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Finite Element Modeling of Branched Ruptures

Including Off-Fault Plasticity

by Nora DeDontney, James R. Rice, and Renata Dmowska

Abstract Fault intersections are a geometric complexity that frequently occurs in
nature. Here we focus on earthquake rupture behavior when a continuous planar main
fault has a second fault branching off of it. We use the finite element (FE) method to
examine which faults are activated and how the surrounding material responds for
both elastic and elastic–plastic off-fault descriptions. Compared to an elastic model,
a noncohesive elastic–plastic material, intended to account for zones of damaged rock
bordering maturely slipped faults, will inhibit rupture on compressional side branches
and promote rupture of extensional side branches. Activation of extensional side
branches can be delayed and is triggered by continued rupture propagation on the
main fault. We examine the deformation near the branching junction and find that
fault opening is common for elastic materials, especially for compressional side
branches. An elastic–plastic material is more realistic because elevated stresses around
the propagating rupture tip and at the branching junction should bring the surrounding
material to failure. With an elastic–plastic material model, fault opening is inhibited
for a range of realistic material parameters. For large cohesive strengths, opening can
occur, but with material softening, a real feature of plastically deforming rocks, open-
ing can be prevented. We also discuss algorithmic artifacts that may arise due to the
presence of such a triple junction. When opening does not occur, the behavior at the
triple junction is simplified and standard contact routines inFE programs are able to
properly represent the physical situation.

Introduction

Earthquake ruptures are rarely confined to a single
planar fault but rather propagate through various geometric
complexities including stepovers, bends, and branches.
While the likelihood of rupture propagation through all of
these features is important for understanding the interactions
between faults, we confine our discussion here to fault
intersections where there is a through-going straight main
fault and a second fault, the branch, that intersects the main
fault.

The dynamics of earthquake rupture through branched
geometries has been studied (e.g.,Aochi et al., 2000; Kame
et al., 2003; Bhatet al., 2004; Duan and Oglesby, 2007), but
the physical processes that take place at the branching junc-
tion have not been thoroughly examined. The presence of the
triple junction introduces physical and algorithmic complex-
ities that require attention. These include the issue of fault
opening in the vicinity of the triple junction and how finite
element (FE) procedures implement the interactions at the
fault intersection. The material model (elastic versus elas-
tic–plastic) alters the physical process and the resulting de-
formation near the junction may or may not be adequately
described by standardFE contact procedures.

Background on Fault Branch Geometries
and Dynamic Rupture Modeling

Ando et al.(2009)use a California based study to show
that examples of branched fault geometries are numerous at a
range of length scales. They find that true Y-shape geome-
tries are rare, and the dominant geometry is of one planar
fault through the junction and a branch fault intersecting this
at an angle of 17°. The dominant geometry is the same for all
length scales investigated. The branches are equally distrib-
uted on both sides of the fault, so in a strike-slip setting,
branches that exist in the compressional side of a propagating
rupture are equally as common as those in the extensional
side (see Fig.1b for a definition of compressional and exten-
sional side branches). The equal distribution on both sides
would presumably not be retained in the thrust fault setting,
where most branches exist in the hanging wall, or the com-
pressional side of the fault.

Additional recent work has considered how branch
faults form.Scholzet al. (2010)explain the occurrence of
fault branches as a result of a rotation of the principal stresses
over time. This leads to branch formation when the main
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fault rotates out of optimal orientation and the stress state is
able to cause failure on a new fault plane.Ando and Yama-
shita (2007)model the nucleation and propagation of shear
branches extending from a predefined main fault. They see
that one branch can become dominant over other branches,
and this may be the start of a macroscopic branch like we
observe in nature.

To investigate the likelihood of these branch faults rup-
turing during an earthquake on the main fault,Poliakovet al.
(2002)considered the dynamic stress field around a propa-
gating mode II crack. Using a slip-weakening friction law on
a preexisting fault in an elastic medium, they found regions
where the stress field exceeded the Mohr–Coulomb (M–C)
failure criterion, and plastic deformation should occur. The
location of this region was shown to depend on rupture
velocity and the orientation of the most compressive stress.
Branch faults located in these highly stressed areas could
potentially rupture during a dynamic event.

Models of rupture propagation through branch geome-
tries assume the location of the brancha priori and have
primarily focused on strike-slip events.Bhatet al.(2004)stu-
died the 2002 Denali event,Fukuyama and Mikumo (2006)
studied the 1891 Nobi event, andOglesbyet al.(2003)exam-
ined the 1999 Hector Mine event. The surface rupture of the
1992 Landers earthquake activated multiple fault branches
and illustrates the complexities of a rupture path (Sowerset al.,
1994). Flisset al.(2005)studied backwards branching in this
event andBhat et al. (2007) considered the interaction
between the main fault and finite length branches. In addition
to these strike-slip studies,Kameet al.(2003)addressed the
presence of branched faults in a thrusting regime andTemple-
tonet al.(2010)investigated branch activation during normal
faulting.

Kame et al. (2003) identified the dependence of the
rupture path selection on the stress state (specifically the
angle � that the most compressive principal stress makes
with the main fault), the branch angle (� , the angle between
the main fault and the branch), and the velocity of the rupture
(Vr ) on the main fault at the branching junction. Both� and
Vr alter the stress field around the propagating rupture tip
(Poliakov et al., 2002), and depending on� , this may or
may not lead to rupture on the branch fault.

Objectives

We seek to address both physical and algorithmic issues
that arise due to the presence of the triple junction. Physi-
cally, we focus on the material description and how this alters
the deformation around the triple junction, as well as the
rupture behavior at the junction. Algorithmically, we address
the FE implementation at the fault intersection. We discuss
FE contact procedures and how artifacts of these affect the
branch activation results, a problem when opening occurs
at the junction.

Physically,McKenzie and Morgan (1969)pointed out
that fault triple junctions are unstable; the geometry is not

maintained when slip occurs and an opening at the intersec-
tion is necessitated.Andrews (1989)also closely examined
the mechanics of fault interactions at fault bends and
branches and found that opening could occur at a triple junc-
tion. He determined that after multiple earthquake cycles, the
resulting void would become a barrier to rupture, and a fresh
fracture would need to be generated in the area of the junc-
tion. Andrews (1989)also determined that the stress concen-
tration due to slip at a fault bend would require slip on an
associated spur fault.

We consider both elastic and elastic–plastic material
descriptions to determine when opening is predicted in the
vicinity of the triple junction. Opening should only occur,
for the geometries studied here, for elastic material models
and elastic–plastic models with large cohesive strengths.
We also examine how the material description changes the
branch activation. The stress field around an elastic rupture
tip is very different from that of an elastic–plastic rupture tip.
We examine these differences and discuss how the stress
field affects the rupture path selection.

Proper assumptions and computational model imple-
mentation are key for an accurate interpretation of the like-
lihood of multisegment ruptures. Branch activation has been
examined using a variety of numerical approaches including
the boundary integral equation (BIE) method,FE, and finite
difference (FD) routines. Depending on the numerical imple-
mentation, a choice may have to be made at the branching
junction. Here we use theFE method, and while theFE pro-
cedure inherently has no problem handling a triple junction
geometry,FEcontact procedures can require specifications at
the junction. These algorithmic choices can include how the
faults are able to slide and if opening can occur. We discuss
these choices and what is valid in the case of no fault open-
ing. In certain cases, like when fault opening does occur, we
show how these specifications can affect branch activation.

Model Setup

We used the explicit dynamicFE package ABAQUS/
Explicit to investigate branch activation in a2D plane strain
model. The faults are predefined and imbedded in an other-
wise homogeneous full space (Fig.1). The model is
surrounded by absorbing elements, which minimize reflec-
tions from the boundaries, and here we do not take into
account the presence of a free surface or depth dependent
stress states.

The stress states used in this analysis result in right
lateral rupture, and stresses are positive in tension. They
are defined by an initial main fault normal stress (� 0

yy), fault
parallel stress (� 0

xx), shear stress (� 0
xy), and plane perpendi-

cular stress (� 0
zz), which is only relevant for elastic–plastic

models. The stress state can be characterized by a prestress
angle (� ), which is the angle between the most compressive
principal stress and the main fault, and anSratio on the main
fault. TheS ratio is defined asS � � � p � � 0

xy�=� � 0
xy � � r � ,

where� p and � r are the peak and residual shear stresses,
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respectively, based on the fault friction (f ) and� 0
yy. For suf-

ficiently low seismicSratios (S < 1:77) the rupture can tran-
sition from sub-Rayleigh to supershear rupture velocities by
the formation of a daughter crack ahead of the main rupture
(Andrews, 1976). While stress states are used in which super-
shear rupture is possible, here we only examine rupture
behavior for cases of subsonic rupture velocities at the
branching junction.

We consider two values for� and examine both com-
pressional and extensional side branches (� 30° � � � 30°;
Fig. 1b). For right lateral configurations and a rupture pro-
pagating to the right, compressional side branches are in the

top half of the model (� > 0), and extensional side branches
are in the lower half of the model (� < 0). Previous work
by Kame et al. (2003) has shown that compressional side
branches can be activated for low values of� , and exten-
sional side branches can be activated for high values of� .
We use� � 13° and� � 47° to examine compressional and
extensional side branches, respectively. These angles are
chosen for the range in behaviors exhibited for the stress
states we consider (we examine stress states with1:0 � S �
3:0, although not all results are shown here). For example,
with � � 55°, all extensional side branches in an elastic
model are activated, but for� � 40°, almost no extensional
side branches will be activated (for the parameters consid-
ered here). Therefore we use� � 47° because it is in the
transitional regime, and activation is sensitive to parameter
choices.

Mesh Geometry and Element Definitions

TheFEmodel is composed of 4-noded linear rectangular
elements and 3-noded linear triangular elements (types
CPE4R and CPE3 in ABAQUS). The domain boundaries
are 4-noded absorbing elements (Lysmer and Kuhlemeyer,
1969) (type CINPE4 in ABAQUS), which are perfectly ef-
fective when the incident wave front is parallel to the absorb-
ing elements. Along the fault, the element size (� x) is
chosen such that the slip-weakening zone size is well
resolved;� x � R0=40, whereR0 is the nominal static slip-
weakening zone size (Fig.2). The slip-weakening zone size
is the important length scale in the problem, and the element
size is chosen to be certain that this length scale is well
resolved. Even with contraction of the slip-weakening zone
as the rupture accelerates, there are still� 10 elements in the
zone, indicating that increased mesh refinement is not neces-
sary. To verify this, for some test cases we implement an ele-
ment size of� x � R0=60 and find no difference in branch
activation results.

Some previous models have used a uniform element size
throughout the model domain, but this is computationally
inefficient so we use a nonuniform element size, increasing
with distance from the fault (Fig.1). A uniform element size

(a)

(b)

Figure 1. (a) BasicFE model setup with absorbing boundary
conditions and a uniform stress state with plane strain elements.
This shows a new mesh geometry in which larger elements are uti-
lized far away from the faults for computational efficiency. The few
corner elements, which are much smaller than the fine resolution
section, are artificially denser so as to not dictate the model time
step. (b) Definition of compressional and extensional side branches.

(a) (b) (c)

Figure 2. Slip-weakening laws. (a)R is the physical dimension over which stress decays from peak to residual value. (b) For linear slip
weakening,Dc is the amount of slip over which the strength decays from peak to residual value. For the regularized friction routine, this
amount of slip is increased. (c) Regularized friction routine has a noninstantaneous response in strength (gray line) to an instantaneous change
in friction or normal stress (black line).
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with � x � R0=40exists within a predetermined range of the
fault and extends5–16 R0, depending on theFE model run
and whether off-fault plasticity is included. This is bounded
by six layers of progressively increasing element size com-
posed of triangles and squares, which are followed by more
layers of the largest elements. By testing multiple geometries
and stress states, we find that the branch activation results do
not differ for a mesh with a uniform element size throughout
the model domain and the coarsening mesh used here.

The mesh is predominantly composed of elements with
a � 1�1 aspect ratio to minimize the number of elements
required to fill the model domain. The precise geometry of
the elements around the branch is dependent on the branch
angle, but all meshes are qualitatively similar to that shown
in Figure1.

Elements with a large aspect ratio are still required in the
corner of the branching junction, and because it is the smal-
lest element that determines the time step, we increase the
density of the few small elements so that the time it takes
theP wave to travel across these elements is the same as for
the regular fine resolution elements. This decreases the run
time, and we do not see a change in model results.

We employ a contact procedure on the faults that effec-
tively reduces to a split-node procedure (seeTempleton and
Rice (2008), appendix B, for a complete description). Within
that implementation in theFE package ABAQUS/Explicit,
fault surfaces participate in contact interactions (there is
an interaction that defines the main fault and an interaction
that defines the branch), and a node cannot belong to two
surfaces if each surface is involved in different contact inter-
actions. This is not a feature common to allFE implementa-
tions, but rather an algorithmic issue due to the programming
of the contact procedure. A decision must then be made for
each of the nodes at the branching junction. Specifically, in
Figure3b, do nodes 1 and 2 participate in the main fault or
the branch fault contact interaction?

Our default model setup is that which constrains slip to
occur only on the main fault at the branching junction. This is
accomplished by defining the elements in such a way that the
two sides of the branch fault merge at the junction (i.e., nodes

1 and 2 are actually the same node, as shown in Fig3d). This
model definition prescribes that slip on the branch fault goes
to zero as the branching junction is approached. This must be
true if there is no opening of the main fault because, as shown
in Figure3c, branch slip at the junction leads to opening of
the main fault. This default mesh definition implies no arti-
ficial algorithmic constraint if there is no fault opening, but
there is no physical basis to make this choice in the event of
fault opening.

Elastic and Elastic–Plastic Materials

For the model cases studied here, we use an homoge-
nous isotropic elastic or elastic–plastic material (see Table1
for a complete list of parameters). We specify a representa-
tive density (� ) of 2700kg=m3, as well as a Poisson’s ratio
of � � 0:25, and a compressional wave speed ofCp �
5200m=s. This results in a Young’s modulus (E � 61 GPa),
shear modulus (G � 24 GPa), and shear wave speed
(Cs � 3002m=s).

To simulate an elastic–plastic material, we use the
pressure dependent Drucker–Prager (D–P) yield criterion,
given by

�� � � p � b; (1)

whereb is the cohesion;p is the pressure (p � � � kk=3) for a
stress tensor (� ); �� �

����������������������
� 1=2�sij sij

p
is the second invariant of

the deviatoric stresssij , with sij � � ij � � ij p; and� is the
slope of the yield surface in the�� � p space (Fig.4). For the
initial stress states used here in which� 0

zz � � � 0
xx � � 0

yy�=2,
the D–P yield criterion coincides exactly with the M–C
criterion

max�� � � n tan	 � � c; (2)

wherec is the cohesion,	 is the angle of internal friction,�
and � n are the shear and normal tractions, respectively, on
any plane (� n, positive in compression, is defined by� n �
� ni � ij nj for surface normaln). For these stress states, the

(a) (b)

(c) (d)

Figure 3. Models used for discussion of branch point defini-
tion. (a) Fault bounded blocks. (b) Node discretization and surface
interactions. (c) Junction opening. (d) Model geometry used.

Table 1
Representative Material Parameters

� Density 2700kg=m3

E Young’s modulus 60.84 GPa
G Shear modulus 24.34 GPa
� Poisson’s ratio 0.25

Cp P-wave speed 5200m=s
Cs S-wave speed 3002m=s
R0 Slip-weakening zone size 40 m
f s Static friction 0.6
f d Dynamic friction 0.12
Dc Slip-weakening distance � 70 mm
t� Regularization time scale 6:66× 10� 4 s

j� 0
yyj Normal stress 100 MPa
b D–P cohesion 60 Pa–30 MPa
� D–P surface slope 0.51

 Plastic dilatancy 0.257–0.389
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two yield criteria are related byb � c cos	 and� � sin	 ,
although this exact agreement is lost as stresses vary during
rupture.

When off-fault plastic deformation is included, we
report contours of accumulated plastic strain (� pl

eq) as

� pl
eq �

Z
t

0

d� pl

dt0 dt0; (3)

whered� pl �
��������������������
2depl

ij depl
ij

q
, anddepl

ij � d� pl
ij � � ij d� kk=3 for a

strain tensor (� ).
When investigating fault opening at the junction, we

consider a range in cohesive strengths. If a representative
normal stress at seismogenic depth isj� 0

yyj � 100 MPa,
the cohesive strengths we consider have the range60 Pa�
b � 30 MPa. This is the same as an M–C cohesive strength
of 70 Pa� c � 35 MPa, andc � 35 MPa is a high cohesive
strength for a range of rock types (Carmichael, 1982). If we
assume that the fault is well developed and multiple ruptures
have passed through, the fault will be surrounded by highly
granulated rock. When that rock can be regarded as effec-
tively cohesionless,b � 60 Pa is the representative cohesion
value (given its smallness compared to stress changes of
order one to several MPa during rupture). If, however,
significant cementation occurs during the interseismic time,
cohesive strength can be partially or fully regained and high-
er values for cohesion are relevant.

We also allow some amount of dilatancy, and sometimes
hardening, to occur during the plastic deformation. We
define the dilatancy factor
 as the ratio of an increment
of volumetric plastic strain (d� pl

kk) to an increment of shear
plastic strain (d� pl) such that


 �
d� pl

kk

d� pl ; (4)

whered� pl is defined as in equation3. The range for
 is
0 � 
 � � , where
 � 0 is nondilative and
 � � is asso-
ciated flow. We investigate dilatancy values of
 � 0:256
and 0.389. Material hardening (h > 0) or softening (h < 0)
is defined as

h �
db

d� pl ; (5)

and it describes how the yield surface shifts as plastic shear
deformation occurs (Fig.4). If h > 0, the yield surface shifts
up in �� � p space, and the material gains cohesive strength
(i.e., it hardens). Ifh < 0, the yield surface shifts down, and
the material can lose all cohesive strength (i.e., it softens).

Fault Constitutive Behavior

This study differs from many earlier works of fault rup-
ture propagation by the implementation of a regularized form
of slip weakening. The linear slip-weakening formulation
proposed byIda (1972)and the general slip-weakening form
proposed byPalmer and Rice (1973)depend only on slip, but
the regularized form introduces a time scale that builds on the
slip-weakening formulation as described in the following
two sections.

Linear Slip Weakening.We define f sw as the slip-
weakening coefficient of friction, which depends on the
amount of slip on the surface (s � s�x; t� ), wherex is position
and t is time. The strength of the surface (� ) depends on
the coefficient of friction (f ) and the normal stress
(� n � � ni � ij nj ) such that

� � f � n; (6)

wheref � f sw, except in the region of rupture nucleation
(discussed in the sectionRupture Nucleation).

We adopt the linear slip-weakening formulation (Fig.2b)
in which the coefficient of friction (f sw) decays linearly from
a peak static value (f s) to a residual dynamic value (f d) over
a characteristic amount of slip (Dc) according to the law

f sw�s� �
�

f s � � f s � f d� s
Dc

; s < D c
f d s � DC

: (7)

Using this law, the strength of the fault linearly decays from a
peak value of� p � f s� n to a residual value of� r � f d� n. In
the event of fault opening,f sw does not continue to evolve.
This is because there is no accumulation of slip in its sense as
the variable on which the friction coefficientf sw depends,
although the surfaces can continue to displace tangentially
relative to one another. If contact across the fault is later re-
established (not a phenomena observed in most simulations),
the evolution of friction resumes from its prior potentially
weakened value.

This formulation does not take important dynamic
weakening effects into account but has successfully been

Figure 4. The D–P yield surface is defined by a cohesion (b)
and a slope (� ). Hardening (h) shifts the yield surface as plastic
deformation (� pl) occurs. The initial stress state is represented by
a point in this space.
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used to model earthquake rupture in single fault models (e.g.,
Duan and Oglesby, 2005), fault step models (e.g.Harris and
Day, 1999), and branched geometries (e.g.,Aochi et al.,
2000; Kameet al., 2003; Templetonet al., 2009).

A length scale that arises is the slip-weakening zone size
(R), the distance between the crack tip and the area of the
fault that has undergone complete weakening (Fig.2a). At
low speeds and largeS, R � R0 and a relation betweenR0
and Dc can be found for a similar slip-weakening law in
which the strength of the fault decays linearly in space rather
than with slip (Palmer and Rice, 1973);

R0 �
9

32�1 � � �
GDc

� � p � � r �
; (8)

whereG is the shear modulus and� is Poisson’s ratio. This
can also be expressed in terms of the fracture energy (G),
whereG� Dc� � p � � r �=2. We use equation(8) to determine
the ratioDc=R0 implemented in the numerical model and
maintain a resolution of 40 elements inR0. Rice et al.
(2005) estimated that a representative value forR0 is 20–
40 m for midcrustal continental earthquakes.

Regularized Friction Routine.We implement a regularized
friction routine based on the oblique shock experiments of
Prakash and Clifton (1993)andPrakash (1998), who showed
that there was no instantaneous response in shear strength to
changes in normal stress. The recent laboratory study of
Lozos and Kilgore (2010), which repeated theLinker and
Dieterich (1992)experiments with improved instrumenta-
tion, suggests that no instantaneous change may be the prop-
er interpretation in those too, thus resolving the apparent
disagreement with the findings ofPrakash and Clifton (1993)
andPrakash (1998)

We implement a friction law with a simplified form from
that suggested byPrakash and Clifton (1993)and Prakash
(1998). For that, the shear strength (� ) evolves over a finite
time scale (t� ) with the relationship

d�
dt

� �
1
t� � � � f � n� ; (9)

where� � t � 0� � f s� n andf is generallyf sw, except in the
area of rupture nucleation (see the following sectionRupture
Nucleation). This form was investigated for its stability prop-
erties inRanjith and Rice (2001)for its ability to regularize
the ill-posed problem of sliding at constant friction between
two dissimilar elastic bodies and implemented inCochard
and Rice (2000)for that case. The bimaterial problem is
ill-posed because as the wavelength of the perturbation
decreases, the growth rate diverges (Cochard and Rice,
2000; Ranjith and Rice, 2001). While we do not model a
material contrast here, use of this law is justified based on
observational constraints (Prakash and Clifton, 1993; Pra-
kash, 1998; Lozos and Kilgore, 2010), and it has the added
benefit of reducing numerical noise that develops in the

ABAQUS contact implementation after the rupture tip
passes, and sliding at constant friction occurs.

This implementation results is zero instantaneous
change in the shear strength of the surface in response to an
instantaneous change in normal stress (Fig.2c). Ideally t�

should be much larger than the numerical time step (� t)
yet very much smaller than the time to undergo slip
weakening (T). Here we uset� � 2� x=Cs, where � x is
the element dimension in the direction of slip. The stable
time step can be approximated by� t � � x=

���
2

p
Cp. The

time to undergo slip weakening depends on the rupture ve-
locity and is of the orderT � R0=Vr � 40� x=Cs, where 40
is determined by our resolution. This results int� � 2:5� t
and T � 20t� , but time steps are often smaller than this
approximation, andT decreases as the rupture velocity
increases. For most models in this study, these parameter
choices result int� � 7:5� t andT � 7t� , making this a rea-
sonable choice fort� .

We implicitly integrate equation(9) so that at time step
m, � m and � m

n are related by

� m � � m� 1 � �
� t
t� � � m � f m� m

n � : (10)

Then, the shear stress on the fault surface is prescribed as the
minimum of � (from equation10) and � stick (the stress re-
quired to bring the slip velocity to zero at the end of the next
time step). In the case of fault opening and eventual reclo-
sure, the stress evolution continues to obey equation(10), but
the value of� m� 1 is the shear stress on the surface at the time
just before opening.

To understand the effect of using this law, Figure5shows
a direct comparison of the slip and shear stress profiles of a
propagating rupture for both the regularized and traditional
nonregularized slip-weakening formulation. The friction
values for this comparison aref s � 0:6 and f d � 0:12,
and anSratio ofS � 1:8 is used. Both ruptures are traveling
at Vr � 0:86Cs when they cross the observation point (ver-
tical line in Fig.5), but the regularized friction law requires a
longer crack length to reach the same velocity. The slip dis-
tribution is very similar for the two cases, just behind the crack
tip, but the regularized case has a larger physical distance over
which the shear stress decays from peak to residual values
(Fig.5b). Although strictly speaking, equation(9) shows that
� never reaches� r in finite time; it does approach� r in finite
time, the duration of which is set by the value chosen fort� .

The time and slip histories at the observation point are
shown in Figure6 for the regularized and nonregularized
cases. The time history illustrates that, as expected, it takes
longer for a point to undergo slip weakening with the reg-
ularized routine due to the noninstantaneous response in
shear strength to a change in the friction coefficient. The
slip-weakening curves in Figure6 show that whileDc is
the same for both cases, the effectiveDc is increased when
the regularized friction routine is used. This results in a high-
er fracture energy (G) for the regularized case.
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In theAppendixwe provide an estimate to this increase
in Gfor a choice oft� andVr . We also show that there is an
approximate way to tailor parameter choices (specifically
Dc) of the regularized law so as to agree with a desired frac-
ture energy. We note that these parameters depend on the
rupture velocity at which the desired fracture energy should
be attained. As the rupture velocity increases, there is a
Lorentz type contraction of the slip-weakening zone, and
therefore the time to undergo slip weakening is reduced.
Because we have introduced a time scale through the use
of t� , and the time to undergo weakening is dependent on
the rupture velocity, the specification of regularized routine
parameters depends onVr (see equationA17).

With the use of the regularized friction routine, the
branch activation results can differ from the case of tradi-
tional linear slip weakening. However, the small subset of
cases that are affected by this choice have initial conditions
that are near the transitional regime between branch activa-
tion and no branch activation. The general trend of the results
(i.e., more or less likely to branch with variation of a given
parameter) is not affected by the choice of regularized or
nonregularized slip-weakening routines.

Rupture Nucleation

To nucleate rupture, we use the forced expansion of a
crack (Andrews, 1985; Dunham and Rice, 2008). Nucleation
starts by weakening at a point (x � 0) and forcing the growth
of the weakened region by prescribing a nonconstant lower
coefficient of friction (f e � f e� x� ) over a growing patch.
The weakened patch has a transition off e, from f s (at
the edge) tof d (toward the middle), that occurs linearly over
a distanceR0. At the boundaries of the weakened patch
(df e=dx � 	� f s � f d�=R0) for expansion in the	 x direc-
tion. The edge of the patch expands at a velocityVe �
0:144Cs, until the crack approaches an unstable size, and
rupture propagates spontaneously. The coefficient of friction
due to the expanding patch is determined by
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Figure 5. Comparison of the regularized slip-weakening fric-
tion law used in this study to the nonregularized slip-weakening
law. The lines are plotted at even time increments. The vertical line
denotes the position at which the friction history is reported in Fig-
ure6. (a) The slip distribution is similar, near the rupture tip, for the
two laws. (b) The regularized routine results in a larger physical
distance over which slip weakening occurs.
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Figure 6. Shear stress values at a point, as the rupture tip travels
at Vr � 0:86Cs. Regularized friction effectively increases the slip-
weakening distance. (a) Shear stress time history of the observation
point. Note that the time histories have been offset so that the peaks
align. (b) Shear stress evolution as slip accumulates (i.e., the slip-
weakening curve).
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f e� x; t� � max
�

f s �
f s � f d

R0
�Vet � j xj� ; f d

�
: (11)

The coefficient of friction on the surface (f ) is the lesser
of f e, due to the forced expansion, andf sw, which is deter-
mined by the amount of slip a point has experienced;

f � x; t� � minf f sw�s�x; t�� ; f e� x; t�g; (12)

and from this the shear stress on the surface can be deter-
mined by using this value for friction in the regularization
routine (see equation10).

Results

Conditions for Fault Opening
at the Branching Junction

We investigate under what conditions opening can occur
at the branching junction with both the elastic and elastic–
plastic material descriptions. This is a physical process, not
the result of an algorithmic artifact, that occurs when the
stress state on the fault becomes tensile. We will show that

opening can, and often does, occur for an elastic material.
However, with an elastic–plastic material, opening does not
occur except in the case of very high cohesive strength.

Compressional Side Branches.First we consider compres-
sional side branches, for which low angles of� are needed
for branch activation. For this principal stress orientation,
there is a relatively low main fault normal stress to keep the
main fault closed. We find that when the branch fault is ac-
tivated in a purely elastic model, opening occurs on the main
fault prior to the branching junction (Fig.7a). The fact that
opening can occur is in disagreement with a common mod-
eling procedure (traction-at-split-nodes) that prescribes no
fault opening (e.g.,Andrews, 1999), although modifications
to this procedure can allow for opening (Dayet al., 2005). A
split-node procedure that assumes no opening results in a
fault that supports a tensile normal stress.

Opening occurs in all elastic models with a low� , if the
full length of the branch ruptures. Opening begins shortly
after the rupture tip passes the junction and as slip is accruing
on the branch and main faults. Figure7ais shown for when
the rupture tip is12R0 away on the branch fault and another
4Dc of slip has accrued on the main fault. The compressional

Figure 7. Image of the branching junction some time after the rupture has propagated onto the compressive side branch and a small
distance along the main fault. Contours show the shear stress level (�� 0=� 0

yy � 0:82). (a) Opening occurs at the junction for an elastic off-fault
material. (b) Opening does not occur for an incohesive elastic–plastic material.
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side of the branch fault is moving up and to the right, result-
ing in the material pulling away from the main fault. Some-
times, rupture terminates quickly on the branch (Ls � 3:0R0)
and only a small amount of slip is able to accrue (s < D c). In
this case of partial branch rupture, no opening occurs, and the
default model setup introduces no algorithmic artifacts.

An analogous case is shown in Figure7b for an inco-
hesive elastic–plastic material, and we see that opening is
inhibited. For this constitutive model, cohesion is negligible
(b � 6 × 10� 7j� 0

yyj), the slope of the yield surface was
� � 0:51, and a dilation of
 � 0:256 was used. All other
parameters (S, � , Vr , and� ) are equivalent to the elastic case,
but due to the slower rupture acceleration for the elastic–
plastic model, the nucleation points differ. In Figure7b,
the rupture has propagated a distance of11R0 on the branch

but died out on the main fault after3:3R0, and an additional
6Dc of slip has occurred on the main fault, prior to the
junction.

Figure8a shows the distribution of plastic deformation
for this incohesive model, and it is clear that there is a
significant stress concentration at the junction. A spur of sub-
stantial plastic deformation, stemming from the triple junc-
tion, was the result (note the change in color contour levels
between columns one and two of Figure8). This spur may be
related to the conjugate spur noted byAndrews (1989),
although that was for an elastic analysis, and was also ob-
served in elastic–plastic analyses of rupture through a kinked
fault (Duan and Day, 2008). There is a small amount of plas-
tic deformation on the main fault after the branching junction
due to the continuation of rupture for a finite distance.

Figure 8. Plastic deformation for models with varying amounts of cohesion, increasing from (a) to (d). Column two is the same case as
shown in column one, but shows a close-up of the branching junction and uses a different color scale, because deformation is very high near
the junction. Column three shows the mesh deformation for a further close-up of the junction. (e) The only case that shows opening on the
main fault.
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The rupture propagation on the branch caused only a small
amount of plastic deformation around the branch fault,
although the width of this zone does increase with propaga-
tion distance. The deformed mesh geometry (column three of
Fig. 8) shows that the fault does not open for this incohesive
material description. The stress on the fault,� yy, is always
negative indicating that the fault does not undergo tension.

Effect of Finite Cohesive Strength on Opening.Compres-
sional side branches, in an elastic model, are prone to open-
ing on the main fault. An incohesive elastic–plastic model
can prevent this opening, and here we examine the effect
of finite cohesive strengths on the plastic deformation and
fault opening, while keeping� and 
 constant. Figure8
shows the plastic deformation for6 × 10� 7j� 0

yyj � b �
0:3j� 0

yyj and a close-up of the deformation and deformed
mesh geometry at the branching junction. Note that in all
of these models, the branch is activated, and rupture termi-
nates on the main fault close to the branching junction.
Although these have the same rupture behavior, at the junc-
tion the rupture velocity ranges from0:80Cs � Vr � 0:87Cs.
This is because the nucleation point is the same for all cases
shown, and the rupture accelerates faster for larger cohesive
strengths because less plastic deformation occurs.

As the cohesive strength increases, the extent of plastic
deformation decreases. This is because stresses far from the
fault are not high enough to reach yield when the yield sur-
face has been shifted away from the hydrostatic axis (�� � 0).
The distribution of plastic deformation in the immediate
vicinity of the branching junction (column two of Fig.8)
is not significantly different as the cohesion changes. There
are spurs of high deformation stemming from the junction
for all cohesive strengths, but the precise size, shape, and
amount of plastic deformation varies with cohesion. For
low cohesion, there is plastic deformation on the entire com-
pressive side of the fault (referring to column 2 of Fig.8
only). The only case that exhibits significant opening on
either fault is the case ofb � 0:3j� 0

yyj (Fig. 8e). For slightly
less cohesion (b � 0:2j� 0

yyj), opening can occur, but not until
long after the rupture has passed the branching junction.

Carmichael (1982)reports that cohesive strengths of
igneous, sedimentary, and metamorphic rock types are in
the range0 < c � 45 MPa, with most values falling below
30 MPa and equally distributed between 0 and 30 MPa. If
a representative normal stress at seismogenic depth is
100 MPa, theb � 0:3j� 0

yyj andb � 0:1j� 0
yyj models repre-

sent a cohesive strength ofc � 35 MPa and 11.7 MPa,
respectively. These two cases are representative of pristine
rock, whileb � 0:01j� 0

yyj might approximately represent a
highly granulated rock that has regained a minimal amount
of cohesive strength through cementation during the inter-
seismic period. Substantial opening occurs ifb � 0:3j� 0

yyj,
which is at the high end of pristine rock cohesive strength
values at depth. For the cohesive strengths that may be
reasonable for a mature rock system (Fig.8a–c), there is
no opening at the junction.

The results forb � 6 × 10� 7j� 0
yyj can be applied to all

depths because the material is effectively incohesive. For lar-
ger cohesive strengths, there is a difference between rupture
at depth and rupture near the surface. Closer to the surface,
where the effective normal stress is lower,b � 0:3j� 0

yyj
would represent a cohesive strength less than that of pristine
rock. But high cohesive strengths may not apply to damaged
near-surface rocks because observations of exhumed faults
indicate a large degree of pulverization (e.g.,Chesteret al.,
2004; Doret al., 2006). The degree of cementation during the
interseismic period will depend on, among other things, the
availability of pore fluids and the temperature, so it is not
straightforward to quantify the degree of cementation at
depth versus near the surface.

Finite Cohesive Strength with Material Softening.Opening
occurs for the case ofb � 0:3j� 0

yyj, which may represent the
response of a rock that has regained all of its cohesive
strength due to cementation during the interseismic process.
We have assumed that the rock has a perfectly plastic
response, but softening is a real feature of plastically deform-
ing rocks. This softening occurs as off-fault damage is reac-
tivated due to the high stresses around the rupture tip. This
reactivation results in a loss of cohesive strength and the
yield surface is shifted closer to the hydrostatic axis.

In Figure9 we show the deformation around the branch-
ing junction for a range in softening (i.e., negative hardening)
values� 0:1G � h � 0. Depending onh, the material will
lose all cohesive strength after differing amounts of strain.
From equation(5) we see thatd� pl � db=h. Therefore, a co-
hesive strength ofb � 0:3j� 0

yyj will be lost after 1.2% strain
if h � � 0:10G and 12% strain ifh � � 0:01G, using the
parametersj� 0

yyj � 100 MPa andG � 24:3 GPa.
The nature of the plastic deformation distribution

changes as the material softens. This is due to localization
of the plastic deformation, which is in accord with the estab-
lished theory ofRudnicki and Rice (1975). There is a non-
zero critical hardening for the plane strain conditions
modeled here, under which localizations can develop. Loca-
lization occurs whenh < h cr, wherehcr depends on� , 
 , and
on the ratios of principal stresses. So localizations, for a gi-
ven stress state, can be inhibited by increasingh, or suitably
changing
 or � . By usingh < 0 we are promoting localiza-
tions, because as the material deforms it loses strength and
becomes easier to deform. Due to these localizations, our
treatment of the softening is somewhat ad-hoc. We do not
have a tractable unambiguously rigorous methodology for
resolving these features (e.g., with strain gradient or nonlocal
features assumed in the stress–deformation constitutive
relation, as reviewed inTempleton and Rice [2008]). Thus,
aspects of the localized deformations, as we model them,
have an inherent grid size dependence.

Of particular importance, regarding the introduction of
softening, is that with sufficient softening opening is inhib-
ited. With softening, the material approaches the incohesive
state as plastic deformation occurs, and opening is once
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again inhibited. With significant softening (h � � 0:1G) co-
hesive strength is quickly lost and opening does not occur.
For small amounts of softening (� 0:02G � h � 0), opening
of the mesh occurs and is visible to the naked eye (column
two of Fig. 9). For intermediate values of softening
(� 0:05G � h � � 0:03G), the fault initially opens, but as
strain continues to accumulate and cohesion is lost, the fault
opening cannot be sustained and the fault closes.

Hardening (h > 0) can cause opening for material
parameters that would not otherwise open. Forh � 0:03G
and b � 0:01j� 0

yyj, the main fault will eventually open a
small amount, while with no hardening, it stays closed
(Fig. 8b). By introducing hardening, the material gains
cohesive strength as plastic deformation occurs, but this ma-
terial response does not describe how real damaged material
plastically deforms.

Branches on the Extensional Side of the Fault.We also
examine the model response for branches that exist on the
extensional side of the fault. For an elastic model with
� � 47°, S � 1:0 and a rupture velocity ofVr � 0:80Cs,
both the branch and the main fault are activated. Opening
occurs on the main fault further along strike beyond the
branching junction, rather than prior to the junction as it did
for compressional side branches (Fig.10a, rupture has pro-
pagated22:9R0 past the junction on both faults). The nodes
on the branch also come out of contact, but the opening dis-
placement is small and cannot be seen in the image. For the
case of compressional side branches, opening begins almost
immediately after the branch begins to slip, but for exten-
sional side branches, opening only occurs when a substantial
amount of slip (� 12Dc) has accrued on the main fault and
rupture is no longer near the junction.

Figure10bandc shows the stress and plastic deforma-
tion for the same� , S, andVr as the elastic case, but for an
elastic–plastic material. The values for� andb are the same
as for the compressional side branch, but a larger dilatancy
value (
 � 0:389) is used here. This larger value inhibits lo-
calizations but does not effect the extent of plastic deforma-
tion. The rupture is far from the junction,25R0 on both of the
faults, and the elastic–plastic deformation inhibits opening at
and near the branching junction.

Off-Fault Plastic Deformation and Branch Activation

Off-fault plastic deformation changes the branch activa-
tion for both compressional and extensional side faults com-
pared to an elastic model (Fig.11). With an incohesive
material, plasticity can inhibit the activation of compres-
sional side branches and promote activation of extensional
side branches. Additionally, with an incohesive material,
fault opening does not occur and therefore the results are free
from algorithmic artifacts due to the node constraints placed
at the triple junction.

Figure 9. The addition of material softening to the strongest
cohesion case shown in figure8a only affects the plastic strain
in the area of the branching junction. Here we show the response
for increasing amounts of softening, which reduces the cohesive
strength and allows the plastic shear strain to localize. With suffi-
cient softening, fault opening no longer occurs. Softening is a real
feature of plastically deforming rocks, but the implementation here
does have an inherent grid size dependence.
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Compressional Side Branches.Figure 11a shows the
change in behavior for a compressional side branch with
S � 1:0, � � 13°, andVr � 0:80Cs. The branching results
are reported with thick lines that denote how far the rupture
propagated on each fault. Rupture will propagate the full
length of one of the faults, and while the other fault may not
fully rupture, a small amount of slip (generallys < D c)
accrues for some distance away from the branching junction.
If rupture terminates on one of the faults, the distance the
failed rupture propagated (Ls, normalized byR0) is reported.

For a purely elastic off-fault behavior, all but the largest
branch angle (� � 30°) have branch activation, and rupture
does not continue on the main fault. For� � 30°, a small
amount of slip occurs (s < D c) but dies out after a distance
Ls � 0:6. When the off-fault material behavior is elastic–
plastic, with 
 � 0:256 and negligible cohesion (b � 6×
10� 7j� 0

yyj), only the � � 15° branch is activated. The rest

of the branch fault angles are completely ignored and
rupture does not propagate on them for even a short distance
(Ls � 0).

To determine why these differences occur, we examine
the stresses around a propagating crack, as well as the stress
changes induced on the branch due to rupture propagating
past the junction on the main fault. The Coulomb Failure
Stress (CFS) accounts for increases in shear stress and de-
creases in compressional stress, both of which promote failure
through the linear combination� CFS� �� � f s�� n,
where� and � n are calculated for a specified fault plane,
and� n is positive in compression (King et al., 1994).

The branching results in Figure11are forVr � 0:80Cs,
so this is the rupture velocity used to examine the� CFS dis-
tribution. Figure12a shows the� CFS for both the elastic
and the elastic–plastic material model on all potential fault
planes radiating from the rupture tip at a specified distance

Figure 10. Image of the branching junction some time after the rupture has propagated onto the extensional side branch and a small
distance along the main fault. (a) Opening occurs at the junction for elastic cases. Vertical deformation is exaggerated by a deformation factor
of 20, only on the main fault to make the small opening visible. (b) and (c) Opening does not occur at the junction with an incohesive elastic–
plastic material behavior.
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(r ) from the rupture tip. Because the rupture accelerates more
quickly in the elastic material, the target rupture velocity is
reached for a much shorter crack length (L) in the elastic
case. For the elastic material,L � 11R0 andr=L � 0:034,
while for the elastic–plastic material,L � 33:4R0 and
r=L � 0:011. We use the distribution in Figure12 as a
qualitative assessment of the influence of elastic–plastic
deformation on the stress field. For both the elastic and the
elastic–plastic scenarios, the extensional side of the fault is
more highly stressed for failure. There is also a region of the
compressional side in which there is an increase inCFS. This
region spans a smaller� range for the elastic–plastic material
at thisr=L. It is this increase inCFSthat begins to nucleate
rupture on a compressional side branch, so the small� range
for the elastic–plastic material leads to less compressional
side branch activation.

We also examine the� CFSon a fictional branch as the
rupture propagates on the main fault. The rupture path selec-
tion is dependent on the interactions between ruptures on the
two faults (Bhatet al., 2007), so by looking at this stressing
we see how the main fault rupture alters the stress state on the
branch. In Figure12b andc, we consider branch angles of
� � 14° and 26°. At time one, the rupture is at the fictional
branch junction, and this is when the high stresses associated
with the rupture tip nucleate rupture on the branch. At times

two and three, the rupture has propagated past the junction a
distance ofa andb, respectively.

For the 14° branch at time one, both the elastic and
elastic–plastic materials result in an increase inCFS at the
junction. As the rupture propagates past (times two and
three), there are only small differences in the stress distribu-
tion (Fig. 12b). These small differences are consistent with
the identical behavior of the elastic and elastic–plastic branch
activation results for� � 15°. For the 26° branch, the stress
distribution at time one is different for the elastic and elastic–
plastic cases (Fig.12c). The elastic branch has an increase in
CFS at the junction, while the elastic–plastic branch has a
decrease inCFS. This decrease prevents rupture from ever
nucleating on the elastic–plastic branch. This is evidenced
by theLs � 0:0 values observed for� � 20–30° (Fig.11a)
and means that for an elastic–plastic material, compressional
side branches with a large branch angle are unlikely to
rupture.

Extensional Side Branches.Extensional side faults have a
very different response to the inclusion of off-fault plastic
deformation. For the elastic cases shown in Figure11b, with
S � 1:4, � � 47°, and Vr � 0:80Cs, only the � � � 20°
branch is activated. The other branch angles have a small
amount of rupture on the branch fault, but rupture terminates

Figure 11. Influence of off-fault plastic deformation on branch activation. (a) Compressional side branch. (b) Extensional side branch.
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quickly. However, when the off-fault material is elastic–
plastic, with negligible cohesion and
 � 0:389, all of the
branch angles investigated show rupture on both the branch
and the main fault.

There is also a change in the method of branch activation
when an elastic–plastic material is used. For an elastic model,
when the main fault rupture tip reaches the junction, rupture
nucleates on the branch at the junction and propagates uni-
laterally away. With the elastic–plastic model, rupture tries to
nucleate at the branching junction, but only a small pulse of
slip travels along the fault withs < D c. After some amount

of travel on the branch fault, the slip begins to increase and
complete dynamic weakening is attained (Fig.13). At this
point, rupture propagates away from the junction, but also
travels back towards the junction to rupture the entire branch
fault. We call this a delayed branch rupture. For� � 15°, this
occurs20R0 from the branching junction, but for all other
branch angles, this happens within a fewR0 of the junction.

To understand this behavior, we once again examine
the stresses on a fictional branch fault as the rupture propa-
gates on the main fault. Figure12d shows that there is a
big difference between the stress distribution around the

Figure 12. Change inCFSdue to rupture propagation for elastic and elastic–plastic materials (� CFS� �� � 0:6�� n). (a)–(c) Com-
pressional side branch. (d)–(f) Extensional side branch. (a) and (d) Stress distribution on all planes radiating from the rupture tip at a distance
r=L from the tip. (b), (c), (e) and (f) Change inCFSon a fictional branch due to rupture propagating past the junction on the main fault.
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propagating crack tip for the elastic (r=L � 0:023) and
elastic–plastic (r=L � 0:006) materials. For the elastic–
plastic material, the� CFS is smaller on the extensional side
of the fault than on the compressional side. At first glance,
this should make it less likely for rupture to initiate on the
extensional side elastic–plastic branches, but this disagrees
with the observed branch activation.

An analysis of the stress distribution on the branch, as
the rupture passes by, explains why the delayed rupture on
the branch occurs. At time one, for the elastic and the elastic–
plastic models, both the� � � 14° and� 26° branches show
an increase inCFS over the entirety of the branch. For the
elastic case, this is the maximum stressing felt on the branch.
But, for the elastic–plastic case, the maximum stressing
occurs as the rupture propagates past on the main fault. We
believe that it is this maximum peak that is causing the
delayed rupture on the branch. We also note that the peak
slowly increases in amplitude for the� 14° case and can
cause the rupture to take off at the long distance from the
junction that was observed. The maximum stressing level felt
by the compressional branch also occurs as the rupture pro-
pagates past the junction (for the elastic–plastic material), but
these compressional branch stressing levels are much lower
than the stressing levels felt by the extensional side branch.
Therefore, delayed rupture of extensional side branches can
occur, but this same effect does not apply to the compres-
sional side branches considered.

Artifacts from Branch Definition in the FE
Contact Formulation

There is no fundamental reason inherent to theFEmeth-
od that theFE mesh must be of the form used as our default
model setup (Fig.3d). An unfortunate feature of standardFE

program contact procedures, including ABAQUS, is that
only two nodes can be properly represented at the triple
junction. This is similar to codes that implement a split-node
contact interaction, which is typically written for two node
interactions and therefore cannot handle three nodes at the
junction either.

If only two nodes can be present at the branching
junction, the two possible configurations are: (1) continuous
through the main fault, and (2) continuous through the
branch fault. We consider a third configuration, for comple-
teness, that has only one node at the junction, and neither
fault is continuous. We find that each of these possible model
configurations results in a different rupture behavior at the
branching junction (Fig.14).

We test a few stress states with differentSratios on the
main and branch faults (S � 1:4, 1.8, 2.2, and 2.6 on the
main fault) but maintain a constant orientation of most
compressive stress (� � 13°) and rupture velocity (Vr �
0:86Cs) at the branching junction. The branching results
are reported in Figure14.

The default model is shown in Figure14a where the
main fault is defined as a continuous surface. If the main fault
does not experience stresses that would cause it to open, this
procedure is free of artifacts. On the branch, slip must go to
zero as the junction is approached because the mesh defini-
tion prohibits branch slip at the junction. This is how slip
must accumulate at the junction if there is no fault opening.
Otherwise, right lateral slip between nodes one and two
(Fig. 3b) would result in opening on the main fault prior
to the branching junction (Fig.3c). For this model definition,
the branch is chosen for lowS ratios and low branch angles
but largely neglected for a large number of stress states and
geometries investigated. Opening on the main fault only oc-
curs in the event that the branch fault is completely activated.
If rupture is not established on the branch fault ands < D c,
there is no fault opening.

The opposite model setup is shown in Figure14c in
which the branch fault is defined as the continuous surface
and the rupture must abruptly stop before continuing to pro-
pagate along the main fault. This allows for slip to occur on
the branch at the junction, and opening on the main fault
occurs. For this mesh geometry, the branch is chosen for all
stress states and branch geometries investigated, and the
main fault is largely ignored, except for a few cases where
both faults rupture.

The third case combines the previous two cases and
neither fault is continuous through the junction. For this
mesh geometry, the behavior is intermediate to the two
end members just discussed. The branch is taken more often
than when the main fault is continuous and less frequently
than when the branch is the continuous surface.

Discussion

The fault junction introduces complexities and there
are two main points that we will discuss. The first is what
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Figure 13. Slip distribution on the branch fault shown in
Figure11b (� � � 25°). The lines are plotted at equal time incre-
ments. Slip travels as a small pulse along the branch until a distance
of 3.0, at which point full dynamic weakening occurs and the rup-
ture goes bilateral to complete the rupture of the branch.
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is happening physically at the branching junction, and the
second is how this can be analyzed numerically.

Does Opening Occur at the Junction?

If slip occurs only on the main fault so that the branch is
completely neglected, there will be no opening on any faults
near the junction. If slip occurs on the branch at the junction,
opening of the main fault must occur (Fig.3c). Therefore, in
circumstances for which there is no opening of a fault, slip
must go to zero on the branch as the branching junction is
approached. This slip distribution on the branch is consistent
with the default model setup that we use. Figure3d shows
that for this setup, the elements on the branch at the junction
share a common node. This forces slip to go to zero at the
junction and is free of algorithmic artifacts if no fault

opening occurs. When opening does occur, there is no
longer a physical basis for the otherwise reasonable algorith-
mic choice that slip on the branch must vanish at the
junction.

However, we have shown that opening can occur if the
rupture propagates onto either a compressional or an exten-
sional side fault with a purely elastic material description.
For an extensional side branch, this opening is small and
does not occur until long after the rupture tip has passed
the junction. At the time of opening, rupture has been estab-
lished on both, or either, of the faults. Therefore, because
there is no physical opening until long after the rupture
passes, the model results, which indicate on which faults
rupture is established, are valid for extensional side branch
activation. This is because in the case of no opening, thisFE
model definition is free from numerical artifacts.
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Figure 14. Effect of the definition at the branching junction on the rupture path selection. The rupture prefers to propagate on the
continuous surface. All cases shown are for� � 13° andVr � 0:86Cs. As theS ratio changes, so does the rupture path selection.Ls
indicates the distance of terminated rupture propagation, normalized byR0.
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For a compressional side branch, opening occurs on the
main fault prior to the junction when the rupture has propa-
gated only a fewR0 along the branch. If rupture is not
established on the branch fault ands < D c, there is no fault
opening. The fault only opens if the branch fault is com-
pletely activated. We conclude that opening only occurs with
sufficient slip on the branch, which would allow the fault to
fully weaken. This weakening allows for a self-sustained
rupture on the branch, so opening is a result of the activation,
not the other way around. While the details of the model (i.e.,
slip distribution on the main fault at the branch) may not be
accurate at long time, the activation or disregard of the
branch fault is a valid result.

Fortunately, opening is unlikely to occur at depth for
these geometries, given the fact that stresses around the pro-
pagating rupture are high enough to cause plastic deforma-
tion (Poliakovet al., 2002). If the fault is mature, the material
in the vicinity of the fault should have lost most of its cohe-
sive strength. A noncohesive material description does not
show fault opening for any of the cases examined here, and
we discuss why in the next section. If there is cementation
during the interseismic period, some cohesive strength may
be regained, but even a cohesive strength ofb � 0:1j� 0

yyj
does not show fault opening. For the highest cohesive
strength considered here (b � 0:3j� 0

yyj), which is represen-
tative of a strong pristine rock (Carmichael, 1982), opening
occurs even with off-fault plastic deformation. But if the high
cohesive strength rock softens, which represents the reacti-
vation of initial damage to the rock that was partially healed
by cementation, opening may not occur. This softening is a
real process that the off-fault material will undergo. We note
that our treatment of softening uses a formulation that has
material beyond the localization condition and has a some-
what ad hoc character with some features of the solution
dependent on grid size.

Stress State in the Presence of Opening.For the initial
stress state used here (� 0

zz � � � 0
xx � � 0

yy�=2), the D–P yield
criterion is identical to the M–C yield criterion, and a non-
cohesive D–P yield criterion will intersect the origin in the
� -� space. This yield criterion requires that no principal
stresses be tensile. If a segment of the fault has opened, the
minimum compressive principal stress (� 3) goes to zero. As
such, Mohr’s circle must collapse to a point or it will intersect
the yield surface. This means that� 1 and� 2 must also go to
zero, and all stress components must vanish along an opened
fault wall. However, if there is cohesion, the yield surface
translates up and away from the hydrostatic axis, and a
Mohr’s circle of nonzero radius (i.e.,� 1 � 0) can exist with
� 3 � 0.

Now we examine the stress states that satisfy the inco-
hesive D–P yield criterion, equation(1) with b � 0. Our
model uses the D–P criterion and we determine under what
circumstances fault opening can occur. One solution to this
relation is that if one principal stress goes to zero, all prin-
cipal stresses go to zero (� 1 � � 2 � � 3 � 0). To see if this is

unique, we also search for a stress state in which yield occurs
(the yield criterion is satisfied), and only one principal stress
is zero (� 3 � 0). If one of the stresses (� 2) is nonzero, then
without loss of generality we can say that� 1 � �� 2, where�
can be positive, negative, or zero (note that we have made no
assumptions about the relative magnitudes of the principal
stresses).

Using this framework, we find that� is only real for
� �

���
3

p
=2 � sin60°. Because� � sin	 for the initial stress

state,� only exists for	 � 60°, which does not represent
most materials, including those assumed here. Therefore,
if � 3 � 0, there is no real value for� , and D–P can only
be satisfied if� 2 and� 1 also vanish. For an incohesive con-
stitutive model, if the fault opens, all stresses must vanish
along the opened surfaces.

Our results show that no stresses go to zero in the inco-
hesive case for all configurations studied, and consistently,
fault opening does not occur. For the elastic case, there are
no restrictions on stress state that can be attained, and fault
opening does occur without all stresses vanishing. For finite
cohesion, the response is intermediate to these two end mem-
bers, and opening occurs with sufficient cohesion.

Numerical Implementation

The FE method, at its core, is finding displacements of
nodes from which strains and stresses are calculated within
the element. Although a system of equations is solved for the
nodes, the basic principle of virtual work (including the
reversed inertial forces from density times acceleration of
d’Alembert) does not act on the nodes. Traction boundary
conditions are applied to surfaces, and this surface operation
is represented by an equivalent, by virtual work, force at a
node. There is no fundamental reason why node one (Fig.3b)
cannot have a force applied due to the traction on the branch
fault and another force due to traction on the main fault. With
both of these forces, theFE equations can be solved. The
algorithmic challenge regarding the triple junction arises
from the implementation of surface interactions within a
given program.

For ABAQUS, and programs with similar treatments of
contact interactions, the problem is that a node can only be
part of one surface. The surfaces are defined, and then their
interactions are prescribed (there is an interaction that defines
the main fault and an interaction that defines the branch). An
individual node cannot belong to two surfaces, if the two
surfaces participate in different contact interactions. This
is a result of the contact routine and not an inherent problem
with theFE formulation. In Figure3a, we see that there are
three distinct blocks that define the model, and there are five
planar surfaces. Three of these surfaces interact as the main
fault, and two of these surfaces interact as the branch fault.
Within the constraints of the contact routine, we are left with
a question regarding nodes one and two in Figure3b: do they
belong to the main fault surface or do they belong to the
branch surface?
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The traction at split-nodes (TSN) procedure is imple-
mented in many numerical models (e.g.,Duan and Oglesby,
2005; Dayet al., 2005; Ma and Archuleta, 2006). This meth-
od, discussed inAndrews (1999), is based on the assumption
of two nodes, one on each side of the fault, which only slide
past one another and do not open. There are forms of this
implementation that do allow for fault opening (Day et al.,
2005), but the assumption of two nodes interacting is still the
base of the formulation. Because it is assumed that only two
nodes are colocated, codes that use this procedure cannot
directly implement a geometry in which three nodes exist
at the junction. If only two nodes can exist, which node
should be removed?

These two questions, for different implementations, re-
duce to effectively the same algorithmic issue at the junction.
The solution is based on the physical processes that take
place at the junction. If rupture propagates onto the branch
and node one is allowed to slide up the branch, there will
be opening (Fig.3c). Therefore if opening does not occur
(a common assumption in theTSN implementation), slip
on the branch fault must go to zero at the branching junction.
This is consistent with our default mesh definition in which
nodes one and two are the same node (Fig.3d). And, because
there are now only two nodes at the junction, the interactions
are no longer ambiguous and this specification can be easily
implemented by contact or split-node routines. From this
definition we see that the two nodes that now exist at the
junction are part of the main fault, and the specification of
the contact interactions, inFE models like ABAQUS, is no
longer problematic.

Although we investigated the effects of alternate branch
definitions (Fig.14b andc), we do not think that these are
reasonable setups to use for the fault geometry investigated
here. Without one continuous planar main fault through
the model, these alternate definitions force the rupture to
abruptly stop on the main fault at the junction and jump onto
the main fault continuation. If the branch is completely
ignored, this results in a strange slip distribution on the main
fault, but rupture should be able to continue along the main
fault as if the branch was not there.

A final issue worthy of note is the specification of master
and slave surfaces in typical contact routines (Hallquist,
2006; ABAQUS Inc., 2007). Master surfaces are defined by
elements, and slave surfaces are defined by nodes. Slave
nodes cannot penetrate the master surface, but nodes on
the master surface can penetrate the slave surface. Due to the
large strains that occur at the junction, if the incorrect spe-
cification is made, an unreasonable amount of interpenetra-
tion is possible. This can be prevented by the specification,
for compressional side branches, that the slave surface
defines the right hand side of the branch fault in Figure3.

Conclusions

When addressing the problem of branched ruptures, it is
important to consider both the physical intricacies of the

deformation at the branching junction and the algorithmic
challenges in properly allowing for them.

Physical opening can occur at the triple junction if the
stress state is able to achieve a state of no normal stress across
the fault. This is possible and frequently occurs if the off-
fault material is elastic. Real rocks are not perfectly elastic,
and we have shown that an elastic–plastic material descrip-
tion can inhibit opening of the faults near the junction.

There should not be opening at the branching junction
unless the rock has a very high cohesive strength. For an in-
cohesive material, intended to account for zones of damaged
rock bordering maturely slipped faults, fault opening does
not occur. If some cohesive strength is regained due to ce-
mentation during the interseismic period, opening does not
occur unless there is a full recovery of cohesive strength to
pristine rock values. Material softening, which is a real
behavior of plastically deforming rocks, represents the reac-
tivation of initial damage. Within the uncertainties of mate-
rial localization and the inherent grid dependence of these
features, we find that sufficient material softening can inhibit
opening in cases of high cohesive strength. We conclude that
mature fault rocks, even those that have undergone interseis-
mic cementation, should not open.

Besides inhibiting opening at the junction, off-fault plas-
ticity strongly affects the branch activation. Compared to an
elastic case, compressional side branches are less likely to
activate with a noncohesive elastic–plastic material descrip-
tion, but extensional side branches are more likely to rupture.
The interactions between ruptures on the main fault and the
branch are complex, and it is possible to have a delayed rup-
ture on the branch fault driven by the stress field of the rup-
ture propagating on the main fault and its associated plastic
deformation.

We also discuss algorithmic issues that may arise due to
the presence of such a triple junction. When opening does
not occur, the behavior at the triple junction is simplified and
standard contact routines inFEprograms are able to properly
represent the physical situation. A mesh definition, in which
slip goes to zero on the branch fault as the junction is ap-
proached, is the only proper choice if there is no fault open-
ing. This is consistent with the way that we have defined the
FE model and results in an easily implemented numerical
procedure in otherFE and FD models. Thus, in the case
of no fault opening, possible artifacts of theFEmethodology
do not enter, and we suitably simulate the response of our
conceptual model (within limitations of grid refinements
and localizations). If fault opening does occur, we show that
alternate mesh definitions can drastically change the branch
activation results.

For an elastic model, fault opening can occur, but we
determine that our numerical algorithms are producing valid
results with our specified default geometry. For extensional
side branches, opening does not occur until long after the
rupture tip has passed the junction. Therefore, because there
is no physical opening until after the rupture has been estab-
lished on the faults, the branch activation results are valid for
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