Evidence for Methylotrophic Symbionts in a Hydrothermal Vent Mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>http://aem.asm.org/content/58/12/3799.full.pdf</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:14368994</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Evidence for Methylotrophic Symbionts in a Hydrothermal Vent Mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge†

COLLEEN M. CAVANAUGH,1* CARL O. WIRSEN,2 AND H. W. JANNASCH2

Department of Organismic and Evolutionary Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138,1 and Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 025432

Received 5 August 1992/Accepted 24 September 1992

Symbioses between chemolithoautotrophic bacteria and the major macrofaunal species found at hydrothermal vents have been reported for numerous sites in the Pacific Ocean. We present microscopical and enzymatic evidence that methylotrophic bacteria occur as intracellular symbionts in a new species of mytilid mussel discovered at the Mid-Atlantic Ridge hydrothermal vents. Two distinct ultrastructural types of gram-negative procaryotic symbionts were observed within gill epithelial cells by transmission electron microscopy: small coccoid or rod-shaped cells and larger coccoid cells with stacked intracytoplasmic membranes typical of methane-utilizing bacteria. Methanol dehydrogenase, an enzyme diagnostic of methylotrophs, was detected in the mytilid gills, while tests for ribulose-1,5-bisphosphate carboxylase, the enzyme diagnostic of autotrophy via the Calvin cycle, were negative. Stable carbon isotope values (813C) of mytilid tissue (−32.7 and −32.5‰ for gill and foot tissues, respectively) fall within the range of values reported for Pacific vent symbioses but do not preclude the use of vent-derived methane reported to be isotopically heavy relative to biogenically produced methane.

The discovery of thriving invertebrate communities surrounding deep-sea hydrothermal vents in the Atlantic and Pacific oceans (17, 33) has focused our attention on the use of both alternative energy sources and metabolic strategies in the deep sea. Rather than depending on photosynthesis as the base of the food chain, these communities appear to exist through bacterial chemosynthesis utilizing reduced energy sources in the hydrothermal fluids for autotrophic fixation of CO2. In addition to being the main source of food for vent filter-feeding and grazing organisms, chemosynthetic bacteria also occur in symbiotic associations with the major species of macrofauna typically found at vents in the Pacific, i.e., vestimentiferan tube worms, vesicomyid clams, and mytilid mussels. Considerable evidence indicating that these symbionts are chemolithoautotrophs, utilizing reduced sulfur compounds such as hydrogen sulfide available in the vent fluids as an energy source for the fixation of carbon dioxide as their primary source of carbon, has been presented (for reviews, see references 10 and 22). These procaryotic symbionts, occurring intracellularly within the tissues of these animals, thus provide their hosts with an internal source of nutrition while the hosts supply the bacteria with the inorganic substrates required for chemosynthesis.

This work was followed by the discovery of symbiotic associations between methylotrophic bacteria and certain deep-sea invertebrates (for a review, see reference 11). So far, all animals harboring methylotrophs are found in reducing sediments at cold seeps: namely, two new species of mytilid mussels from the base of the Florida Escarpment (12) and hydrocarbon seeps in the Gulf of Mexico (7, 14) and the tube worm Siboglinum poseidoni (phylum Pogonophora) from the central Skagerrak (34). On the basis of a variety of evidence, including the presence of intracytoplasmic membranes, these symbionts are believed to be methanotrophic, i.e., capable of using methane as their primary carbon and energy source.

In 1985, an active vent site at 23°N (Snakepit site) was discovered on the Mid-Atlantic Ridge (MAR). The first submersible dive to this hydrothermal site was made in 1986 (37). The invertebrate populations of the MAR vent sites are distinctly different from those found at Pacific vents and are dominated by a single species of shrimp (38). A few mussels of a new species of the family Mytilidae (as yet unnamed [37a]) were observed and collected at the Snakepit site in 1986 (37). Since the water chemistry of the MAR vent emissions is very similar to that of Pacific vents (8), it could be assumed that these mytilids would also harbor sulfur-oxidizing chemosulfur autotrophs within their gill tissues. Instead, ultrastructural features, as well as enzymatic and biochemical evidence, suggest that in contrast to the Pacific hydrothermal vent bivalves, the MAR hydrothermal vent mytilid harbors methylotrophic symbionts within its gills.

MATERIALS AND METHODS

Organisms. Mytilids were collected in January 1990 from the MAR 23°N hydrothermal vent site (Snakepit; depth, 3,476 m) by using DSRV (deep-submergence research vehicle) ALVIN. The area of collection on the southwest mound showed shimmering water in much of the region around the mytilids. Four animals were collected with a dip net, put into an insulated container while the submarine was on the ocean floor, transported to the surface, and transferred to chilled seawater (4°C) before being processed. Specimens were either dissected aboard the ship and fixed for electron microscopy or frozen whole at −70°C. The latter specimens
were transported to the laboratory on dry ice and stored at −40°C.

Methylobacterium extorquens AM1, a free-living methylo- tropic bacterium used as a positive control for enzyme assays, was grown for 48 h on methanol in ammonium mineral salts (NMS) medium (23). Cells were pelleted at 12,000 × g, washed in chilled medium, repelleted, and frozen at −70°C or used immediately.

Microscopy. Pieces of gill tissue dissected aboard the ship were stored fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.0, for 3 weeks until they were returned to the laboratory. Tissues were then dehydrated through an alcohol series and embedded in Spurr’s. Thin sections were stained with lead citrate and uranyl acetate and examined with a Hitachi 7000 transmission electron microscope operating at an accelerating voltage of 60 kV.

Enzyme assays. Mytilid gill and mantle tissues were tested for activities of enzymes which are diagnostic of autotrophy and methylothrophic. Cell extracts were assayed for ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) by using the procedure of Beudeker et al. (4) as modified by Nelson and Jannasch (30). Methanol dehydrogenase (MeDH) was assayed by the method of Anthony and Zatman (3).

Tissues from two whole frozen mytilids were dissected, weighed (−0.5 to 0.75 g), and homogenized in 4 to 5 volumes of the appropriate assay buffer. Spinach, serving as a positive control for RubisCO, was treated similarly. *M. extorquens* AM1, a positive control for MeDH, was resuspended in 2.0 ml of NMS medium without methanol. Tissue homogenates and the *M. extorquens* AM1 cell suspension were run through a chilled French press (9,000 lb/in²), and cell extracts were prepared by collecting the supernatant after centrifugation for 4 min at 14,000 × g. Both crude homogenates and cell extracts were tested in initial experiments; activities were comparable, so subsequent experiments used only cell extracts to reduce absorbance by cell debris. For each specimen, activities were determined at three different concentrations (ranging from 35 to 300 µl) of cell extract. Protein was determined by the Coomassie brilliant blue dye binding technique (6) with the Bio-Rad Laboratories assay kit.

Stable isotopes. Stable isotope ratios, an indication of possible food sources, were determined by standard methods (5, 39) in the laboratories of Brian Fry (Ecosystems Center, Marine Biological Laboratory, Woods Hole, Mass.) and Joseph Montoya (Harvard University). Dried samples of gill, foot, and mantle tissues were combusted in sealed tubes by the Dumas method and analyzed on an isotope ratio mass spectrometer. Isotope values are calculated relative to the standards Pee Dee Belemnithe and atmospheric nitrogen by using the standard delta notation δX = [(R sample/R standard) − 1] × 10³, where X = ¹³C or ¹⁵N and R = ¹³C/¹²C or ¹⁵N/¹⁴N.

RESULTS

Microscopy. As in other deep-sea mytilid-bacterium symbioses, the gills of the MAR mytilid were thick and fleshy compared with those of symbiont-free species such as *Mytilus edulis* and *Modiolus demissus*. Examination with transmission electron microscopy revealed other overall similarities. The gills comprised epithelial cells (bacterio- cytes) containing numerous subcellular inclusions resembling proaryotic cells, interspersed with symbiont-free intercalary cells (Fig. 1). The symbionts, as the bacterium-like inclusions will be referred to, had gram-negative cell enve-
Observation of two types of symbionts in the MAR mytilid (Fig. 1 and 2), distinguished by both size and presence of intracytoplasmic membranes, parallels transmission electron microscopy observations of the Florida Escarpment seep mytilid symbiosis (12). It is not known for either of these mytilids whether the smaller symbionts are a different species or represent a developmental stage of a single symbiont. The latter is possible since methanotrophs may not develop stacked intracytoplasmic membranes when growing on methane under certain culture conditions (15, 32). In support of this, only a single type of dominant symbiont has been shown to exist in all invertebrate-chemoautotroph symbioses on the basis of 16S rRNA sequence analysis (20, 21).

However, phylogenetic analysis of 16S rRNA sequences indicates that there are two symbionts present in the Florida Escarpment mytilid (19a). The coexistence of two different species of bacteria in a single eucaryotic host cell is not common for metazoan-procaryote symbioses, although it is well documented among protist-procaryote symbioses (see, for example, references 25 and 36). Pending fresh material collected from the MAR site, further characterization of the MAR mytilid at the subcellular level, using immunological detection of autotrophic or methylotrophic enzymes and in situ localization of symbiont 16S rRNA, will allow us to address this issue.

Stable carbon and nitrogen isotope analyses have been
used extensively to examine trophic relationships between organisms and to establish the dependence of vent species on organic material produced via chemosynthesis or methanotrophy (for a review, see reference 16). Unlike the other invertebrate-methanotroph symbioses (7, 31, 34), the stable carbon isotope signature of the MAR mytilid provides a few clues as to the symbiont carbon source. The MAR mytilid δ¹³C values, ranging from −32.7 to −35.6% (Table 2), show no unusual depletion indicative of a biogenic or thermogenic methane source but rather are similar to those reported for Pacific vent bivalve-chemolithoautotroph symbioses (16). These values do not preclude the use of vent-derived methan, which is likely to be similar to the isotopically heavy hydrothermal-fluid methane (δ¹³C = −15 to −17%) reported for the 21°N East Pacific Rise (40). Furthermore, the isotopic composition (δ¹³C) of methane from deep-earth natural-gas samples is reported to range from −25 to −80% (35).

TABLE 1. MeDH activities in mytilid symbiont-containing gills and in free-living methyloths

<table>
<thead>
<tr>
<th>Organism(s)</th>
<th>Enzyme activity (m)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mytilids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>4.4, 81 (2)</td>
<td>This study</td>
</tr>
<tr>
<td>Florida Escarpment<sup>b</sup></td>
<td>4–32 (2)</td>
<td>12</td>
</tr>
<tr>
<td>Louisiana slope</td>
<td>163 ± 43° (4)</td>
<td>9</td>
</tr>
<tr>
<td>M. extorquens AM1</td>
<td>173</td>
<td>This study</td>
</tr>
<tr>
<td>All methyloths</td>
<td>60–600<sup>d</sup></td>
<td>2</td>
</tr>
</tbody>
</table>

^a Expressed as nanomoles minute^{−1} milligram of protein^{−1}.

^b Lower values are for mytilids frozen for 1.5 years; higher values are for freshly collected mytilids.

^c Assuming protein accounts for 15% of tissue (wet weight).

^d Usual range.

The stable nitrogen isotope values of the MAR mytilid tissues, ranging from −4.2 to −10.5% (Table 2), fall within the range of those reported for symbiont-containing vent and seep bivalve tissues (δ¹⁵N = −12.0 to +1.8%) (16). These isotope ratios are quite depleted compared with those of nonvent deep-sea invertebrates (δ¹⁵N = +9.8 to +16.5%) (16) and with δ¹⁵N values for potential deep-ocean nitrogen sources (nitrogen +1%; nitrate, +4.5 to +7%; ammonia, +7%; and organic nitrogen, −1 to +6%) (1, 28, 29). Information on the availability and isotopic composition of nitrogen sources at the MAR vent site and on the symbiosis nitrogen assimilation pathways is needed to explain these depleted values.

While reduced inorganic sulfur, and not methane, is the electron donor for animal-bacterium symbioses reported for Pacific hydrothermal vent sites (22), the potential for the use of methane as an energy source at these sites nevertheless exists. Methane oxidation has been measured at the Juan de Fuca hydrothermal vent site for bacteria both in water samples and on the surfaces of invertebrates (18, 19). Methane is present in end member fluids at strikingly similar concentrations (range, 50 to 100 μM) at the MAR Snakepit site (13, 24) and East Pacific Rise sites (27, 40). Further studies are required to determine the biochemical versatility of the symbionts (one or two types) present as well as environmental conditions that may be specific for the MAR habitat.

ACKNOWLEDGMENTS

We thank Noellette Conway for supplying some of the isotope numbers, Mary Lidstrom for providing M. extorquens AM1, and Catherine Johnson and Stephen J. Molyneaux for technical assistance. We thank the R/V ATLANTIS II and DSRV ALVIN crews for their skillful help in obtaining our samples and also chief scientists Peter Rona and Geoffrey Thompson for their consideration and helpful discussions during the cruise. This work was supported by grants from the Office of Naval Research (N00014-91-J-1489) and the National Science Foundation (DCB 87-18799) to C.M.C. and by grants from the National Science Foundation (OCE89-22854 and OCE92-00458) to H.W.J., which we gratefully acknowledge.

REFERENCES

