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We investigate the luminescence of Si supersaturated with S (Si:S) using depth-resolved

cathodoluminescence spectroscopy and secondary ion mass spectroscopy as the S concentration is

varied over 2 orders of magnitude (1018–1020 cm�3). In single-crystalline supersaturated Si:S, we

identify strong luminescence from intra-gap states related to Si self-interstitials and a S-related

luminescence at 0.85 eV, both of which show a strong dependence on S concentration in the

supersaturated regime. Sufficiently high S concentrations in Si (>1020 cm�3) result in complete

luminescence quenching, which we propose is a consequence of the overlapping of the defect band

and conduction band. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788743]

The ability to tailor the optoelectronic properties of Si

by doping with S has been an active area of research

for several decades. At equilibrium concentrations1 (1016

–1017 cm�3), Si doped with S (Si:S) offers a potential route

to high-efficiency Si-based light emission2,3 due to metasta-

ble, optically active S-complexes.4–6 In a different regime of

doping, Si doped with S to beyond-equilibrium concentra-

tions (1018–10 20 cm�3) was found to exhibit enhanced

sub-band gap absorption7,8 and has been used to fabricate

photodiodes with increased gain and extended optoelectronic

response9 down to energies less than 0.5 eV.10 The changes

in the optoelectronic properties of Si induced by supersatu-

rated concentrations of chalcogens (S, Se, Te) exhibit a

strong concentration dependence, which has been related

both theoretically11 and experimentally12,13 to impurity-

induced changes to the band structure. Although S in Si at

dilute concentrations affects luminescence and, at supersatu-

rated concentrations, drastically affects the optoelectronic

properties, the effects of supersaturated concentrations of S

on the luminescence of Si remains unexplored.

The controlled synthesis of single-crystalline Si doped

with S above the equilibrium solubility limit can be achieved

using ion implantation followed by pulsed laser melting

(PLM).14–16 One important consequence of this technique is

that the resulting dopant profile exhibits a surface layer that

is uniformly doped and, beneath that, a concentration tail

that decays over hundreds of nanometers. As a result, the

optoelectronic properties of supersaturated Si:S exhibit a

strong depth-dependence.14 The inhomogeneous doping

makes it challenging to study the relationship between band

structure and S concentration through bulk characterization;

so far, iterative characterization and etching have been

needed to characterize how material properties change with

depth and thus with S concentration.14,17

In this study, we combine depth-resolved cathodolumi-

nescence (CL) spectroscopy18–20 and secondary ion mass

spectroscopy (SIMS) to investigate the relationship between

luminescence and dopant concentration in Si doped with S to

beyond-equilibrium concentrations. A sulfur-related sub-

band gap luminescence is reported at 0.85 eV, distinct from

the S-related luminescent centers previously observed at

dilute S concentrations. We identify a S-concentration

threshold above which all luminescence is quenched, and

correlation with other bulk characterization techniques sug-

gests that the luminescent quenching may be related to S

impurity-band overlap with the conduction band.

S-supersaturated Si was prepared by ion implantation of

(100) Si (p-type, 10–20 X-cm, Czochralski-grown) with 32Sþ

ions at 95 keV and at 7� off-normal to prevent channeling, fol-

lowed by PLM.12 To study concentration dependence, four dif-

ferent wafers were implanted with S doses of 1� 1016 cm�2,

3� 1015 cm�2, 1� 1015 cm�2, and 3� 1014 cm�2 prior to

PLM with XeCl irradiation (308 nm, 25 ns at full width at half

maximum, 50 ns total duration). Each sample received four

consecutive XeCl pulses at fluences of 1.7, 1.7, 1.7, and 1.8

Jcm�2. To ensure complete amorphization prior to PLM, the

3� 1014 cm�2 and 1� 1015 cm�2 S-implanted samples were

pre-amorphized with a Si implantation of 3� 1015 cm�2 before

S implantation. To separate the effects of ion implantation and

pulsed laser melting from S-related effects, we also implanted a

Si wafer with 1� 1016 cm�2 Si prior to PLM. All samples pre-

sented in this work were irradiated under identical conditions

described above and, in the following, will be referred to solely

by their implantation dose. The resulting S concentration pro-

files were determined by SIMS for the samples implanted with

S at doses of 1� 1016 cm�2 and 3� 1015 cm�2. The post-PLM

concentration profiles for the 1� 1015 cm�2 and 3� 1014 cm�2

dose samples were approximated by scaling down the SIMS S

profiles of the 1� 1016 cm�2 and 3� 1015 cm�2 dose sam-

ples.12 All SIMS spectra are shown in Figure 1.

Depth-resolved CL was carried out with a commercial

Gatan monoCL system on an S360 Cambridge Scanning
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Electron Microscope. The CL system is equipped with a Ge

photodiode to detect near infrared emission, sensitive from

600 to 1700 nm (2.0 eV–0.7 eV). All the CL experiments

were performed at liquid nitrogen temperature (77 K) with a

dwell time per pixel of 67 ns and an acquisition time of 3 ms

per wavelength step (1 nm). In the depth-dependent CL anal-

yses, we used accelerating voltages of both 5 and 10 kV,

keeping the total power density constant at 2� 106 W/cm3.

The total power density was calculated as the product of the

accelerating voltage and the beam current, divided by the

volume probed. The probed area was 120 � 80 lm2 and the

probed depth at 5 kV and 10 kV was estimated using Monte

Carlo simulation of the electron trajectories.21 To illustrate

the depth-sensitivity of the electron-material interactions, we

plot in Figure 1 the distribution of electron scattering events

through which the electron beam loses 60% of its starting

energy in the Monte Carlo simulations. Though the interac-

tion volume is larger and has a diffuse boundary, this plot

illustrates the regions of highest-density energy deposition

and signal generation. The comparable height of the 5 kV

and 10 kV peaks is a result of the experimental normalization

of the total power density, described above.

Investigating CL at both 5 kV and 10 kV allows for the

probing of distinct regions of the Si:S supersaturated layer.

Figure 1 shows the SIMS doping profile that forms following

PLM of Si ion-implanted with S across a range of S

doses (3� 1014 cm�2–1� 1016 cm�2). Both 1� 1016 cm�2 and

3� 1015 cm�2 samples exhibit an approximately 200 nm thick

plateau at the surface, indicating that a relatively uniform con-

centration of S is formed at the surface. Beneath this layer, a

tail region is observed in which the S concentration gradually

drops off as it approaches the melt depth approximately 400 nm

below the surface. Comparison of the distribution of electron

scattering events during CL with the S profile (Figure 1) illus-

trates the ability to probe primarily the high-concentration pla-

teau and the dopant profile tail separately by switching between

5 kV and 10 kV accelerating voltages, respectively.

An important consideration when conducting depth-

resolved CL of Si:S is the influence of the changing S con-

centration on self-absorption, as the sub-band gap absorp-

tance is strongly affected by the degree of S supersaturation

in Si.16 The upper-limit of these effects can be calculated

using the reported concentration-dependent values of ad of

Si:S,22 where a is the absorption coefficient and d is the

effective thickness. We use the Beer-Lambert law to esti-

mate the changes in self-absorption when increasing from S

doses of 3� 1014 cm�2 to 1� 1016 cm�2 and find that the

maximum expected decrease in luminescent intensity due to

the increased S concentration is 34% in this doping regime.

The effects of self-absorption may complicate the quantifica-

tion of the observed trends in luminescence, but we note that

in the following investigations, all trends of modulated lumi-

nescence with changes in the doping dose (which could

include self-absorption effects) significantly exceed 34%.

Therefore, qualitative discussions of the observed trends in

luminescence are possible in our case.

We first isolate luminescence due to PLM-induced point

defects by investigating the CL of Si samples implanted with

1� 1016 cm�2 Si compared with that of an untreated Si

wafer. At 5 kV (Figure 2(a)) and 10 kV (Figure 2(b)), the

pristine Si wafer shows only a peak centered at 1.1 eV corre-

sponding to the band-to-band transition in Si (BB-line).23,24

At both 5 kV and 10 kV, the 1� 1016 cm�2 Si-dose sample

exhibits decreased intensity of the BB-line, and a broad

emission at 0.99 eV simultaneously appears. The decrease in

intensity of the BB-line is attributed to increased nonradia-

tive recombination due to PLM-induced point defects. The

luminescence at 0.99 eV is identical to the band observed by

Pankove and Wu25 following ion implantation of Si with Si

and annealing at 300 �C in H2. This luminescent feature is

attributed to phonon modes of the X-center (also known as

the I3 band)26 that has been proposed to arise from a Si self-

interstitial complex.27 Increasing the accelerating voltage

from 5 kV to 10 kV results in a higher relative intensity of

the BB-line compared to the 0.99 eV band, which can be

attributed to the increased volume of unaffected Si that is

probed using 10 kV accelerating voltage (Figure 1).

Next, we elucidate the effects of S-supersaturation by

comparing Si implanted with Si to Si implanted with S at

an identical dose (1� 1016 cm�2). The CL spectra of the

1� 1016 cm�2 S-supersaturated sample taken at 5 kV (Figure

2(a)), which probes the most highly doped region (Figure 1),

exhibit significantly reduced overall intensity without clearly

resolvable luminescent bands. Increasing the accelerating

voltage to 10 kV, thus probing the tail of the doped profile,

results in the appearance of the BB-line at 1.1 eV and a CL

band centered around 0.85 eV. The luminescence at 0.85 eV

does not appear in either the 5 kV or 10 kV spectra from the

Si-implanted sample and is therefore related to the presence

of S. Here, we note that the S-related luminescence at 0.85 eV

observed in our supersaturated samples is different from the

metastable luminescence centers at 0.82 eV (1.5 lm) and

0.94 eV (1.32 lm) that have been observed in Si containing

equilibrium concentrations of S (concentrations 1-3 orders of

magnitude lower than investigated here).2,4–6

To better understand the effect of S-supersaturation on

the implantation-related band at 0.99 eV and the S-related

band around 0.85 eV, the implanted S dose was decreased

from 1� 1016 cm�2 to as low as 3� 1014 cm�2 and the

FIG. 1. Sulfur profile following ion implantation and pulsed laser melting

determined by SIMS (1� 1016 S cm�2, 3� 1015 cm�2) and extrapolated to

lower S doses (1� 1015 cm�2 and 3� 1014 cm�2). The equilibrium concen-

tration of S (1� 1016–1� 1017 cm�3) is not visible on this scale. The inter-

action volume of depth-resolved CL at 5 kV and 10 kV is overlaid (right

axis), showing the distribution of electron scattering events through which

the electron beam loses 60% of its starting energy in the Monte Carlo

simulations.
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resulting luminescence was measured at 5 kV (Figure 3(a))

and 10 kV (Figure 3(b)). When the S dose is decreased to

3� 1015 cm�2, the band at 0.99 eV appears, which has been

attributed to Si self-interstitials.25–27 Recall this band was

observed in the 1� 1016 cm�2 Si-implanted sample but

absent in the S-implanted sample of the same dose. Further-

more, we observe a strong increase in the intensity of the

0.99 eV band with decreasing S dose. Lower doses of S than

used in this study (1� 1014 S cm�2), followed by PLM, have

been used to fabricate light emitting diodes based on zero-

phonon luminescence from the W-line (1.018 eV),28 which is

also attributed to Si self-interstitials caused by the implanta-

tion process,27 but the dependence of this luminescence on S

concentration was not investigated. It has been previously

reported that the intensity of the 0.99 eV band increases upon

annealing of ion-implanted Si in H2 ambient26 and this

behavior was attributed to the ability of H to passivate com-

peting nonradiative recombination pathways. S impurities

have been shown to provide both radiative and non-radiative

recombination pathways, and thus we attribute the decreas-

ing 0.99 eV luminescence with increasing S concentration to

the associated non-radiative recombination pathways.2,4

The general trends in the luminescence spectra of Si:S

samples at 10 kV (BB-line, 0.99 eV band, and 0.85 eV band)

are similar to those collected at 5 kV. The band centered at

0.85 eV appears in the 3� 1015 cm�2 S-dose sample at 5 kV,

increases in intensity as the dose is decreased further to

1� 1015 cm�2, and remains constant as the S dose is further

decreased to 3� 1014 cm�2, which indicates that this lumines-

cence band is relatively insensitive to S concentration in this re-

gime. This is in stark contrast to the concentration dependence

of the 0.99 eV band, which monotonically decreases with

increasing S concentration.

Using ion implantation and PLM to synthesize Si:S, we

have identified a S-related luminescence at 0.85 eV. There

are two known S states with energy levels that align well

with the 0.85 eV band: a neutral S substitutional atom29 or a

charged S dimer,30 with energies 320 meV and 371 meV

below the conduction band, respectively. However, S-related

luminescence at these energies has not been previously

reported. One possibility is that increased impurity-impurity

interactions at supersaturated concentrations lead to changes

in the luminescent behavior of S impurities, but we would

expect such a phenomenon to show strong concentration de-

pendence. Alternatively, it is possible that the band at

0.85 eV is related to a metastable S complex arising from the

PLM process. The melting and ultrafast resolidification dur-

ing PLM represents a unique processing regime that, as evi-

denced by the supersaturated concentrations of S achieved,

produces metastable impurity distributions. Furthermore,

metastable luminescent S-complexes have been previously

observed, though at different energy levels: S complexes

observed at dilute S-concentrations at 0.82 eV and 0.94 eV

form only after heating with a blow torch and quenching in

ethylene glycol.4,5 Further investigations will be necessary to

understand the source of the S-related luminescence at

0.85 eV.

Finally, the concentration dependence of the lumines-

cence from supersaturated Si:S provides evidence of the

S-induced changes in the band structure as concentrations

FIG. 2. CL spectra obtained at (a) 5 kV

and (b) 10 kV at 77 K of Si implanted

with S (blue, solid) and Si (green, dashed)

with an equivalent dose of 1� 1016 cm�2

followed by PLM. Implantation and PLM

with only Si causes a decrease in the BB-

line and the appearance of a broad emis-

sion at 0.99 eV. Implantation and PLM

with S drastically reduces luminescence

in the highly doped surface layer (5 kV)

and probing deeper (10 kV) reveals a

sulfur-related luminescence at 0.85 eV.

The CL spectrum of an untreated Si wafer

is included for reference.

FIG. 3. The CL analysis, carried out at (a)

5 kV and (b) 10 kV, of Si supersaturated

with S, labeled by implanted dose. The in-

tensity of both the implantation-related lu-

minescence at 0.99 eV and the S-related

luminescence at 0.85 eV increases with

decreasing S-implantation, but at different

rates. The concentration dependence of

both CL bands is discussed further in the

text. The CL spectrum of an untreated Si

wafer is included for reference.
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approach 1 at. %. In the 5 kV spectra (Figure 3(a)), each lumi-

nescent band (BB-line, 0.99 eV, 0.85 eV) shows a unique con-

centration dependence as the dose is increased from

3� 1014 cm�2 to 3� 1015 cm�2, but are suppressed when the

dose is further increased to 1� 1016 cm�2. The lack of lumi-

nescence from the 1� 1016 cm�2 S-implanted sample at 5 kV

suggests that a S concentration around 3.5� 1020 cm�3 (0.7

at. %) quenches luminescence from Si:S (Figure 1). Further-

more, the onset of quenching is visible in the 3� 1015 cm�2

spectra at 5 kV where the intensity of the 0.85 eV and the BB-

line is significantly less than the level they maintained from

3� 1014 cm�2 to 3� 1015 cm�2. Within the resolution of this

characterization, we can say that the onset of quenching

occurs around or just above the peak concentrations of S in

the 3� 1015 cm�2 sample (1� 1020 S cm�3 or 0.2 at. %).

Previous investigations into the optoelectronic properties

of supersaturated Si:S12,13,16 indicate the emergence of an im-

purity band from impurity levels in the gap with increasing

chalcogen concentration,11,31 leading to drastic changes to

the band structure at a concentration threshold similar to

where we observe luminescent quenching (�1� 1020 cm�3).

Combined computational11 and experimental investiga-

tions11,13 of the effect of increasing chalcogen concentration

on the band structure suggests an insulator-metal transition

due to the overlapping of the defect and conduction bands at

S concentrations above 1� 1020 cm�3, and this model

accurately predicts the observed increased sub-band gap ab-

sorptance.7,11 The concentration thresholds at which the

chalcogen-induced defect band is predicted to overlap with

the conduction band11 (1� 1020 cm�3) and at which a S-

induced insulator-metal transition has been observed experi-

mentally13 (1.8� 1020–4.3� 1020 cm�3) agree well with the

onset of quenching that we observe using depth-resolved CL

spectroscopy (�1� 1020 cm�3). Thus, our investigation of the

concentration-dependence of luminescence agrees with the

band-overlap model, as the impurity and conduction band

overlapping could feasibly result in luminescent quenching

near the band edge. Finally, although the sub-band gap

absorptance7 and impurity-mediated conduction13 increases

with increasing S concentration, we have shown that

S-induced changes in the band structure at concentrations

above 1� 1020 cm�3 are not conducive to enhancing

sub-band gap luminescence. These investigations highlight,

however, the orders of magnitude of S-supersaturation (1018–

1019 cm�3) that could potentially allow for simultaneous sub-

band gap absorptance, increased gain and extended response

in photodiodes, and luminescence.

In summary, we have combined depth-resolved CL and

SIMS to elucidate the luminescent behavior of Si:S and the

effect of varying the concentration within the supersaturated

regime. We find that band-to-band luminescence is reduced

by the presence of S and further decreases with increasing S

concentration. Luminescence at 0.99 eV, attributed to Si

self-interstitial clusters, shows a pronounced increase in in-

tensity with decreasing S concentration which we attribute to

a reduction in competing non-radiative recombination path-

ways. We report S-related luminescence around 0.85 eV that

corresponds well with the energy levels of a substitutional S

atom or a charged S dimer in Si, though further studies are

needed to elucidate its exact nature and its appearance only

at supersaturated concentrations of S. Above 1� 1020 S

cm�3, we observe quenching of all luminescence, the onset

of which correlates well with predicted overlapping of the

defect band and conduction band. This work demonstrates

the efficacy of depth-resolved CL for probing the depth de-

pendence of luminescence in alloys fabricated using ion im-

plantation and pulsed laser melting and reveals the

concentration-dependent luminescent properties of S-

supersaturated Si.
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