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Abstract
This thesis presents STO, a software transactional memory (STM) based not on low-level reads and
writes on memory, but on datatypes—arrays, lists, queues, hash tables, and so forth—that explic-
itly support transactional operations. Conventional STMs allow programmers to write concurrent
code in much the same way as sequential code—thereby more easily taking advantage of multiple
CPU cores. However, these conventional STMs track every memory word accessed during a trans-
action, so even simple operations can perform many more memory accesses for synchronization
than is strictly required for transactional correctness. Our insight is that concurrent data structures
can generate fewer superfluous accesses, and use more efficient concurrency protocols, when trans-
action bookkeeping tracks high-level operations like “insert node into tree.” We test our ideas on
the STAMP benchmark suite for STM applications, on a high-performance in-memory database,
and on a previously single-threaded program that we extend to multithreaded operation. We find
that datatypes can support transactional operations without too much trouble; that relatively naive
users can build simple transaction support into their own data structures; and that our typed STM
can outperform and outscale conventional, untyped STM, and even outperform world-class, hand-
rolled transactional implementations for databases. This thesis also includes a full implementation
of the system, which will be made open source and is currently available on request.
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Chapter 1

Introduction

Concurrent programming (programming involving multiple computations run in parallel) is both

notoriously difficult and extremely important. For many years, processor performance improve-

ments meant yesterday’s programs ran much faster on new hardware with no changes required.

More recently, though, processor improvements come in the form of parallelism: a computer’s

processing power improves in the form of more processors (cores), rather than faster processors.

Yesterday’s programs must be rewritten to take advantage of these new resources. Yet many new

programs are still written in the traditional, sequential style, failing to take advantage of concur-

rency. The reason is simple: programming multiple computations to interact together significantly

increases complexity and makes programs harder to reason about.

Unfortunately, methods for handling concurrency are often low-level and require significant

implementation overhead to use in a system efficiently. Thus, it is desirable to have an integrated

method for handling concurrency, one that efficiently implements the necessary low-level complex-

ities for the programmer automatically. One such method for dealing with concurrency is that of

transactions. A transaction is a list of operations that together have an “all-or-nothing” property—

either all of them are performed (in a consistent state) or none of them.

It is no coincidence that transactions bring to mind banking: indeed, one use for a transaction

is in implementing a banking transaction. If your account has an initial balance of $100, and you

deposit $100 at the same time that your work deposits a paycheck of $100, what should your final

balance be? A naive implementation of banking code would make a deposit by reading your current

balance, adding $100 to it, and then setting that as the new balance. However if, between reading
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the current balance and adding $100, the paycheck was deposited, this method would lead to a

final balance of $200, instead of $300. The bank might not mind this scenario, but you would not

be so happy. However, if the read and write operations were instead wrapped in a transaction, the

transaction would fail (and then retry) in this scenario, since the balance changed mid-transaction.

Transactions were originally designed for databases, which have been handling concurrency

for decades. But transactions also offer hope for general programmers. Transactions appear to the

programmer as if they execute one at a time, in series, with no interference from other concur-

rently running code. This is exactly the guarantee that sequential programs expect! Thus, transac-

tional memory (TM)—which employs transactions on memory, rather than a database—provides a

method to speed up general programs while still allowing programmers to write code very similar

to sequential code.

1.1 Transactional Memory

Transactional memory works by allowing programmers to delimit blocks of code (“transactions”)

that should appear to execute atomically and in isolation. Committed transactions have serializable

effects: the results of any transactional program must be equivalent to the results of some execution

where the committed transactions ran one after the other (serially), with no interference from other

transactions. It is this restriction on visible effects that makes transactional programming simpler

for users.

A transaction contains normal program statements (including control flow statements, for in-

stance) referring to a mixture of global and local state. A TM user (or compiler) must ensure that

all global accesses are routed through the transaction system. This system tracks read and written

objects, watches for conflicts, and ensures that all changes to global state commit as an atomic

unit. Importantly, although each transaction appears to execute one after the other, in reality trans-

actions run in parallel, and it is the TM system that ensures that these parallel executions can be

reconciled into an equivalent serial execution.

TM transactions can express many concurrent algorithms; naturally provide fine-grained con-

currency; avoid issues that plague ad hoc parallel programming, such as deadlock; and unlike tech-

niques such as locking, transactions compose naturally. TMs were designed for hardware imple-
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mentation [22], and recent Intel Haswell and IBM processors have hardware TM (HTM) support.

But HTMs cannot support all transactions. There are capacity issues—current implementations

rely on the cache coherence protocol, and thus require all memory accessed inside a transaction to

fit within, e.g., an L1 cache—and other microarchitectural issues can prevent a valid transaction

from ever committing [36]. An HTM is thus generally backed up by a software TM (STM), such

as TL2 [12]. STMs implement all the necessary machinery for transactions entirely in software.

Many STM transaction systems use optimistic concurrency control (OCC) [27]. A library

tracks all read objects in a read-set and all written objects in a write-set. To commit a transac-

tion, the system executes a multiphase commit protocol to ensure serializability. In Phase 1, the

system locks all memory words in the write-set. This prevents other concurrent transactions from

accessing the entities modified by the current transaction. Some technique, such as lock ordering

or bounded spinning (aborting after a fixed period of unsuccessfully acquiring a lock), is required

to avoid deadlock. In Phase 2, the system checks all words in the read-set; if a word changed since

its original access, or if the word is locked by another transaction, the transaction must abort. The

commit point for a transaction is immediately after Phase 2 successfully completes. In Phase 3, the

system installs the modified words, which overwrites memory locations with the values logged in

the write-set. Finally, the system unlocks the write-set (this must happen whether the transaction

commits or aborts).

STM systems must provide both a lock and a version for each shared-memory word used in

a transaction. A word’s version (typically an integer) is updated every time the word is modified

by a successful transaction. The read-set contains versions, not memory values, and the Phase 2

check verifies that a word’s version has not changed since it was read; this catches serializability

violations that simple value comparison would miss (known as the ABA problem [11]). Various

techniques can be used to optimize lock and version storage.

STMs avoid the size restrictions of HTMs, but at a performance cost. Although there are no

microarchitectural restrictions on STMs, large read- and write-sets can still cause performance

problems, and even fast STM implementations significantly lag the performance of purpose-built

concurrent code [7].
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1.2 STO

Our work attempts to make a software transactional memory faster by, perhaps paradoxically, mak-

ing it more general. We call our design software transactional objects, or STO. STO provides what

one might call a typed STM. Rather than mimicking the restricted, untyped-memory-based designs

of hardware transactional memories, STO is designed primarily for software implementation. STO

tracks global accesses abstractly, at the level of datatype operations, rather than concretely, at the

level of memory words. For instance, consider a transactional find operation that looks up a value

in a transactional sorted list. A typed STM can track this operation using a single abstract read-set

item that represents this exact operation. An untyped STM, in contrast, would store a read-set item

for every shared-memory word accessed during the operation; the expected number of items will

be proportional to the length of the list. This not only adds overhead, it also increases the likelihood

of false conflict. In a typed STM, an insertion of a different item into the list need not invalidate

the find, while in the untyped STM, many such insertions will do so.

STO transactional datatypes (i.e., datatypes that export transactional operations) share the re-

sponsibility of providing transactional correctness with the transaction system. A transactional

datatype provides transactional operations called by users, and a handful of methods called at com-

mit time by the transaction system. The transactional operations modify the current transaction to

track abstract reads and writes, while the commit-time methods verify these reads and install the

writes in a manner appropriate for the datatype. The author of a transactional datatype must lever-

age the transaction system’s primitives to provide transactional semantics, and must implement

concurrency control on the shared-memory data structure. Usually concurrency control is required

in both the transactional operations (e.g., the list’s transactional find operation) and the commit-

time methods (e.g., the code that installs an inserted item into the list). Concurrency control is

never an easy task, but in our experience, transactional methods on a concurrent datatype are not

too much more difficult to program than correct non-transactional concurrent methods. Our design

also gives datatype designers maximum freedom: there are very few restrictions on the kinds of

concurrency control a datatype may use. (In fact, a datatype could use hardware TM in its opera-

tions!) This freedom offers designers opportunities to improve performance further. For example,

co-designing a list’s concurrency control protocol with its transactional operations allowed us to
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implement a transactional insert operation that adds no operations to a transaction’s read set, so

that insertions never conflict. Although the typed STM design does complicate the task of datatype

designers, using a transactional datatype in STO is no more difficult than using a similar datatype

in an untyped STM. In fact, user code can be almost identical.

We describe the STO design and its implementation. STO is a C++ library comprising a small

core transactional system and several transactional datatypes, including lists, hash tables, a B+ tree

variant, and a generic “box” wrapper that can make reads and writes of any datatype transactional.

The main challenge of the design was to achieve generality, and maximize usability, without sac-

rificing high performance; we explain the tradeoffs required. We evaluate STO on microbench-

marks, the STAMP TM benchmark suite, and on a challenging macrobenchmark, the Silo high-

performance main-memory database [34]. STO scales well and can exceed the performance of

the fast TL2 software transactional memory by anywhere from 1.2-5x on STAMP benchmarks.

Our reimplementation of Silo exceeds Silo’s performance by 20% on the TPC-C benchmark, even

though Silo was heavily optimized; also our reimplementation contains far less code and is easier

to read. Finally, we evaluate effectiveness for general systems code by porting the thttpd single-

threaded web server [1] to STO. A few transactional annotations suffice to make this server cor-

rectly use multiple cores. Our main contribution is the STO design for a typed software transac-

tional memory. Our secondary contributions include the implementation and our faster, simpler

Silo design.

The remainder of this thesis consists of 7 chapters. In chapter 2, we describe related work to

STO; in chapter 3, we provide an overview of our system. In chapter 4, we further expand on

STO’s design, providing examples of transactional datatypes and how they are used. In chapter 5,

we discuss implementation details of the system, and in chapter 6 we describe the many datatypes

we have designed for STO. In chapter 7, we evaluate our system on microbenchmarks, on the

popular STAMP benchmarks, against the Silo in-memory database, and finally perform a case-

study of converting an existing single threaded program into a multithreaded one using STO. In

chapter 8, we discuss future work and conclude.
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Chapter 2

Related Work

Support for transactions can be implemented in hardware or software. Support for hardware trans-

actions (HTM) [22] is available in recent Intel [25] and IBM [2] processors, with others likely to

follow suit. Hardware transactions have low cost but for the foreseeable future they will not replace

software approaches because HTM is resource constrained. This makes hardware transactions not

truly composable [17].

Software transactional memory (STM) [8, 12, 24, 37] relaxes the physical resource limitations

of HTM. It can support arbitrary size transactions at the cost of performance overhead. The per-

formance overheads of software transactional memory are due to the high cost of single thread

overheads to track conflicts at memory word granularity, aborts due to conflicts, and the cost of

consistency checks.

Early techniques to speed up transactions by eliminating false conflicts (e.g. open nesting [32],

elastic transactions [13], transactional collection classes [6], and early release [23]) expose non-

transactional APIs, making them hard to use by ordinary programmers.

Object-based STMs [14, 24] work at the object level rather than the word level. However, unlike

STO these STMs make shadow copies of any objects written to, requiring both excessive copying

and no reduction of false conflicts.

Our work most relates to prior research that speeds up transactions using abstraction, includ-

ing boosting [21], optimistic boosting [20], automatic locking [15] and predication [3]. Like our

approach, these techniques rely on highly-concurrent data structures written outside the STM and

expose a simple transactional API to ordinary programmers. Relying on data structures allows a
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reduction of the single thread overheads that limit scalability even in the current best performing

Lark STM [37]. The main difference between these approaches and STO is that the approaches

center on adapting data structures to a concrete untyped memory-word-based STM. Our work,

in contrast, flips the design: datatypes are primary, and our typed STM is abstract. Despite this

change, our approach offers performance advantages beyond those reported for prior systems. We

now consider these approaches further.

Boosting [21] wraps unmodified highly-concurrent data structure implementations for use by

STM transactions. The wrapper exploits operation commutativity, avoiding false STM conflicts,

and performs undo logging (to roll back any changes made by a transaction that aborts). Auto-

matic locking [15] synthesizes the semantic locking scheme automatically from commutativity

specifications. In these locking based schemes all accesses must first acquire a semantic lock,

which penalizes read performance. Optimistic boosting [20] reduces the cost of semantic locks by

replacing them with lazy optimistic locks, logical redo logging, and flexible optimistic validation,

but this approach is less general than ours and experimental results show small performance gains.

Predication, a technique specialized to sets and maps, couples operations on concurrent data

structures with operations on a table of STM “predicate words,” where each predicate word cor-

responds to a semantic property of the underlying data structure (such as the absence of a key). A

lookup of an absent key inserts a predicate word, introducing a difficult garbage collection prob-

lem. STO’s typed transactions naturally avoid this problem.

Modern support for transactions provides opacity [16, 28], a condition that guarantees the code

using transactions observes a transactionally consistent memory state even when transactions abort.

Checking opacity can be costly and STM systems use efficient imprecise techniques for preserving

opacity. TL2 [12] uses a global version clock, while NOrec [8] combines a global counter with

value based validation. Like NOrec, STO uses efficient imprecise checks, treating them as hints to

trigger a precise detection; however, our precise checks are semantic rather than based on values,

which allows us to avoid unnecessary aborts.

Hybrid approaches [5, 9, 10, 35] reduce the performance overheads of STM by combining hard-

ware and software techniques. Recent efforts focus on structuring transactions to reduce conflicts

and minimize the transaction data footprint so they can run in hardware. This work is orthogonal

to the issues discussed here, and we consider STO combined with HTM to be future work.
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Chapter 3

Overview of approach

3.1 Typed transactions

The central idea of STO is that a transactional memory can, and should, track semantic reads and

writes, using datatype-specific implementations of the actions required by the commit protocol

(lock, check, install, unlock), rather than tracking concrete memory words. For example, a trans-

actional tree’s find(key k) operation might track only the leaf node where k resides, avoiding

any concern about modifications that affect the path to that key. Similarly, a transactional array

can track accesses by index rather than memory location, allowing it to move its storage without

causing aborts. Transactional datatypes can ensure that semantically independent accesses never

appear to conflict, even if they modify the same memory; for example, distinct inserts to a data

structure representing a set might modify the same internal list, but they don’t need to conflict at

the transaction level. A way to understand the system is that we allow datatype implementers to

co-design the short term concurrency control that is used to execute a transactional operation (e.g.,

a transactional insert into a set) and the transactional concurrency control that comes into play later

when the transaction attempts to commit.

Implementing STO’s generality inevitably adds overhead; the commit protocol now performs

method calls on transactional datatypes, and generality leaves fewer opportunities for system-wide

optimization. Our hypothesis is that the advantages of typed transactions can outweigh this over-

head. Those advantages are as follows.

Smaller read- and write-sets. In all but the simplest datatype, any operation requires many
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accesses to shared memory. For example, in a balanced tree structure, finding an item with a given

key will touch words at many internal nodes. An untyped STM would log each of these words, but

STO can log a higher-level, semantic item representing the found key. Our evaluation shows that

STO can in some cases track hundreds of times fewer items than an untyped STM. Besides the

more obvious benefits from tracking fewer items (less memory and less time spent searching and

validating items), tracking fewer items can also reduce conflicts. Phase 2 (validating reads) must

occur after Phase 1, that is, after any writes for the transaction have been locked. Larger read-sets

mean more time spent in Phase 2, meaning more time spent holding locks, which both locks out

other writers and invalidates more reads.

Fewer false conflicts. Tracking semantic accesses rather than word accesses also avoids false

conflicts. Returning to the balanced-tree example, internal nodes are subject to modification when

the tree rebalances, whether or not the found item changed. STO datatypes can track more precise

conflict information, and in particular can add items to the read-set only when they could affect

the high-level result of a transactional operation. In our tree type, for example, rebalances need not

cause aborts.

Datatype-specific concurrency control. Datatypes must implement concurrency control on

their in-memory structures; e.g., a transactional list must use local spinlocks so that concurrent in-

sertions don’t violate structural invariants. Though this requires implementation work by datatype

designers, it also means the transaction system as a whole can use any concurrency control mecha-

nism a designer can think of. Datatypes can implement their own locks, which need not align with

the logical locks used in the commit protocol. They can also use advanced techniques like version

validation [4] or lock-free instructions, or even use hardware transactional memory. Since the best

concurrency control mechanism for a data structure often depends intimately on that structure’s

layout and operations, this offers flexibility an untyped STM cannot match.

Conflict elimination. Finally, datatypes can design their concurrency control mechanisms

(e.g., the locks used when looking up an item) to reduce, or even eliminate, entire classes of false

conflict. For instance, in STO insertion of a new item into a sorted list actually inserts a place-

holder item at execution time, before the transaction commits. Execution-time concurrency control

ensures that at most one concurrent insertion of the same item will succeed; other transactional op-

erations ignore the placeholder or abort on encountering it as appropriate. This design means that
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successful transactional insertions are conflict-free: no concurrent transaction can invalidate such

an insertion, and the insertion need not add any items to the transaction’s read-set. Concurrent

inserts can therefore have zero false conflicts and zero checking.

Of course, typed transactions have disadvantages as well. Datatype authors must implement

transactional operations, and users must call transactional methods. We address these questions

further below.

3.2 Target programmers

We aim to provide a new way to support efficient concurrent programming. Our goal is to provide

both an extensible library of fast transaction-aware concurrent datatypes, and a system allowing

relatively naive users to write arbitrary transactions using those types.

An important point is that most programmers will not need to implement transactional datatypes,

since they can use ones available through libraries. We hope that our mechanisms will make it

easy for end-user programmers to write transactional programs. These programs should both avoid

bugs and perform well. We describe several mechanisms, such as transactional boxes (§6), meant

to simplify these programmers’ tasks. On the other hand, the design of highly-efficient concurrent

data structures requires sophistication. We do not expect it to be easy for datatype programmers

to support transactions, though we believe our approach does not add too much difficulty over the

fundamental problem of correct concurrent programming. Still, our target datatype programmer

must be more sophisticated than end-user programmers of our system. This idea generally holds

true in programming, as library programmers tend to require more sophistication than the users of

these libraries.
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Chapter 4

Design

This section describes the design of STO’s typed transaction system. We explain how STO transac-

tions are used and how they are implemented, mention important optimizations, and describe how

we implement opacity (the property that a transaction is aborted before it can observe a inconsistent

state).

The STO design attempts to resolve tensions between usability, generality, and performance.

Memory transactions can access tens or hundreds of distinct logical items, so for any hope of

good performance, the item representation must be compact, uniform, and small. For any hope of

generality, however, items must support storing arbitrary data and implementing arbitrary version

checks and data structure manipulations. Many aspects of our design aim for a productive middle

ground between the minimality and uniformity required for performance and the usability desired

for datatype designers.

Figure 4.1 shows the main STO interface; the rest of this section describes it. There are three

central classes, Transaction, TItem, and TObject. Transaction represents the state of a transaction.

It exposes to users interfaces for starting and committing transactions, and to datatypes it exposes

interfaces for registering memory accesses. Its main state is a set of TItems, each corresponding

to an abstract memory access. TObject is the base class from which all transactional objects are

derived; the transaction system uses its methods to delegate parts of the commit protocol.

17



// §4.1 Methods called from user code
class Transaction:

Transaction(); // start new transaction
void abort(); // abort with exception
// commit, or abort without exception
bool try_commit();

// §4.2 Called by datatypes during txn execution
class Transaction: ...

// return item for a logical subobject of object,
// creating and adding a new item if necessary
// (subid is the subobject ID):
TItem& item<T>(TObject* object, T subid);

class TItem: // size 4 words (32B)
Transaction& transaction();
TObject* object();
T subid<T>(); // subobject ID

// manage read-set
bool has_read();
R read_version<R>();
// add read item, prefer oldest read_version:
void add_read<R>(R read_version);

// manage write-set
bool has_write();
W write_value<W>();

// add write item, prefer newest write_value:
void add_write<W>(W write_value);

// manage user flags (opaque to STO)
unsigned flags();
void set_flags(unsigned flags);

// §4.3 Called at commit by the transaction system
class TObject:

// called in phase 1 to lock write items:
void lock(TItem& it);
// called in phase 2 to validate reads:
bool check(TItem& it);
// called in phase 3 to install write items:
void install(TItem& it);
// called in phase 3 to unlock write items:
void unlock(TItem& it);
// called after commit/abort to clean up as needed:
void cleanup(TItem& it, bool committed);

// §4.4 Methods related to opacity checking
class Transaction: ...

// called by install():
version_type commit_version();
// validate opacity, or abort with exception:
void check_opacity(version_type version);

Figure 4.1: The core STO interface, organized by function.

18



4.1 Using transactions

Here’s a transaction that increments one variable and decrements another:

TBox<int> x, y; // transactional int objects

while (1) {

Transaction t; // open new transaction

x.t_set(t, x.t_get(t) + 1); // ‘x = x + 1’

y.t_set(t, y.t_get(t) - 1); // ‘y = y - 1’

if (t.try_commit()) // try to commit

break;

}

The TBox parameterized type (§6) wraps an object of arbitrary type—here, an int—in a container

that interfaces with the transaction system. (ints don’t on their own supply the locks and versions

required to implement serializable transactions.) A TBox supports two transactional operations,

t_get and t_set, that transactionally read and write the wrapped value. TBox<T> is a subclass of

the TObject base class shown in Figure 4.1.

The Transaction type is STO’s type for transactions. Declaring a Transaction object starts a

new transaction. (Alternatively, the user can reuse an existing Transaction object, which offers

some speed advantages; our benchmarks use one Transaction object per thread.) The user then

passes the transaction as an argument to the appropriate transactional operations. When the trans-

action ends, the user calls t.try_commit() to execute the commit protocol. The return value for

t.try_commit() indicates whether the commit succeeded; the code above retries the transaction

until success.

In user code that manipulates larger transactions, there is often a need to initiate transaction

abort-and-retry several functions away from the transaction’s declaration. We implement such

aborts with C++ exceptions, so a transaction is often wrapped in a try. . . catch block. Helper

types and macros (and eventually language-level support) make this wrapping readable.
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4.2 Transactional operations

Transactional operations are operations on concurrent data structures that are designed for use in-

side a transaction by an end-user programmer. Each transactional operation takes a Transaction ar-

gument, on which it logs read versions and written data. The names and signatures of transactional

operations are datatype-specific. End-user programmers use transactional operations in much the

same way they might use non-transactional operations on a data structure. The implementations of

transactional operations, however, are much more intertwined with the STO system.

A transactional hash table mapping integers to strings might, for example, provide this method:

bool THashtable::t_insert(Transaction& t, int key, string value);

THashtable is a subclass of the TObject superclass representing any transactional datatype. The

t_insert method inserts the key, value pair into the hash table, returning false if key is already

present. This will use some form of concurrency control, such as bucket locking, to ensure correct-

ness in the presence of other concurrent operations, and this concurrency control often resembles

that required for non-transactional concurrent operation. However, the transactional method must

also log logical reads and writes to the Transaction argument so that the insertion happens transac-

tionally. Specifically, any inserted data must be hidden until the transaction commits, for instance

by stashing the inserted data in t’s write set.

The transaction system’s interface for transactional operations revolves around TItem objects.

A Transaction’s primary state is a set of TItems, where each TItem stores the portion of the trans-

action’s state for a single logical subobject of some transactional object. A logical subobject is

identified by a pair of a TObject and a subobject ID, or “subid” (of arbitrary type, but usually

an integer or pointer). The Transaction::item(object, subid) method returns the unique TItem

associated with that pair (possibly after adding it).

The exact meaning of “logical subobject” depends on, and is determined by, the relevant trans-

actional datatype. In general, a subobject corresponds to a portion of a data structure whose updates

don’t conflict with other subobjects. A transactional array, for instance, might have one subobject

per array element, with another subobject for the array’s size. A transactional hash table might

have one subobject per element and one subobject per bucket (for validating t_find operations

that return “key not found”). A transactional box has exactly one logical subobject, since all writes
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class Array<T> {
T* a_;
int n_;
lock_type* locks_;

T get(int i) {
locks_[i].lock();
T value = a_[i];
locks_[i].unlock();
return value;

}
void set(int i, T value) {

locks_[i].lock();
a_[i] = value;
locks_[i].unlock();

}
}

Figure 4.2: A simple concurrent array. Every entry has its own lock. We use an exclusive lock for
simplicity; performance-oriented code would likely use read/write locking or version validation to
avoid contention on reads. Initialization code and bounds checking not shown.

class TArray<T> {
T* a_;
int n_;
version_type* vs_;

// called by users:
T t_get(Transaction& t, int i) {

TItem& it = t.item(this, i);
if (it.has_write())

return it.write_value<T>();
else {

vs_[i].lock();
it.add_read(vs_[i]);
T value = a_[i];
vs_[i].unlock();
return value;

}
}
void t_set(Transaction& t, int i, T value) {

t.item(this, i).add_write(value);
}

// called by transaction system:
void lock(TransItem& it) {

vs_[it.subid<int>()].lock();
}
bool check(TransItem& it) {

int i = it.subid<int>();
version_type v =

it.read_version<version_type>();
return vs_[i].same_version(v) &&

(!vs_[i].locked() || it.has_write());
}
void install(TransItem& it) {

a_[it.subid<int>()] = it.write_value<T>();
vs_[it.subid<int>()].increment_version();

}
void unlock(TransItem& it) {

vs_[it.subid<int>()].unlock();
}

}

Figure 4.3: A transactional version of the array from Figure 4.2.

on the contained element conflict with all reads of that element.

A TItem, then, comprises four pieces of state: a transactional object, a subid, an optional read

version, and an optional write value. The object and subid are set when the item is created and

cannot be changed. The read version and write value are set in a transactional operation to indicate

that the logical subobject has been read at a particular version or written with a particular value.

The read version and write value can have arbitrary type, although the read version is typically
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a 64-bit version number. The presence of a read version indicates to the transaction system that

a logical subobject should be verified during the commit protocol. The presence of a write value

indicates that a logical subobject should be locked during the commit protocol, and that its install

method should be called if the transaction commits.

Consider, for example, an array. Figure 4.2 shows a simple concurrent array with one lock per

item; the get method returns the element at a given index, and the set method sets the element at

a given index. Figure 4.3 shows a transactional version of the same array. Some important features

are as follows; we have found these features to be shared across many of our data structures.

—The t_set method simply adds a write value to the transaction. The same index might be

written multiple times; since later writes should override earlier ones, the value stored in the TItem

is that from the most recent add_write.

—The value stored by t_set is installed via a sequence of lock, install, and unlock calls

initiated during the commit protocol. The combination of these calls is quite close to the func-

tionality of the original Array::set method. The only difference is that the one-bit locks in Array

have been expanded in TArray to 64-bit version numbers, which allow the detection of concurrent

modifications.

—The t_get method is more complicated than the original, since it needs to check whether the

index was previously written in the same transaction. If so, the previous write value is returned.

Otherwise, the method reads the value as in the original Array::get, and additionally adds the read

version to the TItem. A transaction might read an index multiple times and, in case of concurrent

modification, the second read could return a different version. To ensure that such a transaction

aborts, the transaction system stores the first read version encountered per subobject: later read

versions are ignored (though if the read version does change, this will be caught by an opacity

check if enabled).

—Intuitively, the check method verifies that a read subobject has not changed since the time

it was originally read. This is usually just a version check (implemented, of course, in a type-

specific way). However, check must fail if the relevant subobject is currently being modified by

a running transaction—unless, of course, that transaction is the present transaction (a subobject

might be both read and written). The three-part check shown (same version, and not locked unless

item.has_write()) is typical.
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We also found it useful to provide a few flags on each TItem; for instance, a flag might indicate

that a subobject has been deleted. The transaction system doesn’t interpret these flags. When first

created, a TItem has no read version or write value and its flags are zero.

TItem’s read version, write value, and subid have arbitrary type. Trivial objects, such as pointers

and integers, are stored directly in the TItem. More complex objects, such as strings, are stored

elsewhere; the transaction system takes ownership of such complex objects and ensures they are

destroyed when the transaction completes. The author of a transactional object is responsible for

ensuring that the type used to extract a read version, write value, or subid corresponds to the type

used when adding it. It is an error, for example, to add an integer write value and then extract it

using a string type. We’d like to add a debugging mode to catch such errors.

The efficiency of TItem operations was a major performance concern. It was particularly im-

portant that TItems be small, fixed-size objects; in our implementation a TItem takes four words

(32 bytes). Several features of the design arise from this requirement. For example, in an initial

design, TItem was actually a base class; each transactional datatype created appropriate derived

classes that implemented the behavior necessary for the commit protocol. This design was in some

ways simpler and less error-prone—no concerns about extracting a write value using the wrong

type, for example—but it required one expensive allocation per TItem and was quickly abandoned.

4.3 Commit protocol

STO uses optimistic concurrency control [27] for its commit protocol, as described in §1.1. While

an untyped STM manipulates memory words and versions directly, STO maps item-specific parts

of the commit protocol to methods on the TObject base class. Each subclass overrides these meth-

ods, providing implementations specialized for the relevant data structure.

Transaction::try_commit executes the commit protocol’s phases. In Phase 1, the write-set (the

set of TItems with a write) is sorted according to a globally consistent order (we use the TObject

and subid to obtain this ordering) and then the lock method is called on each item’s TObject. In

Phase 2, the read-set (the set of TItems with a read) is verified by calling the check method of each

item’s TObject. If any call returns false, the transaction aborts. In Phase 3, the write-set is installed

with install method calls, and after the transaction ends (whether successful or not) the write-set
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is unlocked with unlock method calls. Finally, the transaction system calls a cleanup method for

each item to execute any necessary cleanup tasks; for example, if a transaction that inserted a new

item ends up aborting, the new item’s cleanup task would actually remove the allocated item from

the data structure.

4.4 Opacity

In a transactional system with opacity, no transaction can observe an inconsistent state: if a trans-

action reads two values v1 and v2, then there must have existed a state in the serial transaction

order when those values had those versions simultaneously. This doesn’t mean that the transaction

will eventually commit; for instance, v1 might have changed by the time v2 was read. But opacity

is desirable on its own. In a system without opacity, a transaction can observe an inconsistent state.

Although such a transaction cannot possibly commit, the inconsistency might in the meantime

cause assertion failures, infinite loops, and programmer confusion.

Unfortunately, opacity can also be expensive. The obvious opacity check, which we call direct

opacity, simply revalidates every past read item on each new read (and aborts on failed validation).

This has potentially disastrous O(n2) overhead (n is the size of the transaction).

A better alternative was introduced by TL2 [12]. This algorithm requires that all read versions

use a common version number space. When a transaction begins, the transaction system takes a

snapshot of a current global version number; this snapshot is called the version bound. When an

item is read at version v, the system compares v with the bound. If v is no larger than the bound and

the subobject is not locked, then observing v cannot cause an opacity violation. If the subobject is

locked or v is larger than the bound, however, then reading v might cause an inconsistency; in TL2,

such a read causes the transaction to abort. When the transaction commits, the transaction system

obtains a commit version by atomically incrementing the global version number. The transaction’s

written subobjects are marked with this version.

TL2 opacity is usually faster than direct opacity, but it too has performance problems. Each

transaction updates a shared variable, which can cripple scalability at high core counts. (Even the

TL2 “low contention global version clock” [12] has scalability problems.) Since some applications,

such as our database, do not require opacity, the STO system does not force datatypes to provide
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it, and a non-opaque transaction will incur no opacity overheads.

A transactional object providing opacity should use TL2-style version numbers; the Transaction::

commit_version method, which should only be called from install, provides access to the commit

version for the current transaction. When making a read, the object calls Transaction::check_opacity(v),

passing in the read version v. This will perform an extended TL2 version check. The initial check

follows TL2, but a failure does not immediately cause an abort. STO instead reloads the version

bound and performs a full read validation, aborting only if that fails. This precise validation (which

is the same check that would happen at commit time) will succeed if and only if all reads so far are

consistent with one another. This extended check improved performance on our benchmarks.

4.5 Discussion

The requirements for correct transactional operation under STO (locking, version numbers) are

quite close to the requirements for correct concurrent operation even without transactions. For

instance, adding STO support to a fast concurrent B-tree variant [29] required few data structure or

code changes. We thus believe that many data structures can support both transactional operation

and non-transactional operation concurrently, with significant code overlap between these modes.

It does, however, require thought to ensure that non-transactional updates to a data structure don’t

violate transactional correctness. The main key is to ensure that the check operation, and (when

appropriate) the TL2 opacity check, will notice any non-transactional changes that occur.

Although STO’s central commit protocol resembles optimistic concurrency control, this choice

is not forced on datatypes. A datatype could instead, for example, acquire locks at execution time,

using the cleanup method to perform any necessary undo operations in the event of an abort

(though the datatype would still have to handle the usual problems with pessimistic methods like

deadlock).

There is some middle ground between using TBox types and implementing complex data struc-

tures. Consider as an example a counter, where we only care whether or not the counter has value

zero. A TBox around this counter would abort any time the counter changed, even if it remained

above zero. However, it is not difficult for an application developer to implement a simple TObject

around this counter, which implements for check a confirmation that the counter’s value remains
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positive. This idea is further explored in §7.4.

STO currently acquires locks on logical subobjects in a global order based on object pointer

and subid. This effectively enforces a global lock order on the rest of the system. A better choice

might be for STO to lock with bounded spinning.
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Chapter 5

Implementation

Our implementation of STO is 6,886 lines of C++ code, with 1,038 in the core transactional library,

1,861 in tests, and the rest in various transactional data structures. The rest of this section describes

important implementation features and optimizations.

Choice of subid Choosing the proper subid for a given subobject is often an important perfor-

mance choice. Consider, for example, an update to an existing key in a hash table. One obvious

choice to identify the subobject of this update would be the string key that corresponds to this el-

ement in the table. This choice of subid, however, then requires copying a (potentially very large)

string key for every hash table update, and performing string comparisons to search for the unique

TItem. This also presents a challenge for ordering items to prevent deadlock (the same string key

can be stored at different pointer locations, for instance, so it is unsafe to order by subid pointer

value). In this case the best solution might be for a datatype that uses string subids to implement

bounded spinning (aborting after a certain period of time waiting for a lock), allowing the rare

deadlock to be resolved by aborts.

These performance concerns and complications can be avoided by instead choosing an integer

or unique pointer subid. Integers and pointers can be stored directly in a TItem, require no allo-

cations or copies, and also make comparisons very cheap. Choosing a proper pointer for a given

logical subobject can be challenging; importantly, the pointer must have the property of being

unique for any operations—including both reads and writes—of the subobject. For the hash table

example above, a good choice of subid is the pointer to the node in the hash table representing the

given element. This pointer also provides instant access to the node at commit time, avoiding the
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second lookup into the hash table that a string key would require. For unsuccessful get operations,

there is no such pointer to use, so we instead use the index of the bucket that the key hashes to.

TItem uniqueness. STO requires that each logical subobject in a Transaction correspond to

a unique TItem. Our initial implementation ensured uniqueness with a linear item search, leading

to O(n2) item comparisons (n is the transaction’s size). We then applied some optimizations from

untyped STMs, such as allowing the Transaction to store duplicate read items in certain situa-

tions [12]. Our implementation allows a data structure to request read-only items: these items will

not search the transaction set if no writes have yet been performed, since in that case there are no

prior write values we might need to observe for transactional correctness. Once a write has been

made, read-only items revert to the standard behavior of searching the transaction set (starting

at the index of the first item written). This optimization can make a significant performance im-

provement in some applications, particularly those that have large read-only transactions. However,

because it also complicates the model for datatype designers (TItems are no longer always unique),

this behavior must be explicitly requested by a datatype, so datatype designers do not have to

consider this more complicated model unless needed for performance. Importantly, although read-

only items can complicate the implementation of a datatype, a datatype that uses read-only items

becomes no more difficult for an end-user programmer to use.

Still better performance on large transactions was obtained by adding a simple hash table for

O(1) item lookup, though for small transactions this did not help and is not used. The hash table

maps from a hash of an item to its index in the transaction set, and conflicts favor the most recently

added item. The hash table has the further advantage of improving performance without adding

any complication to our model, and thus is always enabled for large transactions. The performance

impact of these techniques is investigated further in §7.2 and §7.5.1.

TItem modifications. Some datatypes occasionally modify or erase previous read- and write-

set items. For instance, consider a B+ tree transaction that first scans a key range, then inserts a

key into that range. The natural implementation of range scan treats the scanned leaves as logical

subobjects and adds their node-level versions to the read-set. But the insertion will change these

versions (to invalidate range scans in other transactions). Of several designs we tried, the most

natural was to update the relevant read versions when this occurs, which requires special TItem

interfaces. We are careful to ensure transactional correctness by verifying the old read-set version
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first.

Garbage collection. Many fast concurrent datatypes in C use Read-Copy-Update (RCU) [14,

30] to free memory. RCU effectively acts like a garbage collector; when it is present, datatypes can

use advanced forms of concurrency control that avoid read locking. Any such garbage collector

requires access to roots, and in STO, transactions store such roots. We therefore provide an epoch-

based reclamation RCU implementation [18] (and allow datatype designers to integrate their own).

An STO datatype can register objects to be freed, and callbacks to be called after any concurrent

transactions are guaranteed to have finished. Epoch-based reclamation works as follows: we peri-

odically increment a global epoch value. Each thread then stores the global epoch it observed at the

start of its current transaction. For a pointer registered at epoch g, we know there can be no threads

that still have access to this pointer if every thread in the system has a local epoch of at least g+1,

at which point it is safe to free the pointer.
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Chapter 6

Datatypes

This section describes interesting features of some of STO’s transactional datatypes.

TBox<T>. The box type is our most basic data structure, wrapping an arbitrary type for use

in our transactional system. This only requires adding a version number and implementing the

TObject methods. A TBox supports two operations, t_get and t_set.

TArray<T>. Arrays offer indexed get and set methods. An array can be written as a C array of

TBoxes, or can be custom written to do the work of a TBox for each of its elements similar to that

shown in Figure 4.3. The latter requires only one TObject and corresponding virtual method table,

whereas the former has one TObject per element in the array, but this does not make a significant

performance difference. An important departure from Figure 4.3 in our implementation, however,

is that t_get does not acquire any locks, which both improves the speed of get operations and

avoids any reader-reader contention. Instead, we check that the version number is not locked, read

the desired value, and then make sure that the version has neither changed nor been locked since

our previous read, retrying if it changed. Because any write to the array must acquire the lock and

then increment the version number, we are guaranteed to have a consistent read of the array value

if the version number remains constant and unlocked.

Our arrays, and in fact all of our containers, can contain values of arbitrary type (including other

TObjects). This requires care both for correctness and optimal performance. An array of strings or

other complex values, for instance, must make copies of these values, while an array of integers

need not perform any copies. The transaction system already handles its part automatically: when

setting the write value of a TItem, the transaction system will store the value directly in the TItem
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if it is a simple type fitting into one memory word, and will otherwise allocate the necessary

space, copy the value, and clean everything up after the transaction ends. This is accomplished

transparently to the datatype programmer using C++ templates. Our generic datatypes add similar

support for arbitrary values stored in the data structure, using C++ templates to determine whether

or not a particular choice of value requires copying. More than that, however, while our locking

schemes ensure that no two threads ever write to a particular value at the same time, a reader may

observe a value as it is being updated. For some choices of value—including the C++ standard

containers—simultaneous reads and writes are not safe, and can even lead to segmentation faults

(if a reader observes the old value as it is freed, for instance). Thus, for generic, non-trivial values

we must perform updates atomically. Like many problems in computer science, this requires an

extra level of indirection—we store in our data structure a pointer to a particular value type (only

when it is a non-trivial type), and updates then allocate a new pointer to a new value, updating the

data structure’s pointer in a single instruction (and using RCU to free the old memory).

TList<T>. This is a typed singly-linked list with a separate size component; its main operations

are insertion, deletion, lookup, and iteration. Storing a separate size component transactionally can

be somewhat difficult. Transactional reads of the size must consider any earlier inserts or deletes

in the current transaction. For this we add an item to the transaction set that tracks only the current

size offset of the transaction (and does nothing at commit time). Additionally, a separate size

variable requires an insert/delete operation to happen atomically with the size variable update.

This requires any transaction that inserts or deletes to lock the whole list, reducing concurrency.

Still, for workloads (such as the STAMP benchmarks) that require frequent polling of the list size, a

size variable is important. Our list also supports transactional iteration. Since looking up a specific

item can be accomplished with the lookup operation, we make the assumption that iteration will

generally be used to traverse the whole list. Then, rather than tracking every node traversed, an

iteration tracks a version for the whole list, which is invalidated by any insert or delete operation

(this is also how the transactional size operation must be implemented). While this can actually

increase false conflicts of our list relative to an untyped implementation, for the very common

case that the whole list or at least a large portion of it is traversed, we store many fewer words,

improving performance. (This is especially true for lists containing immutable values—a property

that is often true in STAMP’s benchmarks—since any reads of immutable values during iteration

31



need not add anything to the read-set.)

TListSet<T>. This extension of TList implements a set (without duplicates); the type T must

support equality, and the transactional t_insert method fails if the element is already present.

Thanks to the placeholder-item technique described in §3.1, transactional insertions of different

items avoid all conflicts.

TQueue<T>. Our transactional queue supports two operations, t_push (add an element to the

tail) and t_pop (remove an element from the head). We observed that a t_push does not actually

observe the queue’s state, so STO’s t_push implementation doesn’t modify the read-set, and t_push

will never cause a transaction to abort. In an untyped STM, in contrast, any two t_push operations

conflict (because a push must read the queue’s state before writing to it).

t_pops always conflict with each other, while t_push and t_pop only conflict in the case of an

empty queue. This is a slightly tricky case, which we handle as follows: a t_pop that observes a

non-empty queue succeeds so long as no other pops have since occurred on the queue at commit

time (this is tracked using a “pop” version number, which is incremented after every pop). A t_pop

that does observe an empty queue succeeds only if the queue remains empty at commit time. It thus

logs the current “push” version number (incremented after every push operation), and the commit

succeeds so long as no new pushes have occurred. Pops of a globally empty queue also check their

write-set for pushes in the current transaction and pop from those, if applicable.

THashtable<K, V>. Our hash table supports t_get, t_insert, t_put, and t_delete operations.

Each element is a logical subobject, as is each hash bucket. Transactional inserts again use place-

holder items. Inserts modify both the item’s version number and the version number on the cor-

responding bucket. When an item is found, the t_get method adds the found item to the read-set;

when not found, it adds the containing bucket, ensuring that a later insert will abort the transaction.

Deletes mark a node invalid at commit time (forcing any observers of this node to abort), then

remove it from the hash table and schedule it for garbage collection with the RCU system. Note

that deletes need not modify the bucket version, as the bucket version is only used to invalidate

unsuccessful get operations; a delete never changes the status of an unsuccessful get. Our hash

table does not currently support iteration. However, we would most likely add it in a similar manner

to list iteration, where we log the bucket versions for each bucket traversed (this would also require

making deletes increment the bucket version number).
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TMasstree. Masstree [29] is a high-performance concurrent B+ tree-like data structure for key–

value storage. TMasstree provides transactional access to a Masstree, with the same operations as

THashtable plus a range query operation. Its logical subobjects correspond to the values stored in

the tree and, to support range queries and unsuccessful gets, tree leaf nodes (which will change

following an insertion or deletion). Only very small changes were required in Masstree to support

transactional operation; specifically, our Masstree exposes the previous version numbers of leaf

nodes split as a result of an insertion, which TMasstree uses to update the read-set as described in

§5.

An important optimization was storing the string values of a TMasstree in the same allocation

as the associated version number (avoiding extraneous allocations and cache line accesses), as well

as updating the value in-place. Since we store strings in the tree as simple byte arrays, it is safe to

update the value in-place (a reader that observes a value as it is updated will never traverse beyond

the bounds of the allocation, and will notice immediately afterwards that the version number either

changed or is locked, and retry). We cannot update the string in-place if the new string is larger

than the capacity of the current string value, however. In this case we must do a locked update

through Masstree to update the value to a new pointer. In order to avoid performing this update at

commit time (which would require storing the string key for this element), we decide whether we

need a capacity change at execution time. If so, we do the locked update then, resizing the capacity

of the string value while keeping the contents the same. Then at commit time we can perform an

in-place update, which is now guaranteed to have the required capacity to succeed. Like our other

datatypes, TMasstree supports generic values, so for non-string values it acts the same as other

datatypes and decides whether it can do direct updates or if it needs an extra level of indirection

(when the value type is non-trivial).

TUntyped. Finally, the TUntyped type implements an untyped STM: its install method makes

changes to arbitrary words of memory. TUntyped both shows the generality of our system and

is critical for supporting the STAMP benchmarks. It stores version numbers by hashing memory

addresses into a fixed-size array, while associating write values directly with destination addresses.

We were able to use our TArray implementation directly for this—when we write to the array, the

array will then lock that entry during the lock phase, locking out any other writers from that word

address. At install time, the array will increase the version number of the given entry, forcing any
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reads to that entry of the array to abort. Since multiple words could hash to the same entry in the

array, there are potential false conflicts. As long as we use a sufficiently large array size though,

this should not be a significant problem. Because we can use our existing array implementation so

effectively, TUntyped only requires 40 lines of additional code.
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Chapter 7

Evaluation

This chapter evaluates STO as follows:

• Microbenchmarks that demonstrate STO’s scalability with respect to number of cores, the

overheads of its opacity, and the effects of our hash table optimization (§7.2).

• A comparison of STO to untyped STMs using STAMP, demonstrating the benefit of typed

transactions (§7.3).

• An evaluation of the effectiveness of application-defined objects in STO using the vacation

benchmark of STAMP (§7.4).

• A comparison with Silo, a fast main-memory database, where we show that STO can out-

perform a purpose-built transaction system (§7.5).

• An evaluation of STO’s ease of use for end-user programmers, by applying STO to a previ-

ously sequential network server (§7.6).

7.1 Experimental setup

All our experiments were run on a single machine with 2 6-core Intel Xeon X5690 processors

clocked at 3.47GHz. The processors are hyperthread-enabled so there are 24 logical cores avail-

able. The machine has 100GB of DRAM in total, and runs 64-bit Linux 3.2.0.
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Figure 7.1: STO’s scalability, with 10-item transactions.

In all graphs, we report the median of 5 consecutive runs, with the minimum and maximum

shown as error bars.

7.2 Microbenchmarks

We first run a series of microbenchmarks to evaluate the inherent overhead of STO’s generic trans-

action system. Each experiment performs transactions that read or increment random keys in a

transactional array of integers. Transaction size varies, but each transaction consists of half reads

and half increments. This data structure is so close to untyped memory that STO offers few benefits

over untyped STM. We ask several questions: Does STO have any inherent overhead that would

limit scalability? What are the performance consequences of extended TL2 opacity? How does our

hash table optimization scale with large transactions?

Scalability without opacity. Figure 7.1 shows the scalability of STO with 10-item transac-

tions under low contention (array size 1 million, < 1% abort rate at 24 cores) and without opacity.

Scalability is good, though not perfectly linear at larger core counts. Much of this drop is due to

memory accesses that cross the 12-core socket boundary. Although scalability is clearly limited

under high contention, we still aim for STO to achieve some amount of scalability under con-

36



1 thread 2 threads 4 threads 8 threads 16 threads 24 threads
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Ov

er
he

ad
5-item txn
50-item txn

Figure 7.2: The overhead of TL2-style opacity.

tentious workloads. On a workload consisting of 100-item transactions and a 10,000 element array

(two transactions have about a 40% chance of conflicting), STO without opacity still had a 2.3x

speedup at 24 cores (with an abort rate of 45%) compared to a single core.

Opacity. Extended TL2 opacity affects scalability since transactions atomically increment a

shared global variable to obtain their commit versions. The associated cache line bouncing could

throttle performance, particularly for small, cheap transactions; we would expect large transac-

tions, or transactions whose install methods are expensive, to contain enough computation to

mask this effect. We measured the overhead of extended TL2 opacity relative to no opacity under

low contention (array size 1 million) for both small (5-item) and medium (50-item) transactions.

Figure 7.2 shows the results. As expected, opacity is quite expensive for small transactions, costing

20% even when there are only 2 cores, and nearly halving transaction throughput at 24 cores. For

medium-sized transactions, the story is different. Opacity never has terrible overhead, and actually

speeds up execution at small core counts (2 and 4) by aborting early and avoiding wasted work. We

also evaluated direct opacity, in which every opacity check corresponds to a full read validation.

This avoids the scalability bottleneck of the global version number, but suffers much higher over-

head. As expected, overhead grows with transaction size but remains independent of core count; it

was roughly 10% for 5-item transactions and 50% for 50-item transactions at all core counts. This

suggests that a transaction system built for short transactions should perhaps implement direct
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Figure 7.3: (a) Scalability with respect to transaction size with and without our hash table (number
of transactional operations is kept constant throughout). Lower numbers are better. In (b) we enable
our hash table even for small transaction sizes. This confirms our choice of 16 as the approximately
optimal cutoff for when to begin using the hash table.

opacity.

Hash table optimization. As explained in §5, we were able to improve performance for large

transactions significantly by using a hash table for lookups in our transaction set. The exact effects

of this hash table can be seen in Figure 7.3a, which shows the overhead of increasing transaction

size with and without our hash table (we hold the total number of operations in this experiment

constant—so the ideal graph would be a flat line). Lower numbers are better. Note that the x-axis is

a log-scale. Although we never use the hash table for small transactions, there is a small, constant

overhead for transactions of size less than about 40—likely from the additional branch and the

increased size of the code. Above that, however, the benefits of the hash table are clear, as we scale

near linearly even for larger transactions. The hash table used in this benchmark has a fixed size

of 512, so we can see that its effectiveness starts to drop off as the transaction size approaches 512

and hashing conflicts become much higher.

We chose 16 as the cutoff point for when to start using the hash table. In Figure 7.3b, we

compare always using the hash table (even for small transaction sizes) to no hash table. This helps

confirm our choice of 16, as this is near the point where always using the hash table provides an

improvement over never using a hash table. Although Figure 7.3b suggests an exact value of about
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Figure 7.4: STAMP results on 16 cores. Larger bars are better; there is no STO result for ssca2
because that benchmark uses no datatypes.

Benchmark Arguments
intruder -a10 -l2048 -n10000 -s1
genome -g16384 -s64 -n16777217
kmeans -m160 -n160 -t0.01 -i inputs/random-n262144-d32-c16.txt
labyrinth -i random-x512-y512-z7-n512.txt
vacationL -n2 -q90 -u98 -r1048576 -t4194304
vacationH -n8 -q1 -u60 -r1048576 -t4194304
bayes -v32 -r4096 -n10 -p40 -i2 -e9 -s1
ssca2 -s21 -i1.0 -u1.0 -l3 -p3

Table 7.1: Configurations used for the STAMP benchmarks

20 for when the hash table becomes optimal, with a cutoff value of 16 the actual crossover point

is somewhat higher, at around 40 (because we cannot predict transaction size, and so do not start

using the table until the transaction size is 16). Since the overhead of the hash table when used

with a cutoff of 16 is never particularly large, and it is most useful for transactions of size at least

100, we consider this tradeoff acceptable.

7.3 Typed transactions: STAMP

We now test our hypothesis that STO’s typed transactions can outperform untyped transactions,

thanks to smaller read- and write-sets and fewer false conflicts. To do so, we ported the STAMP

transactional-memory benchmark suite [31] to STO. STAMP is a widely-used standard for evalu-
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ating hardware and software transactional memories; it was designed for an untyped STM, and

ships with a variant of TL2. It comprises eight benchmarks that model different parallel cod-

ing patterns. Although the benchmarks were written for an untyped STM, they use several data

structures—lists, queues, maps—that make the appropriate untyped STM accesses. We first ported

seven of the STAMP benchmarks1 to our “untyped” STM, the TUntyped object; and then designed

interfaces to our transactional data structures that match STAMP’s interface. We can thus measure

three configurations—the original STAMP benchmarks with TL2; STAMP with STO TUntyped;

and STAMP with STO data structures—and address several questions. First, how does STO com-

pare to a tuned untyped STM (TL2)? And second, is the performance difference due to typed

transactions, or to some other aspect of the STO implementation?

We make several changes to the STAMP benchmarks in all configurations. First, we implement

maps using hash tables rather than balanced trees. This actually favors untyped transactions, since

compared to tree operations, hash table operations make many fewer accesses to shared memory

(and avoiding such accesses is a primary STO goal). Second, some of STAMP’s suggested param-

eters produce datasets too small to scale to high core counts. For instance, given the suggested

intruder parameters, no STM ever beat sequential performance: contention was simply too high.

We increased the data size for some benchmarks to mitigate these scalability problems and ensured

that TL2 performance was still comparable to that in the STAMP paper. The configurations used

are shown in Table 7.1.

Figure 7.4 shows the results at 16 cores (results at 4 cores were similar, except that the bayes

benchmark was more variable; the STO+ results for vacation are explained in the next section).

For each benchmark, we graph the speedup for each STM implementation over STAMP’s sequen-

tial code for that benchmark. Despite the wide range of workloads, contention levels, and data

structures represented in STAMP, STO always beats TL2, often substantially. Only STO comes

anywhere close to scaling up to 16 cores. Furthermore, untyped STO usually performs worse than

TL2. While this could be in part because our untyped implementation is not as fine-tuned as TL2’s,

it does suggest that STO’s benefits come from the use of datatypes, rather than (for instance) a bet-

ter core transactional system.

STO performs best on the genome and intruder benchmarks. These heavily use lists, which,

1Yada was eliminated because of bugs in the benchmark. This seems to be a common issue [19].
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in untyped STMs, add many extraneous words to read- and write-sets (i.e., one for every “next”

pointer encountered). An intruder transaction using TUntyped contains, on average, 20x more items

than the same transaction using full STO, and the maximum ratio is much worse (200x). The results

for genome are less extreme, but still significant, with 3x more items in TUntyped on average, and

20x more items in the worst case. TUntyped is generally slower than TL2, sometimes significantly

so. This is likely in part because our implementation is less fine-tuned than TL2, and also because

of STO’s generality overheads. (For instance, STO items are larger than TL2’s, and because TL2

understands the semantics of its items, it need not always ensure unique storage of an item in

its read- and write-sets.) However, on labyrinth, TUntyped outperforms TL2. The reason is our

extended opacity: TL2 has 26% aborts, while our additional read-set validation reduces the abort

rate to 18%. (Most of the other benchmarks have lower abort rates, so extended opacity checking

does not come into play.)

7.4 Application-defined operations

Users can make further gains over STO by implementing their own transactional objects. We

demonstrate this with the vacation benchmark, which models a reservation system. When two

clients in the benchmark happen to make a reservation for the same item (such as a hotel room),

they will conflict, even though semantically both reservations can succeed so long as there are still

equivalent items available to reserve. To solve this problem, we implemented a custom transac-

tional object for reservation items. This object tracks the number of equivalent reservable items,

and its check method for reservations reports a conflict only if the price of an item changes or there

are no more items to reserve. This system is referred to as STO+ in our graphs. Under low con-

tention (“vacationL”), STO+ performs equivalently to STO (and with roughly 25% better speedup

than TL2). Under higher contention (“vacationH”), however, STO+’s application-specific conflict

detection means transactions observe 5x fewer aborts than STO (1% abort rate, rather than 5%),

and the benchmark as a whole has about 1.6x higher speedup.
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Figure 7.5: Results for TPC-C (standard mix) for Silo, an in-memory database built using ad-hoc
concurrency, and STO, which is a simple combination of STO’s TMasstree and its Transactions.
In “STO-”, we disable opacity and read-my-writes (Silo also disables these features). Silo is very
fast, but our version outperforms it by almost 20%.

7.5 Silo

In this section we show that despite their generality, typed transactions can outperform purpose-

built transaction implementations. Our comparison system is Silo, a fast in-memory database [34].

(Specifically, we compare against MemSilo, with MemSilo’s snapshots disabled.)

Silo implements transactions using Masstree; it adds to Masstree transaction-aware record

structures, an optimistic concurrency control-based transaction protocol, and an implementation

of TPC-C, the well-known high-performance transaction processing benchmark [33]. The speed

of Silo transactions inspired our work on typed transactions: Silo is several times faster than many

other in-memory databases [34]. Our typed transaction system outperforms Silo on TPC-C by 10%,

as seen in Figure 7.52 . Moreover, Silo’s transaction system disables opacity and does not properly

support reading an item that was written by the same transaction (“read-my-writes”); if we modify

STO in a similar way, we can outperform Silo by almost 20% (STO- in Figure 7.5). Despite its

improved performance, STO-based Silo is both simpler and more general than the original. Our

transactional system plus TMasstree is less than 2,000 lines of C++ code. The corresponding part

of Silo, however, is more than 7,000 lines long. Furthermore, Silo’s implementation is deeply in-

terlinked with Masstree, whereas adding hash table support to STO-based Silo transactions would

2Though TPC-C performance is often measured as New Order transactions per minute, we follow Silo in reporting
total transactions per second for the standard mix.
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Figure 7.6: A comparison of different techniques for making reads observe prior writes in a trans-
action (“read-my-writes”) on TPC-C. Changes are cumulative from left-to-right.

be a matter of calling methods on THashtable instead.

Our system has many subtle design differences from Silo (for instance, we abort if we ever see

a locked version number, while Silo spins until it is unlocked), and we were unable to determine

the precise reasons for our performance difference. Given enough effort, a purpose-built system

for Silo transactions could match the performance of a general system like ours (just as purpose-

built TL2 beats our general untyped STM). Our results show, however, that this effort may not be

worth it. The generality of typed transactions has low cost, and further improvements on STO’s

transactional core would benefit not only STO-Silo, but also other benchmarks.

7.5.1 Item uniqueness

The TPC-C benchmark also provides a good opportunity to investigate the effects of our require-

ment of TItem uniqueness. As was shown in Figure 7.5, there is only a small performance decrease

in STO when we support reading our writes and opacity. This is largely because of optimizations

in our system to improve read-my-writes performance.

In Figure 7.6 we compare the effects of these optimizations when running TPC-C on a single-

thread (changes are cumulative from left-to-right; opacity is enabled in every configuration). Though

enabling read-my-writes performs only marginally (less than 3%) worse, disabling read-only items

(which allows duplicate read items in some cases, per §5) makes this difference much more sig-

nificant. TPC-C includes large, read-only transactions, which is where this optimization proves
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most effective. The hash table optimization described in §5 also provides a large performance im-

provement in TPC-C. Together, these two optimizations provide nearly a 25% improvement for

read-my-writes, allowing us to fully support read-my-writes with only minimal overhead.

7.6 Server

Finally, we briefly explore STO’s ease of programming. To investigate the difficulty of applying

STO-style transactions, we took a single-threaded program and made it multithreaded using STO

transactions.

thttpd is a small event-driven web server [1]. Though such servers are fast enough for many web

workloads, using multiple threads can matter for certain workloads, such as when connections must

perform heavy computation or heavy disk I/O [26] (often multiple threads handle blocking disk I/O

more effectively than available asynchronous interfaces). We converted thttpd’s main event loop to

use multiple threads and identified the shared read/write data structures that required concurrency

control. Two core data structures required sharing between threads, a throttling table used to track

and throttle the bandwidth of particular URL patterns, and a mapping cache of memory-mapped

files. The throttling table corresponded to a transactional array, and the mapping cache to a hash

table (for the mapping table, we ensure, using a TBox variant, that newly mapped files are closed if

a transaction aborts). Having chosen the data structures, we simply introduced transactions around

their uses. Though some uses would have been simple to implement with locks, others operated

on multiple subobjects concurrently (e.g., updated multiple URL patterns atomically), and there

transactions were helpful. The final code shrank by 41 lines relative to the single-threaded version.

Since the two data structures in the server that required shared access were both common

data structures, we were able to use our existing transactional datatypes directly. Compared to a

traditional STM, this was no more difficult to do but provided an extra speed increase. Had there

been more complicated data structures, we could have just used untyped transactions to protect

them, with similar results to a traditional STM.

Our conclusion, perhaps unsurprisingly, is that transactional data structures are not always

the most difficult aspect of parallelizing serial code. Their availability does help the programmer

introduce fine-grained concurrency quickly, however, and our transactions are not significantly
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more difficult to use than those in traditional untyped STMs.
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Chapter 8

Future Work and Conclusions

8.1 Future Work

There are several interesting directions for future research. One direction is modifying our ap-

proach to work with a compacting garbage-collector that relocates live objects. Another is inte-

grating our approach into a programming language, which would improve ease of use, readability,

and program robustness. Additionally, there are many other data structures that could be made

transactional with our system. Investigating both how best to adapt these datatypes for transac-

tions, and what modifications to our system these may require are interesting questions. Further

investigation of user-defined datatypes also seems warranted, for instance allowing higher-level

operations like increments (that need not conflict with each other). Investigating how our system

interacts with hardware transactional memory is another interesting problem. We hope that HTM

can be implemented directly in our system, providing an immediate hybrid implementation.

8.2 Conclusion

This thesis has described a new way of supporting programmers who need to provide high-performance

applications that can take advantage of the concurrency available on multi-core machines. Our ap-

proach allows application code to be organized as transactions; this is desirable because it simpli-

fies reasoning about program correctness and removes many of the concurrency bugs that plague

such code today.
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We generalize STM by leveraging the fact that our transactions are implemented in software;

this allows us to exploit abstraction. Application developers in our system mostly rely on efficient

transaction-aware datatypes, such as trees and maps, that are available in a program library; they

populate these data structures with their own data, typically packaged in a special transaction-aware

type (TBox) that we provide. The result is that applications are both easy to build and perform well.

Implementing the transaction-aware datatypes, however, is done by experts; this job is not easy,

but we believe it is not much more difficult than what is required to implement highly-concurrent

data structures that are not transaction-aware. Our results show we can outperform earlier systems

by as much as a factor of 5 and provide better scalability.
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