Multidimensional Mapping of Spin-Exchange Optical Pumping in Clinical-Scale Batch-Mode ¹²⁹Xe Hyperpolarizers

Panayiotis Nikolaou, *† Aaron M. Coffey, ‡,∥ Kaili Ranta, ‡ Laura L. Walkup, §,● Brogan M. Gust, § Michael J. Barlow, †‖ Matthew S. Rosen, †‖ Boyd M. Goodson, †§ and Eduard Y. Chekmenev *∥⊥‡

†Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232, United States
‡Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
§Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
‖Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, NG7 2RD, U.K.
∥Department of Biomedical Engineering and ◇Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37205, United States

Supporting Information

ABSTRACT: We present a systematic, multiparameter study of Rb/¹²⁹Xe spin-exchange optical pumping (SEOP) in the regimes of high xenon pressure and photon flux using a 3D-printed, clinical-scale stopped-flow hyperpolarizer. In situ NMR detection was used to study the dynamics of ¹²⁹Xe polarization as a function of SEOP-cell operating temperature, photon flux, and xenon partial pressure to maximize ¹²⁹Xe polarization (P_Xe). P_Xe values of 95 ± 9%, 73 ± 4%, 60 ± 2%, 41 ± 1%, and 31 ± 1% at 275, 515, 1000, 1500, and 2000 Torr Xe partial pressure were achieved. These P_Xe polarization values were separately validated by ejecting the hyperpolarized ¹²⁹Xe gas and performing low-field MRI at 47.5 mT. It is shown that P_Xe in this high-pressure regime can be increased beyond already record levels with higher photon flux and better SEOP thermal management, as well as optimization of the polarization dynamics, pointing the way to further improvements in hyperpolarized ¹²⁹Xe production efficiency.

INTRODUCTION

The nuclear spins of xenon and other noble gases can be hyperpolarized (HP) to order unity by the process of spin-exchange optical pumping (SEOP).¹² In this two-step process, the electron spins of an alkali metal vapor such as rubidium are first polarized by the absorption of angular momentum from circularly polarized light. Spin-exchange collisions between the alkali metal atoms and ¹²⁹Xe then transfer the angular momentum to the ¹²⁹Xe nuclear spins through Fermi hyperfine interactions, resulting in a high non-Boltzmann distribution of ¹²⁹Xe spin states that increases the detection sensitivity of NMR/MRI.¹−⁶ The two most common approaches to hyperpolarize ¹²⁹Xe via SEOP are termed continuous flow⁷−¹⁴ and stopped flow¹⁵−²⁵ (sometimes also referred to as “batch mode”) with respect to the delivery of Xe gas to and from the polarization cell. N₂ gas is typically added to the gas mixture to quench alkali metal fluorescence.⁷,²⁶,²⁷ The batch-mode/stopped-flow systems are attractive not only because of their relative simplicity but also because they can operate in a xenon-rich regime that obviates the need to separate the polarized Xe from the N₂ (or He) via cryocollection, eliminating a potential source of polarization loss²⁶ as well as facilitating applications using quadrupolar noble gas isotopes.⁵ This production method has also been scaled up for automated production of clinically required quantities.²⁴,²⁵,³⁰

Regardless of the polarization method, HP noble gases have seen wide application varying from fundamental physics experiments³¹−³⁴ to NMR/MRI applications including molecular biosensors,³⁵−³⁷ probing structural aspects of cage molecules and proteins,³⁸−⁴² and studies of porous materials (to name only a few).¹⁵,⁴³−⁴⁵ However, it has been biomedical applications that have largely driven the development of hyperpolarized MR techniques over the past decade; indeed, for gas imaging in particular, HP ¹²⁹Xe can be used to assess lung function and report on functional and microstructural abnormalities.⁶,⁴⁶−⁴⁸ A useful figure of merit for ¹²⁹Xe hyperpolarizers is the total ¹²⁹Xe magnetization, M_Xe, delivered in a clinically useful gas volume, typically ~0.5−1 L at 760 Torr. M_Xe is determined by the product of nuclear spin polarization P_Xe and ¹²⁹Xe concentration [Xe], i.e., M_Xe ∝ P_Xe[Xe]. It is therefore important to maximize M_Xe through both P_Xe and [Xe], which is challenging because P_Xe generally decreases as [Xe] within the SEOP-cell increases¹⁶ (mostly because of

Received: February 11, 2014
Revised: April 14, 2014
Published: April 14, 2014
increased alkali metal spin-destruction rates from non-spin-conserving collisions with Xe.49,50 But fundamentally laser photons are the source of 129Xe hyperpolarization; thus, the decreasing cost of laser diodes narrowly tuned to the alkali metal rubidium D_1 wavelength (794.8 nm)51 has made economically feasible the higher photon fluxes required to improve M_{Xe} when Xe partial pressures are high.

In the present work, a 200 W laser diode array (LDA) was used in a 3D-printed, automated 129Xe polarizer29 to study SEOP dynamics as a function of xenon density, laser power, and SEOP-cell temperature. More specifically, the SEOP polarization conditions at several partial pressures of natural abundance Xe (26.44\% 129Xe isotope enrichment) were studied: (i) 275 Torr Xe and 1725 Torr N\textsubscript{2}, (ii) 515 Torr Xe and 1485 Torr N\textsubscript{2}, (iii) 1000 Torr Xe and 1000 Torr N\textsubscript{2}, (iv) 1500 Torr Xe and 500 Torr N\textsubscript{2}, and (v) 2000 Torr Xe and 200 Torr N\textsubscript{2}, where the gases were loaded with an accuracy of ±25 Torr. The reader is also directed to Supporting Information for detailed descriptions of the experimental setup, which represents the second-generation device of our HXTC consortium (Figure 1).24,30 For each SEOP cell loading, data were obtained for a range of incident laser power levels (approximately 100, 125, 140, or 170 W) and variable SEOP-cell surface temperatures ranging from 42 to 92 °C. For each condition, measurement of 129Xe polarization dynamics allowed the rate constant for P_{Xe} accumulation (γ_{SEOP}) and the maximum attainable steady-state P_{Xe} value [$P_{Xe}(t \rightarrow \infty)$ or 129Xe P_{max}] to be determined from exponential fits. The temperature of the SEOP cell was monitored by a thermistor mounted directly to its surface; temperature control allows the Rb concentration in the gas phase to be varied.32,53

METHODS

Spin-Exchange Optical Pumping (SEOP) Polarizer. The SEOP 3D-printed portable polarizer (Figure 1) consists of a 200 W frequency narrowed volume holographic grating (VHG) laser diode array (LDA), a custom 3D-printed thermoelectric cooling (TEC) optical pumping (OP) oven, a 0.5 L SEOP cell, an electromagnet providing 47 kHz 129Xe and 1H Larmor frequencies, in situ NMR polarimetry endowed by a Magritek Kea2 system, and a Magritek 88 mm bore magnet for ex situ NMR polarimetry and MRI (Magritek, Wellington, New Zealand). The components of the polarizer29 and 47.5 mT MRI54 have been discussed in detail previously27 and thus are only discussed briefly here.

In Situ Low-Field NMR and IR Spectroscopy. In situ NMR polarimetry for these experiments was performed via single-shot 129Xe NMR at 47 kHz (Figure 2a) calibrated against 1H NMR at the same frequency from a sample of thermally polarized water doped with 10 mM CuSO$_4$ inside a 0.5 L SEOP-cell phantom (200 000 scans, Figure 2b). The polarizer allows the Rb electron spin polarization, P_{Rb}, to be estimated by comparing the integrated intensities of transmitted laser spectra measured with and without the applied magnetic field (e.g., Figure 2c).19,24 For each set of conditions, P_{Xe} was sampled every 5–20 min throughout SEOP; the process is repeated by either destroying the 129Xe polarization with a series of “crusher” pulses or allowing it to decay with the laser off. The time-course examples in Figure 2d,e show the excellent reproducibility of P_{Xe}, P_{Rb}, and γ_{SEOP} in these experiments (and those values were not sensitive to the application of the rf pulses). Once steady-state 129Xe polarization was achieved, growth curves can be extracted (e.g., Figure 2f) and fit to an exponential: $P_{Xe}(t) = P_{\text{max}}[1 - \exp(-\gamma_{SEOP}t)]$. In the absence of SEOP, in-cell room-temperature (T_r) measurement of the spin–lattice relaxation time constant (T_1) can be obtained after steady-state P_{Xe} has been achieved by quickly bringing the cell to room temperature to minimize the Rb gas-phase concentration, turning off the laser, and performing in situ NMR polarimetry while the polarization decays; for example, the data in Figure 2g were fit to an exponential decay curve: $P_{Xe}(t) = P_{\text{max}}[1 - \exp(-\Gamma_{Xe}t)]$, where Γ_{Xe} = $1/T_1$ is the 129Xe spin-destruction rate, here exhibiting an ultralong in-cell 129Xe T_1 of 150.5 ± 2.5 min (or 2.5 h). Particularly when optimizing SEOP under the regimes of high [Xe] and laser power, it is also important to be observant for the onset of positive feedback effects that give rise to dramatic increases in [Rb] and laser absorption over time (and ultimately poorer P_{Xe}). Examples showing the manifestation of such “Rb-runaway”8,51,52 effects are provided in Figure 2h, which shows behavior where relatively small increases in cell surface temperature result not only in reduced peak P_{Xe} but also in reduced P_{Xe} over time. Such effects are discussed in greater detail in Results and Discussion.

Ex Situ Low-Field NMR Spectroscopy and MRI Imaging. Ex situ P_{Xe} at 47.5 mT was calculated by comparing the HP 129Xe signal with the 13C signal at 508 kHz 13C Larmor frequency from a reference sample of thermally polarized sodium $1,3$-acetate dissolved in D$_2$O (Figure 4a). The $Xe \ T_1$ relaxation time inside the polypropylene phantom sphere was ~9.2 min (Figure 4c), which is sufficient for short-term storage of HP 129Xe. Moreover, this 129Xe T_1 value was used in parallel experiments to precisely calibrate the rf excitation pulse for the 47.5 mT rf probe shown in Figure 5f; the image signal decay is due to both T_1 decay and excitation rf pulses. A y-slice
projection of fast gradient echo (GRE) imaging with millimeter-scale spatial resolution without slice selection shows the excellent 129Xe signal intensity (Figure 5a). All 20 images (Figure 5b–e, selected images shown) were acquired identically with $TE = 4.0$ ms, $TR \approx 80$ ms (limited by the spectrometer electronics response time), 50% k-space sampling, 64×64 imaging matrix with 72×72 mm2 field of view (FOV), and a spectral width of 20 kHz. Given the relatively long T_1 in the phantom (Figure 4c), the decay of the hyperpolarized signal was primarily due to rf-pulse-induced polarization loss in Figure 5f. The calibrated rf pulse width for the HP 129Xe NMR spectrum from a thermally polarized water reference sample using 200 000 scans, $B_0 = 1.10$ mT. (c) Examples of field-cycled near-IR spectra of laser light transmitted through the SEOP-cell used to estimate P_{SEOP}: room temperature before SEOP (dark gray), during SEOP with B_0 electromagnet on (blue), and during SEOP with B_0 electromagnet turned off (red). (d) Examples of data sets for studying time-resolved SEOP build-up and decay kinetics using a cell containing 1000 Torr (each) of Xe and N_2 gas (143 W laser power, $65^\circ C$). (d) Plot showing reproducibility of P_{SEOP} accumulation following the application of >500 rf “crusher” pulses that nearly zero-out the 129Xe polarization (time periods marked by vertical green bars). P_{SEOP} (red circles) was sampled via field-cycled near-IR spectroscopy (c) before and after application of the crusher pulses. (e) Similar to (d), with 129Xe NMR signals acquired with different interpulse durations and with polarization decay observed after turning the laser off (times demarked with vertical arrows); here 129Xe decay was observed with the SEOP cell temperature maintained at $65^\circ C$. Pulse delay (PD) refers to timing between NMR acquisitions during build-up. (f) Exponential buildup of 129Xe polarization during the SEOP process for a cell filled with 2000 Torr of Xe and 200 Torr of N_2. (g) T_1 decay of HP 129Xe at r.t. obtained with the laser turned off. (h) Time-course examples showing the temperature-dependent effects of nonequilibrium “Rb runaway”52,53 in a 1500 Torr Xe SEOP cell using only 100 W laser power: a normal build-up curve at $72^\circ C$ (black squares), a mildly distorted build-up curve at $82^\circ C$ (red circles), and a significantly distorted build-up curve at $92^\circ C$ (orange triangles). All spectra were recorded with a surface coil using small radiofrequency (rf) excitation pulses with little to no measurable effect on 129Xe magnetization. Except for the fitting curves in (f) and (g), connecting lines are meant only to guide the eye.

Results and Discussion

The dependence of 129Xe polarization and its dynamics as functions of temperature, photon flux, and xenon partial pressure was systematically studied under stopped-flow operation in the regimes of high xenon density and photon flux. Results for five Xe: N_2 SEOP-cell compositions at four different LDA incident powers (approximately 100, 125, 140, and 170 W) with SEOP-cell surface temperatures ranging from 42 to $92^\circ C$ are displayed in Figure 3: Figure 3a provides example plots of P_{max} and γ_{SEOP} as functions of SEOP-cell surface temperature for a cell containing 1000 Torr of Xe and 1000 Torr of N_2 and illuminated by 100 W of laser power from the LDA. Such data were used to create contour plots (“maps”) of 129Xe P_{max} and γ_{SEOP} for each Xe density as functions of laser power and SEOP-cell surface temperature (Figures 3c–I); the highest values achieved for each Xe: N_2 mix studied are summarized in Figure 3b and Table 1 (corresponding numerical values for all data points in Figure 3 are tabulated in the Supporting Information, Table S1).

The data in Figure 3 exhibit several trends. First, increasing cell surface temperature gives rise to an exponential increase in γ_{SEOP} (e.g., Figure 3a), consistent with the expected exponential increase in the Rb gas-phase concentration [Rb]52,53. This dependence of γ_{SEOP} on [Rb] arises from the relation

$$\gamma_{\text{SEOP}} = \gamma_{\text{SE}} + \Gamma_{\text{Xe}} = k_{\text{SE}}[\text{Rb}] + \Gamma_{\text{Xe}}$$

where γ_{SE} and k_{SE} are the Rb/129Xe spin-exchange rate and cross-section, respectively. Thus, the behavior of γ_{SEOP} mostly
reflects the spin-exchange rate, since generally \(k_{SE}[Rb] > \Gamma_{Xe}\) or \(k_{SE}[Rb] \gg \Gamma_{Xe}\) under our conditions. (At the highest temperatures studied, \(k_{SE}[Rb] \gg \Gamma_{Xe}\) at the lowest temperatures \(k_{SE}[Rb]\) can approach or become less than \(\Gamma_{Xe}\), but \(\Gamma_{Xe}\) is expected to have a more mild dependence on surface temperature that trends in the opposite direction.\(^{56}\))

However, \(P_{max}\) exhibits significantly different behavior, for example, peaking at \(\approx 72 \degree C\) for the data in Figure 3a. \(P_{max}\) is given by

\[
P_{max} = \frac{k_{SE}[Rb]}{k_{SE}[Rb] + \Gamma_{Xe}} \langle P_{Rb} \rangle
\]

(2)

where \(\langle P_{Rb} \rangle\) is the spatial average of the local Rb electron spin polarization, \(P_{Rb}(r)\), which itself is determined by

\[
P_{Rb}(r) = \frac{\gamma_{SE}(r)}{\chi_{OP}(r)} \Gamma_{Rb}
\]

(3)

where \(\gamma_{SE}(r)\) is the local Rb optical pumping rate (the integrated product of the laser flux at position \(r\) and the Rb absorption cross section) and \(\Gamma_{Rb}\) is the Rb electronic spin destruction rate (which is essentially proportional to \([Xe]\) under our conditions\(^{57,58}\)). Intuitively from eq 2, \(^{129}Xe\) \(P_{max} \rightarrow \langle P_{Rb} \rangle\) when \(k_{SE}[Rb] \gg \Gamma_{Xe}\), which occurs at higher temperatures. However, having higher Rb densities generally translates into greater optical density, which in turn gives rise to reduced transmittance of the laser light and hence poorer illumination throughout the cell, lower \(\gamma_{OP}\), and ultimately reduced \(\langle P_{Rb} \rangle\), thereby decreasing \(P_{max}\). Thus, \% \(P_{max}\) initially grows with increasing temperature as more Rb is vaporized (e.g., Figure 3a), but once \([Rb]\) becomes too high, overall \(\langle P_{Rb} \rangle\) decreases in accordance with eq 3, resulting in lower \(^{129}Xe\) % \(P_{max}\) at some of the highest temperatures studied.

The highest % \(P_{max}\) values in the contour plots of Figure 3c–l were always achieved at the maximum LDA power of 170 W. However, as the Xe density increased, the optimal temperature decreased from 92 to 62 °C, in qualitative agreement with our previous results obtained at a much smaller scale.\(^{21,51}\) This inverse relationship between Xe density and optimal cell surface temperature, an effect amplified by the use of frequency-narrowed lasers,\(^{22}\) may be explained in part by the fact that as \([Xe]\) rises, Xe-induced Rb spin-destruction becomes increasingly dominant; thus, lowering the cell temperature helps maintain a sufficient “photon-to-Rb” ratio to ensure high global \(P_{max}\) and hence higher % \(P_{max}\) (provided that the cell \(^{129}Xe\) \(T_1\) is sufficiently long\(^{24}\)). The effect may also be exacerbated by greater in-cell temperature gradients caused by (i) greater absorption of laser energy and (ii) the several-fold lower thermal conductivity of Xe compared to that of \(N_2\).\(^{57,58}\) Indeed, the effects of differential heating are also manifested in the \(\gamma_{SE}\) maps: % \(\gamma_{SE}\) (and hence % \(\gamma_{SE}\)) is not a constant of exterior cell temperature but shows some variation. For example, the value at 100 W, 82 °C for the 2000 Torr Xe gas composition is nearly twice that for the 275 Torr Xe gas composition; overall, apparent % \(\gamma_{SE}\) values tend to increase with increasing laser power and \([Xe]\), consistent with higher-than-expected Rb vapor densities (and higher internal temperatures) under these conditions.
For Five Gas Mixtures

\[\gamma \] rate results in decreasing \([Rb] \), thereby increasing power would allow for operation in the regimes with higher if the increased heat load could be mitigated, greater LDA.

Hand, a more mild condition (here termed does not have as pronounced a manifestation in the transmitted exterior cell surface temperatures. The behavior is also unfavorable high \([Rb] \), resulting in undesirable \(e \) takes place when undissipated heat from laser absorption from more poorly polarized \(Rb \) as well as any greater \(Rb \) spin-destruction rates (and hence greater light absorption from more poorly polarized \(Rb \), as well as any possible contributions from reduced thermal conductivity).

Table 1 summarizes the maximum achieved \(^{129}\)Xe polarization (\(P_{\text{max}} \)) for every \(Xe:N_{2} \) mix studied. The results show not only the trend of decreased \(P_{\text{max}} \) with increasing \(Xe \) in-cell pressure but also a corresponding decrease in \(\gamma_{\text{SEOP}} \) measured at these optimal conditions, a finding that predominantly reflects the lower concentration of \(Rb \) vapor that must be attained to achieve maximal \(^{129}\)Xe polarization at higher \(Xe \) densities. Nevertheless, the optimization process allows the total magnetization (\(M'_{\text{Xe}} \)) to continue to grow despite the decrease in \(P_{\text{max}} \) as the \(^{129}\)Xe density increases faster than \(P_{\text{max}} \) decreases. While the \(^{129}\)Xe polarization values (and amounts) are significantly higher here than those in ref 21, the improvement in \(M'_{\text{Xe}} \) from 1000 to 2000 Torr of \(Xe \) is

Figure 4. Ex situ 47.5 mT NMR spectroscopy of \(^{129}\)Xe gas expanded into a phantom. (a) \(^{13}\)C NMR spectroscopy using thermal \(^{13}\)C polarization (% \(P_{\text{iso}} = 4.1 \times 10^{-6}\% \)) of a 17.5 mL reference sample of 5.2 g of sodium \(^{13}\)C-acetate dissolved in D\(_{2}\)O. 256 averages were acquired at 508 kHz resonance frequency with a 90° square excitation rf pulse and a repetition time (TR) of 200 s. Acquisition time was 100 ms. (b) Ex situ \(^{129}\)Xe NMR spectroscopy of \(^{129}\)Xe gas ejected from the polarizer, 0.61 mmol of \(^{129}\)Xe spins (% \(P_{\text{iso}} = 51 \pm 2\% \)) cell loading was 1000 Torr of \(Xe \) and 1000 \(N_{2} \). The spectrum is acquired at 58.6 kHz \(^{129}\)Xe resonance frequency with a single scan (2.7° excitation rf pulse) and TR = 200 ms. The rf pulse is calibrated by monitoring signal decay in the MRI images (see Figure 5) and accounting for \(T_{1} \) relaxation of the \(^{129}\)Xe in the phantom (c).
more marginal. Higher laser power may provide further improvements in % \(P_{\text{max}}\) (and \(M'_{\text{Xe}}\)) at high \([\text{Xe}]\) by allowing operation with higher Rb densities and hence higher \(Y_{\text{SEOP}}\) rates. Other useful metrics describing the overall hyperpolarizer performance summarized in Table 1 include the apparent % \(P_{\text{Xe}(\text{max})}\) due to Xe dilution by \(N_2\) gas (% \(P_{\text{Xe}(\text{max,app})}\)), production cycle time, and apparent production rate of hyperpolarized gas (L/h). % \(P_{\text{Xe}(\text{max,app})}\) is a useful metric\(^{23}\) because it takes into account HP Xe dilution by \(N_2\) gas, which has not been eliminated because the HP Xe cryocollection step was obviated. Production cycle time corresponds to the time necessary to complete the production of \(\sim 0.8\) L of HP Xe/\(N_2\) composition and return the hyperpolarizer (i.e., gas reloading, etc.) to the same step in the operational cycle. Computed in this fashion production cycle time was used for estimating the apparent production rate of the hyperpolarizer in liters of hyperpolarized Xe/\(N_2\) mixture per hour. The production rate in L/h is truly the characteristic of continuous-flow hyperpolarizers, and the apparent production rate values computed in Table 1 should be used with care for direct comparison with continuous-flow hyperpolarizers, because the batch-mode method used here produces a single batch per each production cycle, and there is no produced HP \(^{129}\text{Xe}\) until the cycle is finished.

To validate the in situ NMR results, the polarized contents of the SEOP-cell filled with 1000 Torr of Xe and 1000 Torr of \(N_2\) was transferred into an evacuated (\(< 10^{-3}\) Torr) 0.05 L hollow polypropylene sphere located in a rf probe of a 47.5 mT imaging system\(^{44,59,60}\) (see Supporting Information for details). In-cell \(P_{\text{Xe}}\) was measured in situ as 54 ± 5% before the transfer, and a \(P_{\text{Xe}}\) value of 51 ± 2% was detected in the 47.5 mT preclinical MRI scanner (558.6 kHz \(^{129}\text{Xe}\) Larmor frequency), corresponding to polarization enhancement \(\epsilon > 11\ 000\ 000\) after the gas transfer (Figure 4b). The HP \(^{129}\text{Xe}\) transfer from the polarizer was performed without a cryocollection process.\(^{24,25,30}\) Figure 5 also demonstrates the feasibility of millimeter-scale MRI of hyperpolarized \(^{129}\text{Xe}\) at very low magnetic fields using frequency optimized rf coils.\(^{54}\)

\section*{CONCLUSIONS}

Simultaneous optimization of various SEOP conditions (Xe density, cell surface temperature, and photon flux) combined with previously reported SEOP hardware improvements\(^{24,29,30}\) yielded greatly improved % \(P_{\text{Xe}}\). Indeed, very high values of % \(P_{\text{Xe}}\) and \(M'_{\text{Xe}}\) were demonstrated here for dense (up to 2000 Torr of Xe in 2200 Torr total) Xe gas mixtures, in part enabled by optimized laser illumination throughout the cell, ultralong in-cell \(^{129}\text{Xe}\) relaxation times, and efficient thermal management that also allows for diligent avoidance of “Rb runaway” regimes. The SEOP condition maps provide guidance for the production of highly polarized \(^{129}\text{Xe}\) gas at different xenon densities for a wide variety of applications ranging from materials science to biomedical imaging. Furthermore, our results indicate that the \(P_{\text{Xe}}\) values at higher Xe densities are still laser-power-limited. Thus, while the benefit in total Xe magnetization was less substantial at the highest Xe densities studied, the advantage will likely be improved when more powerful LDA instrumentation is available provided that the greater thermal loads can be mitigated. Finally, the highly reproducible maps of \(Y_{\text{SEOP}}\) build-up rates, combined with automated fine control of cell conditions and real-time spectroscopic feedback, should also allow optimization of multixponential Xe polarization dynamics, pointing the way to multifold improvements in HP \(^{129}\text{Xe}\) production efficiency.
ADDICTION CONTENT

Supporting Information
Detailed information regarding the SEOP setup used, the preparation processes, and experimental parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors
*P.N.: (phone) 618-203-6912; (fax) 615-322-0734; (e-mail) peter.nikolaou@vanderbilt.edu.
*E.Y.C.: (address) Department of Radiology, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232; (phone) 615-322-1329; (fax) 615-322-0734; (e-mail) eduard.chekmenev@vanderbilt.edu.

Present Address
L.L.W.: Cincinnati Children’s Hospital Medical Center, Cincinnati, OH.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Work at Vanderbilt and SIUC is supported by a DoD CDMRP Era of Hope Award W81XWH-12-1-0159/BC112431. Portions of this work were supported by SIU Office of Sponsored Projects Administration (OSPA). B.M.G. is supported in part by the NIH (Grant 2R15EB007074-02). E.Y.C. is supported in part by the NIH (Grant 3R00CA134749-03). M.J.B. acknowledges the support of the School of Medicine, University of Nottingham, U.K. M.S.R. acknowledges the support of Department of Defense, Defense Medical Research, and Development Program, Applied Research and Advanced Technology Development Award, Grant W81XWH-11-2-0076 (DM09094).

REFERENCES

