Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia–reperfusion injury in rats

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1111/j.1582-4934.2009.00786.x

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:15034964

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia–reperfusion injury in rats

Yi Wang a, c, #, Haihuan Lin a, #, Shaoqiang Lin a, #, Jia Qu b, Jian Xiao a, Yadong Huang d, Yechen Xiao e, Xiaobing Fu f, Yongguang Yang c, Xiaokun Li a, *

a Key Laboratory of Biotechnology Pharmaceutical Engineering of Zhejiang Province, School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou, PR China
b The Eye Hospital of Wenzhou Medical College, Wenzhou Medical College, Wenzhou, PR China
c Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
d National Engineering Research Center for Gene Medicine, Jinan University, Guangzhou, PR China
e Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, PR China
f Wound Healing and Cell Biology Laboratory Institute of Basic Medical Science, PLA General Hospital, Postgraduate Medical College, Beijing, PR China

Received: November 21, 2008; Accepted: April 30, 2009

Abstract

The development of non-invasive ocular drug delivery systems is of practical importance in the treatment of retinal disease. In this study, we evaluated the efficacy of transactivator of transcription protein transduction domain (TAT-PTD, TAT49–57) as a vehicle to deliver acidic FGF (aFGF) to retina in rats. TAT-conjugated aFGF-His (TAT-aFGF-His) exhibited efficient penetration into the retina following topical administration to the ocular surface. Immunohistochemical staining with anti-His revealed that TAT-aFGF-His proteins were readily found in the retina (mainly in the ganglion cell layer) at 30 min. and remained detectable for at least 8 hrs after administration. In contrast, His proteins were undetectable in the retina after topical administration of aFGF-His, indicating that aFGF-His cannot penetrate the ocular barrier. Furthermore, TAT-aFGF-His, but not aFGF-His, mediated significant protection against retinal ischemia–reperfusion (IR) injury. After IR injury, retina from TAT-aFGF-His-treated rats showed better-maintained inner retinal layer structure, reduced apoptosis of retinal ganglion cells and improved retinal function compared to those treated with aFGF-His or PBS. These results indicate that conjugation of TAT to aFGF-His can markedly improve the ability of aFGF-His to penetrate the ocular barrier without impairing its biological function. Thus, TAT49–57 provides a potential vehicle for efficient drug delivery in the treatment of retinal disease.

Keywords: cell-penetrating peptide • fibroblast growth factor • ischemia and reperfusion injury • retina • transactivator of transcription peptide

Introduction

The retina is the most complex ocular tissue with its ability to process visual information and transmit the information through the optic nerve to the visual cortex. The retina is protected by the ocular barriers, including the corneal, aqueous humour and blood retinal barriers, and only limited materials can penetrate these barriers from outside of the eye or blood circulation. Although the ocular barriers provide a stable, close microenvironment for retinal function, these barriers also make it challenging to deliver potential therapeutic drugs to the retina. Currently, the most widely used delivery method for retinal drugs is sub-conjunctival injection, which is not only a difficult and harmful procedure, but also not practical as a chronic therapy. Thus, the development of non-invasive drug delivery systems would greatly benefit retinal disease treatment.

Cell-penetrating peptides (CPPs) have been reported as vehicles for the intracellular delivery of macromolecules, including oligonucleotides [1], siRNA [2], peptides and proteins [3], nanoparticles [4],
iron beads [4], plasmid [5] and liposomes [6]. HIV transactvator of transcription (TAT) peptide is one of the CPPs that has been broadly investigated. TAT has been shown to mediate delivery of biological agents both in vitro and in vivo. Its ability to translocate into live cells and cross biological barriers (e.g. blood-brain barrier) that makes it a potential novel vehicle for clinical drug delivery [7, 8].

In this study, we investigated the potential of TAT to deliver human acidic fibroblast growth factor (aFGF 19–154) from the eyeball surface to the retina in rats. aFGF (also known as FGF-1) is one of the most powerful and broad-spectrum mitogens in the FGF family. aFGF regulates the development and morphogenesis of the ectoderm- and mesoderm-derived cells, wound healing, haematopoiesis, angiogenesis, inflammatory processes as well as tumorigenesis [9–16]. aFGF has also been reported to mediate potent protection against ischemia–reperfusion (IR) injury in the brain and heart tissues [17, 18]. Our results showed that TAT-aFGF-His, but not aFGF-His, can efficiently penetrate the ocular barriers and mediate strong protection against retinal IR injury.

Materials and methods

Animals

Male Sprague-Dawley rats weighing 250–300 g (approximately 18 weeks of age) were obtained from the Animal Center of Wenzhou Medical College (Wenzhou, China). Animals were housed at a constant room temperature with a 12:12 hr light/dark cyclic, and fed a standard rodent diet and water. Protocols involving the use of animals were approved by the Wenzhou Medical College Animal Policy and Welfare Committee.

Ischemia–reperfusion model

Rats were anaesthetized by intraperitoneal injection of 10% chloral hydrate (3 ml/kg). Topical anesthesia was performed by instilling 0.5% proxiymetacaine HCl into the cornea for 5 min., and then the pupils were maximally dilated by topical 0.5% tropicamide and 0.5% phenylephrine HCl. Eyes were then moistened with Ofloxacin (Jiangsu Kwin Pharma Co., Ltd., Jiangsu, PR China) at 10-min. intervals throughout the procedure. The anterior chambers of both the left and right eyes were cannulated with a 27G needle connected to a saline reservoir. Retinal ischemia was induced in the right eye by raising the intraocular pressure (IOP) to 110 mmHg for 60 min. by keeping the saline reservoir at 150 cm above the right eye, and the left eye was set as the sham procedure control without increasing the IOP, as previously described [19]. Retinal ischemia was confirmed by loss of the red reflex visible portions of the optic nerve head. Only sections containing the whole retina with visible portions of the optic nerve head were used for immunohistological analysis. Tissue sections were primarily stained with rabbit anti-His polyclonal antibody (1:1000), and the signal was detected by biotinylated secondary antibodies. Immunohistochemistry

Tissue penetration of aFGF-His and TAT-aFGF-His was assessed by immunohistology using a rabbit anti-His polyclonal antibody (QED Bioscience, Inc., San Diego, CA, USA). Briefly, rats were killed in a CO2 chamber, and both eyes were removed, fixed in 4% formalin at room temperature overnight, processed and embedded in paraffin. Paraffin-embedded tissue sections were sectioned (4 µm thick) along the vertical meridian of the eye through the optic nerve head. Only sections containing the whole retina with visible portions of the optic nerve head were used for immunohistological analysis. Tissue sections were primarily stained with rabbit anti-His polyclonal antibody (1:1000), and the signal was detected by biotinylated anti-rabbit IgG (Ana Spec Corporate, San Jose, CA, USA) and a streptavidin complex kit (Vector Laboratories, Burlingame, CA, USA).

Histological evaluation of retina injury following ischemia reperfusion

The ischemic (right eyes) and non-ischemic eyes (left eyes) were enucleated and cut into half by coronal section through the ora serrata. The vitreous was removed, and the posterior half of the eye was immersed in 4% paraformaldehyde for 24 hrs, and then sectioned, stained with haematoxylin and eosiin. Samples were analysed and evaluated for the cell morphology in the inner nuclear layer (INL) and ganglion cell layer (GCL), and the number of ganglion cells in GCL was counted in five vision fields selected through each 100-µm retina length across the retina starting from the optic disc. Retinal ganglion cells (RGCs) in GCL, which are regular in shape and arrangement with large nuclei, were identified and counted based on the morphology. We normalized the results by dividing the data of the experimental eye (right eye) by those of the control eye (left eye) of the same rat.

Scotopic electroretinogram (ERG) recordings

ERGs were elicited from the right eyes simultaneously using a Ganzfeld bowl at 1, 3 and 7 days after IR. Rats were dark-adapted for 2 hrs and prepared under dim red light. Topical anesthesia was performed by dropping
0.5% proxymetacaine HCl onto the cornea after anaesthetization with 10% chloral hydrate, and the pupils were maximally dilated by 0.5% tropicamide and 0.5% phenylephrine HCl as described above. The recording electrodes were placed in the brim of the sclera, the reference electrodes were cannulated into visor subcutaneously, and a stainless steel sheet under the animals was used as the ground electrode. Each stimulus (the optical power is 0 cd/m², and the bandpass was filtered from 1 to 300 Hz) was given to every responder once with a duration of 250 microseconds (ms). The intensities of a-wave, b-wave and Ops-wave (oscillatory potentials) were recorded by RETI2 scan vision electrophysiology detection machine (Roland Consult, Brandenburg, Germany).

TUNEL staining and apoptotic analysis

TUNEL staining was performed on paraffin-embedded sections using the *in situ* cell death detection kit (Zhongshan Goldenbridge Biotechnology Co., Ltd., Beijing, PR China) according to the manufacturer’s protocol. In brief, the sections were dewaxed, rehydrated, and incubated in a 20 μg/ml proteinase K working solution for 20 min. at 37°C. The slides were rinsed with PBS (3 min., three times), dried, and incubated in 20 μl TUNEL reaction mixture for 1 hr at 37°C. The reaction was terminated by rinsing the samples with PBS (3 min., three times), followed by adding 20 μl Converter-POD solution on samples for 30 min. at 37°C. After rinsing with PBS (3 min., three times), 50 μl DAB reaction solution was added to samples for 45 sec. at 37°C and sections were re-stained with haematoxylin for 10 sec. After washed, 1% ammonia rinsed and re-hydrated by using different concentration of alcohol, the sections were sealed and detected by a light microscope. TUNELβ (apoptotic) cells were quantified by counting brown-coloured cells in 10 fields (6000 μ² per field) in GCL along the optic disc, and data are presented as numbers (mean ± S.O.) of positive cells per mm².

Statistic analysis

Data were analysed using SPSS V15.0 for one-way ANOVA, Dunnett T3. A P-value <0.05 was considered to be significant.

Results

Penetrating peptide TAT-mediated delivery of aFGF to retina after topical administration onto the eye surface

To determine the ability of TAT to penetrate the ocular barriers and deliver aFGF to the retina, we compared tissue penetration of
aFGF-His and TAT-aFGF-His in the eyes of rats after topical administration. Eyes were removed at various time-points after topical administration on the eye surface of 2 µg aFGF-His or TAT-aFGF-His, or the same volume of PBS (as controls), and tissue distribution of fusion proteins was examined by immunohistochemistry. Similar to PBS controls (Fig. 1A), no His⁺ cells (brown colour) were found in the retina from aFGF-His-treated rats by 4 hrs (Fig. 1B). However, His⁺ cells were readily detected in the retina from TAT-aFGF-His-treated rats by 30 min. after administration (Fig. 1C). TAT-aFGF-His proteins were found mainly in RGCs in the GCL. The levels of TAT-aFGF-His proteins, which were determined by the number and staining intensity of His⁺ cells, peaked around 30 min. to 1 hr, and gradually declined thereafter but were still detectable at 8 hrs after administration. These data indicate that TAT-aFGF-His, but not aFGF-His, has the ability to penetrate the ocular barriers.

Topical administration of TAT-aFGF-His eye drops protects against retinal ischemia–reperfusion injury

It has been reported that injection of aFGF through jugular vein reduces retinal IR injury in rats [19]. To determine whether TAT-aFGF

fusion proteins remain biologically functional, we assessed the therapeutic effect of TAT-aFGF-His in a rat retinal IR injury model. Compared to sham-operated eyes (Fig. 2A), IR resulted in severe injury in the PBS control group (Figs 2 and 3): on day 1, the retina appeared dropsical (especially the inner plexiform layer), and showed reduced RGCs in the GCL, interrupted cellular distribution in the INL, and an increased number of cells with pyknotic nuclei in the INL; on day 3, the condition of oedema was subsided, but the number of RGCs kept decreasing; on day 7, most RGCs in the GCL exhibited pyknotic nuclei. Similar pathological changes were seen in the retina following IR in the aFGF-His-treated group (Figs 2B and 3), which is consistent with the inability of aFGF-His to penetrate through the ocular barriers to the retina (Fig. 1B). However, significant protection against IR injury was seen in the TAT-aFGF-His treated-group. Retinas from TAT-aFGF-His treated eyes showed markedly less severe pathological changes, including better maintained histological structure (Fig. 2B) and a lower reduction in RGC numbers (Fig. 3), compared to those treated with PBS or aFGF-His. Furthermore, TUNEL staining revealed that TAT-aFGF-His treatment also reduced IR-induced RGC apoptosis. As shown in Table 1 and Fig. 4, the numbers of apoptotic cells in the GCL were significantly less in TAT-aFGF-His-treated group than those in PBS- and aFGF-His treated groups at days 3 and 7 after IR.

Retinal function was further determined by ERGs. ERG measurements reflect the physiological condition of the whole retina. At day 1 after IR, a significant decrease ($P < 0.05$) in the amplitudes of ERG a-wave, b-wave and Ops was seen in all groups (Fig. 5 and Table 2). However, TAT-aFGF-His-treated group showed accelerated recovery compared to those treated with PBS or aFGF-His. Both PBS- and aFGF-His-treated groups showed continued decreases in ERG a-wave, b-wave and Ops between day 1 and day 3, whereas all these ERG measurements began increasing 3 days after IR. It has been reported that acute retinal ischemia results in a predominant loss of the b-wave with relative preservation of the a-wave [21]. Thus, suppression of the b-wave of the ERG has been taken as an electrophysiological indicator for reduced retinal blood flow in human beings [22] and in experimental animals [23]. ERG b-wave amplitudes in the TAT-aFGF-His-treated group at days 3 and 7 were significantly higher than those in PBS- and aFGF-His-treated groups (Fig. 5 and Table 2).

Table 1: Number of apoptotic cells in the ganglion cell layer

<table>
<thead>
<tr>
<th>Group (n)</th>
<th>Time after reperfusion (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PBS (5)</td>
<td>795.0 ± 145.6</td>
</tr>
<tr>
<td>aFGF19–154-His (5)</td>
<td>599.3 ± 12.7</td>
</tr>
<tr>
<td>TAT-aFGF19–154-His (5)</td>
<td>451.7 ± 75.6</td>
</tr>
</tbody>
</table>

* $P < 0.05$, ** $P < 0.01$, compared with PBS-treated group.
$P < 0.05$, ### $P < 0.01$, compared with aFGF19–154-His-treated group.
It is well established that TAT-PTD, a peptide derived from the HIV-1 TAT protein, enhances cellular delivery of attached molecules. The mechanisms by which TAT mediates cell entry remains controversial, with evidence for the involvement of both endocytic and non-endocytic pathways [24–26]. Several have reported that cargos anchored with TAT can cross the blood-brain barrier [7, 20, 27]. In the present study, we proved that TAT-PTD (TAT49–57) provides a potential vehicle for drug delivery to retina. We observed that TAT-aFGF-His, but not aFGF-His, can be detected in the retina after topical administration to the ocular surface.

![Comparison of electroretinograms between PBS-, aFGF-His- and TAT-aFGF-His-treated rats.](image)

Fig. 5 Comparison of electroretinograms between PBS-, aFGF-His- and TAT-aFGF-His-treated rats. ERGs were elicited from the right eyes simultaneously using a Ganzfeld bowl prior to ischemia, and at days 1, 3 and 7 after IR, and the intensities of a-wave, b-wave and Ops-wave (oscillatory potentials) were recorded. Shown are representative electroretinograms of pre-ischemia and 3 days after reperfusion from the indicated groups (detailed data are presented in Table 2).

Table 2: Electroretinogram amplitude changes

<table>
<thead>
<tr>
<th>Group (n)</th>
<th>Pre-ischemia</th>
<th>1 (Time after reperfusion (days))</th>
<th>Time after reperfusion (days)</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-wave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS (5)</td>
<td>182.9 ± 49.20</td>
<td>39.6 ± 19.32</td>
<td>25.6 ± 7.40</td>
<td>170.4 ± 12.93</td>
<td></td>
</tr>
<tr>
<td>aFGF-His (5)</td>
<td>195.5 ± 55.22</td>
<td>101.4 ± 56.55</td>
<td>57.0 ± 20.58</td>
<td>164.0 ± 27.97</td>
<td></td>
</tr>
<tr>
<td>TAT-aFGF-His (5)</td>
<td>189.8 ± 44.41</td>
<td>66.4 ± 28.86</td>
<td>135.0 ± 34.39*##</td>
<td>161.2 ± 34.02</td>
<td></td>
</tr>
<tr>
<td>b-wave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS (5)</td>
<td>482.7 ± 109.61</td>
<td>59.2 ± 8.79</td>
<td>62.0 ± 15.41</td>
<td>145.2 ± 22.51</td>
<td></td>
</tr>
<tr>
<td>aFGF-His (5)</td>
<td>501.8 ± 87.83</td>
<td>121.6 ± 63.43</td>
<td>58.8 ± 18.01</td>
<td>176.8 ± 48.30</td>
<td></td>
</tr>
<tr>
<td>TAT-aFGF-His (5)</td>
<td>465.7 ± 98.28</td>
<td>118.0 ± 42.10</td>
<td>199.2 ± 73.20##</td>
<td>287.4 ± 71.24##</td>
<td></td>
</tr>
<tr>
<td>Ops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS (5)</td>
<td>172.1 ± 47.08</td>
<td>29.0 ± 19.54</td>
<td>25.0 ± 12.33</td>
<td>83.6 ± 12.38</td>
<td></td>
</tr>
<tr>
<td>aFGF-His (5)</td>
<td>165.5 ± 44.78</td>
<td>45.4 ± 16.10</td>
<td>28.2 ± 6.26</td>
<td>76.0 ± 14.92</td>
<td></td>
</tr>
<tr>
<td>TAT-aFGF-His (5)</td>
<td>171.3 ± 42.37</td>
<td>41.8 ± 15.16</td>
<td>70.2 ± 17.25*</td>
<td>111.8 ± 16.10</td>
<td></td>
</tr>
</tbody>
</table>

Data shown are microvolts (mean ± S.D.s) for each group at the indicated time-points.

*P < 0.05, **P < 0.01, compared with PBS-treated group.

*P < 0.05, ##P < 0.01, compared with aFGF-His-treated group.
proteins were readily found in retina by 30 min., remained
detectable for more than 8 hrs after administration. Exogenous
aFGF could reduce IR injury in both in vivo and in vitro models
[28–31]. However, in agreement with the inability of aFGF to pen-
etrate the ocular barriers (Fig. 1B), aFGF confirms no protection
against retinal injury when given topically as eye drops to the ocu-
lar surface (Figs 2 and 3, Tables 1 and 2). In contrast, topical
administration of TAT-aFGF-His mediated strong protection
against retinal IR injury, as shown by both histological and func-
tional analyses. These results indicate that the biological activity
of aFGF was well retained by the TAT-aFGF-His fusion protein, and
that TAT49–57 is a potential vehicle for efficient drug delivery in the
treatment of retinal disease. It has been reported that aFGF injection
via jugular vein can also ameliorate retina ischemic injury
in rats [19]. Although topical administration of TAT-aFGF-His
provides an attractive means of non-invasive drug delivery,
it would be important to further investigate the tissue/blood
distribution and therapeutic efficacy in comparison with systemic
aFGF administration.

Drug delivery to the eye, a relatively isolated anatomic compart-
ment, remains a challenge. The ocular barriers include corneal,
aqueous humour and blood retinal barrier. Previous studies have
shown that the intact corneal epithelium is a barrier against TAT
fusion protein penetration. Using an in vitro corneal culture model,
it was found that TAT-β-galactosidase cannot penetrate the corneal
epithelial cells deeper than the superficial cells unless the corneal
epithelium was damaged [32]. Similar results were observed in our
studies, in which TAT-aFGF-His proteins were only detected in the
epithelium of the cornea but not in the stroma and deeper endothe-
lium after topical administration on the ocular surface (data not
shown). Although further studies are clearly needed to determine
how TAT-aFGF-His proteins were delivered to the retina after
administration on the ocular surface, these results indicate that
they were unlikely delivered by penetration through the cornea.

Because of the lack of an identified cell surface TAT receptor,
TAT is thought to target the lipid bilayer component of the cell
membrane and therefore, its cell entry is expected to occur in all
mammalian cell types. However, although TAT peptide uptake was
seen in many cell types [33, 34], the existence of cell-specific
mechanisms for cellular entry of TAT peptides has been suggested
by the observation that TAT peptides were poorly or non-perme-
able in well-differentiated epithelial cells [35]. The selective uptake
of TAT conjugates by retinal cells was also reported, in which TAT
conjugates were predominately uptaken by RGCs and by a subset
of inner nuclear layer cells [36, 37]. In our studies, the uptake of
TAT-aFGF-His proteins was also detected mainly in RGCs. Because
RGC death following ischemic insult is the major cause of a num-
ber of vision-threatening diseases, selective delivery of aFGF to
RGCs may have the potential to improve the therapeutic outcome.

Acknowledgements

The study was supported by grants from Zhejiang Province Extremely Key
Subject Building Funding ‘Pharmacology and Biochemical Pharmaceutics
2008’ and Zhejiang province key Natural Science Foundation (Z205755 to
X.L.), and National Natural Scientific Foundation of China (30670541 to Y.H.),
The Program of New Century Excellent Talents in University, and Zhejiang
Provincial Program for the Cultivation of High-Level Innovative Health
Talents (X.L.), The National Basic Research Program of China (973 grant no.
2005CB522603) and by the 5010 Project of Wenzhou Medical College.

References

design, structure-activity, and applications to alter pre-mRNA splicing by steric-block
2. Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanced
delivery of nucleic acids and drugs to ocu-
3. Ryves WJ, Harwood AJ. Use of a pene-
tratin-linked Peptide in dictyostelium. Mol
4. Berry CC, de la Fuente JM, Mullin M,
et al. Nuclear localization of HIV-1 tat
functionalized gold nanoparticles. IEEE
tope with adjuvant IL-15 induces long-last-
ing cellular immunity and high antitumor
6. Torchilin VP. Cell penetrating peptide-
mofied pharmaceutical nanocarriers for
intracellular drug and gene delivery.
Polymeric micelles anchored with TAT for
delivery of antibiotics across the blood-brain
Application of a blood-brain-barrier-pene-
trating form of GDNF in a mouse model for
Parkinson’s disease. Brain Res. 2006;
1082: 61–6.
9. Cronauer MV, Schulz WA, Seifert HH,
et al. Fibroblast growth factors and their
receptors in urological cancers: basic
research and clinical implications. Eur
Fibroblast growth factor-1 inhibits medial
smooth muscle cells apoptosis after bal-
acid fibroblast growth factor protects
intestinal mucosal cells against ischemia-
reperfusion injury via regulating Bcl-2/Bax
expression. World J Gastroenterol. 2005;
Myocardial ischemia enhances the expres-
sion of acidic fibroblast growth factor in
human pericardial fluid. Heart Vessels.
effect of basic and acidic fibroblast growth
factors (bFGF and aFGF) on the growth of
leukemic blast progenitors in acute myel-
ogenous leukemia. Exp Hematol. 1995; 23:
1030–4.
Angiogenic potential of perivasculary
 delivers aFGF in a porcine model of