
Building N Birds With 1 Store: Parallel Simulations
of Stochastic Evolutionary Processes

Citation
Janitsch, William. 2015. Building N Birds With 1 Store: Parallel Simulations of Stochastic
Evolutionary Processes. Bachelor's thesis, Harvard College.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398531

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398531
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Building%20N%20Birds%20With%201%20Store:%20Parallel%20Simulations%20of%20Stochastic%20Evolutionary%20Processes&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=22aeea96b7ee61bf8b5e0cf1d53322df&department
https://dash.harvard.edu/pages/accessibility

Building n Birds with 1 Store:

Parallel Simulations of Stochastic Evolutionary Processes

Billy Janitsch

A thesis presented to Computer Science

in partial fulfillment of the honors requirements

for the degree of Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 1, 2015

Abstract

Stochastic processes are used to study the dynamics of evolution in finite, structured

populations. Simulations of such processes provide a useful tool for their study, but are

currently limited by computational speed and memory bottlenecks, even when naively

parallelized. This thesis proposes two novel parallelization methods for simulating a

particular class of evolutionary processes known as “games on graphs.” The theoretical

speed-up and scalability of these methods is analyzed across various parameters. A novel

approximate parallel method is also proposed, which allows for further speed-up at the

expense of some accuracy. Discussion of implementation considerations follows, and a

resulting implementation in Python is used to provide empirical performance results

which match closely with theoretical ones. Applications are suggested for a variety of

open problems in biology, behavioral economics, political science, and linguistics.

Acknowledgments

To David Parkes, my advisor, to Martin Nowak and Yaron Singer, my readers, and to

Stephen Chong, for their unwavering enthusiasm, encouragement, and kindness, and for

collectively teaching three of the most inspiring classes I’ve taken as an undergraduate.

To everyone, past and present, at the Program for Evolutionary Dynamics, including

Ben Adlam, Erez Lieberman Aiden, Oliver Hauser, Alison Hill, Moshe Hoffman, Jean-

Baptiste Michel, Alex Peysakhovich, Dave Rand, Carl Veller, and Erez Yoeli.

To my roommates and friends, for their support and persistent reminders to eat,

sleep, and shower.

Finally, to my mother, for her love, and for everything else.

1

Contents

1 Introduction 4

1.1 Evolutionary Processes and Simulations 4

1.2 Related Work . 5

1.3 Outline . 6

2 Evolutionary Processes 8

2.1 Population Structure . 8

2.2 Population Composition and Dynamics 13

2.3 Examples . 19

3 Parallelization 22

3.1 Architecture . 22

3.2 Task Dependencies . 24

3.3 Intra-round Parallelization . 29

3.4 Inter-round Parallelization . 38

4 Approximation 44

4.1 Motivation . 44

4.2 Dependency Dropping . 45

5 Implementation 48

2

5.1 Data Structures . 48

5.2 Algorithms . 51

6 Results 53

6.1 Parameter Space . 53

6.2 Speed-up . 55

7 Conclusion 60

7.1 Summary . 60

7.2 Future Work . 61

Appendices 64

A CTDG Derivations 64

B Resolvability 67

3

Chapter 1

Introduction

1.1 Evolutionary Processes and Simulations

Beginning midway through the 20th century with the modern synthesis [1], the

mathematical study of evolution has grown to unite biology, economics, mathematics,

and computer science. Theoretical models allow us to deeply understand the evolution-

ary processes that govern our world and give rise to an incredible diversity of traits,

structures, and behaviors. Such models have been applied to domains as far-reaching

as sociology, psychology, linguistics, medicine, and political science [16].

Evolutionary models exist in both deterministic and stochastic forms. While deter-

ministic models are typically more tractable to analyze, stochastic models more accu-

rately represent inherent randomness involved in biological and other contexts. Indeed,

many significant biological phenomena such as neutral drift arise exclusively in stochastic

formulations [8].

For stochastic models which are complex enough to evade deep mathematical anal-

ysis, researchers often turn to computational simulations to understand their dynamics

and explore conjectures [2, 4, 17]. In particular, for evolutionary models featuring

large populations with complex and irregular structure (such as those involving social

4

networks), mathematical results remain fairly rudimentary, and simulations provide a

promising approach [12, 13].

However, such simulations often have significant computational limits. They require

maintaining large, complex states, and performing immense numbers of computation-

ally difficult calculations that scale poorly with model parameters such as population

size. While some work has been done to invent more efficient algorithms to perform

such calculations, even the most efficient single-processor implementations of stochastic

simulations can be very slow.

As a result, researchers without access to supercomputers are frequently forced to re-

strict the scope of their simulations, working with small population sizes, simple network

structures, and simplified models [12, 13, 4, 17, 15]. This not only leads to uncertainty

about the applicability and generalizability of their results, but also prevents many sim-

ulations from approaching the scale of real-world relevancy, such as those on large-scale

social networks.

Parallel computing provides a promising approach to solve this problem. Indeed,

simulation experiments are typically parallelized in the sense that multiple independent

simulations are run simultaneously on multiple processors. However, this results in a

linear increase in memory usage, which is a massive problem when individual simulations

already push the limits of what can be stored in memory.

Less coarse parallelism which does not suffer from this memory explosion consti-

tutes a much harder problem, especially in light of the non-deterministic nature of the

processes. This thesis proposes, implements, and tests novel methods of parallelizing

individual simulations of a particular class of processes called “games on graphs”.

1.2 Related Work

The literature for parallel computing in general is extremely rich. The main lim-

itation of this research as applied to stochastic processes is that it deals largely with

5

parallel approaches to entirely deterministic processes and algorithms [6], and is there-

fore often incapable of handling the non-determinism present in evolutionary models.

However, the stochastic processes of interest typically involve the computation of large

deterministic subproblems (e.g. weighted random selection [14]), which often have been

more widely studied. Thus, I will often defer to existing results and algorithms for such

problems.

Parallel computing also provides an approach to reason about computational runtime

and speed-up as a function of how many processors are available to execute computations

in parallel. While the standard model similarly suffers from assuming various kinds of

determinism, it is nevertheless used as a base for an extended, non-deterministic model.

The literature for evolutionary dynamics, and for games on graphs in particular, is

quite extensive as well. However, while research in the field regularly employs simulation

methods, published work almost exclusively focuses on the results of such simulations,

rather than on the details of their computational implementation [12, 13, 4, 17]. Thus,

the evolutionary dynamics literature will be primarily used to define the problem space.

Specifically, recent work will be reviewed to formulate a general class of stochastic pro-

cesses capable of representing a wide variety of evolutionary phenomena. Open questions

in the literature will also be used to suggest applications of the parallelization methods.

Despite the relative size of each field individually, their intersection is relatively

sparse. In particular, there does not appear to be any published work on parallelizing

simulations of this particular class of evolutionary models, and there is limited work on

parallelizing stochastic processes in general [3].

1.3 Outline

In Chapter 2, I introduce the general form of stochastic evolutionary process that I

will analyze. This model is a synthesis of recent work in the field, generalized to allow

for a wide variety of specific implementations. I review some of the canonical results

6

obtained from varieties of this model as well as open questions in this domain.

In Chapter 3, I introduce a theoretical model of non-deterministic parallelism and

apply it to various classes of evolutionary processes. I propose two main parallelization

methods, and investigate the extent to which they are applicable across different types

of models. Their theoretical speed-up and scalability are analyzed.

In Chapter 4, I extend this model to allow for parallelization approaches which only

approximate, rather than exactly replicate, the dynamics of their respective sequential

stochastic processes. I discuss their divergence, analyze the theoretical trade-off between

speed-up and accuracy, and review the relevance of accuracy to various models.

In Chapter 5, I discuss the implementation of the resulting parallel simulation meth-

ods, considering trade-offs between various data structures and algorithms in terms of

complexity and runtime. This chapter accompanies an actual implementation in the

form of a Python library capable of running both sequential and parallel simulations.

In Chapter 6, this implementation is used to provide empirical performance bench-

marks across a variety of experiments, testing the roles of various forms and parameters

of the general stochastic model. These results are compared with the theoretical results

obtained in Chapters 3 and 4.

Finally, in Chapter 7, I conclude by suggesting extensions and applications of the

parallel approaches to open problems in biology, behavioral economics, political science,

and linguistics.

7

Chapter 2

Evolutionary Processes

2.1 Population Structure

I consider a general class of evolutionary processes consisting of a fixed-size population

of agents which evolves over time according to particular implementations of selection

and mutation. The model defines a population structure, which does not change over

time1, and a population composition, which does. The process’s update rule defines the

stochastic dynamics of the population composition over time.

The population structure describes the set of agents in the population and the con-

nections between them. Depending on the context of the model, agents are gener-

ally thought of as biological organisms, but may also represent institutions. Context

also informs the interpretation of inter-agent connections, which may represent spa-

tial/geographical organization of the population, semantic relationships among the pop-

ulation (as in a human social network in which a link represents a friendship), or channels

through which information can flow. The connections are used as a proxy for the relative

likelihood of interaction between two agents.

1There has been some work involving dynamic populations where agents can enter or exit the pop-
ulation and the connections between them can change over time [10]. Unfortunately, this complicates
existing analysis significantly, and such work is currently very rudimentary. Therefore, I restrict my
analysis to static, fixed-size population structures.

8

1

2

3

4

5

6

3

6

1

2

8

7

3

5

5.4

4

5

1

8

2

Figure 2.1: An example population structure, with agents N =
{

1, 2, 3, 4, 5, 6
}

and
non-normalized edge weights. Note that agents 4 and 6 are neighbors of themselves,
and (2, 3) and (4, 5) are the only pairs of mutual neighbors. The 1st in-neighborhood of
agent 1 is Ψ(1) =

{
5, 6
}

, and the 2nd out-neighborhood of agent 2 is Ω2(2) =
{

1, 2, 4, 6
}

.

Formally, the structure is given by a weighted, directed graph G = (N,E,w). N is

set of nodes
{

1, 2, . . .
}

representing agents, with |N | ≥ 2, connected by edges (i, j) ∈ E

where i, j ∈ N , with edge weighting function w : N × N → R+
0 . Let w(i, j) = 0 iff

(i, j) 6∈ E as a convenience. Outgoing edges from each node have weights which are

typically normalized such that ∑
j∈N

w(i, j) = 1

yielding a right stochastic adjacency matrix. Finally, assert that G is weakly connected

(i.e. ∀i, j ∈ N. it is possible to reach node j from node i by traversing edges in either

direction). This assertion prevents us from working with graphs that could more easily

be thought of as entirely separate populations, where each population is a single weakly

connected component. Moreover, it ensures that every agent has at least one neighbor.

Agent j is a neighbor of agent i if (i, j) ∈ E. This relationship is not bidirectional

in general, and it is possible for an agent to be a neighbor of itself. However, agent i

and j are mutual neighbors of each other if (i, j) ∈ E and (j, i) ∈ E. Let Ω(S) and

9

Ψ(S) represent the 1st out-neighborhood and in-neighborhood of a set of nodes S ⊆ N ,

respectively. These are defined as follows

Ω(S) =
⋃
i∈S

{
j ∈ N

∣∣ (i, j) ∈ E
}

Ψ(S) =
⋃
i∈S

{
j ∈ N

∣∣ (j, i) ∈ E
}

This notation is overloaded slightly to let Ω(i) = Ω({i}) and Ψ(i) = Ψ({i}) for i ∈ N .

Intuitively, the 1st out-neighborhood of i is the set of immediate neighbors of i, and

the 1st in-neighborhood of i is the set of agents with i as one of their neighbors. Thus,

|Ω(i)| and |Ψ(i)| are the out-degree and in-degree of i, respectively. Ωn(S) (Ω composed

n times) is refered to as the nth out-neighborhood of S, and similarly Ψn(S) is the n-th

in-neighborhood of S. For examples of this notation, see Figure 2.1.

This weighted digraph is a very general model for population structure, but many

specific models enforce tighter constraints. A few special cases of population structure

are defined below.

Definition 2.1.1 (Weakly Undirected Population Structure). A weakly undirected pop-

ulation structure is one where ∀(i, j) ∈ E : (j, i) ∈ E.

Definition 2.1.2 (Strongly Undirected Population Structure). A strongly undirected

population structure is one where ∀i, j ∈ N : w(i, j) = w(j, i).

A weakly undirected network graph is undirected in the sense that any edge is com-

plemented by an edge with opposite direction. In a strongly undirected network graph,

these edges pairs have equal weight and can thus be thought of as a single bidirec-

tional edge. In both types of undirected population structures, neighbor relationships

are bidirectional, such that ∀S ⊆ N : Ω(S) = Ψ(S).

In practice, population structures are typically at least weakly undirected, and often

strongly undirected, since most types of connections between agents are bidirectional,

10

such as physical proximity and societal structure. However, directionality is occasionally

used to model varying degrees of influence2.

Definition 2.1.3 (Unweighted Population Structure). An unweighted population struc-

ture is one where ∀i ∈ N, ∃c :

w(i, j) =


c if j ∈ Ω(i)

0 otherwise

All outgoing edges from any single node are of equal weight, though edge weights

need not be constant across the entire graph. As will be seen, weights will only ever be

compared between outgoing edges of the same node, so this is equivalent to conventional

notions of an unweighted graph.

Definition 2.1.4 (Well-mixed Population Structure). A well-mixed population is one

where ∃c : ∀i, j ∈ N : w(i, j) = c.

Well-mixed populations are both strongly undirected and unweighted. In such a

population, all agents are equally connected to all other agents, including themselves,

so it is equally likely for any agent to interact with any other agent. Such populations

can be thought of as lacking structure entirely. This notion of “amount of structure” is

captured by density, which is the ratio of the number of edges that exist to the number

of possible edges, or |E|
|N |2 . Intuitively, a low density corresponds to a high amount of

structure.

Population structure can also be analyzed in terms of its degree distribution function

Λ(n), which is the probability that a randomly selected agent has exactly n neighbors.

2Consider a population where nodes represent either politicians or citizens, and assume that citizens
can influence each other equally, whereas politicians can influence citizens but are not influenced by
them. In such a model, directional edges run from politicians to citizens but not vice versa, yielding a
directed population structure.

11

Formally,

Λ(n) =
|
{
i ∈ N

∣∣ Ω(i) = n
}
|

|N |

There are several canonical methods to randomly generate population structures for

a given population size |N |. Often, these are designed such that their resulting graphs

exhibit specific properties which have been empirically observed in real-world popula-

tion networks. Such population generation procedures are useful when attempting to

determine whether some property is generally true across a particular kind of population

structure, which can otherwise be difficult given a small sample size of real-world data.

A few particularly important generation procedures are reviewed below.

Definition 2.1.5 (Independent Edge Formation). A random population structure with

independent edge formation is generated according to the following process with param-

eter p ∈ (0, 1). For some population size |N |, iterating over all i, j ∈ N , edge (i, j) is

created with independently sampled probability p.

A population generated using this method has a binomial degree distribution and

an expected density of p. Such populations are generally very different from real-world

populations in terms of topology. In particular, they fail to exhibit certain well-observed

properties of social networks, including “small worlds” and “edge clustering”. However,

their simplicity makes them very tractable for mathematical analysis.

Definition 2.1.6 (Preferential Attachment). A random, unweighted, undirected pop-

ulation structure with preferential attachment is generated as follows with parameter

m ∈ N+. Beginning with a complete graph of m agents, |N | −m agents enter the pop-

ulation one-by-one. Each agent forms m edges with agents in the population, sampled

without replacement proportional to current degree.

Definition 2.1.7 (Copying). A random, unweighted population structure with copying

is generated by the following procedure with parameters mr,mc ∈ N+, and p ∈ (0, 1).

Beginning with a complete graph of 1+mr+mc agents, |N |−1−mr−mc agents enter the

12

population one-by-one. Each agent i samples mc agents uniformly from the population,

and forms an edge toward them with independently sampled probability p. Then, it

samples mr agents from Ω2(i), and forms an edge toward them with independently

sampled probability p.

The copying model produces population structures which exhibit very similar prop-

erties to empirically-observed social networks. It will be used to generate populations

used for experiments in Chapter 6.

2.2 Population Composition and Dynamics

The population composition describes the state of the population over discrete units

of time t ∈ {0, 1, . . . }. There is a (finite or infinite) set of types Q = {q1, q2, . . . }, and

each agent has a single type which can change over time. Depending on the context of

the model, these types can be interpreted in a variety of ways, for instance as biological

phenotypes, strategies played by agents in games, or sets of ideas of beliefs that deter-

mine behavior. Likewise, an agent’s transition between two types can be contextually

interpreted, for instance as reproduction, imitation, or conversion of belief.

Formally, the state of the population at a given time is represented as a vector

s = 〈s1, . . . , s|N |〉

where si represents the type of agent i ∈ N . If s is the population state at time t, s′ is

generally used to represent the population state at time t + 1. Let s[i 7→ x] represent

the vector equivalent to s except at position i where si has been replaced by x. For

example, if s = 〈q1, q2, q3, q4〉, then s[2 7→ s4] = 〈q1, q4, q3, q4〉. The initial population

state must be provided, and may be random or fixed.

The interaction function σ : Q ×Q → R+
0 defines the payoff that an agent of type

qi ∈ Q receives from interacting with an agent of type qj ∈ Q. In population state s,

13

an agent i ∈ N has fitness

fi =
∑
j∈Ω(i)

w(i, j)σ(si, sj)

which is a weighted average of interaction payoffs with its neighbors in their current

states. Note that because of the population structure’s normalized edge weights, fitness

is not biased towards agents with more neighbors. Further, fitness is bounded by some

maximum fitness fmax [16]. qi ∈ Q has constant fitness c if ∀qj ∈ Q : σ(qi, qj) = c, i.e.

if its interaction payoff does not depend on the type of the agent that it is interacting

with. Total population fitness, the sum of the fitnesses of all agents, is formally defined

as

f =
∑
i∈N

fi

Finally, there is an update rule which specifies the transition probability from s to

s′. The only formal restriction on the update rule is that it must exhibit the Markov

property.

Definition 2.2.1 (Markov Property). Let random variable St represent the state of the

population at time t. An evolutionary process exhibits the Markov property if

P (St+1 = st+1 | St = st) = P (St+1 = st+1 | St = st, . . . , S1 = s1)

Informally, this means that s′, given s, does not depend on any state prior to s. Up-

date rules typically implement selection, and occasionally mutation. Several canonical

classes of update rules are defined below. They will be the main feature by which pro-

cesses are distinguished in the context of parallelization methods introduced in Chapter

3, since they turn out to exhibit widely differing computational properties.

Definition 2.2.2 (Birth-Death Process). A birth-death process BD has the following

update rule. First, an agent r ∈ N is chosen to reproduce by a random selection from

the entire population proportional to each agent’s fitness fr, with non-normalized PMF

14

1

2

3

4

56

(a) Agent 1 is selected to reproduce. It will
replace one of its neighbors Ω(1).

1

2

3

4

56

(b) Agent 3 is selected to die. It takes on
the type of reproducing agent 1.

Figure 2.2: An example of one round of BD on an unweighted population with type
space Q =

{
W,G

}
, represented by white and grey shading of the agents, respectively.

pR (r) = fr. Next, one of its neighbors d ∈ Ω(r) is chosen to die proportional to edge

weight w(r, d), with non-normalized PMF pD (d | r) = w(r, i). The reproducing agent

replaces the dying one, yielding s′ = s[d 7→ sr].

For an example, see Figure 2.2. BD implements selection by favoring the reproduc-

tion of fitter agents. Note that it is possible to sample d = r, such that an agent replaces

itself, if r ∈ Ω(r).

Definition 2.2.3 (Death-Birth Process). A death-birth process DB has the following

update rule. First, an agent d ∈ N is chosen to die by a uniformly random selection from

the entire population, i.e. sampled from a distribution with PMF pD (d) = 1
|N | . Next,

one of its neighbors r ∈ Ω(d) is chosen to reproduce proportional to edge weight and

fitness, i.e. sampled from a distribution with non-normalized PMF pR (r | d) = w(d, r)fr.

The reproducing agent replaces the dying one, yielding s′ = s[d 7→ sr].

For an example, see Figure 2.3. DB can also be thought of as an imitation process,

whereby a randomly chosen agent decides to imitate the type of one of its neighbors

proportional to their fitness and edge weight. Note that, as in BD, it is possible for an

agent to replace itself. BD and DB are equivalent in a well-mixed population, but their

dynamics differ subtly in other kinds of population structures [8].

15

1

2

3

4

56

(a) Agent 1 is selected to die. It will be
replaced by one of its neighbors Ω(1).

1

2

3

4

56

(b) Agent 3 is selected to reproduce. Its
type is taken on by agent 1.

Figure 2.3: An example of one round of DB.

Definition 2.2.4 (Pairwise-Comparison Process). A pairwise-comparison process PC

has the following update rule. As in DB, an agent d ∈ N is chosen to potentially die

by a uniformly random selection from the entire population. Next, one of its neighbors

r ∈ Ω(d) is chosen to potentially reproduce proportional to edge weight w(d, r), with

non-normalized PMF pR (r | d) = w(d, r). Next, with probability θ(fr − fd), where θ :

R→ [0, 1] is some monotonically increasing function, the reproducing agent successfully

replaces the dying one yielding s′ = s[d 7→ sr]. Otherwise, s′ = s.

For an example, see Figure 2.4. Examples of θ include θ(∆) = max(0, ∆
fmax

), where

fmax is the maximum possible fitness. This lets an agent update its strategy only

if doing so would yield a higher fitness for that agent. DB is a special case of PC

with θ(∆) = 1, but as will be seen, it is worth considering as its own process due to

computational differences resulting from its lack of dependence on ∆.

Definition 2.2.5 (Best Response Process). A best response process (BR) has the fol-

lowing update rule. An agent d ∈ N is chosen to update by a uniformly random selection

from the population. It updates its type to the q ∈ Q which maximizes its fitness f ′d

given the current types of its neighbors
{
sj
∣∣ j ∈ Ω(i)

}
.

Note that BR is innovative in the sense that it is capable of introducing a type

q ∈ Q not currently present in the population state s, unlike the processes described

16

1

2

3

4

56

(a) Agent 1 is selected to potentially die.
It may be replaced by one of its neighbors
Ω(1).

1

2

3

4

56

(b) Agent 3 is selected to potentially re-
produce. However, the reproduction is un-
successful, so the state of agent 1 does not
change.

Figure 2.4: An example of one round of PC.

1

2

3

4

56

(a) Agent 1 is selected to update. It will
choose a new type by considering a best re-
sponse to its neighbors.

1

2

3

4

56

(b) Agent 1 updates its type to optimize
its payoff.

Figure 2.5: An example of one round of BR.

above. It is also unique in that, although the selection of d is non-deterministic, the

updating agent has a deterministic rule to update its type.

Definition 2.2.6 (Birth-Death with Payoff Affecting Death Process). A birth-death

with payoff affecting death process BDD has the following update rule. First, an agent

r ∈ N is chosen to reproduce by a uniformly random selection from the entire population.

Next, one of its neighbors d ∈ Ω(r) is chosen to reproduce proportional to edge weight

w(r, i) and inverse fitness 1
fi

, with non-normalized PMF pD (d | r) = w(r,d)
fd

. Finally, the

reproducing agent replaces the dying one yielding s′ = s[d 7→ sr].

17

1

2

3

4

56

(a) Agent 1 is selected to reproduce. It will
replace one of its neighbors Ω(1).

1

2

3

4

56

(b) Agent 2 is selected to die. It obtains
the type of agent 1 (which happens to be
the same as its previous type).

Figure 2.6: An example of one round of BDD.

1

2

3

4

56

(a) Agent 6 is selected to reproduce. It will
replace one of its neighbors Ω(1).

1

2

3

4

56

(b) Agent 6 (the same agent that was se-
lected to reproduce) is selected to die.

Figure 2.7: An example of one round of DBD.

Definition 2.2.7 (Death-Birth with Payoff Affecting Death Process). A death-birth with

payoff affecting death process DBD has the following update rule. First, an agent d ∈ N

is chosen to die by a random selection from the entire population weighted by inverse

fitness, with non-normalized PMF pD (d) = 1
fd

. Next, one of its neighbors R ∈ Ω(d) is

chosen to reproduce proportional to edge weight, with PMF pR (r | D = d) = w(d, r).

Finally, the reproducing agent replaces the dying one yielding s′ = s[d 7→ sr]. Note that

it is possible to sample r = d, such that an agent may replace itself, if d ∈ Ω(d).

Mutation can be introduced into any process as follows. For some constant mutation

parameter µ ∈ [0, 1], if the result of a round is s′ = s[d 7→ sr], with probability µ, the

18

result instead becomes s′ = s[d 7→ x], for some uniformly randomly sampled x ∈ Q3.

Mutation introduces innovation in non-innovative processes, which is useful for avoiding

permanent fixation of a single type across the entire population.

Death-first processes can also introduce a synchronization parameter ρ ∈ [0, 1]. The

idea is to have multiple agents die and be replaced in the same round. Specifically, before

updating the state of d, for each agent i ∈ N \
{
d
}

, i is chosen to die with probability ρ.

If it is chosen to die, then its type is updated according to the rule of the process used

for d. Thus, ρ allows for a continuous transition between individual update (ρ = 0) and

full sequencial update, where every agent always updates their type (ρ = 1).

2.3 Examples

Below are two examples of models which illustrate the utility of this type of stochastic

evolutionary model, as well as the limitations of analytical approaches in studying it,

and the limitations of standard inter-simulation parallelization in simulating it.

Moran process

The Moran process is one of the earliest and simplest biological stochastic processes,

designed to model genetic drift of two alleles in a population with constant selection [8].

Definition 2.3.1. For some kA, kB ∈ R+, a Moran process is a special case of BD on a

well-mixed population with Q =
{
A,B

}
, and ∀q ∈ Q : σ(A, q) = kA and σ(B, q) = kB.

Extensive analytical study of this model has yielded a number of classically beautiful

results, including that of its fixation probability, below.

Theorem 2.3.1 (Fixation Probability in a Moran Process). The fixation probabilities

3A more complex but more realistic implementation of mutation instead uses a weighted selection
from the type space, dependent on the current type of the reproducing agent, to model the fact that
not all mutations are equally likely.

19

for types A and B are

ΓA(s) =
kA|As|

kA|As|+ kB|Bs|

ΓB(s) =
kB|Bs|

kA|As|+ kB|Bs|

where |qs| is the number of agents with type q ∈ Q in state s.

Proof. See [8].

If kA = kB, the fixation probability reduces to |As||N | for A and |Bs|
|N | for B. This is

the special case of neutral drift, whereby a neutral mutant present in fraction p of the

population will eventually reach fixation with probability p.

In general, this model is mathematically quite tractable due to its simplicity, but its

simplifying assumptions constrain its utility. In particular, it is rare to find a real-world

population that can be considered well-mixed, since so many factors can bias interaction

probabilities.

Prisoner’s dilemma on a graph

A more complex model defines interaction payoffs based on the Prisoner’s Dilemma

(PD), a classic model in game theory, on a structured population. This allows for the

study of emergence of cooperative behavior as a function of the population’s topology.

Specifically, the prisoner’s dilemma has type space Q =
{
C,D

}
(representing the

“strategies” of cooperation and defection, respectively), with interaction function σ given

by the following payoff matrix (where the row and the column are the respective argu-

ments of σ):

C D

C 2 0

D 3 1

20

Note that type D has strictly better payoff than C regardless of the type of the other

agent, but the overall payoff of a mutual interaction σ(x, y)+σ(y, x) is maximized when

both agents are of type C. Intuitively, cooperation is better for “society”, but defection

is better for any individual agent. The general question is whether cooperation can

emerge and persist in a population despite the apparent superiority of defection.

While many analytical results have been obtained for various regular population

structures such as lattices, rings, and well-mixed populations [7, 1, 11], less progress has

been made for large, irregular population structures [1, 12]. One significant result is

the b/c > 〈k〉 rule, which, for a simplified PD, describes the potential for cooperation

to emerge in DB as a function of the average Ω(i) and the ratio between the benefit

(to others) and cost (to an agent) of cooperation [1, 9]. However, there are a number

of open questions concerning this model [16, 1, 2, 12, 13]. For example, it is generally

thought that increased population structure promotes cooperation, but this relationship

is not well-understood.

Simulations of this model and its variants have been widely employed in current

research [12, 5]. However, such simulations have been constrained to relatively small

populations in order to compute a statistically valid number of rounds in a reasonable

amount of time [12].

This model will be used in Chapter 6 to empirically test the computational speed-up

of the parallelization approaches proposed in Chapters 3 and 4.

21

Chapter 3

Parallelization

3.1 Architecture

I now introduce a framework with which to analyze the theoretical parallelizability

of evolutionary processes. I consider two novel methods of parallelization: intra-round

parallelizability and inter-round parallelizability. Informally, the former asks whether,

within a single round of a process, there are operations that can be executed in parallel.

The latter asks whether multiple rounds of the process can be computed in parallel

– that is, whether there are operations that can be computed towards determining s′

without having determined s. I analyze the theoretical speed-up of each method across

the processes defined in Chapter 2.

It is important to distinguish between theoretical and practical parallelizability; the

former makes significant idealistic assumptions about properties of hardware which are

unlikely to hold up in practice [6]. Nevertheless, theoretical analysis is a useful and often

necessary first step, as its results can generally be translated to practical approaches that

retain the same basic properties of scalability, speed, and memory usage [6].

The parallel architecture models the hardware on which computations will be run.

Suppose there are K processors, or cores1, on which computations can be run in parallel.

1Technically, the former term is more accurate, but the latter will be used to more apparently

22

In general, the goal is to maximize the use of these cores over time. It is assumed that

each core is equally fast, and that the cores operate independently, such that running

one computation on each core is K times as fast as running K computations on one

core2.

The processors each have access to the same shared memory space3, which can be

accessed in unit time. The memory space is modelled as a concurrent-read exclusive-

write (CREW) system, whereby multiple processors can read from the same address in

memory simultaneously, but only one processor can write to a given address at once.

The processors do not share a global clock, so their execution order is non-deterministic.

Let TK represent the running time of an algorithm given K cores (which is, of course,

a function of the input). Then, T1 is the running time of the sequential algorithm.

Definition 3.1.1 (Speed-up). The computational speed-up of a parallel algorithm given

K processors is SK = T1
TK

.

Definition 3.1.2 (Efficiency). The efficiency of a parallel algorithm given K processors

is EK = SK
K .

Speed-up and efficiency are used to reason about the effectiveness of parallelization

in terms of computation time. SK ∈ O(K), referred to as linear speed-up, is optimal,

representing the case where the algorithm takes K times as long to run on 1 core as it

does to run on K cores in expectation. This is equivalent to EK = 1. An efficiency of

EK〉1 (superlinear speed-up) is theoretically impossible [6]. In practice, EK〈1 (sublin-

ear speed-up) is expected; parallel algorithms generally introduce at least some parallel

distinguish this concept from that of evolutionary processes.
2In reality, neither of these assumptions is likely to be exactly true, and their inaccuracy will vary

across hardware. However, averaged across very large numbers of computations, any asymmetry is
negligible.

3This is refered to as a parallel random-access machine (PRAM) model. Alternatives include a local
memory machine model, in which each processor has its own local memory, and a modular memory
machine model in which processors request temporary use of memory modules when needed [6]. The
PRAM model is the most idealistic, but it is a useful abstraction and can be translated into other models
later when designing practical implementations.

23

overhead, including idle time and extra computational work needed to coordinate par-

allization. The challenge of parallelization is to determine an algorithm that minimizes

this overhead, maximizing EK .

This means that, in one sense, parallel algorithms are typically strictly worse than

their sequential counterparts, since EK〈1 implies that, in total, more resources are oc-

cupied over time for the same result. However, as long as EK ≥ 1
K , then a parallel

algorithm runs more quickly than its sequential counterpart in expectation. Thus, par-

allelization is useful in situations where computation time is more of a constraint than

resource consumption4.

Typically, EK decreases in K [6] – a case of diminishing returns, where the effec-

tiveness of increased parallelization plateaus. However, EK typically increases in input

size, informally because more input allows more work to be done synchronously. Thus,

different classes of problem sizes are optimized by different degrees of parallelization. In

the context of evolutionary processes, problem size most readily corresponds to popula-

tion size (which in turn influences the number of rounds to simulate). As will be seen,

efficiency is also heavily influenced by the type of process and the population structure.

3.2 Task Dependencies

Generally, the simulation of an evolutionary process can be thought of as a set of

computations, some of which depend on others. For instance, selecting an agent to

reproduce in a round of BD depends on having computed the fitness of all agents in the

population at the end of the previous around. However, selecting an agent to die in a

round of DB is completely independent of any other computation. Understanding these

relationships between computations allows for reasoning about which computations may

4Consider an evolutionary process for which T1 = 100 days in expectation. Supposing, quite reason-
ably, that a machine with 64 cores is available, even a very low efficiency of E64 = 0.2 would reduce
the running time of the process to under 8 days. In the context of academic research, this trade-off is
extremely worthwhile.

24

occur in parallel and what the resulting speed-ups will be.

Traditional study of parallel algorithms involves representing such relationships as

a task dependency graph [6], where nodes called tasks are discrete computational steps

with an associated asymptotic running time called work. The outcome of a task is

the assignment, or reassignment, of a variable. A directional edge between tasks i

and j indicates that i depends on j (i.e. that task i must be completed before task j

can begin). Another way to think of this is that task j takes the output of task i as

input. For example, in DB, the computation of the reproducing agent r depends on the

computation of the dying agent d, since r must be selected from the neighbors of d. A

task dependency graph also has two special tasks, both with work 0: reading input (the

initial state of the population) and writing output (the state of the population at the

end of every round), which always have only out-edges and in-edges, respectively. The

ultimate goal is to compute the output task.

Unfortunately, the randomness involved in stochastic evolutionary processes compli-

cates this type of analysis. Consider BD, where s′ = s[d 7→ sr]. s
′
i is either remapped

to sr or it is not updated at all (staying equal to si), depending on the random selection

of d. The task of computing s′i is dependent on either the task of computing r or the

task of computing si, but d must be computed first to determine which one. Thus, it is

initially unknown whether edges should exist between the task of s′i and those of si and

r. Further, the work of a task may also be nondeterministic, such as in the preceding

case where the task of computing s′i has work 0 if it depends on si (since the variable is

left unchanged) and work 1 if it depends on r (which requires a read from memory).

An overly conservative solution to these problems would be to consider any task fully

dependent on all tasks that it might depend on, but introducing unnecessary dependen-

cies has negative consequences for efficiency. Instead, such nondeterministic dependen-

cies can be thought of as being conditional on a set of tasks. Once every task in the set

has been executed, a conditional dependency can be resolved, becoming either a normal

25

1 2

3

Figure 3.1: Example of a conditional task dependency graph 〈T,D〉. Tasks T ={
1, 2, 3

}
are represented as nodes, and dependencies D =

{
(1, 2), (3, 1), (3, (1, 2))

}
are

represented edges (which can, unusually, point to other edges as well as nodes). Unre-
solved dependencies are represented as dashed lines. In this case, 3 would need to be
computed to determine whether 2 depends on 1, and to compute 1.

dependency or a lack thereof.

Formally, this idea is captured by a conditional task dependency graph (CTDG),

defined by a vector 〈T,D〉 consisting of a set of tasks T , and a set of dependencies D.

A task t ∈ T has work δt. For t1, t2 ∈ T , if t2 might (or must) depend on t1, then

(t1, t2) ∈ D. Similarly, for t ∈ T and d ∈ D, if d is conditional on t, then (t, d) ∈ D.

Thus, dependencies are recursive: D ⊆ (T×T)∪(T×D). See Figure 3.1 for an example.

The set of tasks T contains a set of input variables I, a set of output variables O,

and a set of other variables V that must be computed along the way. Since the input

variables are always present, they have work 0. Thus, T = I ∪O ∪ V .

The total work in a CTDG is the sum of the work of all of its tasks. This is equal

to T1 [6], since a single processor will, in some order, execute each task exactly once.

The span is the length of the longest directed path from the input node to the output

node, where length is determined by the sum of the work of each node in the path. This

represents the sequential bottleneck – the longest sequence of computations that cannot

be performed in parallel – and is thus equal to T∞, the running time given an infinite

number of processors [6]. Thus, S∞ is the ratio of total work to span.

In general, TK depends on how tasks are scheduled, i.e. in what order they are sent

to the processors. Thus, to compute TK , a scheduler, which algorithmically determines

this ordering on-the-fly, must be specified. Computing the scheduler which results in an

optimal, minimized value T ∗K is difficult, especially in the presence of stochastic nonde-

26

terminism, but a greedy scheduler (which simply sends an idle processor any “available”

task) provides a good approximation. Specifically, any greedy scheduler results in a

TK within a factor of 2 of the optimal value T ∗K , and converges towards optimal when

T1
K � T∞ or T1

K � T∞ [6]. Use of a thoughtful, deterministic heuristic can improve

performance even further (and allows TK to be calculated in expectation).

Determining which tasks are available to be sent to a processor at a given time and

reasoning about which heuristic the scheduler should use requires a formal notion of task

availability, which is developed below in the context of a broader model of computation.

A variable store σ is used to keep track of computed tasks and their outputs. For-

mally, σ : T → ∗ is a dynamic function which maps tasks to arbitrary outputs, such that

for some task t ∈ T that has been computed yielding output x, σ(t) = x. The notation

t ∈ σ is used to mean that σ is defined for task t; σ is not defined for tasks which have

not yet been computed. Further, let σ[t 7→ x] represent the store equivalent to σ except

that t is mapped to x. Finally, let σ0 represent an empty store which is not defined for

any tasks.

A computational state on a CTDG 〈T,D〉 is represented by a vector 〈σ, U,R〉 con-

taining a variable store σ, a set of unresolved dependencies U ⊆ D, and a set of resolved

dependencies R ⊆ D.

The computation function πt(σ,R) represents the output of the computation of task

t ∈ T , given input
{
σ(t′)

∣∣ (t′, t) ∈ R
}

. Note that πt can be non-deterministic; however,

it is thought of as having crystallized prior to the computation of the CTDG, such that it

is indeed a function as opposed to a relation. The resolution function φd(σ,R) represents

the resolution of dependency d, given input
{
σ(t′)

∣∣ (t′, t) ∈ R
}

. This resolution is either{
d
}

or ∅, depending on whether d resolves to a dependency or not.

There are two ways to make computational progress on a CTDG: by resolving an

unresolved dependency, or by computing a task. The former updates the sets of resolved

and unresolved dependencies, and the latter updates the variable store. Only available

27

tasks can be computed, and only resolvable dependencies can be resolved.

Definition 3.2.1 (Task Availability). On CTDG 〈T,D〉 in state 〈σ, U,R〉, task t ∈ T

is available if t 6∈ σ ∧ @(t′, t) ∈ U ∧ ∀(t′, t) ∈ R : t′ ∈ σ.

Definition 3.2.2 (Dependency Resolvability). On CTDG 〈T,D〉 in state 〈σ, U,R〉, de-

pendency d ∈ U is resolvable if @(t, d) ∈ U ∧ ∀(t, d) ∈ R : t ∈ σ.

Intuitively, a task is available if it has not already been computed, it has no un-

resolved dependencies, and all of the tasks it depends on have been computed. An

unresolved dependency is resolvable if all of its dependencies are resolved and all of the

tasks it depends on have been computed.

Computational progress on a CTDG can be represented by the relation →, formally

captured by the following inference rules, which use task availability and dependency

resolution as conditions. (x, y) ∈→ is written using infix notation x→ y for readability.

Resolve
d ∈ U @(t, d) ∈ U ∀(t, d) ∈ R : t ∈ σ

〈σ, U,R〉 → 〈σ, U \ d,R ∪ φd(σ,R)〉

Compute
t ∈ T t 6∈ σ ∀(t′, t) ∈ R : t′ ∈ σ @(t′, t) ∈ U

〈σ, U,R〉 → 〈σ[t 7→ πt(σ,D)], U,R〉

→ defines the set of actions that can be taken in a given state. Let
R−→⊆→ and

C−→⊆→ represent the subsets of → which use only the Resolve and Compute rules,

respectively. The notation →∗ is used to represent the reflexive transitive closure of

→. That is, if state y can be reached from state x by zero or more applications of →,

then x →∗ y.
R−→
∗

and
C−→
∗

are similarly defined. Finally, let ⇒ represent the relation

of “longest computability path”, i.e. the longest sequence of computations that can be

made from a particular state. Formally, x⇒ y if x→∗ y ∧ @z : y → z.

Definition 3.2.3 (Computability). A CTDG 〈I∪O∪V,D〉 is computable if ∃σ′, U ′, R′ :

〈σ0, ∅, D〉 →∗ 〈σ′, U ′, R′〉 ∧ ∀t ∈ O : t ∈ σ′.

28

Computability simply ensures that all output tasks can be computed, and is a nec-

essary and sufficient condition for a CTDG to be valid.

3.3 Intra-round Parallelization

The potential for intra-round parallelization can be studied by constructing a CTDG

〈T,D〉 for a single, general round of a process. Across all processes, I is the state of

the population at the end of the previous round, including computed fitness, and O is

the updated state of the population at the end of the round, also including fitness. V

depends on the process, and may include tasks like the selection of an agent to die or

reproduce. The dependency set D can be determined in general by reasoning about the

update rule of the process.

Example 3.3.1 (CTDG for BD). Consider BD, which requires selections of an agent to

reproduce and an agent to die, so V =
{
d, r
}

. The selection of r is a random choice from

the entire population proportional to fitness, requiring that all fi have been computed

to use as weights. This results in dependencies ∀i ∈ N : (si, r). The selection of d is a

random choice from Ω(r) (weighted only by edge weight), and thus depends only on r,

yielding a dependency (r, d).

Next, ∀i ∈ N : s′i is set to sr if d = i, or si otherwise. This means that s′i could

depend on r or si conditional on d, yielding dependencies ∀i ∈ N : (si, s
′
i) ∧ (r, s′i) ∧

(d, (si, s
′
i))∧ (d, (r, s′i)). Finally, fitness of each agent f ′i must be recomputed if i ∈ Ψ(d),

in which case s′i would depend on r or simply set to fi otherwise.

29

In summary, a single round of BD is represented by the following CTDG:

T =
{
si
∣∣ i ∈ N} ∪ {s′i ∣∣ i ∈ N} ∪ {d, r}

D =
{

(si, r)
∣∣ i ∈ N} ∪ {(r, d)

}
∪
{

(si, s
′
i)
∣∣ i ∈ N} ∪ {(d, (si, s

′
i))
∣∣ i,∈ N}

∪
{

(r, s′i)
∣∣ i ∈ N} ∪ {(d, (r, s′i))

∣∣ i ∈ N}
Derivations of CTDGs for single rounds of DB, PC, BR, BDD, and DBD are

similar, and are provided in Appendix A for brevity. However, all resulting CTDGs

are depicted visually in Figures 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7, which should lend some

intuition as to their utility.

Mutation may be added to any process with a straightforward modification of its

TCDG. It involves the creation of a new task µ, which computes whether a mutation

will occur and, if so, samples a type from the type space as the mutant. Any dependency

(t, s′i) ∈ D now depends on µ, since if a mutation does occur, s′i no longer depends on

anything but the mutant type. Indeed, if there is a mutation, (t, s′i) only depends on µ;

thus, any (t′, (t, s′i)) ∈ D also depends on µ. In short, mutation can be represented by

modifying 〈T,D〉 as follows, yielding 〈T ′, D′〉:

T ′ = T ∪
{
µ
}

D′ = D ∪
{

(µ, (t, s′i))
∣∣ i ∈ N, (t, s′i) ∈ D}

∪
{

(µ, (t′, (t, s′i)))
∣∣ i ∈ N, (t′, (t, s′i)) ∈ D}

Once a CTDG has been determined, it can be algorithmically translated into a

greedy intra-round parallel scheduler by repeated application of
R
=⇒ and

C
=⇒. Consider

the CTDG of BD, in the context of the computational model. The computation begins

in state 〈σ0, ∅, D〉.

30

. . .s2s1 sn−1 sn

r

d

. . .s′2s′1 s′n−1 s′n

Figure 3.2: CTDG for a single round of BD without mutation.

. . .s2s1 sn−1 sn

d

r

. . .s′2s′1 s′n−1 s′n

Figure 3.3: CTDG of a single round of DB without mutation.

31

. . .s2s1 sn−1 sn

d

r

p

. . .s′2s′1 s′n−1 s′n

Figure 3.4: CTDG of a single round of PC without mutation.

. . .s2s1 sn−1 sn

d

f

. . .s′2s′1 s′n−1 s′n

Figure 3.5: CTDG of a single round of BR without mutation.

32

. . .s2s1 sn−1 sn

r

d

. . .s′2s′1 s′n−1 s′n

Figure 3.6: CTDG of a single round of BDD without mutation.

. . .s2s1 sn−1 sn

d

r

. . .s′2s′1 s′n−1 s′n

Figure 3.7: CTDG of a single round of DBD without mutation.

33

Informally, by inspection r is the only available task, and there are no resolvable

edges. Once r has completed, d becomes the only available task, which can be approxi-

mated by sampling from the degree distribution5. Once it completes, tasks ∀i ∈ N : s′i

become available.

Formally, there are three blocking computational groups (with applications of
R
=⇒ in

between each line).

〈σ0, ∅, D〉
C
=⇒ 〈σ0[r 7→ πr(σ,R)], R, U〉

〈σ,R,U〉 C=⇒ 〈σ[d 7→ πd(σ,R
′)], R′, ∅〉

〈σ,R,U〉 C=⇒ 〈σ[∀i ∈ N : s′i 7→ πs′i(σ,R)], R, ∅〉

This yields the following scheduling procedure.

Algorithm 1 Update

function Update(d, q)
if q 6= sd then

for all i ∈ Ψ(d) do
fi ← fi + w(i, d)σ(si, sr)− w(i, d)σ(si, sd)

sd ← q

Algorithm 2 Round of BD

r ← W-Select(N, fx) . Weighted selection
d← W-Select(Ω(r), w(r, x))
write d→ r
Update(d, sr)

The work of such a scheduling procedure can be analyzed to determine theoretical

speed-up. Note that since work is an asymptotic measure, it ignores constant factors.

While theoretical values for such constants could be determined by reasoning about the

precise computational steps involved in the task, in practice, they vary so widely across

5More precisely, this may be a slightly biased sample from the degree distribution, since the selection
of an agent was not uniformly random. However, the effect of locality on fitness is assumed to be
negligible over time.

34

hardware that they are not worth considering in theoretical analysis. Chapter 5 will in-

vestigate ways to measure and incorporate constants when designing an implementation

for specific hardware.

Let Ω = |E|
|N | . When analyzing runtime, this will always be used as the value for

|Ω(i)| and |Ψ(i)| regardless of how i was selected. This is an approximation in two ways.

First, it assumes a uniformly random selection of i, since any weighted or deterministic

selection of i will generally introduce some bias. For example, if i is a random selection

from the population weighted by fitness, it could be the case that average out-degree

correlates with fitness. Such affects are assumed to be negligible, though it would be

worth confirming this assumption in future work. Second, it always takes the mean

degree instead of sampling from the degree distribution, which may also not be accurate

in general. Again, this effect is assumed to be negligible across the large number of

computations of this type being performed.

The basic justification for allowing these rough approximations is that, even if the

effects of the assumptions turn out to be non-negligible, |Ω(i)|, despite being a biased

sample in general, can reasonably be assumed to strongly correlate with graph density,

which is all that matters in the context of discussing scalability.

Considering the scheduler for BD, Update has asymptotic total work T1 = Ω and

parallel work TK = Ω
K .

BD therefore has sequential runtime

T1 = |N |+ Ω + Ω

and parallel runtime

TK =

⌈
|N | log |N |

K

⌉
+

⌈
Ω

K

⌉
log Ω +

⌈
Ω

K

⌉

The same procedure can be applied to the other processes, yielding the schedulers

35

below.

Algorithm 3 Round of DB

d← Select(N) . Unweighted selection
r ← W-Select(Ω(r), fxw(r, x))
Update(d, sr)

DB has sequential runtime

T1 = 1 + Ω + Ω

and parallel runtime

TK = 1 +

⌈
Ω

K

⌉
log Ω +

⌈
Ω

K

⌉

Algorithm 4 Round of PC

d← Select(N)
r ← W-Select(Ω(r), w(r, x))
c← θ(fd, fr)
if c then

Update(d, sr)

PC has sequential runtime

T1 = 1 + Ω + 1 + Ω

and parallel runtime

TK = 2 +

⌈
Ω

K

⌉
log Ω +

⌈
Ω

K

⌉
BR has sequential runtime

T1 = 1 + |Q|Ω + Ω

and parallel runtime

TK = 1 +

⌈
|Q|Ω
K

⌉
+

⌈
Ω

K

⌉

36

Algorithm 5 Round of BR

function F(i, q)
f ← 0
for all j ∈ Ω(i) do

f ← f + w(i, j)σ(q, sj)

return f

d← Select(N)
q ← Max-Arg(Q, F (d, x))
Update(d, q)

Algorithm 6 Round of BDD

r ← Select(N)

d← W-Select(Ω(r), w(r,x)
fx

)
Update(d, r)

BDD has sequential runtime

T1 = 1 + Ω + Ω

and parallel runtime

TK = 1 +

⌈
Ω

K

⌉
log Ω +

⌈
Ω

K

⌉

Algorithm 7 Round of DBD

d← W-Select(N, 1
fx

)
r ← W-Select(Ω(d), w(d, x))
Update(d, r)

DBD has sequential runtime

T1 = |N |+ Ω + Ω

and parallel runtime

TK =

⌈
|N | log |N |

K

⌉
+

⌈
Ω

K

⌉
log Ω +

⌈
Ω

K

⌉

37

3.4 Inter-round Parallelization

Another approach is to attempt to compute multiple rounds in parallel, in addition to

parallelizing the computations within each round. For such inter-round parallelizability

to be possible, at least some tasks must be available in a round without having computed

all tasks in the previous round.

In the context of single-round CTDGs, this means that the input tasks of each

round can no longer be assumed to be computed (or computable). This can be studied

by considering the following variant of a single-round CTDG 〈I ∪O∪V,D〉: 〈O∪V,D〉.

This is a sort of hack of notation, since D still contains dependencies on t ∈ I, so

anything that depends on such a t cannot be computed.

An initial question to ask is whether it is possible to do any work on a round without

being able to compute t ∈ I. This leads to the following definition.

Definition 3.4.1 (Weak Inter-round Parallelizability). A process with single-round

CTDG 〈I ∪ O ∪ V,D〉 is weakly inter-round parallelizable if, for CTDG 〈O ∪ V,D〉,

∃σ′, U,R : 〈σ0, D, ∅〉 ⇒ 〈σ′, U,R〉 ∧ ∃t ∈ T : t ∈ σ′.

Weak inter-round parallelizability is a minimal requirement: it simply means that

at least some tasks in a round can be computed in the absence of input. Note that any

weak inter-round parallelizability is embarrassingly parallel across rounds by definition.

Also, note in general that mutation introduces weak inter-round parallelizability in any

process, since µ never has any dependencies. Inspection of the CTDGs for single rounds

of the processes yields the following theorem.

Theorem 3.4.1 (Weak Inter-round Parallelism). Without mutation, processes DB,

PC, BR, and BDD are weakly inter-round parallelizable. Processes BD and DBD are

not.

Proof. Proofs follow directly the CTDGs given in Appendix A.

38

Round I+ O+

1
{

3, 4
} {

5
}

2
{

3, 4
} {

4, 1
}

3
{

5, 6
} {

1
}

4
{

1, 8, 10
} {

8, 9
}

.

Table 3.1: Example round dependency table, with N =
{

1, . . . , 10
}

.

This is promising: many of the processes have at least some useful work that is

embarassingly parallel across rounds. Unfortunately, by inspection of the CTDGs, the

only tasks being computed are the random uniform selection of d or r (depending on

the process), leaving most of the round unfinished, and seemingly unable to progress.

However, the computation of these tasks also allows some dependencies to be re-

solved. Consider DB, where the computation of d in fact allows all dependencies to

be resolved. In particular, it allows dependencies (si, t) to be resolved – that is, all

dependencies on inputs. Thus, I can be partitioned into two sets: I− =
{
i ∈ N

∣∣ ∀t ∈
T \ {s′i} : @(si, t) ∈ R

}
and I+ =

{
i ∈ N

∣∣ ∀t ∈ T \ {s′i} : ∃(si, t) ∈ R
}

.

Note that, by definition, ∀i ∈ I− no t ∈ T other than s′i can depend on si. Thus,

no tasks in the round depend on i. Conversely, there must be tasks in the round which

depend on i ∈ I+. This is extremely useful: it means that despite the lack of computed

inputs, it is possible to determine exactly which inputs the round depends on. Definitions

for O+ and O− follow similarly, since all (t, s′i) are also resolvable, such that it is also

possible to determine which outputs the round will affect. Note that it is possible to

do this for any round, in any order, regardless of which rounds have been computed,

producing something like Table 3.1.

Formalizing this idea across processes produces the following definitions and theorem.

Definition 3.4.2 (Input-Resolvability). A CTDG 〈I ∪O ∪ V,D〉 is input-resolvable if,

for CTDG 〈O ∪ V,D〉, ∃σ, U,R : 〈σ0, D, ∅〉 ⇒ 〈σ, U,R〉 ∧ ∀i ∈ I : @(i, t) ∈ U . If a CTDG

39

is input-resolvable, then I+ can be computed.

Definition 3.4.3 (Output-Resolvability). A CTDG is output-resolvable if ∃σ,C ′, D′ :

〈V ∪ O, σ0, ∅, C,D〉 →∗ 〈V ∪ O, σ,C ′, D′〉 ∧ ∀o ∈ I, ∀(t, o) ∈ C : (t, o) 6∈ C ′. If a CTDG

is output-resolvable, then O+ can be computed.

Definition 3.4.4 (Strong Resolvability). A CTDG is strongly resolvable if it is both

input- and output-resolvable.

Theorem 3.4.2 (Resolvability of Processes). DB, PC, and BR are strongly resolvable,

BDD is input-resolvable but not output-resolvable, and BD and DBD are neither input-

nor output-resolvable.

Proof. See Appendix A.

The implications of strong resolvability are very powerful. Consider again Table 3.1,

and note that round i depends on round j iff I+
i ∩ O

+
j 6= ∅. Thus, such a table can be

translated to a non-conditional dependency graph which describes which rounds depend

on which other rounds. For instance, in Table 3.1, round 3 depends on round 1 (because

the former affects 5 and the latter depends on it), and round 4 depends on rounds 2 and

3. If two rounds are simultaneously available (i.e. all of the rounds they depend on have

been computed), they can be computed in parallel. The exact details of this process are

implemented in Algorithm 8, which can be used to schedule the computation of entire

rounds.

The general idea of the algorithm is to keep the size of the dependency graph as small

as possible (noting that nodes can be deleted once their rounds have been computed),

since it does have to fit in memory, as do the partial computations done on each round

in it. This is done by only adding dependencies to the graph when there are available

processors but no available rounds.

To briefly summarize the main result: processes are strongly resolvable if, for any

round, the sets of inputs and outputs which the round depends on and affects, respec-

40

Algorithm 8 Inter-round scheduler for x rounds

Require: empty queue γ . Available rounds

function Add(i,D,A)
δi ← ∅
ρi ← ∅
for all d ∈ D do

for all j ∈ AFFd do
ρj ← ρj ∪

{
i
}

δi ← δi ∪
{
j
}

for all a ∈ A do
AFFa ← AFFa ∪ i

function Update(i)
for all j ∈ ρi do

δj ← δj \
{
i
}

if δj = ∅ then
del δj
push j to γ

del ρi

procedure Schedule(x)
i← 0
when processors available do

if γ not empty then
pop i from γ
async

Compute(i)
Update(i)

else if i < x then
i← i+ 1
async

(D,A)← Resolve(i)
Add(i,D,A)

41

tively, can be computed without having computed the inputs. Such processes can poten-

tially benefit from having rounds computed in parallel, since the resulting relationships

between rounds can be arranged in a dependency graph where multiple rounds may be

available concurrently.

To consider the resulting theoretical speed-up of such an approach, first note that

when a set of rounds can be computed in parallel using this method, doing so is in

fact embarrassingly parallelizable. Thus, insofar as the method works, it is extremely

efficient, especially since the discrete task of computing a round is very large.

To determine how frequently rounds can actually be computed in parallel, it is useful

to consider the average size of I+ and O+. Using the Ω approximation established earlier

yields the following values for each strongly resolvable process6. Let d+ = ρ(|N−1|)+1,

the expected number of deaths and replacements in each round.

Process I+ O+

DB Ωd+ Ωd+

PC 2Ωd+ 1

BR Ωd+ 1

This immediately provides the intuitive result that the benefit of inter-round par-

allelizability is inversely proportional to population density, since greater numbers of

dependencies increase the chance that a given round will depend on another.

More specifically: suppose that k rounds are either currently being computed or

have been resolved and are in the queue. What is the chance that a newly resolved

round does not depend on any of these k rounds? For DB, PC, and BR, assuming that

the dependencies for each round are sampled uniformly randomly from the population

without replacement (with replacement between rounds), then the probability that none

of a given round’s dependencies depend on any of the queued round’s dependencies is

6Note that this is a very rough approximation, since it assumes a random graph.

42

approximately

pDB =

Ωd+∏
i=0

|N | − i− Ωd+

|N | − i

k

pPC =

(
|N | − 2Ωd+

|N |

)k
pBR =

(
|N | − Ωd+

|N |

)k

For |N | � Ω, small k, and small ρ, this probability is reasonably high, particularly for

BR and PC. Specifically, inter-round parallelization should perform very well on sparse

populations when ρ ≈ 0. However, ρ〉0 and Ω � 1 negatively compound, suggesting

that inter-round parallelization will perform poorly on denser graphs, or on processes

with a nontrivial synchronization rate.

43

Chapter 4

Approximation

4.1 Motivation

So far, I have analyzed parallel models of processes which produce exactly equiva-

lent simulations as the sequential models on which they are based. In this chapter, I

investigate models which relax this constraint, allowing for parallel approaches yielding

similar, but not exactly equivalent, dynamics.

The motivation for doing so is, informally, the following. Computing rounds in par-

allel, when it is possible to do so, has excellent speed-up and scalability properties, due

to its embarassingly parallel nature and because the tasks being assigned to individual

processors are very large, minimizing parallel overhead. Indeed, if each processor could

always be responsible for computing an entire round, this would achieve EK ≈ 1, re-

gardless of population size or structure. Thus, it is worth attempting to increase the

frequency with which inter-round parallelization can be employed without resorting to

intra-round approaches, which are generally significantly less efficient. Depending on

the specific evolutionary model, it may even be worth sacrificing some accuracy of the

simulation to achieve this.

If accuracy is to be sacrificed, it should be done in a way that maximizes the resulting

44

gains in efficiency. Ideally, any error that is introduced should also be, informally,

unbiased, such that it can be interpreted as something like noise, as opposed to as a

force which pushes the results of the simulation in a particular direction.

4.2 Dependency Dropping

An approximation method is proposed which is a variant of the inter-round parallel

scheduler introduced in Chapter 3 as Algorithm 8.

The method makes use of dependency dropping, where rounds will sometimes be

considered available for computation even when all of their input dependencies have not

been computed. The rate at which this happens is inversely correlated to the fraction

of “missing” dependencies, strongly favoring rounds which have most or all of their

dependencies satisfied in order to minimize error. If a round with missing dependencies

is computed, it simply uses the most recent data available for those inputs.

One approach to dependency dropping is given in Algorithm 9. There are two main

differences between Algorithms 8 and 9. The first is the introduction of a new variable αi

for each resolved round i, which simply records the total number of input-dependencies

of i and is destroyed when the round is computed. The second is a change in the

check of whether to make a round available when one of its dependencies is resolved.

Specifically, instead of simply checking whether the set of remaining dependencies is

empty, this decision is outsourced to Drop : N×N→ bool, which takes αi and |δi| (the

number of remaining unresolved dependencies) as arguments.

The only formal restriction on Drop is that its probability of returning true must

increase monotonically in 1 − |δi|αi , and must always return true when |δi| = 0. That

is, a round should always be made available if it has no remaining dependencies, and it

would not make sense for a round missing a greater fraction of its dependencies to be

made available more often than if it were missing fewer dependencies.

A reasonable implementation is Drop(α, δ) = U < e−
δ
τα where U ∼ Unif(0, 1) for

45

Algorithm 9 Inter-round scheduler for x rounds using dependency dropping

Require: empty queue γ . Available rounds

function Add(i,D,A)
δi ← ∅
ρi ← ∅
αi ← |D| . Total number of round dependencies
for all d ∈ D do

for all j ∈ AFFd do
ρj ← ρj ∪

{
i
}

δi ← δi ∪
{
j
}

for all a ∈ A do
AFFa ← AFFa ∪ i

function Update(i)
for all j ∈ ρi do

δj ← δj \
{
i
}

drop← Drop(|δj |, αj) . Dependency dropping decision
if drop then

del δj , αj
push j to γ

del ρi

procedure Schedule(x)
i← 0
when processors available do

if γ not empty then
pop i from γ
async

Compute(i)
Update(i)

else if i < x then
i← i+ 1
async

(D,A)← Resolve(i)
Add(i,D,A)

46

some τ ∈ R+, which is a sort of “optimism” parameter. τ → 0 represents the limit

where a round is only made available if |δi| = 0, and τ →∞ represents the limit where

rounds are always made available, regardless of dependencies.

47

Chapter 5

Implementation

5.1 Data Structures

I now examine how this theoretical model can be implemented in practice. Specifi-

cally, I determine the optimal data structure representations of various portions of the

model, discuss their respective memory usage, and briefly discuss some optimizations of

the implementations of parallel algorithms.

Let M represent the number of bits of memory in the system. Let bS be the number

of bits required to store the index of a member of set S, dlog2 |S|e.

Population structure

Of the many standard representations of weighted digraphs, the chosen representa-

tion should have a few desirable properties: fast lookup of Ω(i) and Ψ(i) for arbitrary

i ∈ N , and minimal memory usage.

One option is an adjacency matrix, which requires |N |2 bits to represent an un-

weighted graph and 32|N |2 bits to store a graph with 32-bit (integer or floating point)

edge weights. Lookup of both Ω(i) and Ψ(i) is O(|N |). The generally superior option

is to use two adjacency lists to store Ω(i) and Ψ(i) for all i ∈ N , respectively. This re-

48

quires approximately 4bN |E| bits to represent an weighted graph, and (4bN + 32)|E| to

represent a graph with 32-bit edge weights, and provides O(1) lookup for both Ω(i) and

Ψ(i). Thus, it has strictly better lookup time, and better memory usage for reasonably

sparse population structures (specifically, when density < 1
4bN

, which is typical). An

adjacency matrix should only be considered for extremely large, dense graphs for which

the simulation would otherwise not fit into memory.

Type space and population state

bQ bits are required to represent a single type in a finite type space (by index).

Infinite type spaces are technically impossible to implement, but can be approximated

using floating point values, which is equivalent to discretizing them by approximately

equal intervals into a finite space of length |Q|.

The entire type space does not need to be stored in memory. However, in sequential

and intra-round parallelized implementations, the current state of the population does,

the size of which depends on the size of the type space, since for |N | agents, bN |N | bits

are required to store the state of a single round.

Historical state also needs to be preserved in memory until it can be flushed to disk as

output. If the disk write speed is too slow to keep up with the speed of the simulations,

then memory use grows infinitely over time, and the simulation may need to regularly

pause to allow the state buffer to be written to disk and cleared. However, there is a

significant optimization to be made by using round deltas (i.e. records of only the agents

whose state has changed between rounds), which reduces the representation size of the

state of any round beyond the first by an expected factor of p (the synchronization rate).

This hugely decreases both memory usage and data written to disk1. Thus, in practice,

disk write speed is never a bottleneck.

1Note that this has the trade-off of requiring more processing when the resulting output is read as
input, since the full state of each round must be reconstructed.

49

Fitness

Fitness is directly computable from population state. However, this computation is

relatively expensive, and should only be done when needed. In particular, fitness for

all agents can be stored in its own array, and only computed in its entirety once at the

beginning of the simulation. Small updates of this array suffice otherwise. In particular,

whenever the state of agent i changes, the fitnesses of agents in Ψ(i) must be updated.

They need not be entirely recomputed; rather, the following optimization can be used:

∀j ∈ Ψ(i) : f ′j = fj +w(j, i)(σ(s′j , s
′
i)− σ(s′j , si)). This simply subtracts the old portion

of j’s fitness caused by i, and adds the new portion.

Interaction function

For finite, relatively small type spaces (such as the one used in experiments in Chap-

ter 6), all |Q|2 possible values of the interaction function are typically pre-computed,

such that an interaction computation is simply a unit-time lookup from a |Q|×|Q| array.

This only needs to be done once across all simulations.

Another approach for larger type spaces is to allocate an array of the same size, but

lazily compute and cache interaction values as needed (across all simulations) rather

than pre-computing them. This is worthwhile if a |Q| is small enough that a lookup

table fits into memory, but large enough that, given the number of simulations and the

number of rounds in each one, in expectation, at least some values of the table will never

need to be computed.

When the type space is so large that an interaction lookup table cannot fit into

memory, interactions must be computed on-the-fly. In this case, only the interaction

function is stored, requiring a constant, trivially small amount of memory.

50

5.2 Algorithms

Sequential

The sequential algorithm does not require a scheduler, since it does not matter in

which order tasks are computed. Thus, the sequential algorithm has essentially no

overhead, and should therefore scale at a rate very close to the T1 values calculated in

Chapter 3.

Intra-round Parallel

One consideration in intra-round parallelization is whether or not to parallelize com-

putations (or random weighted selections) across Ω(i). In particular, for sparse pop-

ulation structures where Ω is small, and for cases where the task to be performed for

each neighbor is small, the overhead of parallelizing this task generally dominates the

computation itself, such that parallelization actually results in a slow-down. It is only

for comparatively dense graphs where Ω approaches |N | that the overhead becomes

worthwhile, such that parallelization yields any speed-up at all.

Fortunately, a reasonable cutoff threshold for Ω, only beyond which parallelization

across Ω(i) is enabled, can be easily determined empirically for a specific implementation

using a binary search, where the runtimes of sequential and parallel approaches are

compared for candidate cutoff for Ω.

Inter-round Parallel

When inter-round parallelism is enabled, it is again worth considering whether to

parallelize across Ω. For values of Ω(i) where parallism yields only marginal speed-up,

it may not be worth enabling if there are other available rounds to compute but all

processors are busy, because the former results in much greater efficiency.

Similarly, parallelizing weighted random selection in general should be questioned,

51

even across |N |, since it yields strictly sub-linear speed-up. If the population is suf-

ficiently sparse and/or there is sufficient dependency dropping for processors to con-

sistently be occupied with inter-round parallelization, then parallel weighted random

selection should be disabled entirely. Again, the proper cutoff rates can be determined

empirically.

52

Chapter 6

Results

6.1 Parameter Space

I now use the implementation discussed in Chapter 5 to empirically test the results

of Chapters 3 and 4. Specifically, speed-up is tested across parallelization methods,

processes, synchronization rates, population structures, and approximation rates. For a

summary of these varied parameters, see Table 6.1. All experiments were performed on

an 8-CPU computer with 64GB of memory.

There are even more parameters that could be varied, but have instead been fixed

across all experiments in this chapter. (See Table 6.2 for a complete list.) The decision

to fix each of these variables is justified below, based on their lack of influence on, or

Parameter Domain Varied

Population structure Arbitrary weighted digraph Various

Process Arbitrary update rule BD, DB, etc.

Synchronization rate [0, 1] [0, 0.5, 1]

Parallelization Sequential, Intra, Inter All

Dependency drop rate [0, 1] [0 : 1 : 0.05]

Table 6.1: Parameters varied across the experiments.

53

Parameter Domain Fixed at

Type space Q Arbitrary set
{
C,D

}
Initial population composition s0 s0 ∈ Q|N | Random sample

Interaction function σ Q×Q→ R+
0 PD

Number of rounds N+ 1,000,000

Number of processors N+ 8

Mutation rate [0, 1] 0.02

Table 6.2: Parameters fixed across all experiments.

predictability with respect to, computational speed and memory usage.

Type space

Size of the type space generally does not influence computation time, since the type

space is never iterated over during a simulation, except in the case of BR1.

Interaction function

For a pre-computed interaction lookup table, the runtime of this pre-computation

is influenced by the complexity of the interaction function. However, for type spaces

small enough for a pre-computed lookup table, this runtime is generally trivial com-

pared to that of the simulations themselves. Further, the process of pre-computation is

embarassingly parallelizable across the type space.

For on-the-fly interaction computation, complexity of the interaction function does

have a noticeable effect on computation time, since it must be called |Ω(i)| times every

time an agent i ∈ N needs its fitness recomputed. However, while this has not been con-

firmed empirically, I would expect the runtime increase to uninterestingly scale almost

linearly in K when population density dominates the number of cores, since a single

round of fitness computations is embarassingly parallelizable.

1While outside the scope of this thesis, it would be relatively straightforward to analyze the effect of
type space size on BR using the machinery developed in Chapter 3.

54

Initial population composition

Initial population composition generally has little to no effect on computation time,

except in very contrived cases, such as in an initially homogenous population, where the

optimization described in Chapter 5 allows state/fitness updates to be skipped if the

state does not change between two rounds (i.e. if the reproducing agent has the same

type as the dying agent).

Number of rounds/simulations

Number of rounds does, of course, influence computation time. For sequential and

intra-round parallelized implementations, it is reasonable to expect an almost exactly

linear increase. For inter-round parallelized implementations, the increase is very close

to linear after sufficiently many rounds. (The last few rounds act as “bottlenecks”, but

this effect is negligible when the number of rounds is large.) For similar reasons, the

number of simulations should have an almost exactly linear effect on computation time.

Mutation rate

Mutation rate influences computation time in complex ways, but its analysis is

straightforward given the machinery introduced in Chapters 3 and 4. However, the

specific study of its effects is beyond the scope of this thesis. Further, it is rarely varied

in experiments; it is typically set to a constant low value as a mechanism to introduce

new strategies into the population for non-innovative processes.

6.2 Speed-up

Speed-up is tested across parallelization methods, processes, synchronization rates,

and population structures. Specifically, experiments are run across all processes de-

scribed in Chapter 2, ρ at 0, 0.5, and 1 (for processes which support synchronization),

55

and two population structures, one dense and one sparse. Both populations were gen-

erated by a copying model, with |N | = 10000. On the dense population, |E| = 1185208,

and on the sparse one, |E| = 108362.

The results for the sparse population are shown in Figures 6.1 and 6.2, and those

for the dense population in Figures 6.2 and 6.4.

Looking first across synchronization rate on the sparse graph, note that intra-round

speed-up consistently improves with respect to ρ. Intuitively, this is because a higher

synchronization rate results in more tasks that can be meaningfully parallelized within

rounds. Intra-round parallelization generally performs terribly when ρ = 0, with runtime

comparable to that of the sequential algorithm. This is due to the overhead of parallelism

for smaller tasks outweighing the benefit.

Inter-round parallization performance stays roughly constant, or gets worse, as ρ

increases. This is explained by the fact that increasing ρ increases the average size of a

round’s dependency set. In fact, if not for the gains caused by its incorporation of intra-

round parallism, inter-round parallelization would likely perform strictly worse than

the sequential algorithm for large ρ. One somewhat strange result is that inter-round

parallelism performs slightly better than intra-round parallelism for PC with ρ = 1;

presumably this is just noise, since it does not make sense as a general result.

Looking next across processes on sparse graph, the following trends are observed.

Inter-round parallelization performs poorly on BD, BDD, and DBD, which is expected,

since these processes are not inter-round parallelizable. Thus, due to the overhead of

keeping track of dependencies, it performs consistently slightly worse than intra-round

parallelization for these processes. Intra-round parallelization performs particularly well

on BD and DBD, since they both involve parallelization across N .

Processes DB, PC, and BR display similar speed-ups for both intra- and inter-round

parallelization. BR yields slight improvements for intra-round parallization, likely due

to its lack of weighted random selection, which is not as efficient to parallelize.

56

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) DB with ρ = 0

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) DB with ρ = 0.5

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) DB with ρ = 1

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) PC with ρ = 0

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(e) PC with ρ = 0.5

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(f) PC with ρ = 1

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(g) BR with ρ = 0

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(h) BR with ρ = 0.5

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(i) BR with ρ = 1

Figure 6.1: Relative mean runtimes across various synchronizable processes (from top
to bottom) and synchronization rates (from left to right) on a sparse graph. Each chart
shows data for sequential, intra-round parallel, and inter-round parallel algorithms, from
left to right.

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) BD

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) BDD

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) DBD

Figure 6.2: Relative mean runtimes across various non-synchronizable processes, using
the same population structure as above.

57

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) DB with ρ = 0

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) DB with ρ = 0.5

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) DB with ρ = 1

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) PC with ρ = 0

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(e) PC with ρ = 0.5

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(f) PC with ρ = 1

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(g) BR with ρ = 0

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(h) BR with ρ = 0.5

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(i) BR with ρ = 1

Figure 6.3: Relative mean runtimes across various synchronizable processes (from top
to bottom) and synchronization rates (from left to right) on a dense graph. Each chart
shows data for sequential, intra-round parallel, and inter-round parallel algorithms, from
left to right.

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) BD

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) BDD

S RA ER
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) DBD

Figure 6.4: Relative mean runtimes across various non-synchronizable processes, using
the same population structure as above.

58

Finally, looking between the sparse and dense graphs, as expected, intra-round par-

allelism generally performs much better on the dense graph, whereas inter-round par-

allelism suffers. In general, the two methods perform at more comparable rates. This

is simply because intra-round parallelism is yielding most of the speed-up across all

processes on these graphs.

In general, there is a very close match between the theoretical predictions of Chapters

3 and 4 and these results.

59

Chapter 7

Conclusion

7.1 Summary

In Chapters 3 and 4, I introduced a general model for computability of the stochastic

evolutionary processes described in Chapter 2. I then proposed intra- and inter-round

parallelism methods, including an approximation variant, and analyzed their theoret-

ical speed-up, finding both approaches to be highly scalable, with varying asymptotic

efficiency dependent on population size, density, process, and synchronization rate.

Implementation considerations discussed in Chapter 5 yielded a more practical view

of the effects of these parameters. In particular, both kinds of parallelism benefit from

increased population size, and intra-round parallelization is optimized by denser pop-

ulation structures and processes which involve frequent iteration over i ∈ N or high

synchronization rates, whereas inter-round parallelization performs optimally on sparse

population structures, and on processes which tend to have small round dependency

sets relative to population size. In Chapter 6, these theoretical results were confirmed

empirically.

60

7.2 Future Work

I now conclude by suggesting future work, including applications of these parallel

methods to open problems in evolutionary dynamics and other domains. I also discuss

potential extensions and improvements of these methods.

Improving theoretical bounds

Currently, the theoretical analysis of speed-up for parallelization methods uses a

number of approximations. Specifically,

• It makes fairly liberal assumptions about memory access, such as by assuming a

PRAM CREW system.

• It does not consider algorithmic constants. For example, if an algorithm requires

iterating over input of size n twice, its work is still assumed to be n.

• It ignores some aspects of parallel overhead, such as synchronization and messaging

between processors.

In the context of scalability, which is where theoretical speed-up is predominantly

discussed, the error introduced by such approximations is generally not relevant. Fur-

ther, these approximations, of course, do not affect the actual speed-up of the models,

and the empirical data supports the theoretical results, suggesting that the approxima-

tions are reasonable.

However, in order to better understand the relative performance of parallel methods

across the parameter space without having to rely on empirical methods for verification,

it would be worth attempting to reduce the use of such approximations, or to more

strictly bound them when this is not possible. Specifically, it may be possible to rea-

son more concretely about the amount of work involved in various tasks on particular

hardware, allowing constant factors to be determined and used in efficiency calculations.

61

Other approximation approaches

Given the positive results obtained by the approximation approach described in

Chapter 4, it is worth considering how else the use of slight approximations could provide

further speed-up. For example, different implementations of Drop could be explored,

as well as different locations where the dependency dropping decision is made. Further,

beyond dependency dropping, perhaps there are other reasonable approximations that

could be introduced in other parts of the simulations.

Applications

In their current state, the parallelization methods can be readily applied to a variety

of open problems in various domains. Examples include:

Emergence of cooperation As mentioned briefly in Chapter 2, there are many open

questions surrounding the effect of population structure on the evolution of the

emergence and persistence of cooperation, especially in the context of large-scale

social networks [1].

Games with larger type spaces Traditionally, both analytical approaches and sim-

ulations have been limited in their ability to handle larger type spaces, partially

because of the additional memory required to store them, but largely because of

the increased number of rounds needed to simulate to ensure statistically valid

results. As a specific example, there has been some work in representing strategies

in Iterated Prisoner’s Dilemma games as finite state automata [17], but not on

structured populations.

Confirming assumptions Much work in applied evolutionary dynamics makes use

of deterministic formulations of models, assuming that stochastic effects are neg-

ligible, since the former are generally much faster to simulate. Employing the

62

speed-up gained by parallel approaches, it would be worth confirming that such

assumptions are true, since stochastic effects are occasionally quite important [8].

Political influence A somewhat analogous problem to the evolution of cooperation

in political science concerns how political beliefs emerge and spread, and the role

that social networks play in influencing and catalyzing this process. Such problems

can be studied using stochastic evolutionary models. However, this presents a

formidable computational problem due the size of the populations involved, which

parallelism can help reduce.

Cultural and linguistic evolution Games on graphs are well-suited to the study of

both cultural and linguistic evolution, where cultural beliefs and linguistic ten-

dencies flow along social networks. This type of research similarly suffers from

computational restrictions due to the size of real-world populations.

Further applications are left as an exercise for the reader.

63

Appendix A

CTDG Derivations

DB

DB requires selections of an agent to reproduce and an agent to die, so V =
{
d, r
}

.

The selection of d is a uniformly random choice from the entire population, so it has

no dependencies. r is a weighted random choice from Ω(d) proportional to fitness and

edge weight, so it depends on ∀i ∈ Ω(d) : si. This yields dependencies (d, r) ∈ D and

∀i ∈ N : (si, r) ∈ D ∧ (d, (si, r)) ∈ D.

Finally, ∀i ∈ N : s′i is set to sr if d = i or si otherwise, yielding dependencies

∀i ∈ N : (si, s
′
i) ∧ (r, s′i) ∧ (d, (si, s

′
i)) ∧ (d, (r, s′i)).

Thus, a single round of DB is represented by the following CTDG:

T =
{
si
∣∣ i ∈ N} ∪ {s′i ∣∣ i ∈ N} ∪ {d, r}

D =
{

(d, r)
}
∪
{

(si, r)
∣∣ i ∈ N} ∪ {(d, (si, r))

∣∣ i ∈ N}
∪
{

(si, s
′
i)
∣∣ i ∈ N} ∪ {(d, (si, s

′
i))
∣∣ i,∈ N}

∪
{

(r, s′i)
∣∣ i ∈ N} ∪ {(d, (r, s′i))

∣∣ i ∈ N}

64

PC

PC requires selections of an agent to reproduce and an agent to die, and a deci-

sion about whether the replacement will happen, so V =
{
d, r, p

}
. The selection of

d is a uniformly random choice from the entire population, so it has no dependencies.

r is a weighted random choice from Ω(d) proportional only to edge weight, yielding

dependency (d, r) ∈ D.

Next, the decision is made about whether the replacement will occur, which depends

on the fitnesses fd and fr, which in turn depend on
{
si
∣∣ i ∈ Ω(d) ∪ Ω(r)

}
. Thus, we

have dependencies ∀i ∈ N : (si, p) ∧ (d, (si, p)) ∧ (r, (si, p)).

Finally, ∀i ∈ N : s′i is set to sr if p or si otherwise, yielding dependencies ∀i ∈ N :

(si, s
′
i) ∧ (p, s′i) ∧ (d, (p, s′i)) ∧ (d, (si, s

′
i)).

Thus, a single round of PC is represented by the following CTDG:

T =
{
si
∣∣ i ∈ N} ∪ {s′i ∣∣ i ∈ N} ∪ {d, r, p}

D =
{

(d, r)
}
∪
{

(r, p)
}
∪
{

(si, p)
∣∣ i ∈ N}

∪
{

(d, (si, p))
∣∣ i ∈ N} ∪ {(r, (si, p))

∣∣ i ∈ N}
∪
{

(si, s
′
i)
∣∣ i ∈ N} ∪ {(d, (si, s

′
i))
∣∣ i,∈ N}

∪
{

(p, s′i)
∣∣ i ∈ N} ∪ {(d, (p, s′i))

∣∣ i ∈ N}

BR

BR requires selections of an agent to die, and a computation of fitness maxi-

mization, so V =
{
d, f
}

. The selection of d is a uniformly random choice from the

entire population, so it has no dependencies. f requires evaluating the fitness of d

for every possible type, which depends on
{
si
∣∣ i ∈ Ω(d)

}
, yielding dependencies

∀i ∈ N : (si, f) ∈ D ∧ (d, (si, f)) ∈ D ∧ (d, f) ∈ D.

Finally, s′d is set to the computed type f , thus ∀i ∈ N : (f, s′i) ∈ D∧ (d, (f, s′i)) ∈ D.

65

Thus, a single round of BR is represented by the following CTDG:

T =
{
si
∣∣ i ∈ N} ∪ {s′i ∣∣ i ∈ N} ∪ {d, f}

D =
{

(d, f)
}
∪
{

(si, f)
∣∣ i ∈ N} ∪ {(d, (si, f))

∣∣ i ∈ N}
∪
{

(f, s′i)
∣∣ i ∈ N} ∪ {(d, (f, s′i))

∣∣ i ∈ N}

BDD

BDD requires selections of an agent to reproduce and an agent to die, so V =
{
d, r
}

.

The selection of r is a uniformly random choice from the entire population, so it has

no dependencies. d is a weighted random choice from Ω(r) proportional to fitness and

edge weight, so it depends on ∀i ∈ Ω(r) : si. This yields dependencies (r, d) ∈ D and

∀i ∈ N : (si, d) ∈ D ∧ (r, (si, d)) ∈ D.

Finally, ∀i ∈ N : s′i is set to sd if r = i or si otherwise, yielding dependencies

∀i ∈ N : (si, s
′
i) ∈ D ∧ (d, s′i) ∈ D ∧ (r, (si, s

′
i)) ∈ D ∧ (r, (d, s′i)) ∈ D.

Thus, a single round of BDD is represented by the following CTDG:

T =
{
si
∣∣ i ∈ N} ∪ {s′i ∣∣ i ∈ N} ∪ {d, r}

D =
{

(r, d)
}
∪
{

(si, d)
∣∣ i ∈ N} ∪ {(r, (si, d))

∣∣ i ∈ N}
∪
{

(si, s
′
i)
∣∣ i ∈ N} ∪ {(r, (si, s

′
i))
∣∣ i,∈ N}

∪
{

(d, s′i)
∣∣ i ∈ N} ∪ {(r, (d, s′i))

∣∣ i ∈ N}

66

Appendix B

Resolvability

BD

Theorem B.0.1. BD is neither input- nor output-resolvable.

Proof. By inspection of 〈O ∪ V,D〉, @s : 〈σ0, R, U〉 ⇒ s. Further, ∃(t1, (si, t2)) ∈ U ∧

∃(t1, (t2, s′i)) ∈ U . Thus, no computations can be done, but there are unresolved input

and output dependencies, so BD is neither input- nor output- resolvable.

DB

Theorem B.0.2. DB is both input- and output-resolvable.

Proof. By inspection of 〈O ∪ V,D〉, we have 〈σ0, D, ∅〉 ⇒ 〈σ0[d], U,R〉. In this state,

@(t1, (si, t2)) ∈ U ∧ @(t1, (t2, s
′
i)) ∈ U . Thus, DB is both input- and output-resolvable.

PC

Theorem B.0.3. PC is both input- and output-resolvable.

67

Proof. By inspection of 〈O ∪ V,D〉, we have 〈σ0, D, ∅〉 ⇒ 〈σ0[d], U,R〉. In this state,

@(t1, (si, t2)) ∈ U ∧ @(t1, (t2, s
′
i)) ∈ U . Thus, DB is both input- and output-resolvable.

BR

Theorem B.0.4. BR is both input- and output-resolvable.

Proof. By inspection of 〈O ∪ V,D〉, we have 〈σ0, D, ∅〉 ⇒ 〈σ0[d], U,R〉. In this state,

@(t1, (si, t2)) ∈ U ∧ @(t1, (t2, s
′
i)) ∈ U . Thus, DB is both input- and output-resolvable.

BDD

Theorem B.0.5. BDD is input- but not output-resolvable.

Proof. By inspection of 〈O ∪ V,D〉, we have 〈σ0, D, ∅〉 ⇒ 〈σ0[r], U,R〉. In this state,

@(t1, (si, t2)) ∈ U . However, ∃(t1, (t2, s′i)) ∈ U . Thus, BDD is input- but not output-

resolvable.

DBD

Theorem B.0.6. DBD is neither input- nor output-resolvable.

Proof. By inspection of 〈O ∪ V,D〉, @s : 〈σ0, R, U〉 ⇒ s. Further, ∃(t1, (si, t2)) ∈ U ∧

∃(t1, (t2, s′i)) ∈ U . Thus, no computations can be done, but there are unresolved input

and output dependencies, so DBD is neither input- nor output- resolvable.

68

Bibliography

[1] Benjamin Allen and Martin Nowak. “Games on graphs”. In: EMS Surveys in

Mathematical Sciences 1.1 (2014), pp. 113–151. issn: 2308-2151. doi: 10.4171/

EMSS/3. url: http://www.ems-ph.org/doi/10.4171/EMSS/3.

[2] Benjamin Allen et al. “How mutation affects evolutionary games on graphs.” In:

Journal of theoretical biology 299 (Apr. 2012), pp. 97–105. issn: 1095-8541. doi:

10.1016/j.jtbi.2011.03.034. url: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3150603%5C&tool=pmcentrez%5C&rendertype=

abstract.

[3] K. Burrage. “Parallel Implementation of Stochastic Simulation for Large-scale Cel-

lular Processes”. In: Eighth International Conference on High-Performance Com-

puting in Asia-Pacific Region (HPCASIA’05) (2005), pp. 621–626. doi: 10.1109/

HPCASIA . 2005 . 67. url: http : / / ieeexplore . ieee . org / lpdocs / epic03 /

wrapper.htm?arnumber=1592332.

[4] Krishnendu Chatterjee, Johannes G Reiter, and Martin a Nowak. “Evolution-

ary dynamics of biological auctions.” In: Theoretical population biology 81.1 (Feb.

2012), pp. 69–80. issn: 1096-0325. doi: 10.1016/j.tpb.2011.11.003. url:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3279759%

5C&tool=pmcentrez%5C&rendertype=abstract.

69

http://dx.doi.org/10.4171/EMSS/3
http://dx.doi.org/10.4171/EMSS/3
http://www.ems-ph.org/doi/10.4171/EMSS/3
http://dx.doi.org/10.1016/j.jtbi.2011.03.034
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3150603%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3150603%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3150603%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1109/HPCASIA.2005.67
http://dx.doi.org/10.1109/HPCASIA.2005.67
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1592332
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1592332
http://dx.doi.org/10.1016/j.tpb.2011.11.003
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3279759%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3279759%5C&tool=pmcentrez%5C&rendertype=abstract

[5] Christoph Hauert. “Effects of Space in 2fffdfffd2 Games”. In: International Journal

of Bifurcation and Chaos 12.7 (2002), pp. 1531–1548. issn: 0218-1274. doi: 10.

1142/S0218127402005273. url: http://www.worldscientific.com/doi/abs/

10.1142/S0218127402005273.

[6] Vipin Kumar et al. Introduction to Parallel Computing: Design and Analysis of

Algorithms. Redwood City, CA, USA: Benjamin-Cummings Publishing Co Inc.,

1994.

[7] Erez Lieberman, Christoph Hauert, and Martin A Nowak. “Evolutionary dynamics

on graphs”. In: 433.JANUARY (2005). doi: 10.1038/nature03211.1..

[8] Martin A Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Har-

vard University Press, 2006.

[9] Hisashi Ohtsuki et al. “A simple rule for the evolution of cooperation on graphs

and social networks.” In: Nature 441.7092 (May 2006), pp. 502–5. issn: 1476-

4687. doi: 10.1038/nature04605. url: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=2430087%5C&tool=pmcentrez%5C&rendertype=

abstract.

[10] Jorge Pacheco, Arne Traulsen, and Martin Nowak. “Coevolution of Strategy and

Structure in Complex Networks with Dynamical Linking”. In: Physical Review

Letters 97.25 (Dec. 2006), p. 258103. issn: 0031-9007. doi: 10.1103/PhysRevLett.

97.258103. url: http://link.aps.org/doi/10.1103/PhysRevLett.97.

258103.

[11] David G Rand et al. “Static network structure can stabilize human cooperation.”

In: Proceedings of the National Academy of Sciences of the United States of Amer-

ica D (Nov. 2014). issn: 1091-6490. doi: 10.1073/pnas.1400406111. url: http:

//www.ncbi.nlm.nih.gov/pubmed/25404308.

70

http://dx.doi.org/10.1142/S0218127402005273
http://dx.doi.org/10.1142/S0218127402005273
http://www.worldscientific.com/doi/abs/10.1142/S0218127402005273
http://www.worldscientific.com/doi/abs/10.1142/S0218127402005273
http://dx.doi.org/10.1038/nature03211.1.
http://dx.doi.org/10.1038/nature04605
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2430087%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2430087%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2430087%5C&tool=pmcentrez%5C&rendertype=abstract
http://dx.doi.org/10.1103/PhysRevLett.97.258103
http://dx.doi.org/10.1103/PhysRevLett.97.258103
http://link.aps.org/doi/10.1103/PhysRevLett.97.258103
http://link.aps.org/doi/10.1103/PhysRevLett.97.258103
http://dx.doi.org/10.1073/pnas.1400406111
http://www.ncbi.nlm.nih.gov/pubmed/25404308
http://www.ncbi.nlm.nih.gov/pubmed/25404308

[12] Carlos P. Roca, José a. Cuesta, and Angel Sánchez. “Effect of spatial structure on

the evolution of cooperation”. In: Physical Review E - Statistical, Nonlinear, and

Soft Matter Physics 80 (2009), pp. 1–16. issn: 15393755. doi: 10.1103/PhysRevE.

80.046106. arXiv: arXiv:0806.1649v4.

[13] F. C. Santos and J. M. Pacheco. “Scale-free networks provide a unifying framework

for the emergence of cooperation”. In: Physical Review Letters 95.August (2005),

pp. 1–4. issn: 00319007. doi: 10.1103/PhysRevLett.95.098104.

[14] B. K. Sarkar, Shahid Jamal, and Bhagirath Kumar. “An efficient parallel algorithm

for finding the largest and the second largest elements from a list of elements”.

In: Proceedings - 9th International Conference on Information Technology, ICIT

2006 (2007), pp. 269–272. doi: 10.1109/ICIT.2006.27.

[15] Paulo Shakarian, Patrick Roos, and Anthony Johnson. “A review of evolutionary

graph theory with applications to game theory.” In: Bio Systems 107.2 (Feb. 2012),

pp. 66–80. issn: 1872-8324. doi: 10.1016/j.biosystems.2011.09.006. url:

http://www.ncbi.nlm.nih.gov/pubmed/22020107.

[16] György Szabó and G Fath. “Evolutionary games on graphs”. In: Physics Re-

ports 446.4-6 (July 2007), pp. 97–216. doi: 10.1016/j.physrep.2007.04.004.

arXiv: 0607344 [cond-mat]. url: http://arxiv.org/abs/cond-mat/0607344%

20http://www.sciencedirect.com/science/article/pii/S0370157307001810.

[17] Matthijs van Veelen et al. “Direct reciprocity in structured populations.” In:

Proceedings of the National Academy of Sciences of the United States of Amer-

ica 109.25 (June 2012), pp. 9929–34. issn: 1091-6490. doi: 10 . 1073 / pnas .

1206694109. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=3382515%5C&tool=pmcentrez%5C&rendertype=abstract.

71

http://dx.doi.org/10.1103/PhysRevE.80.046106
http://dx.doi.org/10.1103/PhysRevE.80.046106
http://arxiv.org/abs/arXiv:0806.1649v4
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1109/ICIT.2006.27
http://dx.doi.org/10.1016/j.biosystems.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22020107
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://arxiv.org/abs/0607344
http://arxiv.org/abs/cond-mat/0607344%20http://www.sciencedirect.com/science/article/pii/S0370157307001810
http://arxiv.org/abs/cond-mat/0607344%20http://www.sciencedirect.com/science/article/pii/S0370157307001810
http://dx.doi.org/10.1073/pnas.1206694109
http://dx.doi.org/10.1073/pnas.1206694109
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3382515%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3382515%5C&tool=pmcentrez%5C&rendertype=abstract

	Introduction
	Evolutionary Processes and Simulations
	Related Work
	Outline

	Evolutionary Processes
	Population Structure
	Population Composition and Dynamics
	Examples

	Parallelization
	Architecture
	Task Dependencies
	Intra-round Parallelization
	Inter-round Parallelization

	Approximation
	Motivation
	Dependency Dropping

	Implementation
	Data Structures
	Algorithms

	Results
	Parameter Space
	Speed-up

	Conclusion
	Summary
	Future Work

	Appendices
	CTDG Derivations
	Resolvability

