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Introduction
For the 179 Americans that are caught in avalanches each year, timely re-
covery often means the difference between life and death. The goal of this
project was to design and build a prototype drone for a system to quickly and
automatically locate a buried victim, using an on-board antenna to receive a
signal from industry standard transmitting beacons. The design was based
on a quad-rotor platform and uses Arduino hardware to receive a beacon
signal and navigate the craft.

In broad strokes, this project is an effort to apply the new and exciting
technology of hobby drones to the well-established application of avalanche
victim recovery. Current avalanche beacon technologies suffer from challenges
associated with user operation. Slow or untrained human searchers are poorly
equipped to handle the challenges of a fast-paced search. The vision of an
entirely autonomous solution to this problem has guided the project from its
inception.

This idea has been little explored despite a proliferation of drone technol-
ogy in recent years. On one hand, all of the pieces of the project already exist
in one form or another. Avalanche beacon technologies continue to mature,
as do hobby drones and their application. This project builds on precisely
these preexisting pieces, to ask whether they can effectively work together to
create something new.

Throughout the project, I ran into challenges and roadblocks of all kinds.
Whenever possible, I looked toward existing solutions to guide my design
decisions or to justify admitting defeat on a particular difficulty, in order to
maintain my focus on the larger questions of how all of the pieces will work
together. As I hope I have conveyed, the real contribution of this project is
located at the intersection of these technologies, and it is there that I have
focused my energies.

While much remains to be done on this project, the results that I have
found all point to the viability of this project. This project isn’t close to
being ready to actually rescue someone, but the pieces are all in place and
ready for further development. More questions remain, but I hope that this
work will help to propel avalanche recovery technologies into the future.
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Background

2.1 Motivation: Avalanches in the U.S.

Last year alone, 38 Americans were buried and killed in avalanche accidents[1].
Worldwide, these numbers are even higher, with approximately 45% of vic-
tims caught in an avalanche surviving the experience[2][3]. Backcountry
recreationalists have traditionally had to simply accept the risks associated
with winter sports as part of the package. However, with the advent of
avalanche beacon technologies in the 1960’s risks have been reduced and
increasing numbers of people flock to avalanche terrain in the winter. As
beacon technologies have matured, trends of decreasing rates of avalanche
fatalities have been countered by a massive influx of recreationalists. Figure
2.1 shows historic data, as compiled by the Colorado Avalanche Information
Center (CAIC).

While it is not important to go into a detailed discussion about how and
why avalanches occur, it is useful to frame the problem in terms of a shared
basic understanding of the mechanics of an avalanche. When we talk about
avalanches, we generally mean a specific type known as a slab avalanche.
During normal winter conditions, snow bonds together with its neighboring
snow into the slab that gives these slides their name. In a slab avalanche, this
cohesive mass breaks loose from the substrate it is resting on and accelerates
downhill, sweeping anything in its path along with it.

In 94% of fatal avalanches, the slide is triggered by the victim or a mem-
ber of the victim’s party[4]. Once triggered, there is no escaping the downhill
tumble. Recreationalists are advised to do their best to stay afloat by “swim-
ming” through the slide, made difficult because of the low density of snow.
Once caught, a victim faces two main perils. Trauma accounts for around
a quarter of fatalities, while the remaining are due to asphyxiation[5]. In
the case where the buried victim is uninjured when the avalanche comes to
rest, time determines whether he or she will survive. Survival rates plummet
in the first 30 minutes of burial, to less than 20%[2]. It is clear then, that
minimizing the time necessary to find the victim is crucial and the defining
element of current rescue techniques.
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Figure 2.1: Trends of avalanche fatalities from 1950 to today[1]. The red line
represents the 5-year moving average.

Figure 2.2: Relationship between duration of avalanche burial and chances
of survival of winter recreationalists in Canada[2].
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Figure 2.3: This is an example of a standard avalanche beacon in search
mode. The direction indicator and distance (signal strength) readout are
clearly visible.

2.2 Current Rescue Techniques

The invention and proliferation of avalanche beacons was an incredible turn-
ing point in the history of avalanche precautions. A small, portable radio-
frequency transmitter worn on the body could be used to guide searchers to
the location of burial and turn an avalanche into an event that is actually
survivable. Today, beacons function both as transmitters and, in the case of
an avalanche, receiver units for a search party.

Because of the tight timeframe for recovery, searchers nearly always have
to be part of the victim’s party. This requires every member of a group to
wear a beacon while out recreating. Beacons cost between $250 and $500. It
is also imperative that each person also have a shovel and a long (collapsible)
metal probe to determine the depth of burial. Once the beacon has guided
searchers to the burial location, these tools are used to actually extract the
victim.

Beacons transmit a pulsed signal at 457 kHz, which can be received by
a different beacon operating in “search” mode, up to 30 or 40 meters away.
The first step of any search is traversing the slide path while looking for a
beacon signal. Once the initial signal has been obtained, the beacon indicates
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Figure 2.4: Magnetic radiation pattern of a loop antenna, like the one in a
transmitting avalanche beacon. The transmitting antenna is oriented verti-
cally.

a direction of travel and a distance, based on signal strength. Traveling in the
prescribed direction, the searcher knows that they have reached the victim
when a digital readout of signal strength starts to decrease. At this point,
the searcher uses the avalanche probe to physically locate the victim and
begins to dig he or she out.

Modern beacons are complex affairs, with multiple antennas and sophisti-
cated signal processing techniques to handle situations where more than one
person is buried or where the transmitting antenna is oriented sub-optimally.
Despite the various complexities, the underlying principles are relatively sim-
ple.

2.3 Electromagnetic Radiation at 457 kHz

Waves with a frequency of 457 kHz have a corresponding wavelength of
λ = 650 m. Because the boundary between near-field and far-field radi-
ation patterns is approximately given by λ/2π ≈ 100 m, and the average
range of a commercial avalanche beacon is between 30 m and 60 m, the re-
ceived signal exhibits a complicated near-field radiation pattern, such as the
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Figure 2.5: 2-dimensional slice of the radiation pattern in Figure 2.4. Imagine
this plot as a vertical view of the ground. The antenna is oriented horizontally
in the y-direction. These are the magnetic field lines seen by the receiving
antenna.

one shown in Figure 2.4. This plot, as well as the one in Figure 2.5, depict
magnetic field lines. The transmitting and receiving antennas in commercial
beacons are loop antennas, usually constructed by wrapping wire around a
ferrite core.

The receiving antenna receives a maximum signal when it is oriented
parallel to the line of magnetic flux at its particular location. The beacon
leverages this information to point a searcher along the flux line, allowing
the searcher to “follow” the curved path in toward the buried victim.

Because of the apparent difficulties associated with a vertically oriented
transmitting antenna like we see in Figure 2.4, (imagine taking a horizontal
slice of this field pattern—the flux lines only travel in a circle and don’t travel
in toward the transmitter!) new beacons actually have multiple antennas
and choose which one to transmit from based on measured orientation of the
transmitter unit.

In the near-field regime, the field amplitude falls off with a 1
r3

relationship,
while the power falls off with 1

r3
. Moreover, the transmitted power is on the

order of ∼0.1 W. This points to the intricacies of commercial solutions, and
also foreshadows some of the difficulties I faced later in the project.

2.4 The Hobby Quad-Copter

On the other side of the project, the remote-controlled drone is becoming
increasingly ubiquitous with every passing year. Specialized drones dot the
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skies, taking video, mapping, or simply flying. Drones follow complicated,
autonomous flight plans, or follow a transmitted signal from a cell phone.

Proprietary and open-source platforms have both achieved substantial
success in the market. DIY kits capable of autonomous flight are comparable
in price to a commercial solution, between $800 and $1,200. Notable work
has been done in the open-source arena by developers of the ArduCopter
software, as well as hardware developers such as 3DRobotics[6][7].

Looking at hobby quads on the market today, they certainly appear
ripe for applications related to avalanche victim recovery. As one might
expect, this project is not the first attempt to combine drone technology and
avalanche applications. However, some notable differences exist, as I describe
next.

2.5 Prior Art

Most of the work that has been done at the intersection between drones and
avalanches has been conducted in the Alps, where slightly different recre-
ational practices have led to somewhat different approaches. One major
difference is, with a single notable exception, the use of a different beacon
technology[8][9]. Additionally, because of the concentrated activity in the
Alps, these platforms are designed to be located a base stations and take off
in response to a report of an avalanche in the vicinity. In the United States,
backcountry use is much more spread out and would require any technology
to be carried with recreationalists. Effectively, these designs solve a funda-
mentally different problem. However, aspects of their design could be used
to motivate the current project.

In addition to these projects, a group in switzerland is reported to have
worked on a project very similar to the present one in 2011[10]. Unfortu-
nately, few details are available about their success or any continued work,
so it is unclear how far the project progressed and if it was ever built.

2.6 Defining a Successful Project

With this background, we now approach the challenge of defining the scope
and objectives of this project. The problem we face is that of designing and
building an automated search platform to locate a buried avalanche victim
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more efficiently and reliably than current methods. As demonstrated by the
prior art in this area, this task is more suited to a multiple-year development
timeline with a team of engineers.

Consequently, the goal of this current project was to demonstrate the
viability of a quad-rotor platform as an autonomous receiver. The project
is based on the assumptions that the victim is wearing a 457 kHz industry-
standard avalanche beacon. Additionally, I make the crucial assumption
that the receiver is already within the signal range of the transmitting an-
tenna. While this is only part of the search process, I restrict my attention to
this part because the conclusions are largely generalizable to the acquisition
phase of the search. In fact, the acquisition phase is actually much closer
to standard autonomous quad-copter flight, where the craft simply follows a
pre-determined path until the signal is picked up.

With this in mind, it is important that a successful project demonstrate
the craft’s ability to sense a signal, show directional sensitivity to the signal,
and be able to direct movement in response to the signal. Additionally,
the project should demonstrate that the functions of flying and of detecting
a signal do not interfere with one another. Ideally, all of these steps take
place while the Quadcopter is under its own power, but given the difficulties
associated with developing an autonomous craft, this should not be a strict
requirement for the project.

10



Design and Implementation
Considerations while designing this project ranged from price, to weight, to
electromagnetic signal interference from various sources. In order to describe
and work on each constraint, I broke the problem into discrete sections,
looking first at the quad-copter, signal processing, and algorithm modules
separately, and then considering constraints that are implied at the intersec-
tion of these different parts. Because my designs changed throughout the
project in response to unanticipated complications, the project design and
building process were intimately entwined. This section will walk through
each iteration of the project, describing design and fabrication decisions and
the influences each had on the other.

3.1 Quad-Rotor Platform

I will begin, as I did during the design phase of this project, by considering
the quad-copter as a platform that would help to achieve the stated goals of
the project.

3.1.1 Broad Platform Considerations

A successful platform design should address the following aspects of the broad
problem statement: Automation, Efficiency, and Reliability. While many
different platforms exist that satisfy these three tenants, secondary consid-
erations of ease of use and broad-based support for the platform suggest the
viability of the quad-copter platform. Certainly the sheer variety of different
applications shows the versatility of the quad-copter. It also easily satisfies
the requirements for Automation, Efficiency, and Reliability.

Automation is important because it allows a searcher to be uninvolved
in the search process, leaving their attention focused on other aspects of the
rescue. It also may eliminate operator errors that cost precious time. The
quad-copter, I have stated previously, has a demonstrated track record for
autonomous flight and in many cases is easily programmed to follow new
direction sets, an important aspect of any iterative design process.
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Efficiency takes into account the time needed to located an avalanche vic-
tim as compared to traditional search methods. One method for optimizing
this time is to increase the search speed. A searcher traveling on foot over
uneven avalanche debris will be much slower than an aerial craft.

Reliability is immensely important for a system that is involved in rescue
work. Any final design must be incredibly robust. Here again, the quad-
copter, with redundant thrust and demonstrated stability is an excellent
choice for an autonomous craft.

With the decision made to use a quad-rotor platform for the rest of the
project, the first task was to build and demonstrate a working quad-copter.

3.1.2 Initial Platform

Figure 3.1 depicts the platform that I started with. This was a project that a
friend1 and I worked on a few years ago. The platform I inherited consisted
of a frame, the motor electronics, an Arduino microcontroller to run the
motors, and a mess of broken code.

There were a few considerations that prompted me to start with this
frame. The most obvious was related to budget. With at $500 operating
budget, the price of existing quad-copters was too high to consider. Even
purchasing a simple frame would have proved cost-intensive and inefficient.
On top of that, the decision to purchase a different frame would have been
accompanied with a period of discovering how best to control the motors
with my custom software. Since this challenge is peripheral to the end-goal
of the project, I decided to stick with a frame that I was familiar with and
that I knew could physically sustain flight.

3.1.3 Flight Control Board

On the subject of flight, the inherited platform certainly had the physical
capabilities to fly, but it lacked the precise control algorithms necessary to
actually maintain flight. Again, because the challenges associated with writ-
ing and testing these control algorithms is entirely peripheral to the central
problem, I decided to use a good portion of my budget to purchase a com-
mercial flight control board that is designed to plug into a custom frame

1A huge thanks to Akeo Maifeld-Carucci for allowing me to use our platform for this
project!
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Figure 3.1: The initial quad-rotor platform.

and control the craft’s attitude and throttle based on inputs from integrated
sensors and information from a hobby remote control receiver.

The PixHawk[11] flight control board that I purchased is an open-source
product that runs similarly open-sourced ArduCopter[6] software. It includes
built-in GPS functionality and a variety of other features, which I hoped to
leverage for my project. An example of the configuration interface is found
in Figure 3.3.

3.1.4 Remote Control Transmitter and Receiver

In order to function the Pixhawk expects an input signal from a remote con-
trol receiver. It takes this signal and processes it to determine the control
loop setpoint, which allows a user to remotely control the vehicle. I used
a hobby RC transmitter/receiver pair that was readily available. The out-
put signal from the receiver was a 4-channel parallel pulse width modulated
(PWM) signal, for the 4 standard controls of roll, pitch, throttle, and yaw.
The difference between these controls is shown in Figure 3.6. However, the
Pixhawk expected a single input signal, a so-called pulse position modulated
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Figure 3.2: The final quad-rotor platform.

14



Figure 3.3: An example of the ArduCopter interface[12]. This screen al-
lows a user to configure the remote control transmitter/receiver pair, setting
maximum and minimum control values.

Figure 3.4: I used the Pixhawk flight controller for low-level stabilization of
the AvaDrone. The controller took inputs from an Arduino and provided
outputs to each motor controller[11].
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Figure 3.5: The flow of information from remote control transmitter to flight
controller.

Figure 3.6: Definition of the rotational controls, as used in this document[13].

(PPM) signal. I therefore connected an Arduino between these two signals,
and modified a library to enable the Arduino to translate between these two
protocols.

3.1.5 Arduino Functionality

While the Arduino was initially included as a simple translator, it later be-
came clear that placing the Arduino in the signal path would have other
benefits. Initially however, the Arduino passed the signal from input to out-
put with a minimal amount of processing or analysis. The code for this
translation step is contained within Comm Test 1.ino, in Appendix B.

In essence, this code takes and reads in 4 different PWM signals, looping
through and storing them in an array. The output signal is controlled by an
interrupt timer, which periodically checks the value stored in the array, and
outputs an 8-channel PPM signal.

I found that this process in the Arduino was somewhat noisy, so as an
added step of signal processing, I added a low-pass filter, averaging N number
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Figure 3.7: The flow of information in the final design. The inductor in the
RLC resonator also acts as the receiving antenna. See also Figure 3.14 for
schematic-level detail.

of input samples together before updating the expected output value. The
trade-off comes at the expense of speed, but this scheme was able to clean
up the signal without a noticeable loss in responsiveness.

The elegance of this implementation is clear when we consider the ease
by which autonomous control can be asserted in the control loop. Signal
processing in the digital regime is relatively low-cost and incredibly easy to
modify, allowing for a large number of design iterations in a short period of
time. I will discuss the algorithms I adopted in Section 3.3.

3.2 Antenna Design and Signal Processing

The other major portion of the project was an antenna to detect an avalanche
beacon signal at 457 kHz and pass that signal into an Arduino to interpret
and process. The basic flow of information that I ended up with is shown
in Figure 3.7. The corresponding schematic is shown later in Figure 3.14.
Each module was designed separately, usually in response to a problem that
I encountered along the building process.

Indeed, the initial design involved only an RLC Resonator and the analog
to digital conversion. I’ll explore the particular limitations and challenges
associated with this method in Section 3.2.2. However, my design began
with the instrument designed to take the transmitted signal and turn it into
useful information, the antenna.

3.2.1 Ferrite Rod Antenna

A signal with a frequency of 457 kHz has a wavelength of 656 meters. At
this low frequency, traditional half-wavelength dipole antennas are imprac-
tical and not typically used. The loop antenna is the usual choice for a
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Figure 3.8: I tested three different types of rod geometries, with various wrap-
ping geometries. The final design selected for high inductance and minimal
parasitic capacitance.

receiving antenna in this regime. One common example is the oft-seen loop
antenna for receiving AM radio. One technique that can be used to increase
the sensitivity of the loop antenna is to wrap wire around a magnetically sus-
ceptible core, either ferrite or similar. In fact, commercial avalanche beacons
also use this technique for their antennas, because it allows the receiver to
be much more compact for a given sensitivity.

I began with three different rod geometries to compare. They were be-
tween 1 and 2 in. long, and varied from 8 mm to 34 mm in diameter. I
closely examined two different geometries, and iterated through a number of
different versions, looking to maximize inductance and the resultant sensi-
tivity of the antenna. Some of these iterations are shown in Figure 3.8. My
findings are summarized in Table 3.1, which lists measured parameters for
various geometries.

Of the different antennas I measured, I was able to maximize inductance
while keeping parasitic capacitance to a reasonable level by selecting the
100-wrap, 560 µH antenna for testing. It is important to note that more
investigation could go into selecting an appropriate antenna design. This is
a topic that I will address again in Chapter 5.
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Table 3.1: Measured inductance and parasitic capacitance of various rod
geometries. The missing values are a result of not taking parasitic capacitance
into account in initial tests. Based on initial results, I opted not to retest
each geometry.

Rod
Length

(cm)

Rod
Radius

(cm)

Rod
Weight

(g)

Initial
Perme-
ability

Wire
Wraps

Induc-
tance
(uH)

Parasitic
Capacitance

(pF)

4.13 0.616 27.0 2000 25
4.13 0.616 27.0 2000 50 176
4.13 0.616 27.0 2000 100 560 64.6
4.13 0.616 27.0 2000 200 2200 187
4.50 0.400 11.9 2300 25
4.50 0.400 11.9 2300 50 140
4.50 0.400 11.9 2300 100

For a video showing an oscilloscope trace of the induced EMF in the
inductor from an avalanche beacon, see Inductor Induced EMF.MOV in the
submitted Supplemental Material. In this short clip, you can clearly see the
pulsed nature of the transmitter and the sensitivity to relative orientation.
The receiving antenna is located ∼3m away from the beacon, on top of the
breadboard which can be seen to the left of the oscilloscope.

Parallel vs. Serial RLC Filter

There was a decision made somewhere along the line to switch from a parallel
LC tank topography to a serial topography. The decision was made on the
basis of examining the input impedance of the subsequent power-meter stage.
In order to generate a high-Q filter, the input impedance of the next stage
should be large. Unfortunately, it happens to be a small, 50 Ω affair. It is
possible to achieve a large RIN by adding a large input resistance in serial
but this necessarily attenuates the signal, and so this seems to call for a serial
topography.

However, the LC Tank has the virtue of being able to store energy, so it
has the potential to actually provide gain when driven at resonance. These
competing factors, the necessary attenuation of the signal and the stored
energy seem to essentially cancel one another, as I discovered while testing.
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I kept the serial topography for the remainder of the testing, as you can see
in Figure 4.4.

3.2.2 Sampling with Arduino

My initial design involved directly sampling the signal from the antenna by
the same Arduino already located on the quad-copter platform. However, I
quickly discovered that the sampling frequency of the Arduino Uno that I
was currently using was nowhere near fast enough. By the Nyquist criterion,
any sampling would need to happen at twice the received frequency, around
1 MHz for this particular application. Moreover, we need additional room to
reconstruct a usable signal, even with a very steep anti-aliasing filter. This
suggests a goal sampling frequency of 2 MHz or higher.

I conducted tests with the much more powerful Arduino Due in order to
determine the maximum sampling frequency. What I discovered was that
the on-board A/D converter couldn’t run faster than about 800 kHz, despite
various optimizations and running a script that did nothing but take a sample
and store it in an array.

A quick discussion about the Arduino A/D is perhaps in order. The A/D
is clocked by a division of the system clock. It can be put into continuous
mode, which starts a new sample as soon as the last sample is complete[14].
In addition, the sampling rate can theoretically be increased by decreasing
the quantization. The Due generally supports 12 bit conversions, but can
also be told to ignore the two least significant bits. However, this mode
showed no appreciable improvement to speed.

Facing these limitations, I was left with the decision to either locate a
more robust microcontroller, a daunting task, or continue with the Arduino
and add an analog front-end to process the signal prior to sampling. With
the relatively straightforward solution that I discuss in the next section,
I decided against choosing a new microcontroller and all of the overhead
work that would be required to learn a new programming environment and
particulars of the microcontroller instruction set. In the future, it will likely
be necessary to revisit this design decision and update the microcontroller.
See Chapter 5 for more details.
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3.2.3 An Analog Solution

What became apparent was the necessity of designing a solution that con-
verted the amplitude of a low-frequency RF signal into a DC (or at least a
much lower-frequency) signal. One simple solution for this problem comes in
the form of a common envelope-detector. This circuitry basically amounts to
an AM demodulator, and is relatively easy to implement. However, because
the transmitted signal falls off like 1

r3
as you move away from the transmitter

( 1
r6

when considering power), the receiver circuitry needs a large dynamic
range. One solution to this problem is to use a logarithmic-scale RF power
meter, like the AD8362 from Analog Devices[15].

In addition to its logarithmic output, the AD8362 has a variety of char-
acteristics well-matched for this application. It is a wideband part, taking
inputs from 50 Hz to 3.8 GHz. This clearly includes the range around 0.5
MHz where the beacon signal is located, but unfortunately it also introduced
problems down the road. Without a pre-amplifier of any kind, the AD8362
can understand inputs down to ∼1 mV. At further distances, the signal from
the antenna would need to be amplified, but when located close to the trans-
mitter, no additional amplification circuitry is needed.

The output signal of this board is a DC signal that maps to a logarithmic
scale of 50 mV/dB. An input power of -52 dBm is mapped to 100 mV output.
This scale allows users to easily convert from raw voltages to signal power.

I was able to procure2 a printed circuit board with the AD8362 and the
auxiliary parts described in the Typical Use section of the datasheet[15] (see
Figure 3.9. From this building block, I was able to modify the circuitry to
suit my particular needs. One extra word about this particular board is in
regards to its included voltage regulator, which allowed me to easily power
it from the 12 V supply.

Board Modifications

Looking at Figure 3.9, we see that our input signal, in addition to being
amplified by a factor of 4, is passed through a high pass filter defined by the
value of C6 and C5. The differential input impedance is 200 Ω, so that after
the signal passes through the transformer it sees a standard 50 Ω. What this
means, though, is that the cutoff frequency for this high pass is given by the

2Thank you to Jim MacArthur for helping me track down this part and helping me to
work through the details of this particular sensing scheme.
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Figure 3.9: This is the approximate layout of my power meter circuit[15],
though some component values have been modified (see section on Board
Modifications for details).

formula,

fHP =
1

200 π C5
, assuming C5 = C6, (3.1)

and for the values listed in Figure 3.9 fHP = 15 MHz. I replaced the values
of C5 and C6 with 0.1 µF capacitors to get fHP = 15 kHz, allowing the
transmitter signal to pass through unattenuated.

3.2.4 Improved Filtering

After an initial round of testing, it became clear that the power meter was
receiving much more noise than it should. Indeed, one clear indicator was
the significant interference caused by the remote control transmitter which
operates at 72 MHz. These pointed to a problem with the assumed band-
pass capabilities of the RLC circuit, namely that at high enough frequencies
the inductor looks like a capacitor and the whole circuit resembles a high-
pass filter. Because I had not previously included any low-pass elements and
because the power meter has such a large bandwidth, these high frequency
signals contributed a large portion of the measured power.

To solve this problem, I designed the low-pass filter shown in Figure
3.11. It has the dual property of amplifying signals in the passband and
attenuating signals above the f3dB cutoff. I designed a single-supply amplifier

22



Figure 3.10: This is a picture of the AD8362 circuit board, as mounted on the
underside of the quad-copter. You can clearly see the modified capacitors and
the purple output signal wire in the picture foreground. Power is provided
by the global 12 V supply, rather than the optional 9 V battery.

Figure 3.11: The single-pole low-pass amplifier I designed, with a gain of 10
in the passband.
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and biased my input at half of the 12 V supply. Here are a few other key
design considerations:

• Input impedance is 5 kΩ, easily high enough for our 50 Ω input.

• The input stage is a high-pass filter with f3dB = 3 kHz. While it would
be possible to set this pass frequency higher, the observed operation of
the band-pass was that it is effective at blocking low-frequency signals
and therefore any additional filtering is largely redundant3

• Resistors R3 and R4 define a gain of 10 in the passband.

• The capacitor C2 in parallel with resistor R3 defines the low-pass filter.
f3dB = 1.5 MHz, so we maintain less than 10% attenuation in the
passband.

• The capacitor C3 functions to cut DC gain to 1, biasing the output at
half of the 12 V supply. In series with resistor R4, it creates a high-pass
filter with f3dB = 150 Hz.

• Output impedance is low, so that it can drive the 50 Ω power meter.

The actual implementation was somewhat different because of a limited
selection of parts, but achieved similar functionality nonetheless. The main
restriction was a dearth of operational amplifiers with a Gain Bandwidth
Product larger than 4 MHz. In order to account for this limitation, I re-
designed the amplifier, making explicit use of the decreasing op-amp gain.
Figures 3.12 and 3.13 show the updated schematic and the open-loop gain
bode plot for the LF412. As you can see, I entirely removed the low-pass
elements because of the gain compensation of the op-amp. The marginally
reduced complexity drove this particular design decision.

With this design, it was possible to see the amplification step as well as
the -6 dB/octave fall off of a single pole filter. More discussion on the filter
design as well as future improvements to the design are addressed in Sections
4.3 and 5.

3.2.5 Putting It All Together

The overall schematic is shown in Figure 3.14. While many improvements

3This is in contrast to the noise above resonance, which dominates.
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Figure 3.12: The low pass amplifier as implemented, with a gain of ∼6 in the
passband. The op-amp is the LF412, a JFET input low offset op-amp[16].

Figure 3.13: Open-loop gain as a function of frequency for the LF412[16].
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Figure 3.14: The full schematic for the receiver architecture used in this
project, as suggested by Figure 3.7.

remain to be made, This circuit enabled me to detect a transmitted signal
and investigate the feasibility of the overall technology.

3.3 Algorithms and Integration

The standard search method for avalanche victim rescue is described in Sec-
tion 2.2. Because of its historic success as a method, I opted to closely mimic
this algorithm for the project.

In terms of a high-level approach, the algorithm can be expressed in the
following manner:

1. Take sample

2. Rotate by a small, defined amount

3. Take another sample

4. If the signal is smaller, change the direction of rotation. Otherwise
maintain the same direction

5. Continue to rotate and take samples until the signal strength starts to
go back down. Take note of maximum signal strength

6. Rotate back to the strongest signal direction

7. Move forward by a defined amount
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8. Repeat Steps 1–6. If the maximum signal strength is smaller at the
new location, reverse direction of travel

9. Repeat Steps 1–7 until maximum signal strength is smaller at the new
location

10. Notify searchers that victim has been located

The project did not reach the stage of autonomous flight, so the algorithm
has not yet been translated into code. However, I was able to test a few key
steps, in particular Step 5. I will discuss the results of my testing in the next
chapter, as well as important considerations for future work.

In order to do these tests, I designed a system by which I could insert a
human tester into the control loop. I added an LCD display to which the
Arduino could pass information about the received signal strength. The code
I ran to make this work is found in Appendix B.10. This code made use of
the filtering discussed in Section 3.1.5 and displayed it on the attached LCD
screen. This particular step allowed me to test more important aspects of
the project despite the challenges presented by quad-copter flight.

In the next chapter, I will detail all of the different testing I completed
and discuss my results.
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Testing and Results
This phase was roughly split between testing indoors and testing outdoors.
Each had its own benefits and challenges, which I will enumerate more fully
throughout this chapter. Testing a project is intimately related to the project
design, in the way it is not only driven by design, but also validates past de-
signs and inspires new ones. Much of this chapter has already been discussed
in the previous one, but the emphasis will be somewhat more focused on what
the results imply for the broad project goals.

4.1 Flight Testing

The first step in testing the quad-copter was to determine whether it would
fly. Before any flight testing could be done, I had to accomplish the design
work discussed previously and a somewhat arduous debugging process to
make sure that each piece of the remote control signal pathway spoke to its
neighbors. Accomplishing this, the craft was ready to fly.

Flight testing was initially done outdoors, at the Harvard athletic fields,
so as to test in as deserted an environment as possible. This was largely a
safety concern, both for surrounding buildings and people, and for the craft
itself.

The first tests demonstrated that the architecture of using the Arduino
as a translator was highly successful. The craft exhibited a constant drift,
however this was easily corrected by the operator. Subsequent tests probed
the functionality of the GPS hold mode, a function designed to keep the
craft at a fixed GPS position without any user input. This was unfortunately
unsuccessful and prompted the design changes described in Section 3.3.

I believe that there are a few different reasons that the GPS functional-
ity wasn’t able to produce the desired results. For one, the behavior that
I observed consisted largely of a constant drift. While one would expect a
closed-loop control algorithm to correct for whatever drift the craft was ex-
periencing, the precision of a GPS locating signal is likely not fine enough
to avoid any drift. The other observed behavior was occasional glitches in
the aircraft attitude, where the quad-copter would suddenly pitch or roll
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Figure 4.1: Testing at the Harvard Athletic Fields while snow flies.

before recovering. This behavior could be explained in terms of the GPS
symptom by hypothesizing that the glitch was the control algorithm’s ill-
fated attempt to correct for a slowly accumulating drift. However, the fact
that this glitching also occurred during normal flight points to a problem
with the transmitter/receiver pair, or more likely with the Arduino software
loop. Indeed, I believe that these glitches are caused by the low-level timing
interrupts that drive both PWM input and PPM output coinciding and dis-
rupting each other’s timing. The Arduino can only support one interrupt at
a time, so this seems to be a likely candidate for the glitches.

Further testing with the code could confirm or disprove this particular
hypothesis. As I mentioned in the Design chapter, one way to address this
problem would be to upgrade to an industrial microprocessor that is better
equipped to handle the sorts of time-sensitive tasks that we require.

In the absence of this upgrade, and in coming to the realization that I
would be unable to produce autonomous flight, some of the initial goals and
design considerations had to be reevaluated and somewhat relaxed. It was
at this stage that I determined that I could still assess the viability of the
project without explicitly demonstrating autonomous flight. Autonomous
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Figure 4.2: Frequency response plot showing one RLC test configuration with
a measured quality factor of 38.

flight is a solved problem and the failure of my design represents simply
that, my design. It does not, however, imply the failure of a more rigorously
designed and tested flight module. With this in mind, I determined that
simply approximating the sort of autonomous flight required by the algorithm
by physically carrying the craft would be sufficient to demonstrate either
success or failure of the global project design.

4.2 Antenna Characterization

Characterizing the antenna and resonator was done in a couple of different
steps. The first consisted of driving the antenna with a function generator
and characterizing the frequency response. Two of these configurations
are shown in Figures 4.2 and 4.3. Both of these were tested in the series
configuration (see Section 3.2.1 for a discussion of this design), with two
different input impedances. The circuit being tested is shown in Figure 4.4

The calculation used for the quality factor was

Q =
2πf0L

R
.
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Figure 4.3: Frequency response plot showing one RLC test configuration with
a measured quality factor of 5.

Figure 4.4: Series band-pass filter configuration. R was varied and the resul-
tant quality factor recorded in Table 4.1.

31



Table 4.1: Measured and calculated quality factor for different resistive values
in the series RLC configuration shown in Figure 4.4.

RIN (Ω) Calculated Q Measured Q

5000 0.34 5
50 34 38

Table 4.1 displays the my results for three different parallel configurations.
What I found was, as predicted by the design step, a lower parallel resistance
generated the higher quality filter, so I selected my final resistance of 50 Ω
based on these results. I tested an additional configuration, R = 10 Ω and
found the quality factor to be roughly the same as R = 50 Ω. However,
because the measured series resistance of the inductor was ∼ 1 Ω, the 50 Ω
resistor resulted in a lower attenuation of the signal.

4.3 Ambient Noise

As mentioned in the Design Chapter, I faced challenges related to unusually
high background noise while testing the quad-copter receiver circuitry. One
strong indication of the interference was the tendency of the ambient, back-
ground noise level to increase with altitude. Figure 4.5 clearly displays this
phenomenon. While this phenomenon does not go away after the addition
of a low-pass filter, it is greatly reduced, as shown in Figure 4.6, a similar
reading taken in the Law School Quad. One other noticeable aspect of this
particular figure is the continued prevalence of strong, intermittent noise in
the data, a characteristic found when testing near Harvard’s science build-
ings but not in the residential neighborhood. This points to a further need
to filter effectively.

Despite the challenges associated with elevated background noise, I was
able to conduct a modified version of the orientation tests what were critical
to defining the success of the project.
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Figure 4.5: Background noise measured over time (no transmitter) as a func-
tion of altitude.

Figure 4.6: Effect of low-pass filter on background noise measured in the Law
School Quadrangle.
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Figure 4.7: The basic arrangement for doing orientation testing. The receiver
antenna is 1 ft. from the transmitting beacon.

4.4 Orientation Tests

One of the key results of the project was to demonstrate that the antenna
displayed directional sensitivity to a transmitted beacon signal. In order to
test this, I transported the quad-copter and all of the testing materials to
the Harvard Athletic Fields. As I addressed in Section 4.3, these fields have
a much lower noise level than the possible testing areas near the engineering
buildings, closer to what would be found in a true backcountry setting. All of
the orientation testing was conducted before the addition of the crucial low-
pass filter, so noise levels were higher than what would have been observed
with the filter.

Because of the high background noise present while testing, the signal
became lost in the noise when the transmitter and receiving antenna were
only 2 ft. apart. Consequently, all orientation data was collected from a 1 ft.
radius around the transmitter. The test setup is depicted in Figures 4.7 and
4.8.

Data were collected by reading signal strength and compass orientation
from the LCD display. The location of the receiver was described by a mea-
surement “heading,” which is the compass direction from the transmitter
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Figure 4.8: The LCD screen attached to the quad-copter reads out signal
strength and compass orientation.

to the receiver. At each heading, the compass direction faced by the quad-
copter was recorded as the measurement “orientation.” 8 samples were taken
at each heading, one for each orientation, equally spaced at 45 degrees. The
transmitting antenna was oriented at approximately 240 degrees.

Figure 4.9 shows representative data from a single heading. Notice the
double peak, characteristic of the fact that the receiving antenna is oriented
parallel to the flux lines twice during any given rotation. Data from other
headings looks qualitatively similar, though the maximum signal strength
varies among different headings.

What is noticeable in this plot, and critical to the success of this project,
is the measured difference between the signal maximum and the signal min-
imum. The difference ranges from 4 dB to 10 dB, but is obvious at all head-
ings. This fact demonstrates very clearly the requirement that the processed
signal display directional sensitivity.

In addition to the basic orientation tests, measurements were taken both
before and after the switch to a series RLC configuration, so I was able to
compare the two topographies and their effects on the signal. Figure 4.10
depicts my results for this comparison. The figure shows that the energy-
storing effects of the parallel topography outweighs the signal attenuating
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Figure 4.9: Orientation data from a single heading. These data are qualita-
tively representative of data taken at any other heading.

Figure 4.10: This schematic shows one selected test, comparing the parallel
and series RLC topologies.
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effects I calculated when designing the series topography.
While orientation testing was necessarily conducted against non-ideal

background noise levels, I was able to definitively show that this signal pro-
cessing scheme is capable of giving information about the relative orientation
of the quad-copter and the received flux lines.

A complete set of plots for the orientation testing is found in Appendix
A.

4.5 Motor Noise

In addition to the central measurement of the orientation sensitivity of the
receiver, it was critical do demonstrate that the motors did not produce any
detectable noise by the receiver circuitry. This is an entirely unique challenge
to this particular combination of quad-copter and avalanche detector, so there
was no real way to predict whether it would appear or not.

Early in the design stages I tested to see if a commercial avalanche beacon
receiver would register the motor noise as a false signal and I found that it did
not. That finding was confirmed during motor noise testing. It was simply
not possible to detect any difference in measured signal whether the motors
were off or running at full speed.
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Future Work
Most of the items that I would like to mention in the Future Work section
came up elsewhere in this report. I’ll start by mentioning those, and then
moving to some of the last-minute considerations that are necessary for a
viable product.

The first improvement has to come in the form of a commercial drone that
is well-matched between flight controller and body. While the prototype I
used was adequate for simple RC-controlled flight, a more robust system is
clearly necessary for the sorts of autonomous control that the project requires.

I mention the “necessity” of a commercial solution not because it would
be impossible to design a working system from scratch, but rather because
this project relies so heavily on next generation functionality of these systems
and it makes little sense to reinvent the wheel, so to speak.

While it makes sense to continue the process of prototyping with a com-
mercial product, any eventual, marketable product really does have to be
designed more carefully. This step would also be associated with another
fundamental change, combining the Flight Controller with the Arduino Nav-
igational Computer.

This step would also require a significant amount of re-working existing
code and preparing everything to run simultaneously. The obvious benefit
is that at the end of the day one has full control over everything that the
quad-copter does.

Up to this point, these projects are obviously multiple-year projects that
would likely take a team to develop. However, there are a number of other
improvements, largely on the signal processing side, that could be worked on
immediately.

Designing a better band-pass system to keep harmful noise out of the
receiver is one such design problem. Also important and only moderately
more difficult would be to continue testing different antenna geometries for
directional sensitivity. For this project, I optimized for signal strength, but
other characteristics like directionality could be chosen for and attenuated
signals compensated for.

My final concerns and suggestions for future work have not yet been
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mentioned, but they are related to battery life and frame design. The current
battery is likely to last for ∼10 min. of flight time. This is probably not
sufficient, so one would need to increase carried charge or decrease power
consumption. One obvious way to do this is to cut weight. And in fact, this
brings me to my final suggestions for work.

This product needs to be portable. It needs to be comparable in size to the
gear (beacon, shovel, and probe) that a recreationalist is already carrying.
A quad-copter will likely have to collapse in some way to accommodate.
This is an entirely separate project that a senior could probably work on for
their entire thesis. And while we’re making the body portable, the current
prototype is strangely non-waterproofed for an outdoor tool. A minor point,
but important nonetheless.

There are any number of ways that this project could continue into the fu-
ture, but the framework that I have described in this document demonstrates
that it can continue.
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Conclusions
Throughout this project, I have focused on the fundamental questions of
whether a quad-copter platform can be a viable extension of current avalanche
recovery technology. It is a steep road ahead, but what I conclude from the
results that I found is that this intersection represents a new and exciting
route to help save lives. The tragedy of avalanches in the backcountry is that
anyone, regardless of how competent or intelligent, can get swept away. A
project like this shows that we can continue to do better.

A homemade frame, though satisfying to work with, is clearly sub-optimal
for this sort of work. In order to leverage previous work done by so many
other hobbyists, it makes sense to use the right tools for the job. And despite
the shortcomings of this particular frame, it was possible to verify the min-
imum requirements needed to consider this framework a success and worth
pursuing.

On the other side of the spectrum, the signal processing that we see in
machines today points to the almost limitless possibilities for improved signal
detection. With better, smarter filtering and perhaps a different measure-
ment scheme, it should be easy to continue to improve design and perfor-
mance.

Finally, regarding integration, this project has demonstrated with a re-
sounding show that these two different technologies pose no fundamental
threat to one another. There remain many difficulties surrounding the inte-
gration step, but the possibility is clear.
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Code

B.1 Comm Test 1.ino

/******************************************************************

* Testing for wireless control using Arduino as a ppm encoder.

*

* This program is adapted from an open source project located at

* https://code.google.com/p/generate-ppm-signal/

*

* Adapted by Ben Dickensheets on 1/4/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Arm with throttle low and yaw high

* Disarm with throttle low and yaw low

******************************************************************/

//////////////////////CONFIGURATION///////////////////////////////

//#include <eRCaGuy_Timer2_counter.h>

#define chanel_number 8 //set the number of chanels

#define default_servo_value 1500 //set the default servo value

#define max_servo_value 1900

#define min_servo_value 1100

#define default_throttle_value 1000 //set the default throttle value

#define max_throttle 1900 //set the max throttle value

#define PPM_FrLen 22500 //set the PPM frame length in microseconds

//(1ms = 1000us)

#define PPM_PulseLen 300 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is

//negative

#define sigPin 10 //set PPM signal output pin on the arduino
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#define ROLL_PIN 6 //RC channel 1

#define PITCH_PIN 7 //RC channel 2

#define THROTTLE_PIN 8 //RC channel 3

#define YAW_PIN 9 //RC channel 4

#define ROLL 0

#define PITCH 1

#define THROTTLE 2

#define YAW 3

const int ROLL_OFFSET = 0;

const int PITCH_OFFSET = 35;

const int THROTTLE_OFFSET = 0;

const int YAW_OFFSET = 0;

//////////////////////////////////////////////////////////////////

/*this array holds the servo values for the ppm signal

change theese values in your code (usually servo values move between

1000 and 2000)*/

int ppm[chanel_number];

int throttle = default_throttle_value;

int last_throttle = throttle;

int temp_throttle = throttle;

void setup(){

//initialize serial communication

Serial.begin(9600);

//initiallize default ppm values

for(int i=0; i<chanel_number; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

// yaw, Radio 5, Radio 6, Radio 7, Radio 8]

}

ppm[2] = default_throttle_value; // low throttle instead of

// midpoint

pinMode(sigPin, OUTPUT);
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pinMode(13, OUTPUT); // led indicator on board

digitalWrite(sigPin, !onState); //set the PPM signal pin to the

//default state (off)

cli();

TCCR1A = 0; // set entire TCCR1 register to 0

TCCR1B = 0;

OCR1A = 100; // compare match register, change this

TCCR1B |= (1 << WGM12); // turn on CTC mode

TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

sei();

}

void loop(){

unsigned long start = micros();

for(int i=0; i<200; i++){

if(!(ppm[ROLL] = pulseIn(ROLL_PIN, HIGH) + ROLL_OFFSET)){

Serial.println("Error: no roll value read.");}

if(!(ppm[PITCH] = pulseIn(PITCH_PIN, HIGH) + PITCH_OFFSET)){

Serial.println("Error: no pitch value read.");}

if(!(throttle = pulseIn(THROTTLE_PIN, HIGH) + THROTTLE_OFFSET)){

Serial.println("Error: no throttle value read.");}

if(!(ppm[YAW] = pulseIn(YAW_PIN, HIGH) + YAW_OFFSET)){

Serial.println("Error: no yaw value read.");}

if((throttle - last_throttle < 150) && (last_throttle -

throttle < 150)) {

ppm[THROTTLE] = throttle;

last_throttle = throttle;

}

else if ((throttle - temp_throttle < 150) && (temp_throttle -

throttle < 150)) {

ppm[THROTTLE] = throttle;

last_throttle = throttle;

}

temp_throttle = throttle;
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Serial.print(ppm[0]);

Serial.print(’\t’);

Serial.print(ppm[1]);

Serial.print(’\t’);

Serial.print(ppm[2]);

Serial.print(’\t’);

Serial.println(ppm[3]);

}

unsigned long elapsed = micros() - start; //in microseconds

float avg = ((float) elapsed) / 200 / 1000000; //in seconds

Serial.print(elapsed);

Serial.print(" elapsed total; \tAverage time per loop:");

Serial.println(avg, 5);

//ppm[4] = 1300; //auto-land after 1 cycle (about 15 seconds)

}

ISR(TIMER1_COMPA_vect){ //leave this alone

static boolean state = true;

TCNT1 = 0;

if(state) { //start pulse

digitalWrite(sigPin, onState);

OCR1A = PPM_PulseLen * 2;

state = false;

}

else{ //end pulse and calculate when to start the next pulse

static byte cur_chan_numb;

static unsigned int calc_rest;

digitalWrite(sigPin, !onState);

state = true;

if(cur_chan_numb >= chanel_number){

cur_chan_numb = 0;

52



calc_rest = calc_rest + PPM_PulseLen;//

OCR1A = (PPM_FrLen - calc_rest) * 2;

calc_rest = 0;

}

else{

OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;

calc_rest = calc_rest + ppm[cur_chan_numb];

cur_chan_numb++;

}

}

}

B.2 Flight Test 1.ino

/******************************************************************

* This program is adapted from an open source project located at

* https://code.google.com/p/generate-ppm-signal/

*

* Adapted by Ben Dickensheets on 12/18/14 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Arm with throttle low and yaw high

* Disarm with

******************************************************************/

//////////////////////CONFIGURATION///////////////////////////////

#define chanel_number 8 //set the number of chanels

#define default_servo_value 1500 //set the default servo value

#define max_servo_value 1900

#define min_servo_value 1100

#define default_throttle_value 1100 //set the default throttle value

#define max_throttle 1900 //set the max throttle value

#define PPM_FrLen 22500 //set the PPM frame length in microseconds

//(1ms = 1000us)

#define PPM_PulseLen 300 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is
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//negative

#define sigPin 10 //set PPM signal output pin on the arduino

//////////////////////////////////////////////////////////////////

/*this array holds the servo values for the ppm signal

change theese values in your code (usually servo values move between

1000 and 2000)*/

int ppm[chanel_number];

int throttle = default_throttle_value;

void setup(){

//initialize serial communication

Serial.begin(9600);

//initiallize default ppm values

for(int i=0; i<chanel_number; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

// yaw, Radio 5, Radio 6, Radio 7, Radio 8]

}

ppm[2] = default_throttle_value; // low throttle instead of

// midpoint

pinMode(sigPin, OUTPUT);

pinMode(13, OUTPUT); // led indicator on board

digitalWrite(sigPin, !onState); //set the PPM signal pin to the

//default state (off)

cli();

TCCR1A = 0; // set entire TCCR1 register to 0

TCCR1B = 0;

OCR1A = 100; // compare match register, change this

TCCR1B |= (1 << WGM12); // turn on CTC mode

TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

sei();

}
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void loop(){

// throttle output

//Serial.println(throttle);

ppm[2] = throttle; // update throttle output

// update throttle level

if(Serial.available()) {

int incomingByte = Serial.read();

// kill switch

if(incomingByte == ’k’) {

ppm[2] = default_throttle_value;

delay(2000);

while(true){}

}

// throttle up

else if(incomingByte == ’u’)

throttle = constrain(throttle + 50, default_throttle_value,

max_throttle);

// throttle down

else if(incomingByte == ’j’)

throttle = constrain(throttle - 50, default_throttle_value,

max_throttle);

// arm

else if(incomingByte == ’z’) {

throttle = default_throttle_value;

ppm[2] = throttle;

ppm[3] = max_servo_value;

delay(2000);

ppm[3] = default_servo_value;

}

//disarm

else if(incomingByte == ’x’) {

throttle = default_throttle_value;

ppm[2] = throttle;
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ppm[3] = min_servo_value;

delay(2000);

ppm[3] = default_servo_value;

}

}

/*

digitalWrite(13, HIGH);

ppm[0] = 1900; // max roll

delay(3000);

ppm[0] = 1100; // min roll

delay(3000);

ppm[0] = default_servo_value;

digitalWrite(13, LOW);

delay(1000);

digitalWrite(13, HIGH);

ppm[1] = 1900; // max pitch

delay(3000);

ppm[1] = 1100; // min pitch

delay(3000);

ppm[1] = default_servo_value;

digitalWrite(13, LOW);

delay(1000);

digitalWrite(13, HIGH);

ppm[3] = 1900; // max yaw

delay(3000);

ppm[3] = 1100; // min yaw

delay(3000);

ppm[3] = default_servo_value;

digitalWrite(13, LOW);

delay(1000);

*/

}

ISR(TIMER1_COMPA_vect){ //leave this alone
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static boolean state = true;

TCNT1 = 0;

if(state) { //start pulse

digitalWrite(sigPin, onState);

OCR1A = PPM_PulseLen * 2;

state = false;

}

else{ //end pulse and calculate when to start the next pulse

static byte cur_chan_numb;

static unsigned int calc_rest;

digitalWrite(sigPin, !onState);

state = true;

if(cur_chan_numb >= chanel_number){

cur_chan_numb = 0;

calc_rest = calc_rest + PPM_PulseLen;//

OCR1A = (PPM_FrLen - calc_rest) * 2;

calc_rest = 0;

}

else{

OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;

calc_rest = calc_rest + ppm[cur_chan_numb];

cur_chan_numb++;

}

}

}

B.3 Flight Test 2.ino

/******************************************************************

* Modules for autonomous flight

*

* This program is adapted from an open source project located at

* https://code.google.com/p/generate-ppm-signal/
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*

* Adapted by Ben Dickensheets on 1/4/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Arm with throttle low and yaw high

* Disarm with throttle low and yaw low

******************************************************************/

//////////////////////CONFIGURATION///////////////////////////////

//#include <eRCaGuy_Timer2_counter.h>

#define chanel_number 8 //set the number of chanels

#define default_servo_value 1500 //set the default servo value

#define max_servo_value 1900

#define min_servo_value 1100

#define default_throttle_value 1000 //set the default throttle value

#define max_throttle 1900 //set the max throttle value

#define PPM_FrLen 22500 //set the PPM frame length in microseconds

//(1ms = 1000us)

#define PPM_PulseLen 300 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is

//negative

#define sigPin 9 //set PPM signal output pin on the arduino

#define LAND_MODE 1300

#define ROLL_PIN 4 //RC channel 1

#define PITCH_PIN 11 //RC channel 2

#define THROTTLE_PIN 6 //RC channel 3

#define YAW_PIN 7 //RC channel 4

#define ROLL 0

#define PITCH 1

#define THROTTLE 2

#define YAW 3

#define FLIGHT_MODE 4
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//////////////////////////////////////////////////////////////////

/*this array holds the servo values for the ppm signal

change theese values in your code (usually servo values move

between 1000 and 2000)*/

int ppm[chanel_number];

int throttle = default_throttle_value;

void setup(){

//initialize serial communication

Serial.begin(9600);

//initiallize default ppm values

for(int i=0; i<chanel_number; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

yaw, Radio 5, Radio 6, Radio 7, Radio 8]

}

ppm[2] = default_throttle_value; // low throttle instead of

// midpoint

pinMode(sigPin, OUTPUT);

pinMode(13, OUTPUT); // led indicator on board

digitalWrite(sigPin, !onState); //set the PPM signal pin to the

//default state (off)

cli();

TCCR1A = 0; // set entire TCCR1 register to 0

TCCR1B = 0;

OCR1A = 100; // compare match register, change this

TCCR1B |= (1 << WGM12); // turn on CTC mode

TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

sei();

}

void loop(){
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fly(75);

arm();

delay(3000);

take_off();

delay(5000);

land();

}

ISR(TIMER1_COMPA_vect){ //leave this alone

static boolean state = true;

TCNT1 = 0;

if(state) { //start pulse

digitalWrite(sigPin, onState);

OCR1A = PPM_PulseLen * 2;

state = false;

}

else{ //end pulse and calculate when to start the next pulse

static byte cur_chan_numb;

static unsigned int calc_rest;

digitalWrite(sigPin, !onState);

state = true;

if(cur_chan_numb >= chanel_number){

cur_chan_numb = 0;

calc_rest = calc_rest + PPM_PulseLen;//

OCR1A = (PPM_FrLen - calc_rest) * 2;

calc_rest = 0;

}

else{

OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;

calc_rest = calc_rest + ppm[cur_chan_numb];

cur_chan_numb++;
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}

}

}

void fly(int cycles){ // about 5 seconds for 75 cycles

unsigned long start = micros();

for(int i=0; i<cycles; i++){ //about 5 seconds

if(!(ppm[ROLL] = pulseIn(ROLL_PIN, HIGH))){

Serial.println("Error: no roll value read.");}

if(!(ppm[PITCH] = pulseIn(PITCH_PIN, HIGH))){

Serial.println("Error: no pitch value read.");}

if(!(ppm[THROTTLE] = pulseIn(THROTTLE_PIN, HIGH))){

Serial.println("Error: no throttle value read.");}

if(!(ppm[YAW] = pulseIn(YAW_PIN, HIGH))){

Serial.println("Error: no yaw value read.");}

Serial.print(ppm[0]);

Serial.print(’\t’);

Serial.print(ppm[1]);

Serial.print(’\t’);

Serial.print(ppm[2]);

Serial.print(’\t’);

Serial.println(ppm[3]);

}

unsigned long elapsed = micros() - start; //in microseconds

float avg = ((float) elapsed) / 200 / 1000000; //in seconds

Serial.print(elapsed);

Serial.print(" elapsed total; \tAverage time per loop:");

Serial.println(avg, 5);

}

void land(){

ppm[FLIGHT_MODE] = LAND_MODE;

//initiallize default ppm values

for(int i=0; i<4; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

// yaw, Radio 5, Radio 6, Radio 7, Radio 8]
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}

ppm[THROTTLE] = default_throttle_value; // low throttle

// instead of midpoint

delay(30000); // 30 second timeout

//while(true){}

}

void take_off(){

ppm[THROTTLE] = 1500;

}

void arm(){

ppm[THROTTLE] = default_throttle_value;

ppm[YAW] = max_servo_value;

delay(3000);

ppm[YAW] = default_servo_value;

}

void disarm(){

ppm[THROTTLE] = default_throttle_value;

ppm[YAW] = min_servo_value;

delay(3000);

ppm[YAW] = default_servo_value;

}

B.4 Flight Test 2.ino

/******************************************************************

* Testing for wireless control using Arduino as a ppm encoder.

*

* This test script is for the ultrasonic sensor to maintain a

* stable altitude.

*

* Parts of this program were adapted from an open source project

* located at https://code.google.com/p/generate-ppm-signal/

*
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* Adapted by Ben Dickensheets on 3/17/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Arm with throttle low and yaw high

* Disarm with throttle low and yaw low

******************************************************************/

//////////////////////CONFIGURATION///////////////////////////////

//#include <eRCaGuy_Timer2_counter.h>

#define chanel_number 8 //set the number of chanels

#define default_servo_value 1500 //set the default servo value

#define max_servo_value 1900

#define min_servo_value 1100

#define default_throttle_value 1000 //set the default throttle value

#define max_throttle 1900 //set the max throttle value

#define PPM_FrLen 22500 //set the PPM frame length in microseconds

//(1ms = 1000us)

#define PPM_PulseLen 300 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is

//negative

#define sigPin 9 //set PPM signal output pin on the arduino

#define ROLL_PIN 4 //RC channel 1

#define PITCH_PIN 11 //RC channel 2

#define THROTTLE_PIN 6 //RC channel 3

#define YAW_PIN 7 //RC channel 4

#define ROLL 0

#define PITCH 1

#define THROTTLE 2

#define YAW 3

const int ROLL_OFFSET = 20;

const int PITCH_OFFSET = 35;

const int THROTTLE_OFFSET = 0;

const int YAW_OFFSET = 0;
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// ultrasonic definitions

#define ultraPinIn 8

#define ultraPinOut 5

#define SPEED_OF_SOUND 340 // m/s

const float SET_H = 15; //in cm

const float PROP_H = 0.1;

const int INT_H = 0;

const float DERIV_H = 0.1;

//////////////////////////////////////////////////////////////////

/*this array holds the servo values for the ppm signal

change theese values in your code (usually servo values move

between 1000 and 2000)*/

int ppm[chanel_number];

int throttle = default_throttle_value;

//store last height error for derivative calculation

int last_error_h = 0;

void setup(){

//initialize serial communication

Serial.begin(9600);

//initiallize default ppm values

for(int i=0; i<chanel_number; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

// yaw, Radio 5, Radio 6, Radio 7, Radio 8]

}

ppm[2] = default_throttle_value; // low throttle instead of

// midpoint

pinMode(sigPin, OUTPUT);

pinMode(13, OUTPUT); // led indicator on board

digitalWrite(sigPin, !onState); //set the PPM signal pin to the

//default state (off)
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cli();

TCCR1A = 0; // set entire TCCR1 register to 0

TCCR1B = 0;

OCR1A = 100; // compare match register, change this

TCCR1B |= (1 << WGM12); // turn on CTC mode

TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

sei();

//ultrasonic setup

pinMode(ultraPinIn, INPUT);

pinMode(ultraPinOut, OUTPUT);

digitalWrite(ultraPinOut, LOW);

}

void loop(){

unsigned long start = micros();

//unsigned long loop_start_t = start;

for(int i=0; i<200; i++){

if(!(ppm[ROLL] = pulseIn(ROLL_PIN, HIGH) + ROLL_OFFSET)){

Serial.println("Error: no roll value read.");}

if(!(ppm[PITCH] = pulseIn(PITCH_PIN, HIGH) + PITCH_OFFSET)){

Serial.println("Error: no pitch value read.");}

if(!(ppm[YAW] = pulseIn(YAW_PIN, HIGH) + YAW_OFFSET)){

Serial.println("Error: no yaw value read.");}

if(!(throttle = pulseIn(THROTTLE_PIN, HIGH) + THROTTLE_OFFSET)){

Serial.println("Error: no throttle value read.");}

if(throttle < 1600)

ppm[THROTTLE] = throttle;

else {

float height = getHeight();

float error_h = SET_H - height;

ppm[THROTTLE] = constrain(ppm[THROTTLE] + (int) (PROP_H *

error_h), 1100, 1900);// +
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// (int) (DERIV_H * (error_h - last_error_h)), 1100, 1900);

last_error_h = error_h;

/*unsigned long temp_t = micros();

float dt = ((float) (temp_t - loop_start_t)) / 1000000;

//in seconds

loop_start_t = temp_t;*/

}

Serial.print(ppm[0]);

Serial.print(’\t’);

Serial.print(ppm[1]);

Serial.print(’\t’);

Serial.print(ppm[2]);

Serial.print(’\t’);

Serial.print(ppm[3]);

if(ppm[2] < 1200){

Serial.print(’\t’);

Serial.print("Oops!");

}

Serial.print(’\n’);

}

/*unsigned long elapsed = micros() - start; //in microseconds

float avg = ((float) elapsed) / 200 / 1000000; //in seconds

Serial.print(elapsed);

Serial.print(" elapsed total; \tAverage time per loop:");

Serial.println(avg, 5);*/

//ppm[4] = 1300; //auto-land after 1 cycle (about 15 seconds)

}

ISR(TIMER1_COMPA_vect){ //leave this alone

static boolean state = true;

TCNT1 = 0;

if(state) { //start pulse

digitalWrite(sigPin, onState);
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OCR1A = PPM_PulseLen * 2;

state = false;

}

else{ //end pulse and calculate when to start the next pulse

static byte cur_chan_numb;

static unsigned int calc_rest;

digitalWrite(sigPin, !onState);

state = true;

if(cur_chan_numb >= chanel_number){

cur_chan_numb = 0;

calc_rest = calc_rest + PPM_PulseLen;//

OCR1A = (PPM_FrLen - calc_rest) * 2;

calc_rest = 0;

}

else{

OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;

calc_rest = calc_rest + ppm[cur_chan_numb];

cur_chan_numb++;

}

}

}

// returns height from ultrasonic rangefinder in cm

int getHeight(void){

digitalWrite(ultraPinOut, HIGH);

delayMicroseconds(15);

digitalWrite(ultraPinOut, LOW);

float raw = (float) pulseIn(ultraPinIn, HIGH);

// returns microseconds

// microseconds->s, m->cm, corrects for constant 2cm offset

return (int) (raw * SPEED_OF_SOUND * 100 / 2 / 1000000) - 2;

}
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B.5 Motor Test.ino

#include <Servo.h>

#define FRONT 4 //CW

#define BACK 6 //CW

#define LEFT 5 //CCW

#define RIGHT 7 //CCW

Servo front;

Servo back;

Servo left;

Servo right;

void setup() {

front.attach(FRONT);

back.attach(BACK);

left.attach(LEFT);

right.attach(RIGHT);

allOff();

delay(4000);

frontOn(1300);

delay(2000);

allOff();

delay(1000);

rightOn(1300);

delay(2000);

allOff();

delay(1000);

backOn(1300);

delay(2000);

allOff();

delay(1000);

leftOn(1300);

delay(2000);

allOff();
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delay(1000);

allOn(1400);

delay(10000);

allOff();

}

void loop() {}

int frontOn(int setpoint) {

front.writeMicroseconds(setpoint);

return 0;

}

int backOn(int setpoint) {

back.writeMicroseconds(setpoint);

return 0;

}

int leftOn(int setpoint) {

left.writeMicroseconds(setpoint);

return 0;

}

int rightOn(int setpoint) {

right.writeMicroseconds(setpoint);

return 0;

}

int allOn(int setpoint) {

frontOn(setpoint);

backOn(setpoint);

leftOn(setpoint);

rightOn(setpoint);

return 0;

}

int allOff(void) {

allOn(1000);
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return 0;

}

B.6 Receiver Config.ino

/******************************************************************

* This program is adapted from an open source project located at

* https://code.google.com/p/generate-ppm-signal/

*

* Adapted by Ben Dickensheets on 11/29/14 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Arm with throttle low and yaw high

* Disarm with

******************************************************************/

//////////////////////CONFIGURATION///////////////////////////////

#define chanel_number 8 //set the number of chanels

#define default_servo_value 1500 //set the default servo value

#define default_throttle_value 1100 //set the default throttle value

#define PPM_FrLen 22500 //set the PPM frame length in microseconds

//(1ms = 1000us)

#define PPM_PulseLen 300 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is

//negative

#define sigPin 10 //set PPM signal output pin on the arduino

//////////////////////////////////////////////////////////////////

/*this array holds the servo values for the ppm signal

change theese values in your code (usually servo values move

between 1000 and 2000)*/

int ppm[chanel_number];

void setup(){

//initiallize default ppm values
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for(int i=0; i<chanel_number; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

// yaw, Radio 5, Radio 6, Radio 7, Radio 8]

}

ppm[2] = default_throttle_value; // low throttle instead of

// midpoint

pinMode(sigPin, OUTPUT);

pinMode(13, OUTPUT); // led indicator on board

digitalWrite(sigPin, !onState); //set the PPM signal pin to the

//default state (off)

cli();

TCCR1A = 0; // set entire TCCR1 register to 0

TCCR1B = 0;

OCR1A = 100; // compare match register, change this

TCCR1B |= (1 << WGM12); // turn on CTC mode

TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

sei();

}

void loop(){

//put main code here

digitalWrite(13, LOW);

delay(2000); // wait a couple of seconds to

// start config

digitalWrite(13, HIGH);

ppm[2] = 1900; // max throttle

delay(3000);

ppm[2] = default_throttle_value; // min throttle

digitalWrite(13, LOW);

delay(1000);

digitalWrite(13, HIGH);

ppm[0] = 1900; // max roll
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delay(3000);

ppm[0] = 1100; // min roll

delay(3000);

ppm[0] = default_servo_value;

digitalWrite(13, LOW);

delay(1000);

digitalWrite(13, HIGH);

ppm[1] = 1900; // max pitch

delay(3000);

ppm[1] = 1100; // min pitch

delay(3000);

ppm[1] = default_servo_value;

digitalWrite(13, LOW);

delay(1000);

digitalWrite(13, HIGH);

ppm[3] = 1900; // max yaw

delay(3000);

ppm[3] = 1100; // min yaw

delay(3000);

ppm[3] = default_servo_value;

digitalWrite(13, LOW);

delay(1000);

while(true) {}

}

ISR(TIMER1_COMPA_vect){ //leave this alone

static boolean state = true;

TCNT1 = 0;

if(state) { //start pulse

digitalWrite(sigPin, onState);

OCR1A = PPM_PulseLen * 2;

state = false;

}
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else{ //end pulse and calculate when to start the next pulse

static byte cur_chan_numb;

static unsigned int calc_rest;

digitalWrite(sigPin, !onState);

state = true;

if(cur_chan_numb >= chanel_number){

cur_chan_numb = 0;

calc_rest = calc_rest + PPM_PulseLen;//

OCR1A = (PPM_FrLen - calc_rest) * 2;

calc_rest = 0;

}

else{

OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;

calc_rest = calc_rest + ppm[cur_chan_numb];

cur_chan_numb++;

}

}

}

B.7 Sig and Motor Test.ino

/******************************************************************

* Testing for wireless control using Arduino as a ppm encoder.

*

* This program is adapted from an open source project located at

* https://code.google.com/p/generate-ppm-signal/

*

* Adapted by Ben Dickensheets on 1/4/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Arm with throttle low and yaw high

* Disarm with throttle low and yaw low

******************************************************************/
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//////////////////////MOTOR CONFIGURATION//////////////////////////

//#include <eRCaGuy_Timer2_counter.h>

#define chanel_number 8 //set the number of chanels

#define default_servo_value 1500 //set the default servo value

#define max_servo_value 1900

#define min_servo_value 1100

#define default_throttle_value 1000 //set the default throttle value

#define max_throttle 1900 //set the max throttle value

#define PPM_FrLen 22500 //set the PPM frame length in microseconds

//(1ms = 1000us)

#define PPM_PulseLen 300 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is

//negative

#define sigPin 10 //set PPM signal output pin on the arduino

#define ROLL_PIN 6 //RC channel 1

#define PITCH_PIN 7 //RC channel 2

#define THROTTLE_PIN 8 //RC channel 3

#define YAW_PIN 9 //RC channel 4

#define ROLL 0

#define PITCH 1

#define THROTTLE 2

#define YAW 3

const int ROLL_OFFSET = 0;

const int PITCH_OFFSET = 35;

const int THROTTLE_OFFSET = 0;

const int YAW_OFFSET = 0;

/*this array holds the servo values for the ppm signal

change theese values in your code (usually servo values move between

1000 and 2000)*/

int ppm[chanel_number];

int throttle = default_throttle_value;

int last_throttle = throttle;

int temp_throttle = throttle;
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////////////////////////LCD CONFIGURATION//////////////////////////

#include <LiquidCrystal.h>

#include <Wire.h>

#include <HMC5883L.h>

// Store our compass as a variable.

HMC5883L compass;

// Record any errors that may occur in the compass.

int error = 0;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

//////////////////////SIGNAL CONFIGURATION/////////////////////////

const int antennaPin = A0;

int max_sample = 0;

void setup(){

//initialize serial communication

Serial.begin(9600);

//initiallize default ppm values

for(int i=0; i<chanel_number; i++){

ppm[i]= default_servo_value; // [roll, pitch, throttle,

//yaw, Radio 5, Radio 6, Radio 7, Radio 8]

}

ppm[2] = default_throttle_value; // low throttle instead of

// midpoint

pinMode(sigPin, OUTPUT);

pinMode(13, OUTPUT); // led indicator on board

digitalWrite(sigPin, !onState); //set the PPM signal pin to the

//default state (off)
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cli();

TCCR1A = 0; // set entire TCCR1 register to 0

TCCR1B = 0;

OCR1A = 100; // compare match register, change this

TCCR1B |= (1 << WGM12); // turn on CTC mode

TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

sei();

// set up the LCD’s number of columns and rows:

lcd.begin(16, 2);

// Print a message to the LCD.

lcd.print("AvaDrone");

// Digital compass setup

Wire.begin(); // Start the I2C interface.

compass = HMC5883L(); // Construct a new HMC5883 compass.

error = compass.SetScale(1.3); // Set the scale of the compass.

if(error != 0) // If there is an error, print it out.

Serial.println(compass.GetErrorText(error));

error = compass.SetMeasurementMode(Measurement_Continuous);

// Set the measurement mode to Continuous

if(error != 0) // If there is an error, print it out.

Serial.println(compass.GetErrorText(error));

lcd.clear();

lcd.print("AvaDrone");

}

void loop(){

unsigned long start = micros();
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if(!(ppm[ROLL] = pulseIn(ROLL_PIN, HIGH) + ROLL_OFFSET)){

Serial.println("Error: no roll value read.");}

if(!(ppm[PITCH] = pulseIn(PITCH_PIN, HIGH) + PITCH_OFFSET)){

Serial.println("Error: no pitch value read.");}

if(!(throttle = pulseIn(THROTTLE_PIN, HIGH) + THROTTLE_OFFSET)){

Serial.println("Error: no throttle value read.");}

if(!(ppm[YAW] = pulseIn(YAW_PIN, HIGH) + YAW_OFFSET)){

Serial.println("Error: no yaw value read.");}

if((throttle - last_throttle < 150) && (last_throttle -

throttle < 150)) {

ppm[THROTTLE] = throttle;

last_throttle = throttle;

}

else if ((throttle - temp_throttle < 150) && (temp_throttle -

throttle < 150)) {

ppm[THROTTLE] = throttle;

last_throttle = throttle;

}

temp_throttle = throttle;

/*Serial.print(ppm[0]);

Serial.print(’\t’);

Serial.print(ppm[1]);

Serial.print(’\t’);

Serial.print(ppm[2]);

Serial.print(’\t’);

Serial.println(ppm[3]);*/

unsigned long elapsed = micros() - start; //in microseconds

float avg = ((float) elapsed) / 200 / 1000000; //in seconds

/*Serial.print(elapsed);

Serial.print(" elapsed total; \tAverage time per loop:");

Serial.println(avg, 5);*/

//ppm[4] = 1300; //auto-land after 1 cycle (about 15 seconds)
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//low-pass filter

int new_sample = 0;

int avg_num = 10;

for(int j=0; j<avg_num; j++)

new_sample += analogRead(antennaPin);

new_sample /= avg_num;

//comment out if using low-pass filter

//int new_sample = analogRead(sigpin);

//track high signal level

if(new_sample > max_sample) {

max_sample = new_sample;

float heading = readCompass();

lcd.setCursor(0,1);

if(max_sample < 100)

lcd.print(’ ’);

lcd.print(max_sample);

lcd.print(" @ ");

lcd.print((int) heading);

lcd.print(" deg");

Serial.print(max_sample);

Serial.print(’\t’);

Serial.println(heading);

}

max_sample = 0;

}

ISR(TIMER1_COMPA_vect){ //leave this alone

static boolean state = true;

TCNT1 = 0;
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if(state) { //start pulse

digitalWrite(sigPin, onState);

OCR1A = PPM_PulseLen * 2;

state = false;

}

else{ //end pulse and calculate when to start the next pulse

static byte cur_chan_numb;

static unsigned int calc_rest;

digitalWrite(sigPin, !onState);

state = true;

if(cur_chan_numb >= chanel_number){

cur_chan_numb = 0;

calc_rest = calc_rest + PPM_PulseLen;//

OCR1A = (PPM_FrLen - calc_rest) * 2;

calc_rest = 0;

}

else{

OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;

calc_rest = calc_rest + ppm[cur_chan_numb];

cur_chan_numb++;

}

}

}

float readCompass(void){

// Retrived the scaled values from the compass

// (scaled to the configured scale).

MagnetometerScaled scaled = compass.ReadScaledAxis();

// Calculate heading when the magnetometer is level,

// then correct for signs of axis.

float heading = atan2(scaled.YAxis, scaled.XAxis);

// Once you have your heading, you must then add your
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// ’Declination Angle’, which is the ’Error’ of the

// magnetic field in your location.

// Find yours here: http://www.magnetic-declination.com/

// Mine is: 2deg 37’ W, which is 2.617 Degrees, or

// (which we need) 0.0456752665 radians, I will use 0.0457

// If you cannot find your Declination, comment out these

// two lines, your compass will be slightly off.

float declinationAngle = 0.0457;

heading += declinationAngle;

// Correct for when signs are reversed.

if(heading < 0)

heading += 2*PI;

// Check for wrap due to addition of declination.

if(heading > 2*PI)

heading -= 2*PI;

// Convert radians to degrees for readability.

float headingDegrees = heading * 180/M_PI;

return headingDegrees;

}

B.8 Sig Test 1.ino

/******************************************************************

* Test script for transceiver signal acquisition.

*

* Live time update, output on serial monitor.

*

* Written by Ben Dickensheets on 3/19/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Written for Arduino Uno.

******************************************************************/
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const int sigpin = A0;

const long samples = 500;

int signal_array[samples];

void setup(){

Serial.begin(9600);

}

void loop(){

for(int i=0; i<samples; i++) {

signal_array[i] = analogRead(sigpin);

Serial.println(signal_array[i]);

}

}

B.9 Sig Test 2.ino

/******************************************************************

* Test script for transceiver signal acquisition.

*

* Tracks maximum value received and outputs this value over serial.

*

* Written by Ben Dickensheets on 3/19/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Written for Arduino Uno.

******************************************************************/

#include <LiquidCrystal.h>

/*

LiquidCrystal Library - Hello World

Demonstrates the use a 16x2 LCD display. The LiquidCrystal

library works with all LCD displays that are compatible with the

Hitachi HD44780 driver. There are many of them out there, and you
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can usually tell them by the 16-pin interface.

This sketch prints "Hello World!" to the LCD

and shows the time.

The circuit:

* LCD RS pin to digital pin 12

* LCD Enable pin to digital pin 11

* LCD D4 pin to digital pin 5

* LCD D5 pin to digital pin 4

* LCD D6 pin to digital pin 3

* LCD D7 pin to digital pin 2

* LCD R/W pin to ground

* 10K resistor:

* ends to +5V and ground

* wiper to LCD VO pin (pin 3)

Library originally added 18 Apr 2008

by David A. Mellis

library modified 5 Jul 2009

by Limor Fried (http://www.ladyada.net)

example added 9 Jul 2009

by Tom Igoe

modified 22 Nov 2010

by Tom Igoe

This example code is in the public domain.

http://www.arduino.cc/en/Tutorial/LiquidCrystal

*/

// include the library code:

#include <LiquidCrystal.h>

#include <Wire.h>

#include <HMC5883L.h>

// Store our compass as a variable.

HMC5883L compass;
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// Record any errors that may occur in the compass.

int error = 0;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int sigpin = A0;

int max_sample = 0;

void setup(){

Serial.begin(9600);

// set up the LCD’s number of columns and rows:

lcd.begin(16, 2);

// Print a message to the LCD.

lcd.print("AvaDrone");

// Digital compass setup

Wire.begin(); // Start the I2C interface.

compass = HMC5883L(); // Construct a new HMC5883 compass.

error = compass.SetScale(1.3); // Set the scale of the compass.

if(error != 0) // If there is an error, print it out.

Serial.println(compass.GetErrorText(error));

error = compass.SetMeasurementMode(Measurement_Continuous);

// Set the measurement mode to Continuous

if(error != 0) // If there is an error, print it out.

Serial.println(compass.GetErrorText(error));

}

void loop(){

for(int i=0; i<1000; i++){

//low-pass filter

int new_sample = 0;

int avg_num = 10;
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for(int j=0; j<avg_num; j++)

new_sample += analogRead(sigpin);

new_sample /= avg_num;

//comment out if using low-pass filter

//int new_sample = analogRead(sigpin);

//track high signal level

if(new_sample > max_sample) {

max_sample = new_sample;

float heading = readCompass();

lcd.setCursor(0,1);

if(max_sample < 100)

lcd.print(’ ’);

lcd.print(max_sample);

lcd.print(" @ ");

lcd.print((int) heading);

lcd.print(" deg");

Serial.print(max_sample);

Serial.print(’\t’);

Serial.println(heading);

}

}

max_sample = 0;

// set the cursor to column 0, line 1

// (note: line 1 is the second row, since counting begins with 0):

//lcd.setCursor(0, 1);

// print the number of seconds since reset:

//lcd.print(millis()/1000);

}

float readCompass(void){

// Retrived the scaled values from the compass

// (scaled to the configured scale).

MagnetometerScaled scaled = compass.ReadScaledAxis();

// Calculate heading when the magnetometer is level,
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// then correct for signs of axis.

float heading = atan2(scaled.YAxis, scaled.XAxis);

// Once you have your heading, you must then add your

// ’Declination Angle’, which is the ’Error’ of the

// magnetic field in your location.

// Find yours here: http://www.magnetic-declination.com/

// Mine is: 2deg 37’ W, which is 2.617 Degrees, or (which

// we need) 0.0456752665 radians, I will use 0.0457

// If you cannot find your Declination, comment out these

// two lines, your compass will be slightly off.

float declinationAngle = 0.0457;

heading += declinationAngle;

// Correct for when signs are reversed.

if(heading < 0)

heading += 2*PI;

// Check for wrap due to addition of declination.

if(heading > 2*PI)

heading -= 2*PI;

// Convert radians to degrees for readability.

float headingDegrees = heading * 180/M_PI;

return headingDegrees;

}

B.10 Sig Test 3.ino

/******************************************************************

* Test script for transceiver signal acquisition.

*

* Takes 2 time-series samples, then continuously displays them over

* serial.

*

* Testing for strange observed differences between signal at ground
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* level and at 1 foot (or higher) elevation.

*

* Written by Ben Dickensheets on 3/20/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Written for Arduino Uno.

******************************************************************/

#include <LiquidCrystal.h>

/*

LiquidCrystal Library - Hello World

Demonstrates the use a 16x2 LCD display. The LiquidCrystal

library works with all LCD displays that are compatible with the

Hitachi HD44780 driver. There are many of them out there, and you

can usually tell them by the 16-pin interface.

This sketch prints "Hello World!" to the LCD

and shows the time.

The circuit:

* LCD RS pin to digital pin 12

* LCD Enable pin to digital pin 11

* LCD D4 pin to digital pin 5

* LCD D5 pin to digital pin 4

* LCD D6 pin to digital pin 3

* LCD D7 pin to digital pin 2

* LCD R/W pin to ground

* 10K resistor:

* ends to +5V and ground

* wiper to LCD VO pin (pin 3)

Library originally added 18 Apr 2008

by David A. Mellis

library modified 5 Jul 2009

by Limor Fried (http://www.ladyada.net)

example added 9 Jul 2009
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by Tom Igoe

modified 22 Nov 2010

by Tom Igoe

This example code is in the public domain.

http://www.arduino.cc/en/Tutorial/LiquidCrystal

*/

// include the library code:

#include <LiquidCrystal.h>

#include <Wire.h>

#include <HMC5883L.h>

// Store our compass as a variable.

HMC5883L compass;

// Record any errors that may occur in the compass.

int error = 0;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int sigpin = A0;

const int sample_size = 300;

int series_1[sample_size];

int series_2[sample_size];

void setup(){

Serial.begin(9600);

// set up the LCD’s number of columns and rows:

lcd.begin(16, 2);

// Print a message to the LCD.

lcd.print("AvaDrone");

// Digital compass setup

Wire.begin(); // Start the I2C interface.

compass = HMC5883L(); // Construct a new HMC5883 compass.
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error = compass.SetScale(1.3); // Set the scale of the compass.

if(error != 0) // If there is an error, print it out.

Serial.println(compass.GetErrorText(error));

error = compass.SetMeasurementMode(Measurement_Continuous);

// Set the measurement mode to Continuous

if(error != 0) // If there is an error, print it out.

Serial.println(compass.GetErrorText(error));

//test statement

Serial.println("Reset :(");

// Begin countdown until first sample series

for(int i=5; i>-1; i--) {

lcd.setCursor(0,1);

lcd.print("Series 1 in ");

lcd.print(i);

delay(1000);

}

lcd.setCursor(0,1);

lcd.print("Reading Series 1");

// Store data points for Series 1

for(int i=0; i<sample_size; i++) {

series_1[i] = analogRead(sigpin);

delay(10);

}

// Begin countdown until second sample series

for(int i=5; i>-1; i--) {

lcd.clear();

lcd.print("AvaDrone");

lcd.setCursor(0,1);

lcd.print("Series 2 in ");

lcd.print(i);

delay(1000);

}
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lcd.setCursor(0,1);

lcd.print("Reading Series 2");

// Store data points for Series 2

for(int i=0; i<sample_size; i++) {

series_2[i] = analogRead(sigpin);

delay(10);

}

lcd.clear();

lcd.print("AvaDrone");

lcd.setCursor(0,1);

lcd.print("Printing data");

}

void loop(){

Serial.println("\nSeries 1:");

for(int i=0; i<sample_size; i++)

Serial.println(series_1[i]);

Serial.println("\nSeries 2:");

for(int i=0; i<sample_size; i++)

Serial.println(series_2[i]);

}

float readCompass(void){

// Retrived the scaled values from the compass

// (scaled to the configured scale).

MagnetometerScaled scaled = compass.ReadScaledAxis();

// Calculate heading when the magnetometer is level,

// then correct for signs of axis.

float heading = atan2(scaled.YAxis, scaled.XAxis);

// Once you have your heading, you must then add your

// ’Declination Angle’, which is the ’Error’ of the

// magnetic field in your location.

// Find yours here: http://www.magnetic-declination.com/
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// Mine is: 2deg 37’ W, which is 2.617 Degrees, or

// (which we need) 0.0456752665 radians, I will use 0.0457

// If you cannot find your Declination, comment out

// these two lines, your compass will be slightly off.

float declinationAngle = 0.0457;

heading += declinationAngle;

// Correct for when signs are reversed.

if(heading < 0)

heading += 2*PI;

// Check for wrap due to addition of declination.

if(heading > 2*PI)

heading -= 2*PI;

// Convert radians to degrees for readability.

float headingDegrees = heading * 180/M_PI;

return headingDegrees;

}

B.11 Sig Test Due.ino

const int sigpin = A0;

const long samples = 10000;

int signal_array[samples];

void setup(){

SerialUSB.begin(9600);

}

void loop(){

for(int i=0; i<samples; i++) {

signal_array[i] = analogRead(sigpin);

SerialUSB.println(signal_array[i]);

}

}
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B.12 Ultrasonic Test.ino

/******************************************************************

* Testing for an ultrasonic rangefinder

*

* Written by Ben Dickensheets on 3/17/15 for a senior design

* project for SB degree requirements in Electrical Engineering

* at Harvard University

*

* Rangefinder should be given +5V at pin V_cc.

******************************************************************/

#define ultraPinIn 8

#define ultraPinOut 5

#define SPEED_OF_SOUND 340 // m/s

void setup() {

pinMode(ultraPinIn, INPUT);

pinMode(ultraPinOut, OUTPUT);

digitalWrite(ultraPinOut, LOW);

Serial.begin(9600);

}

void loop() {

unsigned long start_time = micros();

for(int i=0; i<10000; i++){

int height = getHeight();

}

unsigned long stop_time = micros();

Serial.println((stop_time - start_time)/10000);

delay(10);

}

// returns height from ultrasonic rangefinder in cm

int getHeight(void){

digitalWrite(ultraPinOut, HIGH);
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delayMicroseconds(15);

digitalWrite(ultraPinOut, LOW);

float raw = (float) pulseIn(ultraPinIn, HIGH); // returns microseconds

return (int) (raw * SPEED_OF_SOUND * 100 / 2 / 1000000);

// microseconds->s, m->cm

}
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