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Abstract

Background: The laboratory mouse is the most commonly used model for studying variation in complex traits
relevant to human disease. Here we present the whole-genome sequences of two inbred strains, LG/J and SM/J,
which are frequently used to study variation in complex traits as diverse as aging, bone-growth, adiposity, maternal
behavior, and methamphetamine sensitivity.

Results: We identified small nucleotide variants (SNVs) and structural variants (SVs) in the LG/J and SM/J strains
relative to the reference genome and discovered novel variants in these two strains by comparing their sequences
to other mouse genomes. We find that 39% of the LG/J and SM/J genomes are identical-by-descent (IBD). We
characterized amino-acid changing mutations using three algorithms: LRT, PolyPhen-2 and SIFT. We also identified
polymorphisms between LG/J and SM/J that fall in regulatory regions and highly informative transcription factor
binding sites (TFBS). We intersected these functional predictions with quantitative trait loci (QTL) mapped in
advanced intercrosses of these two strains. We find that QTL are both over-represented in non-IBD regions and
highly enriched for variants predicted to have a functional impact. Variants in QTL associated with metabolic
(231 QTL identified in an F16 generation) and developmental (41 QTL identified in an F34 generation) traits were
interrogated and we highlight candidate quantitative trait genes (QTG) and nucleotides (QTN) in a QTL on chr13
associated with variation in basal glucose levels and in a QTL on chr6 associated with variation in tibia length.

Conclusions: We show how integrating genomic sequence with QTL reduces the QTL search space and helps
researchers prioritize candidate genes and nucleotides for experimental follow-up. Additionally, given the LG/J and
SM/J phylogenetic context among inbred strains, these data contribute important information to the genomic
landscape of the laboratory mouse.

Keywords: Mouse models, Quantitative trait loci (QTL), Complex traits, Identity-by-descent (IBD), Predicted
deleterious mutations, Quantitative trait gene (QTG), Quantitative trait nucleotide (QTN), Candidate loci, Whole
genome sequence, Small nucleotide variant (SNV)
Background
The LG/J (large) and SM/J (small) strains of inbred mice
were independently derived from selection experiments
for large and small body size at 60 days, respectively [1].
LG/J was created from a pool of albino mice obtained
from a commercial breeder over a nine-month period
and selected for increased body size for over 50 genera-
tions [2,3].
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SM/J was created from a pool of mice derived from
four crosses of seven inbred strains: dilute brown agouti
(dba), silver chocolate (sv ba), black and tan (at), pink-
eyed, short-eared dilute brown agouti (pse dba), albino
(c), cinnamon spotted (bs), and agouti (a) [4]. It is un-
clear whether any of these strains are related to current
laboratory inbred strains. The SM/J strain is kept hetero-
zygous at the agouti locus by mating black animals (a/a)
with their white-bellied agouti (Aw/a) siblings. Attempts
to fix the SM/J strain or its Recombinant Inbred Strain
offspring for the SM/J allele at agouti have resulted in
strain failure [5].
l. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,
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Subsequent to selection, the LG/J and SM/J strains are
fully inbred and have been maintained at the Jackson La-
boratory since the 1950s by brother-sister mating. They are
at the extremes of the adult body size distribution among
the common laboratory inbred strains and have been prof-
itably studied for genetic variation in adult body size and
growth [6-18]. Early genetic studies of these two strains
found the differences in body size are caused by many
genes of individually small effects [8]. This result has been
confirmed in many quantitative trait locus (QTL) mapping
studies. The strains have remained phenotypically stable
over time, except that the SM/J strain is now about 6g
heavier than it was in Chai’s studies [19].
LG/J and SM/J differ in many complex traits in

addition to size and growth. The parental strains and
their crosses differ in skeletal morphology, including the
size and shape of the skull [20-22], mandible [23-30],
tooth morphology [31,32], long-bone lengths [33-37],
and a variety of other skeletal elements as well as bone
biomechanical and structural properties [38,39].
They also differ for a variety of metabolic traits includ-

ing obesity, diabetes, and serum cholesterol, triglycer-
ides, and free fatty acids levels [40-51]. The SM/J strain
responds more strongly than LG/J to a high-fat diet for
these metabolic traits. The two strains also differ for ma-
ternal genetic effects on offspring growth and offspring
adult metabolic traits [52-56] and their cross has been
useful in mapping parent-of-origin genetic effects on
metabolic traits [48-51,53,57].
In addition to these diverse metabolic and skeletal

phenotypes, the LG/J strain shows the rare ability to re-
generate tissues after injury. The LG/J strain regenerates
ear pinna tissues after a 2mm hole-punch [58-61] while
the SM/J strain does not. The LG/J strain also can re-
generate damaged articular cartilage [62] and is pro-
tected from post-traumatic osteoarthritis [63].
Others have mapped a variety of behavioral phenotypes

using a LG x SM cross, including prepulse inhibition [64]
and methamphetamine sensitivity and locomotor activ-
ity [65]. Additional studies have investigated blood cell
parameters [66] and skeletal muscle weight and fiber
types [67,68].
Here we describe the whole-genome sequences of the

LG/J and SM/J inbred mouse strains, adding two more se-
quences to the collection of whole-genomes of laboratory
mice [69,70]. We integrate these sequences with quantita-
tive trait loci (QTL), and illustrate how top-down (pheno-
type to genomic sequence) and bottom-up (genomic
sequence to phenotype) approaches can be used to iden-
tify candidate quantitative trait genes (QTG) and prioritize
positional candidate quantitative trait nucleotides (QTN)
for further mechanistic studies. Results from QTL studies
using crosses of LG/J and SM/J will be more interpretable
given these whole-genome sequences.
Results and discussion
LG/J and SM/J whole-genome sequences
Sequence was generated from DNA isolated from 1 LG/J
female and 1 SM/J female as described below. Variants
(comprised of small nucleotide variants (SNVs) including
single nucleotide polymorphisms (SNPs) and small
insertion-deletions (Indels) and structural variants (SVs)
including deletions, insertions and inversions) were dis-
covered based on whether they were the same as, or dif-
ferent from, the C57BL/6J reference sequence (mm10,
NCBI build 38). Greater than 90% of reads for each strain
could be uniquely mapped to the reference genome and,
based on a genome size of 2.5G, our coverage is approxi-
mately 35X and 30X for LG/J and SM/J, respectively.
Overviews of annotated variants identified for each strain
individually, as well as those that are polymorphic between
LG/J and SM/J, are described in Tables 1 and 2 and in
Additional files 1 and 2. SNVs identified for the LG/J
strain are available in Additional files 3 and 4 and for the
SM/J strain in Additional files 5 and 6. Structural variant
positions and classifications for each strain are available in
Additional file 7. Polymorphic variants and their genomic
context are illustrated in Figure 1. Quality was assessed by
comparing our SNP calls with SNPs in dbSNP that were
called from unpublished low-coverage sequence generated
independently via two separate library preparations for
LG/J (≈18X) and SM/J (≈14X) (Table 3).
We compared SNPs identified in LG/J and SM/J to

those identified in other mouse strains sequenced at
high coverage and identified novel variants (Table 1).
Pairwise distances were calculated for LG/J and SM/J
from each of these strains and a phylogenetic tree was
constructed using all 20 mouse sequences (Additional
files 8 and 9). The LG/J and SM/J ancestries are ex-
pected given what we know about their origins and pre-
vious studies of inbred mouse phylogenies [71]. It has
been suggested that the SM/J strain may be related to
the current DBA strains, DBA/1J and DBA/2J, as one of
the seven strains contributing to the base population
that was selected for smaller body weight was a dba
strain named after its dilute brown agouti coat color
[72]. Comparison of SNPs between LG/J or SM/J and
the sequenced DBA/2J shows no specific relationship be-
tween SM/J and DBA/2J. However, the percent shared
SNPs between inbred mouse strains can be biased by the
use of C57BL/6J as the reference genome since variants
may be missed due to alignment quality favoring bases
that match the reference.

Functional predictions
Deleterious amino acid mutations in LG/J and SM/J
were predicted using three independent methods: LRT
[73], PolyPhen-2 [74] and SIFT [75] as implemented in
VEP [76]. The LRT compares the probability that a



Table 1 Sequence and variants overview

Strain Total
reads

% Mapped
to reference

Coverage SNPs Strain-Specific
SNPs*

Indels Strain-Specific
Indels*

SVs Strain-Specific
SVs*

LG/J 9.6x108 91.72 35X 4,663,723 146,814 1,127,072 56,469 12,802 1,361

SM/J 7.7x108 92.67 30X 4,792,568 227,132 1,127,458 65,935 15,564 2,255
*Refers to strain-specific variants with respect to 18 other available mouse genome sequences.
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codon has evolved under a conserved model to the
probability that a codon has evolved under a neutral
model. The conserved model allows a codon to have
evolved under negative selection and the neutral model
assumes the rates of nonsynonymous and synonymous
mutations are not significantly different. PolyPhen-2
uses both sequence- and structure-based predictive fea-
tures to characterize the functional importance of a mu-
tation, making use of non-redundant protein databases.
SIFT is based on the principles of protein evolution and
has been applied to a variety of organisms ranging from
bacteria to humans. The algorithm is based on sequence
homology and uses a median conservation score to
measure protein conservation. The numbers of deleteri-
ous amino acid predictions for each strain are listed in
Table 4 and predicted scores are provided in Additional
file 10. The intersections of these predictions for SNPs
that are polymorphic between LG/J and SM/J are illus-
trated in Figure 2. It is worth noting that the three differ-
ent methods give largely non-overlapping results, which is
consistent with a similar analysis using human genomes
[73]. This result implies that our ability to reliably anno-
tate whole genome sequences is still somewhat lacking.
In addition to SIFT predictions, VEP identifies variants

falling in noncoding and potentially regulatory regions
that may impact a gene’s expression. An overview of po-
tentially functional regulatory variants is listed in Table 4
and positions and scores are provided in Additional files
11 and 12.

LG/J, SM/J identical by descent regions
We identified genomic regions that are highly conserved
between LG/J and SM/J using a hidden Markov model
(Figure 1 and Additional file 13). These regions are de-
fined as stretches of sequenced DNA ≥ 50kbp in length
containing little to no polymorphism between the
strains. These regions are likely to be identical by des-
cent (IBD), and are non-randomly distributed through-
out the genome, being more clustered than expected by
Table 2 Genomic overview of structural variants

Variant LG/J SM/J Polymorphic*

Deletion 7,697 9,889 11,206

Insertion 5,038 5,590 7,698

Inversion 94 159 184
*Refers to polymorphisms between LG/J and SM/J.
chance (p < 2.2e−16, Wald-Wolfowitz test). We classified
39% of the LG/J and SM/J sequenced genomes as IBD.

LG x SM QTL and whole-genome sequences
We integrated all of these data – IBD regions, polymor-
phisms and functional predictions – with 272 published
QTL for metabolic traits (obesity, diabetes and serum-
lipids) and for bone-growth traits (femur, humerus, radius
and tibia length) mapped in very advanced intercrosses of
LGxSM [37,48-51]. LOD scores range from 2.4 to 11.89
and are significant for their respective study. Additional
file 14 describes these QTL, including their genomic coor-
dinates, and their integration with various sequence char-
acterizations. Figure 1 illustrates these QTL in relation to
the sequence parameters we have generated. We find that
27% of all QTL interrogated in this study are covered by
IBD bases, whereas 39% would be expected if they were
randomly distributed. We find that both trait-specific
QTL peaks (the point of the QTL with the lowest prob-
ability of a chance association with a specific trait) and
QTL-specific peaks (accounting for pleiotropy, where
more than one trait maps to a locus) are over-represented
in non-IBD regions (χ2 = 42.6, df = 1, p = 6.6x10−11 for
trait-specific peaks and χ2 = 16.8, df = 1, p = 4.03x10−05 for
QTL-specific peaks). Further, we find that QTL regions
are more likely to harbor variants that are predicted to
have a functional impact by comparing the number of
amino-acid changing variants predicted to be damaging by
at least one algorithm and the number of variants pre-
dicted to fall in high-impact positions of transcription fac-
tor binding sites to empirical distributions of numbers
generated from 1000 sets of randomly chosen non-QTL,
non-IBD regions of similar size (p < 2.2e−16 for both amino
acid changing and TFBS variants, Additional file 15).
Integrating these data provides an opportunity to exam-

ine variation between LG/J and SM/J from both bottom-
up (genomic sequence to phenotype) and top-down
(phenotype to genomic sequence) perspectives with the
goal of identifying plausible quantitative trait nucleotides
(QTN) for testing mechanistic hypotheses. To illustrate a
bottom-up approach, we focus on a SNP identified in the
SM/J strain (chr13:104,041,257 A→C) falling in a cMyb
TFBS (JASPAR ID MA01001) with a predicted high-
impact (Figure 3). This position overlaps regulatory ele-
ments including H3K36 and H3K4 histone marks and a
DNase1 hypersensitive site (ENSMUSR00000276453). The
SNP falls in an intronic region of the oligopeptidase



Figure 1 Circos plot illustrating the integration of polymorphic SNVs, SVs, and regions that are predicted to be identical-by-descent (i.e. harboring little
to no variation) between the LG/J and SM/J inbred strains. These data are combined with QTL for metabolic traits mapped in an F16 advanced intercross
between LG/J and SM/J and with QTL for bone-growth traits mapped in an F34 advanced intercross between these two strains.

Table 3 Comparison of high-coverage SNPs to low-coverage
sequence in dbSNP

LG/J SM/J

Number of matched positions and variants 3,693,085 3,798,743

Number of mismatched variants at matched
positions

20,266 44,582

Number of SNPs in dbSNP not called in high
coverage genomes

411,859 391,672

New SNP variants identified in high coverage
sequence

942,372 941,383
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neurolysin, Nln (NM_029447). Nln knockout mice have
been shown to be more insulin sensitive and glucose toler-
ant and to have increased gluconeogenesis relative to lit-
termate controls [77]. In mammals, the liver is the main
site of gluconeogenesis. A microarray analysis of hepatic
gene expression shows Nln to be highly significantly differ-
entially expressed between LG/J and SM/J, with the SM/J
strain’s expression barely detectable [78]. This gene falls
within the support intervals of a QTL associated with
basal serum glucose levels in an F16 generation of an ad-
vanced intercross (AI) between the LG/J and SM/J strains
[50]. Thus Nln is an attractive candidate quantitative trait



Table 4 Variants of predicted functional importance

LRT PolyPhen2 SIFT Highly Informative Highly Informative

TFBS (SNPs) TFBS (Indels)

LG/J 800 2,748 2,198 578 61

SM/J 928 2,907 2,271 629 60

Polymorphic* 950 3,353 2,691 662 90
*Refers to polymorphisms between LG/J and SM/J.
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gene (QTG) and this SNP is an attractive quantitative trait
nucleotide (QTN) for further mechanistic studies of Nln
involvement in glucose metabolism.
To illustrate a top-down approach, we focus on a

QTL mapped in an F34 generation of the LGxSM AI
that is associated with variation in tibia length at chr6:
20,650,821-23,746,386 (Figure 4). There are 12 protein
coding genes and 10 RNA genes falling within the QTL
support interval [37]. Two of these genes, Wnt16
(NM_053116) and Ptprz1 (NM_001081306), are involved
in limb development and/or bone formation [79,80]. Vari-
ants in a third gene, Cped1 (NM_001081351), have recently
been associated with variation in bone mineral density in a
GWAS [81]. 23% of this QTL is covered by bases falling in
IBD regions, but these three genes are located in non-IBD
portions of the QTL. Three nonsynonymous SNPs fall in
Cped1 and are predicted to have functional consequences
by at least one of the algorithms used: LRT, PolyPhen or
SIFT. A fourth nonsynonymous SNP is predicted to have
functional consequences by all three algorithms making it a
highly attractive QTN. The SNP falls in exon 14 of Ptprz1
(ENSMUSE00000619494, position 23016230 C→A;
P1676H). This exon is highly conserved. Sanger se-
quencing confirmed the SM/J variant and the amino
acid changing polymorphism between the strains.
Ptprz1 encodes the protein R-PTP-Z, which is thought
to modulate osteoblast metabolism through
Figure 2 Proportional Venn diagram illustrating the intersections of
three independent methods of predicting a functionally damaging
amino acid changing SNP between the LG/J and SM/J strains.
dephosphorylating Src, which plays a key role in osteo-
blast activities such as adhesion and differentiation
[82,83]. The amino acid change occurs in the SM/J
strain, and the only other strain of sequenced mouse
carrying this variant is NZO/HlLtJ. NZO/HlLtJ is a
common laboratory strain used as a model of metabolic
syndrome because of its extreme obesity and hypergly-
cemic phenotype [84]. It bears no special relationship with
SM/J, despite sharing this particular variant and a similar
metabolic phenotype on a high-fat diet.

Conclusions
Here we describe the whole-genome sequences for the
LG/J and SM/J inbred mouse strains. LG/J and SM/J are
frequently compared in QTL mapping studies because
of their great phenotypic diversity, and because this di-
versity is normally distributed in intercrosses of these
two strains. This makes LG x SM an ideal model system
for studying the genetic architecture of normal variation
in complex traits, because this most closely mimics that
found in human populations, where most variation is
the result of many interacting genes of individually small
effects. Comparison with previous imputation methods
using SNPs called from low-coverage sequence for LG/J
and SM/J indicated that there were many unreported
variants in these strains [51,85]. Our sequence provides
higher resolution, which allows us to capture more of
the genomic sequence variation found in these strains
with greater certainty.
Because we are interested in identifying candidate vari-

ants for functional follow-up, our first order of business
was to identify regions of the LG/J and SM/J genomes
that do not vary between the strains. Identification of
IBD genomic regions is a powerful way to narrow exist-
ing QTL support intervals, as the regions that do not
vary between the strains are unlikely to cause variation
in the mapped trait. Further, identification of IBD and
non-IBD regions between two strains is a powerful tool
for testing mechanistic hypotheses and for planning fo-
cused candidate gene studies [86]. We classified 39% of
the LG/J and SM/J sequenced genomes as IBD, and we
are able to use this classification to narrow QTL support
intervals by orders of magnitude when eliminating
stretches of DNA that contain little to no variation be-
tween the parental strains within QTL support intervals.
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Figure 3 Connecting a putative quantitative trait nucleotide (QTN) with a candidate quantitative trait gene (QTG). A: A SNP identified in the SM/J
strain (chr13:104041257 A→C) falls in a highly informative position (position 2) of a predicted cMyb TFBS. B and C: This SNP falls in an intron of Nln, a
protein-coding gene associated with gluconeogenesis. Nln falls in a QTL associated with variation in basal glucose levels in an F16 generation of a LG x
SM advanced intercross and is highly significantly differentially expressed between the LG/J and SM/J strains. C: This variant overlaps multiple regulatory
elements and is a strong candidate for mechanistic studies of Nln function in glucose metabolism.
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Eliminating these regions does not explicitly rule them
out as harboring potentially causal variants, however fo-
cusing on the non-IBD sequence within QTL support
intervals – especially on the variants predicted to have
functional consequences – allows one to prioritize the
so-called ‘low-hanging fruit’. Other commonly used
strain pairs, such as C57BL/6J and DBA/2J, have been
sequenced but have not been subject to such close
evaluation of IBD genomic regions within QTL.
We integrated the rich source of QTL results generated by

very advanced intercrosses of LG x SM for metabolic traits
(231 QTL associated with variation in obesity, diabetes and
serum-lipids) mapped in the F16 and for bone-growth
traits (41 QTL associated with variation in femur, hu-
merus, radius and tibia) mapped in the F34 generations
with the LG/J and SM/J genomic sequences. The median
QTL interval in the F16 data is ≈ 3.5mB and for the F34 it
is ≈ 2.0mB (Additional file 14). We find that ≈ 29% of F16
and ≈ 19% of F34 QTL intervals are covered by IBD
regions. Subtracting these IBD regions from QTL reduces
the genomic search space for both generations, resulting in
a comparable ≈ 1.2mB median number of per QTL bases
for both F16 and F34 generations. We find that QTL from
both generations have proportionally equivalent numbers
of SNVs, bases covered by SVs, and bases predicted to have
functional consequences (Additional file 14). Further, we
find that QTL regions as a class are more likely to harbor
variants predicted to have functional consequences relative
to randomly selected non-QTL and non-IBD genomic re-
gions of similar size (Additional file 15).
The traits associated with the QTL interrogated here be-

long to different classes of quantitative phenotype, namely
metabolic traits mapped in the F16 generation and develop-
mental traits mapped in the F34 generation. Having QTL
for the same trait replicate in multiple generations of a
mapping study increases the probability that the QTL is
causal. However, given the high costs (both financial and
time-wise) of breeding and maintaining large populations
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Figure 4 (See legend on next page.)
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Figure 4 Connecting phenotypic variation (QTL) to a candidate quantitative trait gene (QTG) and putative quantitative trait nucleotide (QTN). A
and B: Variation in tibia length (mm) between LG and SM mapped to a QTL on chromosome 6. C: This QTL was localized to a genomic region
and intersected with LG/J, SM/J SNPs and IBD regions. D: SNPs falling in non-IBD regions were interrogated and a SNP falling in exon 14 of Ptprz1,
which affects bone-growth, was identified. The SNP changes the encoded amino acid from proline to histidine. E: This amino acid is 100% IBD
and the amino acid variant occurs in SM/J and one other unrelated strain of laboratory mouse, NZO/HlLtJ. This SNP is predicted to be functionally
damaging by the LRT, PolyPhen-2 and SIFT algorithms, and represents a fruitful candidate QTN for further functional follow-up.
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of mice for many generations, incorporating whole-
genome sequence parameters as we have illustrated here
can be used to extract compelling information from QTL
mapped in earlier generations of intercrosses, even when
the support intervals span many mega-bases of sequence.
Thus whole-genome sequence data should be made part
of the toolkit used to inform the design, execution and
follow-up of QTL mapping studies.
We have highlighted variants falling in a QTL on chromo-

some 13 associated with basal glucose levels and a QTL on
chromosome 6 associated with tibia length (Figures 3 and 4)
to illustrate how all of these data – whole genome sequence
variants, IBD regions, QTL, and functional predictions – can
be integrated with each other and with other public datasets
to identify and prioritize QTG and QTN. Identifying such
variants within QTL in mice can facilitate translational re-
search for correlated traits in human studies, and potentially
uncover genetic underpinnings of disease phenotypes [87,88].
Our initial description and analysis of the LG/J and SM/J
whole genomes offers new data that can be used to address
fundamental questions about the molecular nature of quanti-
tative phenotypic variation in an important model system.

Methods
Ethics statement
All animal care and handling procedures conformed to
IACUC guidelines.

DNA isolation and library construction
DNA was isolated from the livers of one adult female LG/
J and one adult female SM/J mouse using the Qiagen
DNAeasy Blood and Tissue kit (Qiagen, West Sussex,
UK). Genomic DNA was sonicated to an average size of
175 bp. The fragments were blunt ended, had addition of
“A” base to 3’ end, and had Illumina’s sequencing adapters
ligated to the ends. The ligated fragments underwent
amplification incorporating a unique indexing sequence
tag. The resulting libraries were sequenced on 6 lanes
using the Illumina HiSeq-2500 as paired end reads ex-
tending 101 bases from both ends of the fragments.

Alignment and SNV detection
Reads were aligned to the GRC m38 (mm10) mouse refer-
ence genome using NovoAlign-2.08.02 and a BAM file
was produced for each strain (http://www.novocraft.com).
The gene annotation model used was Ensembl Mus
musculus GRC 38.72. Variants were called from each
strain’s BAM file using two variant discovery tools:
SAMtools pileup and FreeBayes Bayesian genetic variant
detector [89,90]. Results were merged and only variants
with a minimum read depth of 3 and a quality score of
at least 20 for SNPs and at least 50 for indels were in-
cluded in the final set of SNVs for analysis.

Quality assessment and Sanger sequencing candidate
variant
SNPs identified for LG/J and SM/J were compared to
SNPs called from independently generated, low-coverage
sequence available on dbSNP [91] using custom python
scripts. DNA was isolated from the livers of 4 female
LG/J and 4 female SM/J animals to validate the candi-
date amino acid changing mutation P1676H in exon 14
of Ptprz1. The following primers were designed: Forward
5’-GCT CCA TGG CCA CTA TCT TTA CTC-3’ and re-
verse 5’-CAA TTC ATG CCT CAA GGT GAC TGC-3’.
Sanger sequencing was performed by Genewiz (South
Plainfield, NJ).

Comparison with variants identified in other sequenced
mouse strains
VCF files for SNPs discovered in 18 mouse strains’
whole-genomes were downloaded (http://www.sanger.
ac.uk/resources/mouse/genomes) and compared to LG/
J and SM/J SNPs using custom python scripts.

Structural variant prediction
Structural variants (SV) were identified using a local im-
plementation of the SVmerge pipeline [92]. SVmerge
simplifies SV discovery and integration using multiple
SV discovery algorithms, producing a single consensus
SV callset. The SVmerge pipeline was run with 4 calling
algorithms: Breakdancer 1.0, pindel 0.2.4q, SECluster
and cnD [92-95]. After merging the results of these 4
callers into a single consensus callset, the Velvet genome
assembler was used to attempt breakpoint assembly for
all SVs in the callset [96].

Deleterious mutation prediction
LRT
Deleterious amino-acid changing mutations were pre-
dicted using a likelihood ratio test (LRT) as described in

http://www.novocraft.com
http://www.sanger.ac.uk/resources/mouse/genomes
http://www.sanger.ac.uk/resources/mouse/genomes
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Chun and Fay (2009). The algorithm was modified to
compare the genomes of LG/J and SM/J each to the refer-
ence C57BL/6 J. P-values were calculated by comparing
twice the log-likelihood ratio of the two models to a χ2

distribution with df = 1. Deleterious amino acid changing
mutations were predicted using an LRT cutoff of p < 0.001
while controlling for false positives and false negatives as
previously described and modified for mouse genomic se-
quence [73].

PolyPhen-2
PolyPhen-2 was downloaded and run locally to predict
deleterious mutations in the LG/J and SM/J genomes.
The algorithm supports analysis of mouse proteins using
prebuilt human models if the option ‘-n mouse’ is speci-
fied when preparing the local copy of UniProtKB
(www.uniprot.org). Deleterious amino acid changing
mutations were predicted for both strains using a rec-
ommended false discovery rate (FDR) cutoff of 20% [74].

VEP and SIFT
VEP was downloaded and run locally to predict deleterious
mutations in the LG/J and SM/J genomes using alignments
built using the TrEMBL 39.8 protein database. Deleterious
amino acid changing mutations were predicted for both
strains using a score of < 0.05 and a median conservation
cutoff of 3.25. Regulatory annotations are based on the
Ensembl regulatory build, which integrates data from EN-
CODE and several other large scale projects. Transcription
factor binding site (TFBS) variant scoring is provided for
regulatory regions that have ChIP-seq data to support
binding predictions. This is done using the MOODS soft-
ware [97], which assigns significance scores by matching
polymorphisms against motifs in the JASPAR database
[98]. The output was filtered for TFBS sites that are classi-
fied as ‘Highly Informative’ by the software.

IBD region identification
To identify regions of shared ancestral background, we
clustered segments of observed polymorphisms using a
two state hidden Markov model. For each state, we mod-
eled two types of observations: 1) the number of polymor-
phisms in a 50kbp window; and 2) the observation of a SV
in a 50kbp window. The count of polymorphisms is
expressed as a Poisson variable, while the occurrence of a
SV is a Binomial variable. Parameters for this model were
estimated using the EM algorithm implemented in the
depmixS4 package in the R programming language [99]. A
Wald-Wolfowitz test of randomness was performed using
the adehabitatLT package in R [100].

Data integration
The QTL interrogated in this study are from previously
published studies that mapped to the mm9 (NCBI build
37) mouse reference genome. QTL peaks and support
intervals were converted to mm10 (GRC m38) using the
Batch Coordinate Conversion (liftOver) tool [101]. Se-
quence data and results generated here were integrated
with other published and publically available data as in-
dicated using custom python and R scripts.
Data access
We have made these data available to the community
through multiple data portals: LG/J (SAMN03075510) and
SM/J (SAMN03075514) raw reads have been submitted to
the NCBI Sequence Read Archive and BAM files have been
submitted to the Wellcome Trust mouse genomes portal
(http://www.sanger.ac.uk/resources/mouse/genomes). Other
results from this study are available as Additional files 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
Additional files

Additional file 1: LG/J, SM/J and LG/J x SM/J polymorphic SNPs
overview.

Additional file 2: LG/J, SM/J and LG/J x SM/J polymorphic indels
overview.

Additional file 3: SNPs in LG/J discovered by integrating output
from SamTools pileup and FreeBayes variant discovery tools.

Additional file 4: Indels in LG/J discovered by integrating output
from SamTools pileup and FreeBayes variant discovery tools.

Additional file 5: SNPs in SM/J discovered by integrating output
from SamTools pileup and FreeBayes variant discovery tools.

Additional file 6: Indels in SM/J discovered by integrating output
from SamTools pileup and FreeBayes variant discovery tools.

Additional file 7: Structural variants found in LG/J and SM/J.

Additional file 8: Distances between the LG/J and SM/J strains and
other sequenced strains.

Additional file 9: Phylogenetic tree of 20 sequenced mouse strains.

Additional file 10: Amino acid changing mutations and
corresponding deleterious predicted scores using SIFT/polyphen/
LRT for both LG/J and SM/J strains.

Additional file 11: VEP output of variants in predicted regulatory
features for both LG/J and SM/J.

Additional file 12: VEP output of variants in predicted motifs for
both LG/J and SM/J.

Additional file 13: Predicted IBD regions in LG/J and SM/J
sequenced genomes.

Additional file 14: QTL metrics and sequence integration.

Additional file 15: Distribution of the number of variants predicted
to have functional consequences in QTL intervals and in 1000 sets
of randomly selected non-QTL regions of similar size.
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