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Abstract

Background

Foams are high porosity and low density materials. In nature, they are a common architec-

ture. Some of their relevant technological applications include heat and sound insulation,

lightweight materials, and tissue engineering scaffolds. Foams derived from natural poly-

mers are particularly attractive for tissue culture due to their biodegradability and bio-com-

patibility. Here, the foaming potential of an extensive list of materials was assayed,

including slabs elaborated from whole flour, the starch component only, or the protein frac-

tion only of maize seeds.

Methodology/Principal Findings

We used supercritical CO2 to produce foams from thermoplasticized maize derived materials.

Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We re-

port expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distri-

butions for these materials. High porosity foams were obtained from zein thermoplasticized

with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams

had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and

more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a

larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell
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culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate

cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams.

Conclusions/Significance

We conducted screening and proof-of-concept experiments on the fabrication of foams

from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at

break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein

foams exhibit attractive properties (average pore size, pore size distribution, and porosity)

for cell culture applications; we were able to establish and sustain mammalian cell cultures

on zein foams for extended time periods.

Introduction
Foams, which can be defined as materials with high porosities at the micro-scale (and therefore
low densities), represent a ubiquitous architecture in nature. Remarkable examples are tissues
such as the cancellous or trabecular bones that contain marrow [1], the cavernous tissue of the
mammalian penis [2], the pomelo peel of some citrus fruits [3], and the bodies of sea sponges
[4]. Many applications are possible for synthetic foams, and they have been recently suggested
as scaffolds for cell culture and tissue engineering [5–9]. Other applications include acoustic
[10] and heat insulation [11–13], weight reduction [13], fabrication of flotation devices
[14], etc.

Polyurethane foams have been used commercially for decades. However, the search for bio-
degradable substitutes for these petroleum-based foams is a current technological trend. Specif-
ically, in the context of tissue engineering (and cell culture applications), foams derived from
natural polymers are particularly attractive due to their distinctive characteristics such as bio-
compatibility and biodegradability. Methods of fabrication and studies of characterization of
foams derived from several biodegradable materials have been recently reported. These materi-
als include poly-lactic acid (PLA) [15,16,17], cassava starch reinforced with microbial cellulose
[18], poly(ε-caprolactone) (PCL) [15,19], poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)
[20], poly(glycerol-sebacate) (PGS), poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blend,
and poly(lactic-co-glycolic acid) (PLGA) [21], chitosan–polyester [22], collagen/hyaluronic
acid/gelatin [6], gelatin/chitosan [23], gelatin [24], and zein, the maize protein [8,9,24–26], and
poly (ethylene glycol)-co-(l-lactic acid) [27], among others.

Several different techniques have been used to produce foams, ranging from the classical
method of salt leaching [21,23,28] to freeze-drying [23,29] and the use of microwave heating
[13]. A common technique currently used to produce foams is gas foaming, consisting of the
solubilization of a gaseous blowing agent into a molten thermoplastic polymer, under pressure,
to form a molten polymer/gas solution. The subsequent release of pressure, usually during a
thermo extrusion process, triggers gas evolution from the supersaturated solution and bubble
nucleation and growth, finally creating the foam, which is then consolidated by solidification.
[14]. In this work, we use a variation of this process, where supercritical CO2 is used as the
foaming agent in a controlled batch autoclave [15,16,17,24,30].

Previous studies [25,31–33] have demonstrated that all relevant quality parameters of a
foam (density, porosity, mean pore size, pore size distribution) are determined by the foaming
process conditions, namely the blowing agent, (CO2, N2, etc.), the temperature and pressure
during gas solubilization, the pressure release profile during foaming, the cooling program
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after foaming, etc. Each material is characterized by a specific foaming processing window and
specific optimum conditions that produce foams suitable for specific applications. The foaming
potential (foamability) of a material is an intrinsic property of the material and is determined
primarily by the interface, rheological, and thermal properties and the mass transport and
sorption of the available blowing agents [17,34]. In natural polymers (i.e., polysaccharides and
proteins), thermoplasticization has to be used in order to modify the structure of the material
(typically, the tertiary and quaternary structures) to render it suitable for further processing
and to confer plastic-like properties. In this case, thermoplasticization conditions and the even-
tual use of plasticizers also play a major role in determining the foamability of the material
[35,36].

Nature-derived materials ultimately introduce an intrinsic variability (due to differences in
sources, culture, harvest, extraction, etc.), which implies a necessity for adaptation of process-
ing conditions to the specific materials [35]. Here, we have chosen the same set of conservative
foaming conditions for maize-derived plastics obtained from different thermo-extrusion pro-
cedures; the supercritical foaming conditions selected have been used previously for a wide va-
riety of bioplastics [24,33,37] and can be considered useful for assessing foaming potential.

Maize is an important and abundant natural resource in Central and North America. Thus
far, only a few groups have reported the use of cereal-based materials to produce foams. Peng
et al. [38] and Castillejo et al. [39] used wheat and corn starch, respectively. The elaboration
and characterization of foams from zein, the main protein of maize, have also been reported
[25,26,28,34,40]. In this investigation, our particular interest was (a) to identify thermoplastici-
zation conditions suitable for the production of maize-derived foams; (b) to identify foaming
predictive properties of maize-derived thermoplastics; and (c) to explore a set of strategies to
improve the zein-starch compatibility previously identified as a problem [41,42] in the produc-
tion of thermoplastic materials directly from whole maize flour. In addition, (d) we used simple
techniques to characterize the produced foams in terms of macroscopic parameters (thickness
expansion, surface area expansion, and volume expansion) and microstructure (overall porosi-
ty, pore size distribution, and pore morphology), and (e) conducted proof-of-principle experi-
ments to determine the feasibility of use of zein materials for adhered cell culture applications.

To our knowledge, this is the first report that explores the whole path from thermoplastici-
zation and foaming to cell culture. Here, we describe experiments on thermoplasticization,
foaming, and cell culture using different materials derived from maize, highlighting the critical
stages of this path in the selection of appropriate conditions (material, plasticizer, thermoplasti-
cization, and foaming) for creation of a material that supports successful cell growth.

Materials and Methods

Rawmaterials
Whole blue maize flour, chemically modified maize flour, native and chemically modified
maize starch, modified maize flour, and zein (the main protein in maize) were used in this
study. Native maize starch was purchased from ALMEX (Guadalajara, México). Maize zein
(code Z3625) and all plasticizers were purchased from Sigma-Aldrich. The plasticizers used
were mixtures of urea-formamide at 2:1 ratio and sorbitol-glycerol at 1.4:1 (these have been re-
ported to be adequate plasticizers for starch [35,43]) and polyethylene glycol 400 (PEG400) for
zein [44]. All plasticizers were purchased from Sigma-Aldrich. Moisture content was deter-
mined for all starches and zein by TGA (TGA Q5000, TA Instruments, USA) in order to pre-
pare the formulation blends on a dry basis. Blue maize (BM) was kindly provided by Eduardo
Lovera (at Federación de Agricultores del Edomex). Flour (150 mesh, decorticated blue maize)
was obtained according to Rojas de Gante et al. [45].
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Modified starch and flour were prepared as described by Murúa-Pagola et al. [46]. Briefly, a
dispersion of 585 g of hydrolyzed starch (prepared by acid hydrolysis in 3.4% HCl at 50°C and
shaking at 500 rpm for 6 h) or BM or WS flour in 1.3 L of distilled water was prepared by shak-
ing at 500 rpm. The pH was maintained at 8.5–9.0 using 1 M NaOH. About 2 g of maleic anhy-
dride/50 g of starch (dry basis) were slowly added over 2 h. Agitation was increased as needed,
reaching 1000 rpm when the slurry was very viscous. The reaction was run for 6 h and was
stopped by lowering the pH to 4.8–5.2 using 1 M HCl. The modified starch was centrifuged for
20 min at 4500 rpm. The precipitate was washed-centrifuged three times and dried for 24 h in
a convection oven at 45°C. The dried modified starch was milled and sieved to obtain a 150
mesh powder. The degree of substitution of the modified starch was 0.039±0.002 as determined
by the volumetric method reported elsewhere [46]. Native starch, modified starch, zein, and
the plasticizers were premixed with a spatula to provide a crude blend. Water content was de-
termined for all starches and zein through TGA (TGA Q5000, TA Instruments, USA) in order
to prepare the formulation blend on dry basis. The moisture content of starch, zein, and flour
compositions was adjusted to 10% (dry basis) by addition of distilled water. Sorbitol/glycerol
(1.4:1 wt/wt) and urea/formamide (2:1 wt/wt) and PEG 400 at 25% were used as plasticizers.
Details of the compositions are reported in Fig 1 and Table 1.

Thermoextrusion and compression molding
Thermoplasticization of blends was performed in a twin conical screw mini extruder (Haake
MiniLab, Thermo Scientific, USA; Fig 2A). Preliminary experiments were conducted to find
suitable processing conditions for each composition, starting from values reported for similar
materials [35,36,44,47]. Details on the mixing temperature and speed of rotation of screws are
reported in Table 1. Extrusion was conducted either in open or closed mode. The open mode
consisted of slow and continuous feeding of about 30 g of material into the miniextruder. This
was done manually, assisted by an iron rod to press the material into the barrel, and the extrud-
ed material was continuously collected at the die outlet. This process lasted for about 24 to 28
min, from the very first amount fed into the mini-compounder to the collection of the last ex-
truded material. The closed mode, which was used to process TPS-TPZ blends, consisted of
manually feeding 7 g of the crude blend (for zein and starch slabs) or a mixture of pellets (for
TPS-TPZ blends) into the mini-compounder over 5±0.25 minutes, mixing (with recirculation)
the sample for three additional minutes, and then opening the mini compounder to collect the
sample. Each process was conducted at least three times in order to ensure reproducibility. The
thermoplasticized materials were pressed at 20 MPa for 4 min in a P300P press (Collin, Ger-
many) at the same temperature used for extrusion and were then cooled to 35°C under pres-
sure to obtained thermoplastic slabs (Fig 2B).

Tensile testing of materials
The tensile strength and elongation at break of selected slabs obtained from maize based mate-
rials were evaluated using standard microtensile test specimens according to the ASTM D1708.
Mechanical testing was performed on slabs (Fig 2B) conditioned at room temperature (about
25°C) and 50% RH prior to testing with a universal testing machine (Tensile T2020, Alpha
Technologies, USA).

Foaming
Foaming experiments were carried out on selected slabs according to a previously reported
method [37] with slight modifications. Samples were placed into an autoclave (HiP, USA)
equipped with a system of valves for CO2 injection and pressure and heating control. For most
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Fig 1. Schematic representation of the experimental treatments andmaterials derived from them: TPZ: thermoplasticized zein; TPS:
thermoplasticized starch; TPBMx: thermoplasticized blue maize (x is a suffix that indicates extrusion temperature); TPmBM: thermoplasticized chemically
modified blue maize (as described in materials and methods); Mix[TPSy+TPZ]

a: thermoplasticized blends of TPS and TPZ (80:20 wt/wt). The y subindex
indicates the plasticizer used to produce TPS. aBlends were produced using the close mode compounding described in materials and methods. Plasticizers
used where sg (sorbitol-glycerol); uf (urea-formamide); and PEG400 (poly-ethylene glycol with m.w. = 400 Da).

doi:10.1371/journal.pone.0122489.g001
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samples, the autoclave was closed, heated, and pressurized with CO2 until a set point of 15
MPa and 70°C was reached. Samples were kept at this condition for 4 h to solubilize CO2 into
the materials until equilibrium (Fig 2C). Afterwards, the autoclave was cooled to 45°C. At
this temperature, the pressure was released at a rate of 70 MPa/s, allowing sample foaming
(Fig 2D). Foams were then immediately removed from the vessel. These foaming conditions
gave the results reported in Table 2. To obtain wpTPZ foams, which were zein foams with a
wider pore size (average pore size�70 μm), a different set of conditions was used: thermo-plas-
ticized zein slabs were heated and pressurized with CO2 until a set point of 10 MPa and 75°C
was reached, samples were kept at this condition for 4 h, the autoclave was cooled to 45°C, and
the pressure was released at a rate of 42 MPa/s.

Characterization of foams
The thickness and surface area of the slab samples were measured before and after CO2 treat-
ment. Thickness was measured using a high precision digital caliper (Mitutoyo, Japan). Surface
area was determined by image analysis using Image J software (NIH, USA). These data were
used to calculate the volume and the expansion fold in volume. Volume was calculated as the
product of the surface area times the slab thickness. Samples were weighed on an analytical bal-
ance (Mettler AE240, Mettler Toledo, Highstown, USA). Foam porosity was determined ac-
cording to Eq. 1.

porosity ¼ ½1�ðρa=ρbÞ� ð1Þ

where ρa and ρb are the apparent densities of the materials after and before foaming, respective-
ly, calculated as the mass to volume ratio of the samples.

The microstructure of the foams was analyzed by cross-sectioning with a razor blade and
viewing by scanning electronic microscopy (SEM). Samples were vacuum metallized with
gold-palladium by a Baltec MED 020 Coating System and analyzed by SEM using a FEI Quanta
200 FEG microscope (Eindhoven, The Netherlands).

Table 1. Processing conditions used to elaborate maize derived bioplastics later exposed to CO2 supercritical foaming conditions.

Biopolymer Plasticizer(wt % plasticizer) Speed of rotation (rpm) Temperature(°C)

TPZ PEG400 (25) 50 75

TPSuf Uf (30) 50 135

TPSsg sg (30) 50 135

Mix[TPSuf+TPZ]a uf (30) for TPS & PEG400 (25) for TPZ 50 135

Mix[TPSsg+TPZ]a sg (30) for TPS & PEG400 (25) for TPZ 50 135

TPBM140 sg (30) 60 140

TPBM130 sg (30) 60 130

TPBM120 sg (30) 60 120

TPBM110 sg (30) 60 110

TPBM100 sg (30) 60 100

TPmBM sg (30) 60 120

Plasticizers: Peg400: polyethylene-glycol 400; uf: urea/formamide; sg: sorbitol and glycerol mixture (1.4:1 wt/wt).

Bioplastics: TPZ: thermoplasticized zein; TPS: thermoplasticized starch; TPBMx: thermoplasticized blue maize (x is a suffix that indicate extrusion

temperature); TPmBM: thermoplasticized chemically modified blue maize (as described in materials and methods); Mix[TPSy+TPZ]
a: thermoplasticized

Blends of TPS and TPZ (80:20 wt/wt). The y subindex indicates the plasticizer used to produce TPS. aBlends were produced using the close mode

compounding described in materials and methods.

doi:10.1371/journal.pone.0122489.t001
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Fig 2. Maize-derived thermoplastic were produced by (A) thermo-extrusion in a twin conical screwmini extruder (Haake MiniLab, Thermo
Scientific, USA) followed by thermopressing at 20 MPa for 4 min in a P300P press (Collin, Germany). (B) Slabs of these plastics were subjected to
supercritical CO2 foaming, which occurred in two stages: (C) diffusion and solubilization of CO2 molecules within a solid material matrix at supercritical
conditions, and (D) a sudden drop in pressure allows the formation of CO2 bubbles within the material.

doi:10.1371/journal.pone.0122489.g002

Table 2. Relevant indicators of the quality of foams obtained by supercritical CO2 expansion in slabs
derived from thermoplasticized starch plasticized with urea/formamide (TPSuf foams) and thermo-
plasticized zein (TPZ foams).

Indicator TPZ foams TPSuf foams

2D Porosity (as fraction of empty space) 0.625 0.442

Average pore size (μm2) 1 55.43 208.84

Standard deviation (μm2) 39.42 214.90

Median of pore size (μm2) 46.67 114.98

50% of pores below (μm2) 47 150

75% of pores below (μm2) 80 305

95% of pores below (μm2) 150 606

Percentage of pores above 200 μm2 (%) 0% 40%

Thickness expansion/
p
Surface expansion 2 1.81 1.50

1Pore size is expressed as the projected area of the pore as determined by image analysis of electronic

microscope micrographs.
2Higher ratios of Thickness/Surface expansion indicate more spherical pores.

doi:10.1371/journal.pone.0122489.t002
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The pore size distribution of selected foams (TPZ foams and TPSuf foams) was determined
from SEMmicrographs by image analysis using Image J. Briefly, one of the software tools was
used to draw irregular close polygons that followed the contour of the foam pores observed in
SEMmicrographs (magnification 1500X). The area inside each polygon, defined by the con-
tour of each pore, was measured and expressed in μm2. The pore size distribution was calculat-
ed considering at least 100 pores per micrograph. A 2D porosity (areal fraction of the pores)
was calculated as the empty (or void space) as calculated by image analysis of micrographs cor-
responding to the transverse cuts of foams.

Cell culture experiments
We conducted mammalian cell culture experiments using different mammalian cell lines in
wells containing pieces of zein foam. Cells, including mouse embryonic fibroblasts [NIH 3T3
(ATCC CRL-1658] and two prostate cancer cell lines [22RV1 (ATCC CRL-2505) and DU145
(ATCC HTB-81)], were seeded at 1X105 cells/mL (for cancer cells) or 2X105 cells/mL (for fi-
broblasts) in 24-well ultra-low attachment culture plates containing thin slices of zein foams.
Suspension cultures were maintained in 1 mL of DMEM-F12 (Invitrogen, USA) culture media,
supplemented with 5% FBS, and incubated at 37°C in a 5% CO2 atmosphere for 14 days.
Foams were observed after different culture durations using an Axiovert 200 inverted micro-
scope (Carl Zeiss, Germany) and a Stereo V8 stereoscopic microscope (Carl Zeiss, Germany) at
5, 10, and 20X. In addition, an AXIO CSM 700 confocal microscope (Carl Zeiss, Germany) was
used for monitoring prostate cancer cell growth within the pores of the zein foams. Samples
were observed at 20X with the confocal microscope. In general, for each sample, more than 100
frames were analyzed in the Z-direction, at a resolution no lower than 1 mm.

In an additional set of experiments, NIH 3T3 embryonic fibroblasts were also cultured in
static and continuous mode while attached onto the surface of zein foams. For this purpose,
the reaction vessel was a rectangular mini-device with an effective volume of 0.1 mL (2mm
height, 5mm width, and 15mm length). This reactor was fabricated from poly-lactic acid using
a Cube 2 3D printer (Cubify, 3D Systems Inc., Atlanta, GA; USA). A thin layer of TPZ foam
(approximately 1 mm thickness) was placed at the bottom of the device chamber. The chamber
was covered with a PDMS lid (less than 1 mm thickness) to facilitate oxygen mass transfer.
Cells were seeded at a concentration of 1X106 cells/mL in DMEM-F12 (Invitrogen, USA) cul-
ture medium supplemented with 5% FBS, and maintained in static incubation at 37°C in a 5%
CO2 atmosphere; the culture medium was changed every 24 hours. After 120 hours of static
culture, samples of the fibroblast cultures on zein foams were inspected using a confocal micro-
scope LSM10 (Carl Zeiss, Germany). For this purpose, samples were fixed in formaldehyde
(3.7% formaldehyde in PBS) and 40 μm sections were obtained using a microtome. DAPI
(Sigma-Aldrich, Cat. d8417) and MitoTracker Red CM-H2Xros (Life Technologies, M-7513)
co-staining was used to identify cell nuclei and mitochondria of active cells, respectively.

In additional experiments, after 96 hours of static incubation, DMEM-F12 (Invitrogen,
USA) culture media supplemented with 10% FBS and 1% of penicillin-streptomycin was con-
tinuously fed using a Fusion 200 classic syringe pump (Chemyx Inc., USA) at a flow rate of
3 μL/min through an inlet port located at one extreme of the chamber. Glucose concentration
was determined at the inlet and outlet of the continuous flow chamber using an Accu-Chek Ac-
tive System (from Roche, Cat. No. 5923786001, USA). The rate of glucose consumption was
calculated by dividing the glucose consumption (the difference between the inlet and outlet
glucose concentration at steady state) and the effective residence time within the device (calcu-
lated as the effective volume over the flow rate = 100 μL/3 μL min-1).

Supercritical CO2 Foaming of Maize Bioplastics
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Results and Discussion
We produced a variety of maize-derived plastics, according to the scheme and extrusion proto-
cols described in Materials and Methods (Fig 1; Table 1; Fig 2A and 2B) and exposed them to
supercritical CO2 foaming (also described in Materials and Methods; Fig 2C and 2D).

We found that the use of either the starch or the main protein fraction of the grain (zein) re-
sults in highly porous foams when an adequate plasticizer is chosen. The use of whole maize
flour, which is a mixture of corn starch and zein, produces thermoplastic materials that are
poorly suitable for supercritical CO2 foaming. In the following sections, we discuss these results
in detail. In addition, we explore the use of zein foams in mammalian cell culture applications.

Fabrication of maize-derived thermoplastic materials
Maize-derived thermoplastics were produced under different experimental conditions: vari-
ables included (a) the temperature and speed of extrusion, (b) the use of the whole flour, only
the starch fraction, only the flour protein fraction, or a mixture of starch and protein, and (c)
the use of three plasticizers (sorbitol/glycerol, urea/formamide, and PEG 400 (poly-ethylene
glycol with an average molecular weight of 400 Da).

Our experimental design was not exhaustive for all of the possible combinations of materi-
als, plasticizers, and process conditions (see Fig 1; Table 1). For example, we thermo-extruded
starch using sorbitol/glycerol and urea/formamide, which are plasticizer systems recom-
mended and used previously for obtaining starch thermoplastics due to their small molecular
size and their polar nature. Zein is a more hydrophobic molecule, so we used PEG400. Previous
work from our group and others have reported that PEG400 was a suitable plasticizer for zein
in casting and thermo-extrusion applications [36,42,44,48]. For mixtures of starch and zein, we
used sorbitol/glycerol or urea/formamide to thermoplasticize starch alone and PEG400 to ther-
moplasticize zein alone. The separately thermoplasticized zein and starch were then co-extrud-
ed to create the mixture.

The temperature, speed of screw rotation, and residence time within the extruder are argu-
ably the most relevant parameters of the process conditions that determine the mechanical
properties of thermo-extruded materials [49–51]. In our experiments using zein and starch, we
established temperature and speed of screw rotation conditions for each material based on ex-
periments reported elsewhere [42]. We selected conditions (Fig 1; Table 1) that yielded plastic
materials with adequate mechanical characteristics, as clarified below. The extrusion experi-
ments using whole maize and chemically modified maize flour were conducted at a speed of
screw rotation value of 60 rpm based on previous knowledge and we explored a range of tem-
peratures between 100 and 140°C [42,52]. In experiments reported elsewhere, better mechani-
cal properties were found for plastics made from blue maize flours thermo-extruded using
sorbitol-glycerol at 60 rpm than at lower or higher rpm values [42,52]. The toughness (area
under the curve in a strain vs. stress curve obtained from a mechanical test) was greater for
plastics obtained at 120°C than for materials processed at higher or lower temperatures; howev-
er, the maximum elongation of these plastics (strain at break) was observed at a processing
temperature of 130°C.

Macroscopic evaluation of foamability of maize derived materials
Fig 3A summarizes the results of expansion in the z-direction (thickness increase), in the x-y
plane (upper surface expansion), and as a result, in the volume of samples of all the different
materials subjected to supercritical CO2 foaming in this study. Expansions are expressed as ra-
tios of the values of thickness, upper surface, and volume before and after exposure to foaming
conditions. Note that the volumes of the TPZ (thermoplasticized zein slab) and TPSuf (starch
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slab thermoplasticized with urea/formamide) materials expanded by more than 8 and 6 fold,
respectively (Fig 3B–3D). TPBM130 (blue maize thermo-plasticized at 130°C) expanded only
modestly (60 to 70%). Interestingly, this material increased in thicknesses but not in x-y surface
area (Fig 3B and 3C). TPSsg (starch slabs thermoplasticized with sorbitol-glycerol) materials
underwent an increase in volume in the range of 13 to 15%. The rest of the materials showed
practically no expansion in the x-y plane (see also Fig 3) and overall volume increments of less
than 11%. For TPZ and TPSuf foams, the calculated porosity values (expressed as void fraction)
were 0.85+/-0.10 and 0.88+/-0.09, respectively. These values fall within the upper range of po-
rosities reported in literature (50 to 90%) for similar materials [25,33].

Correlation between strain at break and foaming potential
The supercritical CO2 foaming of plastics requires that CO2 diffuses into the material (Fig 2C)
at supercritical conditions. The amount absorbed depends on the solubilization conditions
(temperature and pressure) and solubilization time. At a subsequent stage, a sudden release of
pressure triggers CO2 expansion, generating bubbles within the material (Fig 2D).

Fig 3. (A) Samples of maize-derived thermoplastics exposed to supercritical CO2 foaming exhibited different fold increases in thickness (blue),
surface area (yellow), and volume (red). Insets show photographic images of samples elaborated from TPS, TPZ, and TBM140 (B) before and (C,D) after
exposure supercritical CO2 foaming.

doi:10.1371/journal.pone.0122489.g003
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The likelihood of forming and stabilizing foams therefore depends on numerous factors in-
cluding the interfacial, rheological, and thermal mass transport properties as well as the melt
strength of the expanding matter [17,34]. In particular, the melt strength refers to the extent of
deformability and the stress exerted by the polymer among the growing bubbles when sub-
jected to a significant extensional deformation. We indirectly evaluated this by conducting
strain and stress testing experiments of the materials studied here using a universal testing ma-
chine. In general, strain at break and foamability (i.e., volume expansion as a result of foaming)
appeared to correlate reasonably well among the range of samples tested. In our stress vs. strain
assays, the strain resistance was clearly higher for TPZ and TPSuf slabs than for materials with
lower foaming capacity (Fig 4A and 4B). High elongation potential appears to be a necessary
requirement for foaming [35,36].

In our experiments, we produced thermoplasticized slabs from starch using two different
plasticizers: sorbitol/glycerol, and urea/formamide. Fig 4B shows a comparison of strain at
break of starch materials plasticized with either sorbitol/glycerol or urea/formamide and indi-
cates that the use of urea/formamide as plasticizer enhances strain at break of starch slabs. In
terms of strain at break, TPSsg ranked third among all materials tested, but had a strain at
break value significantly lower than TPSuf and TPZ. Consistently, when exposed to supercriti-
cal foaming conditions, slabs of thermoplasticized starch plasticized with sorbitol/glycerol
(TPSsg) underwent little expansion—less than 14% (Fig 3A). The resulting microstructure was
practically featureless (Fig 4C), with no evidence of CO2 bubbles. In contrast, slabs of starch
thermoplasticized with urea/formamide (TPSuf) were successfully foamed under equivalent
conditions (Fig 4D), and underwent a more than 6-fold increase in volume.

Incompatibility in zein and starch mixtures interferes with foaming
The addition of zein to the starch system dramatically decreased the strain at break (Fig 4B).
Indeed, we were unable to obtain foams from starch/zein mixes (Fig 4E and 4F and 5). Fig 5
shows SEMmicrographs of thermoplasticized materials (after foaming) derived from whole
flour materials, chemically modified flours, or starch/zein samples. Among them, the common
denominators are the coexistence of zein and starch, and the fact that they did not produce
foams.

In our experiments with whole flour materials, we explored the effect of different tempera-
tures on foamability. During thermo-extrusion, two competing phenomena concur: plasticiza-
tion and decomposition [52]. In general, higher temperatures improve plasticization but may
cause decomposition, crosslinking, or other side reactions. Similarly, the elongation capacity of
a plastic material may be favored by higher temperatures, but jeopardized by decomposition.
Therefore, a temperature should exist where the elongation capacity exhibits a maximum. For
the thermoplasticization conditions tested to produce BM flour slabs, only processing at 130°C
and 60 rpm generated materials capable of a 70% expansion. Extrusion of TPBM compositions
at higher or lower temperatures resulted in slabs with lower expansion potential. The material
shown in Fig 5A and 5B, produced by thermoplasticization of whole maize flour at 120°C, ex-
hibits a lamellar structure in which some trapped bubbles can be observed. However, the elon-
gation (strain at break) of whole flour slabs is only modest (Fig 4A); microstructure
examination suggests that the material was unable to extend (elongate) properly during foam-
ing or that the foam collapsed after foaming.

Flours are complex mixtures, where the interactions between the main components (starch
and proteins) do not necessarily result in a sufficiently homogeneous and deformable network
capable of efficient retention of CO2. Furthermore, the interface weakens the system and
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Fig 4. Correlation between elongation and foaming. (A) Strain vs. stress curves for slabs elaborated from different cereal based materials. (B) Effect of
different plasticizers on the strain at break of thermoplasticized slabs made from starch (TPS) and TPS/TPZ blends (Mix[TPZ&TPSy]). Plasticizers used were
sorbitol/glycerol (red bars), and urea/formamide (blue bars). Mix[TPZ&TPSy] refers to a process in which starch is thermoplasticized with sg (sorbitol-
glycerol) or uf (urea-formamide) and then blended with 20% thermoplasticized zein using PEG 400 as plasticizer. Error bars represent the standard
deviations of at least 5 replicates. SEMmicrographs of maize starch thermoplastics after CO2 supercritical foaming: (C) TPSsg, and (D) TPSuf slabs at
3000X. SEMmicrographs of thermoplasticized blends of zein and starch thermoplastics after CO2 supercritical foaming: (E) Mix[TPZ&TPSsg], and (F) Mix
[TPZ&TPSuf] slabs at (3000X).

doi:10.1371/journal.pone.0122489.g004
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Fig 5. Scanning electronic microscope (SEM) micrographs of transverse cuts of slabsmade fromwhole flour or starch/zein blends after exposure
to CO2 supercritical foaming: (A) TPBM120 slab (3000Xmagnification); (B) TPBM120 slab (6000Xmagnification); (C) Mix[TPZ&TPSsg] slab (1500X
magnification); (D) Mix[TPZ&TPSsg] slab (3000Xmagnification), (E) Mix[TPZ&TPSuf] slab (3000Xmagnification), and (F) TPmBM slab (1500X
magnification).

doi:10.1371/journal.pone.0122489.g005
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sometimes represents a path for loss of the blowing agent [42]. Some of the images in Fig 5
show fractures or cracks, with distinctive features depending on the material (Fig 5C–5F).

Our results indicate that properly thermoplasticized materials derived from the individual
components (either the starch or protein fraction), instead of the whole flour, exhibit a high
foaming capacity. Next, we analyzed the foamability of single component materials, either
starch or zein.

Foams from starch and zein: microstructural analysis
We were able to obtain foams from slabs of starch thermoplasticized with urea/formamide
(TPSuf). The available literature contains a limited number of reports of successful fabrication
of fine-structure foams from starch-based materials [38,39]. To our knowledge, this is the first
report of production of starch foams by supercritical CO2 foaming.

We also reproducibly obtained foams from zein, the most abundant protein in maize. Zein
is classified as a prolamine; prolamines are proteins with a high fraction of proline in their
structure and are soluble in ethanol [53–55]. Zein is an interesting protein from the point of
view of material science: it is hydrophobic, practically insoluble in water, and suitable for
thermo-extrusion at relatively low temperatures [42]. In addition, it is considered suitable for
cell culture applications [53].

Several reports have documented the use of zein (or zein blends) to produce foams
[24,26,28,33,40]. In particular, the zein/PEG system (matrix component/ plasticizer) used here
was explored by our group in the past [25]. Here, we use a set of foaming conditions slightly
modified from one reported by Salerno et al. [25] that uses a simpler experimental approach
using supercritical CO2 exclusively as a foaming agent (instead of CO2/N2 mixes).

We conducted a more detailed characterization of the microstructure of selected foams ob-
tained from thermoplasticized zein (TPZ) and thermoplasticized starch plasticized with urea/
formamide (TPSuf) using widely available image analysis techniques. Fig 5 presents an analysis
of pore morphology, pore size, and pore size distribution based on image analysis of SEM mi-
crographs. Fig 6A and 6B show SEMmicrographs of TPSuf and TPZ derived foams at the
same magnification (1000X). Similarly, Fig 6C and 6D show SEMmicrographs at a 1500X
magnification. Visual inspection reveals several differences: for foams obtained at the same
foaming conditions, the average size of the pores appears larger for TPSuf foams than for TPZ
foams (Fig 6A and 6B). Moreover, in TPSuf foams, larger pores tend to concentrate in a central
band within the foam, while smaller pores dominate in the surface regions (not shown). The
pores of TPZ foams appear to be more evenly distributed, although a gradient is still apparent,
and larger pores are more frequently found in the vicinity of the upper surface. The differences
in microstructure are more evident at higher magnification (compare Fig 6C and 6D). A high
porosity and a low average pore size were observed in TPZ foams. In addition, the pores ap-
peared to be more elongated in TPSuf foams than in TPZ foams.

Pore sizes are shown (determined as the projected area of each pore (pi) in μm2) in Fig 6A
and Fig 6B. Since the total area of each micrograph can be estimated, the ratio of the sum of all
individual pore areas (∑ pi) over the total area of the micrograph (Aimage) provides a robust esti-
mator of the 2D porosity of the microstructure (∑ pi/Aimage) at a particular transversal cut. The
2D porosity is almost 50% higher in TPZ foams than in TPSuf foams (0.625 versus 0.442). The
data on individual pore sizes were used to construct cumulative distribution plots (Fig 5E).
Note that in TPZ foams, 50% of the pores are smaller than 50 μm2 and practically all pores are
smaller than 300 μm2. In contrast, in TPSuf foams, the pore distribution is much broader; and
50% of the pores are larger than 150 μm2. Fig 6F and 6G present the distributions of pore sizes
for TPZ and TPSuf foams, respectively, in normalized histograms. Note that the span (much
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Fig 6. Scanning electronic microscope (SEM) micrographs and pore size distributions of foams. Foamsmade from (A) starch slabs thermoplasticized
at 135°C and 50 rpm using urea/formamide as a plasticizer (sample TPSuf); observed at 1500X, and (B) at 2000Xmagnification. Foams made from zein
slabs thermoplasticized at 75°C and 50 rpm (sample TPZ); observed at (C) 1500X, and (D) 2000Xmagnification. (E) The cumulative distribution of pore
sizes, as calculated by image analysis of SEMmicrographs, is presented for TPSuf foams (blue line) and Z foams (yellow line). Pore sizes are expressed in
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wider for TPSuf foams) and the shape of the distributions differ substantially. Pore sizes are
more evenly distributed for TPZ foams, where smaller pore sizes dominate. The TPSuf foams
show a wider span of pore size values. Table 2 summarizes important features of both foam sys-
tems: porosity, average pore size, median of pore size, and the standard deviation of pore size.
These characteristics confirm that the TPZ foams have a more compact distribution of pore
sizes (lower standard deviation) that is dominated by pores of shorter lengths.

Cell culture experiments in zein foams
Starch and zein foams may have many potential applications; here, we present a preliminary
exploration of one that is of particular interest to our research group, namely, mammalian cell
culture. Cell growth inside the porous structure of foams requires sufficiently wide pores to ac-
commodate cell colonies. Therefore, the average pore size and the distribution of pore sizes of
the TPZ foam presented in Fig 6 were not suitable for growth of cell colonies within the porous
structure. Modification of the pressure conditions during CO2 foaming (see Materials and
Methods) allowed us to fabricate materials that had a wider average pore size (wpTPZ foams).
Our experiments demonstrate that zein foams can be used as a surface for growth of mammali-
an cells. We successfully cultured mouse fibroblasts on the surface of wpTPZ foams. Under
static conditions, cultures were sustained for 5 days. Fig 7 shows confocal microscopy images
of cells attached and growing on the surface of regular polystyrene 96-well plate surfaces (posi-
tive control; Fig 7A and 7B), and on thin slices of zein foams. DAPI and MitoTracker staining
was used to observe nuclei and mitochondria in metabolically active cells, respectively (Fig 7C
and 7D). Layers of cells could be observed in some locations of the foam slices after 5 days of
static culture (Fig 7C and 7D). The foam culture system made observation of cells particularly
challenging due to the complex 3D topology of the scaffolds. In addition, the intrinsic fluores-
cence of zein precluded the use of several conventional stains based on green fluorescence
emission, such as Live and Dead.

We also conducted experiments where fibroblasts were incubated on zein foams under static
conditions for 96 hours in a culture chamber (to allow for proper cell colonization). We then
activated a continuous flow of culture medium (at 3μL/min) for an additional period of 96
hours. We monitored the metabolic activity of the culture by quantifying glucose consumption
during the first 60 h of continuous perfusion culture. During this period, glucose consumption
increased linearly (Fig 7E), reaching 0.270 +/- 0.020 mg/mL after 60 hours of continuous perfu-
sion at a flow rate of 0.003 mL/min. The effective volume of the culture chamber was 100μL
(Fig 7F); therefore, the residence time within the device was 33.33 minutes and the glucose con-
sumption rate at 60 h of culture was 8.105 +/- 0.705 μg mL-1 min-1. This increase in substrate
consumption during the first stage of continuous culture suggests that the density of metaboli-
cally active fibroblasts within the devices also increased in this time period. In these continuous
culture experiments, the outlet stream contained a low cell count (fewer than 1X103cells/mL).
Taken together, our results suggest that the cells proliferated and maintained metabolic activity
during continuous cultivation on zein foams.

Fig 8 shows images from cell culture experiments were conducted using two different com-
mercially available prostate cancer cell lines: 22RV1 and DU145. These cell lines were able to
grow and proliferate on zein foams but not on starch foams or films. We observed different
types of colony growth: spread monolayers or multilayer cell structures. Confocal microscopy
revealed the proliferation of 22RV1 cancer cells within the exposed pores. Fig 8 shows the

terms of projected areas ([=] μm2). The frequency distribution of pore sizes calculated by image analysis of SEMmicrographs is presented for (F) TPSuf
foams, and (G) TPZ foams.

doi:10.1371/journal.pone.0122489.g006
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structure of these wider pore size foams, as observed using confocal microscopy before
(Fig 8A) and after cell proliferation (Fig 8B). Cancer cells populated the interior of the exposed
porous structure and essentially achieved confluence after 7 days of culture. Other colonies de-
veloped flexible “tree-like” 3D structures able to tolerate the action of slow flow fields (Fig 8C
and 8D). These complex structures possibly originate from the ability of these cells to grow

Fig 7. Fibroblasts anchor and proliferate on zein foam surfaces.Confocal microscopy images showing DAPI and MitoTracker co-stained fibroblasts
growing on zein foam surfaces. (A) Confocal image showing the intrinsic fluorescence of a zein foam surface (green fluorescent x-y plane). A line of cells
(indicated by a single-head arrow), which developed on the edge of the x-y plane, can be seen (blue cell nuclei and red-stained mitochondria). (B) A confocal
2D cut at a slightly closer x-y plane (above that shown in A) reveals the presence of active cells covering the zein surface. DAPI and MitoTracker staining was
used to reveal cell nuclei (blue) and mitochondria of metabolically active cells (red). A thick multi-layer of cells is indicated with a double-headed arrow. Green
fluorescent regions, corresponding to the zein foams underneath the layer of cells, can be observed (indicated with green arrows). (C) Fibroblasts seeded on
zein foams and fed continuously at 0.003 mLmin-1 in a flow chamber linearly increased their global glucose consumption during the first 60 h of continuous
culture. Dotted line indicates best linear fit. Error bars indicate standard deviation of three independent replicates. (D) Scheme of the continuous flow
chamber (effective volume of 100 μL).

doi:10.1371/journal.pone.0122489.g007
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both in flat monolayers attached to a substrate, as well as in anchorage-independent conditions
in sphere-shaped colonies.

Highly porous plant derived materials, such as the foams studied here, might be a simpler
(safer) alternative to matrixes of animal origin for the anchorage culture of mammalian cells;
they would enable the establishment of cell multilayer films for tissue engineering applications
and of 3-D tumor-like growths for cancer research [56,57].

Conclusions
In this contribution, maize based materials were assayed to produce bio-foams using supercriti-
cal CO2 foaming. The foaming potential of an extensive list of materials was assayed, including
slabs elaborated from whole flour, only starch, or only the protein fraction (zein) of maize. Ma-
terials obtained by casting or thermoplasticization were tested and several variants of thermo
compounding conditions were examined. Variation included thermoplasticization at different
temperatures, and the use of two different plasticizer systems (sorbitol/glycerol and urea/form-
amide). The use of either the starch or the main protein fraction of the grain (zein) resulted in

Fig 8. Two different prostate cancer cell lines attach and proliferate on zein foams. A portion of the porous surface of a wpTPZ foam as observed by
confocal microscopy at 20X (A) before cell seeding, and (B) 22RV1 cells after seven days of growth. Prostate cancer cell lines cultured on wpTPZ attach,
proliferate, and develop into tree-like structures on the edge of wpTPZ foams: (C) 22RV1 cells observed at the third day of culture (24X; stereoscopic
microscope); (D) Du145 cells observed at the third day of culture (24X; stereoscopic microscope).

doi:10.1371/journal.pone.0122489.g008
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highly porous foams when an adequate plasticizer was chosen. The use of whole maize flour or
a mixture of corn starch and zein produces thermoplastic materials that are poorly suitable for
supercritical CO2 foaming.

The tested set of experimental conditions and materials revealed that TPSuf and TPZ slabs
rendered the best foams. Remarkably, these materials experienced a volume expansion of more
than 6-fold. A detailed characterization of the microstructure of these materials through image
analysis of SEMmicrographs revealed that TPZ and TPSuf foams differ in terms of overall po-
rosity, average pore size, pore size distribution, and pore morphology. TPZ foams are more po-
rous and their size distribution is more evenly distributed among a narrower span of pore sizes
when compared to TPSuf foams.

We also observed a correlation between strain at break and foaming potential of a material.
Therefore, the foaming potential of a material can be preliminarily evaluated from stress vs.
strain rate data. Conversely, the foaming capacity (or capacity or adequacy to produce foams)
can be used for indirect assessment of the strength and flexibility of a material. Our results also
suggest that foaming capacity can be a useful indicator of the strain resistance and flexibility of
these types of biomaterials.

The results from proof-of-concept mammalian cell culture experiments conducted on the
surface of thermoplasticized zein foams suggest that these surfaces support cell proliferation.
Four types of mammalian cells—mouse and human fibroblasts and two different prostate can-
cer cell lines (22RV1 and DU145)—were able to attach and proliferate on thermoplasticized
zein foams.
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