MO
(n=76) vs cenpf-MO with human CENPF RNA (n=122) 96±0.6 vs 37.3±1.9, *p<0.001]. (C) Representative images of southpaw mRNA expression in
the lateral plate mesoderm at 18-somites (ss) of control (a) and cenpf morphant embryos (b-d). (a) left-sided expression in control embryos (arrow,
top left panel). (b) right-sided expression (arrow), (c) bilateral expression and (d) absent expression in stage-matched cenpf morphant embryos
(arrows). Scale bar 50 μm. (D) Representative micrographs following immunofluorescent labelling of Kupffer’s vesicle (KV) cilia with anti-α-acetylated
tubulin antibody at 8 ss. Short KV cilia are noted in cenpf morphants (white arrows) (E) Quantitative graph showing a quantitative difference in KV
cilia length (mm) in cenpf morphants (n=136 cilia; n=5 embryos) vs controls (SD MO) (n=228 cilia; n=4 embryos); 4.2±0.4 vs 2.6±0.1 **p<0.0001).
(F) Quantitative graph showing that KV cilia number were significantly less in cenpf morphants (n=5 embryos) vs controls (std MO) (n=5 embryos);
56.4±1.9 vs 38.6±1.7 **p<0.001). (G) Long cilia are observed in the lumina of collecting ducts of control fetuses (white arrow) while short cilia are
evident on renal epithelial cells of CENPF mutant fetal kidneys (white arrow). Sections are counterstained with 40,6-diamidino-2-phenylindole. Scale
bar 10 μm. MO, morpholino oligonucleotides.
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homology with its human orthologue (see online supplementary
table S2). Compared with controls, a significantly reduced
number of cenpf morphants survived (p<0.008, online supple-
mentary figure S1). Morphological analysis of surviving zebra-
fish embryos at 24 hpf, revealed axis curvature defects and at
48 hpf, cenpf morphants exhibited abnormal heart looping com-
pared with controls (figure 4A). At 72 hpf, hydrocephalus was
observed in cenpf morphants, and at 120 hpf, all surviving cenpf
morphants exhibited pronephric cysts (figure 4A). Coinjection
of cenpf MO with human wild-type CENPF RNA rescued sig-
nificantly the axis curvature defects (p<0.001) and pronephric
cysts in cenpf morphants (p<0.001; figure 4B, online supple-
mentary figure S6 and table S5). The occurrence of these mor-
phological findings support a role for CENP-F in zebrafish
ciliary function.28

Cilia-driven fluid flow within zebrafish Kupffer’s vesicle (KV),
or across the mouse ventral node, has been shown to underlie a
conserved symmetry-breaking event that establishes a left–right
(LR) pattern.29 To corroborate our findings of early lethality
and abnormal heart looping in embryos surviving to 48 hpf, we
next determined whether LR patterning defects are evident in
cenpf morphants. At mid-somite stages, normal LR patterning
can be defined by southpaw mRNA expression in the left lateral
plate mesoderm.29 In cenpf morphants, right-sided (top right
panel), bilateral (bottom left panel) and absent (bottom right
panel) expression of southpaw mRNA was observed compared
with left-sided expression in control embryos (figure 4C and
also see online supplementary figure S7). To determine whether
the laterality defects are caused by defects in KV cilia, we next
analysed cilia formation in 8-somite-stage (ss) control and cenpf
morphants. Following labelling of KV ciliary axonemes with
anti-α-acetylated tubulin antibody in stage-matched embryos at
8-somites (figure 4D), analysis of cenpf morphants revealed that
the length of KV cilia were shorter compared with controls
(p<0.0001; figure 4E) and the number of KV cilia was signifi-
cantly less in cenpf morphants compared with controls
(p<0.001; figure 4F).

Following our observations that cenpf morphants show
defective KV ciliogenesis, we next determined whether defective
ciliogenesis was a feature of mutant CENPF renal epithelia.
Immunofluorescence labelling of ciliary axonemes with
anti-α-acetylated tubulin antibody in kidney sections of autopsy
tissue from age-matched control fetuses were longer compared
with those in renal epithelia of fetuses carrying the identified
CENPF mutations (figure 4G). While renal epithelial cilia were
noted to be present on some but not all cells, morphologically,
the cilia that were present were stumpy with a terminally dis-
tended appearance (figure 4G).

CENP-F colocalises with IFT88 along the ciliary axoneme
and precipitates with endogenous IFT88 and other IFT-B
components
Previous work has demonstrated that during mitosis, CENP-F
localises to the spindle poles in a process that relies on cytoplas-
mic dynein-1.22–24 30 Similar findings for IFT88 have recently
been reported,19 suggesting that ciliary proteins may have spe-
cific roles in mitosis.19 31 Consequently, we tested the hypoth-
esis that CENP-F might interact with IFT88. To test this, we
showed that CENP-F colocalised with IFT88 and KIF3B at the
centrosome of asynchronous NIH 3T3 fibroblasts (figure 5A, B)
and along the ciliary axonemes of ATDC5 cells (chondrocytes)
(figure 5C) Furthermore, in human autopsy samples, IFT88
colocalised with ciliary axonemes of renal epithelial cells of
control fetuses (figure 5D). However, IFT88 did not localise to

ciliary axonemes and centrioles in mutant CENPF kidneys
(figure 5E). These data prompted us to test a possible functional
relationship between CENP-F and IFT88. Pairwise
co-immunoprecipitation assays of mitotic and serum-starved
HEKT293 cells confirmed that IFT88 precipitates with
endogenous CENP-F (figure 5F). In unsynchronised HeLa cells,
endogenous CENP-F co-fractionated with other IFT-B compo-
nents such as IFT52 and IFT20 in addition to motors, such as
cytoplasmic dynein-1 and Kif3a (figure 5G). Therefore, this
data suggest that CENP-F interacts with proteins involved in
cilia formation and function.

Together with our findings that CENPF mutations result in a
microcephalic phenotype and recent evidence for a role for
IFT88 and Pericentrin in mitotic spindle orientation,8 19 we
hypothesised that CENP-F may also interact with proteins impli-
cated in the cortical polarity pathway which could account for
defective cortical neurogenesis. This hypothesis was supported
by co-immunoprecipitation assays suggesting an interaction
between CENP-F and the NuMA/p150 Glued dynactin/Par 3
protein complex, proteins implicated in asymmetric cell div-
ision32 (see online supplementary figure S8).

DISCUSSION
Mutations in CENPF link the kinetochore complex to human
ciliopathy and MCPH phenotypes
Our discovery of a novel severe human ciliopathy-related
phenotype attributed to mutations in a kinetochore protein,
supports recent evidence for a dual role for ciliary proteins in
spindle orientation and ciliogenesis.19 CENP-F was first charac-
terised in cancer cell lines as a component of the outer kineto-
chore and as a binding partner of the retinoblastoma (Rb)
protein.33–35 CENP -F is dynamically expressed throughout the
cell cycle. It binds to the nuclear envelope at the transition
between G2 and M phase of the cell cycle. In early prophase
until anaphase onset, it is found at the kinetochore where it sta-
bilises the attachment of MTs to the centromere. In early ana-
phase, CENP-F is found at the spindle mid-zone, while in late
anaphase, it migrates with cytoplasmic dynein-1 and recruits the
spindle checkpoint regulatory complex to the spindle poles.22 In
early G0, it undergoes proteasome degradation.36 Depletion of
CENP-F in vitro results in mitotic delay, with failure of kineto-
chore assembly and misalignment of chromosomes in a subset
of mitotic cells.37 38 Studies in murine embryonic stem cells and
in avian myocyte lines suggest primary roles for this protein
complex in differentiation, but the exact mechanism is
unknown.39 Several studies have highlighted an additional role
for CENP-F in the regulation of cell shape and vesicle trans-
port.23 40–42 Given the overlap of features in fetuses with
CENPF mutations with human ciliopathy phenotypes, we
hypothesised that CENP-F may play a role in cilia formation
and function. The finding that CENP-F colocalises with IFT88
along the ciliary axoneme, and the existence of CENPF-IFT88
protein complexes is further supported by the co-migration of
CENP-F with other IFT-B components. Furthermore, the
absence of IFT88-stained ciliary axonemes and mislocalisation
of IFT88 within renal tubular epithelia of CENPF-mutant
kidneys proposes a putative role for CENP-F-dependent
IFT88-ciliary targeting.

We attribute, for the first time, that mutations in the CENPF
gene play a causal role in human congenital malformation syn-
dromes. All four affected fetuses of the index kindred had com-
pound heterozygous mutations in CENPF. Further supporting
the pathogenicity of these mutations was the finding that one of
these mutations also occurred in the context of MCPH in a
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Figure 5 (A) Colocalisation of CENP-F at the centrosome with intraflagellar transport-88 (IFT88) (B) Representative micrographs of asynchronous
3T3 fibroblasts following dual immunofluorescent labelling of 3T3 cells with KIF3B and C-terminus CENP-F antibody. CENP-F localises to the
centrioles with KIF3B (arrows). Scale bar 5 μm. Inset: high-power view of CENP-F localisation between two KIF3B foci. (C) Co-localisation of CENP-F
along ciliary axonemes labelled with IFT88 antibody (D) IFT88 localises to long cilia within the lumina of renal collecting ducts of 22-week-old
control human fetuses (arrows). Inset shows colocalisation of IFT88 with GT335-positive ciliary axonemes in xy and xz plane of confocal projection.
Scale bar xy, 15 mm. (E) IFT88 does not localise with GT335-positive ciliary axonemes, if present, of CENPF mutant fetal kidneys (arrows).
GT335-positive cilia are shorter than cilia in control kidneys. Scale bar 10 μm. Inset shows that IFT88 and GT335 do not colocalise in the xy and xz
plane of confocal projection. Scale bar 10 μm. (F) Representative images of co-immunoprecipitation experiments carried out on protein lysates from
mitotic HEKT293 cells containing endogenous CENP-F. Immunoblots show that IFT88, KIF3B and CENP-F co-immunoprecipitate with endogenous
CENP-F, while an immunoglobulin G (IgG) isotype control does not co-immunoprecipitate with CENP-F. IN=input; 10% of total input is indicated.
(b) Reciprocal co-immunoprecipitation experiments carried out on protein lysates from serum-starved HEKT293 cells containing endogenous IFT88.
Immunoblots show that CENP-F co-immunoprecipitates with endogenous IFT88, while an IgG isotype control does not co-immunoprecipitate with
IFT88. IN=input; 10% of total input is indicated. (G) Asynchronous HeLa cell lysate was fractionated over a superose-6 gel filtration column. Eluted
fractions were probed with antibodies against CENP-F, IFT complex B members: IFT88, IFT52 and IFT20, and motors: cytoplasmic dynein 1
intermediate chain (Dyn IC 74.1) and Kif3a. CENP-F co-eluted with the IFT proteins and motors, suggesting that it exists as a complex with these
proteins. Arrows indicate peak elution fractions for calibration proteins: thyroglobulin (669 KDa; fraction 23), β-amylase (200 KDa, fraction 28) and
bovine serum albumin (BSA) (67 KDa, fraction 31). V, void volume.
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second unrelated kindred. Phenotypical disparity is not a unique
finding to mutations in the CENPF gene. Divergent phenotypes
have been previously described in several disorders associated
with mutations in genes encoding centrosomal proteins. For
example, for mutations in the CEP290 gene, 90 mutations have
been reported exclusively in only one phenotype, while 14
others have segregated with two diseases, and eight have been
associated with three or more phenotypes.43 In most cases, these
phenotypes are partially overlapping, although few mutations
were observed to lead to strongly divergent disorders, such as
Leber’s Congenital Amaurosis (LCA) and MKS. It is interesting
that mutations causing JBTS tend to cluster in the second half of
the CEP290 gene, whereas mutations segregating with LCA,
Senior Löken Syndrome and MKS are homogeneously distribu-
ted throughout the gene.44 45 Of note, domains within the
CEP290 protein share significant similarity with CENP-F, with
several putative coiled-coil domains, a region with homology to
structural maintenance of chromosomes segregation ATPases, a
bipartite nuclear localisation signal and six RepA/Rep+ protein
kinase inducible domain motifs and an ATF4-binding domain.46

In the current study, we sought to explain the divergent phe-
notypes by an analysis for potential modifier alleles in genes
known to be associated with ciliopathy phenotypes, but did not
find any variants which were predicted to change the amino
acid sequence. A plausible explanation could be perhaps that the
more severe phenotype in the embryonic lethal disorder was
associated with a lack of a protein product necessary for ciliary
function. Because residual CENP-F protein was observed in the
fibroblasts of our MCPH patient, a dosage-dependent mechan-
ism could be proposed in which complete loss of function of
both CENPF alleles would lead to an embryonic lethal ciliopa-
thy phenotype, whereas residual CENP-F activity would be suffi-
cient for normal ciliary targeting of IFT88 and, perhaps, a less
severe phenotype.

Genes involved in centrosome maturation and spindle-pole
formation have been implicated in MCPH phenotypes.6 As
CENP-F migrates with cytoplasmic dynein-1 and recruits the
spindle checkpoint regulatory complex to the spindle poles in
late anaphase,22 the findings of CENPF mutations in a MCPH
phenotype is therefore not unexpected. MCPH phenotypes
have been ascribed to defective asymmetric divisions of neur-
onal progenitors and failure of correct neural cell fate specifica-
tion.6 8 Our data supports a role for CENP-F in asymmetric cell
divisions through its putative interactions with p150-dynactin,
NuMA and Par3, proteins which have been implicated in this
pathway.32 Future investigations using conditional Cenpf-deleted
transgenic mice will be needed to dissect the role of CENP-F in
cortical neurogenesis.
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