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The bacterial symbiont of the hydrothermal vent tubeworm fixes carbon via the Calvin-Benson cycle and has
been shown previously to express a form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). The
gene cbbM, which encodes this enzyme, has been cloned and sequenced. The gene has the highest identity with
the cbbM gene from Rhodospirillum rubrum, and analysis of the inferred amino acid sequence reveals that all
active-site residues are conserved. This is the first form II RubisCO cloned and sequenced from a chemoau-
totrophic symbiont and from a deep-sea organism.

Hydrothermal vent environments are dominated by dense
assemblages of invertebrates which harbor chemoautotrophic
sulfur-oxidizing bacteria within their tissues. This nutritional
interaction between prokaryotic symbionts and various animal
hosts is dependent upon the biological fixation of inorganic
carbon by the symbionts and the subsequent supply of organic
carbon to the host in a manner analogous to the chloroplasts of
green plants and algae (reviewed in reference 2). Fundamental
to the initial and subsequent characterization of these symbi-
oses has been the detection of the key Calvin-Benson cycle
enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase
(RubisCO) (1, 8). The hydrothermal vent tubeworm Riftia
pachyptila is of particular interest with regard to its carbon
fixation abilities, as this animal completely lacks a mouth, gut,
or anus (13) but is capable of extreme size and high growth
rates due to its symbiotic association (16).

The primary carbon fixation step in the Calvin-Benson cycle
is catalyzed by RubisCO, which carboxylates ribulose-1,5-
bisphosphate with CO2 to yield two molecules of 3-phospho-
glyceric acid. The enzyme is found in two forms, called form I
and form II (30), which are distinct in primary and quaternary
structure (26), reaction mechanism, and kinetic isotope effect
(KIE) (22, 23). The form I RubisCO, found in the vast majority
of eukaryotic and prokaryotic autotrophs, consists of eight
large subunits and eight small subunits, with the holoenzyme
having a molecular weight between 500 and 560 kDa (26). The
form II enzyme is structurally less complicated, consisting of a
dimer of only two large (L) subunits found in either an L2
configuration (26), as in Rhodospirillum rubrum, or an L2-to-L6
configuration, as reported for other species (30). The two
forms are ;25% identical to each other at the amino acid level
(18). To date, the form II enzyme has only been characterized
at the nucleic acid sequence level from five prokaryotes (31)
and two dinoflagellates (17, 24).

The bacterial symbiont of the vestimentiferan R. pachyptila
has been shown to express a form II RubisCO (21). In this
work we report the cloning and sequencing of the cbbM gene,

which encodes a form II enzyme, from the R. pachyptila sym-
biont.

Bacterial strains, plasmids, and polyclonal antisera. The
Escherichia coli construct pRR2119 (ATCC 37846) was used to
generate probes for hybridization during library screening.
This clone harbors the plasmid pXG9 containing the cloned
form II RubisCO from Rhodospirillum rubrum (28). E. coli
INFaF9 (Invitrogen) was used for cloning steps and grown in
Luria broth supplemented with ampicillin (40 mg liter21).
Plasmid pCRII (Invitrogen) was used for subcloning, DNA
sequence analysis, and protein expression studies.

The lambda DNA library (see below) was screened with
polyclonal antiserum directed against the R. rubrum form II
RubisCO (anti-RrFII) (antiserum generously provided by
George Lorimer [DuPont]), which has been shown to be spe-
cific to form II RubisCOs and to cross-react with the R. pachy-
ptila enzyme (21). In all cases antiserum was used at a 1:3,000
dilution.

R. pachyptila genomic DNA library construction. Tubeworm
specimens used for genomic DNA library construction were
collected from a depth of 2,600 m using the DSV Alvin from
hydrothermal vents on the East Pacific Rise at the 13°N site
(12°489N, 103°569W; November 1987). The worms were trans-
ported to the surface in a thermally insulated container and the
symbiont-containing trophosome tissue was immediately dis-
sected on board ship. Tissue was homogenized in a 1:1 (wt/vol)
solution of ice-cold Riftia saline (46 mM imidazole, 0.46 M
NaCl, 30 mM MgSO4, 2.5 mM KCl, 10 mM CaCl2; pH 7.1) at
30 to 40% speed in an Ultraturrax homogenizer for 2 min on
ice. Symbionts in this solution were separated from host cells
on 80% Percoll density gradients according to the method of
Distel and Felbeck (6) with modifications.

DNA was extracted from the symbiont preparation by using
a 5 M guanidinium isothiocyanate solution (15). DNA (75 mg)
was sheared to an average size of 3 to 6 kbp by vigorous
passage through a 25-gauge needle in a 1-ml syringe. The
sheared DNA was blunt ended with mung bean nuclease and
ligated to EcoRI linkers, and 3- to 6-kbp fragments were
cloned into lambda gt11 (27). The library titer was estimated to
be 1.5 3 1010 PFU (25).

Library screening. Phage were plated and screened by stan-
dard methods on a lawn of E. coli Y1090 (25). Plaques were
screened for the expression of the form II RubisCO by incu-
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bation with anti-RrFII antiserum (25). Plaques which were
immunologically positive were rescreened with a 32P-labelled
BglII/SmaI fragment of the R. rubrum form II RubisCO de-
rived from plasmid pXG9 (28).

Two lambda clones were isolated. Inserts were amplified
from purified lambda DNA by PCR with primers specific to the
lacZ cloning region (Promega) and subcloned into the pCR II
vector for transformation into E. coli host strain INFaF9 and
subsequent DNA sequencing. The two clones are different
sizes, with insert sizes of ;3,300 bp for pRpR-1 and ;2,200 bp
for pRpR-2, and are oriented in opposite directions.

DNA sequence analysis. Oligonucleotide primer walking was
used to generate a double-stranded sequence for the region
encoding the form II RubisCO and immediate flanking regions
for both clones. Sequencing was conducted with the Applied
Biosystems Inc. (ABI) Dye Terminator Cycle Sequencing kit
under standard conditions, an Ericomp thermal cycler, and an
ABI model 373 automated sequencer. Sequences of regions
flanking the EcoRI cloning sites were also determined, by
using the M13 universal primers designated reverse and 240
forward.

Sequencing of a 1,678-bp region from both clones revealed
open reading frames with high identity to previously sequenced
cbbM genes (Fig. 1 and 2). cbbM is preceded by an in-frame
TAG stop codon at position 29 and then begins with an ATG
and proceeds 1,383 bp to a TAA stop codon, followed by a
putative hairpin loop beginning 27 bp downstream (Fig. 1).
The cbbM coding region is composed of 57.5 mol% G1C, and
a 461-amino-acid protein with a calculated molecular weight of
50,552 Da is predicted. Efforts to express active recombinant
form II RubisCO failed to yield enzyme with significant activ-
ity, suggesting that the recombinant does not fold properly in
E. coli or is posttranslationally modified by the bacterial sym-
biont. Therefore, biochemical characterization of this RubisCO is
currently being conducted on native enzyme.

Analysis of sequence flanking the EcoRI cloning sites re-
vealed the presence of an open reading frame sharing identity
to the LysR type regulator cbbR (not shown). This gene is
upstream of cbbM and in the opposite orientation. The de-
duced amino acid sequence of the cbbR element has 61%
identity with the cbbR of Chromatium vinosum (31) over the
region sequenced, which spans 71 residues at the 59 end.

Translation of the open reading frame and alignment with
other form II enzymes and a representative form I RubisCO
(Fig. 2) revealed strict conservation of residues known to form
the enzyme active site (11, 26), e.g., the specific lysine residue
which is carbamylated during enzyme activation and corre-
sponds to position 191 of the R. rubrum sequence. N-terminal
sequence analysis indicates that the first-position methionine
residue is posttranslationally cleaved (3), a situation encoun-
tered in plant RubisCO enzymes (12). Amino acid identity with
other form II RubisCOs ranges from a high of 76.2% with R.
rubrum to a low of 69.1% with the dinoflagellate Gonyaulax
polyedra. With regard to amino acid similarity, i.e., by compar-
ison of major amino acid biochemical groupings, the R. pachy-
ptila enzyme is most similar (89.2%) to the Rhodobacter sphaer-
oides form II enzyme and shows 78 to 89% similarity with all
the other form II enzymes. In contrast, the R. pachyptila
RubisCO shows only 22 to 32% amino acid identity with the
gene encoding the large subunit of representative form I
RubisCOs, including that of Spinacia oleracea.

The discovery of a form II RubisCO in a deep-sea organism
indicates that this enzyme is found in diverse settings and is not
as rare as once thought. Indeed, six other deep-sea symbionts
and two bacterial mats have recently been shown to express
this form of RubisCO (3, 20, 21). While both forms of

RubisCO are expressed in some free-living bacteria (30, 31),
the R. pachyptila symbiont appears to encode and express only
a form II enzyme. In the R. pachyptila symbiosis, hybridization
to a form I heterologous gene probe was not detected during
library screening or Southern analysis of trophosome DNA, in
contrast to earlier reports (29, 32), nor was a form I gene
product detected (21). Indeed, other researchers have also
failed to detect the gene encoding the form I enzyme in the R.
pachyptila symbiont, detecting only the cbbM gene (14). Phys-
iologically, the use of a form II RubisCO in this symbiosis is

FIG. 1. Nucleic acid sequence of the R. pachyptila cbbM gene. The deduced
amino acid sequence of the form II RubisCO is shown, with the putative Shine-
Dalgarno sequence and hairpin loop underlined. An asterisk marks the TAA
stop codon.
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not surprising, given that form II enzymes typically have a low
affinity for CO2 and that concentrations of CO2 are extremely
high in the blood of the tubeworm, where concentrations of
total dissolved inorganic carbon can be greater than 30 mM
(5).

The expression of form I and II RubisCO has recently been
suggested to account for the difference observed in stable car-
bon isotope ratios (d13C) of hydrothermal vent invertebrate-
chemoautotrophic bacterial symbioses (3, 21). These symbio-
ses fall into two groups based upon their d13C values, with
d13C 5 227 to 235% for mollusc symbioses and d13C 5 29 to
16% for tubeworm and shrimp symbioses (references 21 and
references within). Several hypotheses, such as carbon limita-
tion (9, 19), a C4-type pathway in the tubeworms (7), or the use
of isotopically different source CO2 utilized by the two groups
(4), have been proposed to explain the differences in d13C
values but have failed to be corroborated by experimental data.
The KIEs of the few form I (for S. oleracea, 29%; for Anacystis
nidulans, 22% [10, 22]) and form II (for R. rubrum, 17.8 to 23%
[10, 23]) RubisCOs examined by high-precision methods indi-
cate that the two forms fractionate carbon isotopes to differing
degrees. Given the high identity between the R. rubrum and R.
pachyptila cbbM sequences, the expression of a form II
RubisCO in R. pachyptila could account for the heavier isoto-
pic composition if the extreme values for the KIE of the form
II RubisCO are considered.

Chemoautotrophic symbioses and free-living chemoau-
totrophs represent a vast resource for examining different ad-
aptations that have occurred in RubisCO biochemistry and
evolution. These organisms promise to yield important new
information regarding enzymological adaptation, regulation,
and genetic diversity, as they inhabit many niches which are too
inhospitable for photoautotrophs. The examination of a
greater diversity of species for the form II RubisCO is neces-
sary to determine the distribution of this enzyme among au-
totrophs.

Nucleotide sequence accession number. The R. pachyptila
symbiont cbbM gene sequence has been deposited in GenBank
under accession no. AF047688.
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