Density wave instabilities in a correlated two-dimensional metal

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1103/PhysRevB.90.155114</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:16319736</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Bond order instabilities in a correlated two-dimensional metal

Andrea Allais, Johannes Bauer, and Subir Sachdev

Department of Physics, Harvard University, Cambridge MA 02138

(Dated: April 4, 2014)

Motivated by recent experimental evidence of charge order in the pseudogap phase of cuprates, we perform a variational analysis of charge-neutral, spin-singlet ordering in metals on the square lattice, using a wavefunction with double occupancy projected out. We examine ordering with and without time-reversal symmetry, with arbitrary wavevector and tunable form factor. Depending on parameters, we find d-wave bond density wave ordering with wavevector either parallel to the lattice generators or diagonally oriented, or a ground state which carries a time reversal-breaking pattern of spontaneous currents.

There is growing experimental evidence that charge density wave order is a generic feature of underdoped cuprate high temperature superconductors. Its presence has been long established in La$_2$CuO$_4$ based compounds [1,2]. In BSCCO, periodic modulations in the local density of states have been detected with STM, both in the mixed state near the vortex cores [3], and in the pseudogap state [4]. In YBa$_2$Cu$_3$O$_y$, long range, static charge order has been detected with NMR [5,6], and its effects show up in thermodynamic properties [7]. This order may explain the quantum oscillations seen in high magnetic field [8,9]. At zero field, incommensurate charge order has been detected with resonant [10,11] and hard [12] X-ray scattering. Collectively, the experiments point to the existence of incommensurate charge correlations in the CuO$_2$ plane, which are stabilized to static, long range order by a magnetic field, and in general compete with superconductivity. The wavevector is consistently found to be directed along the copper-oxygen bonds, and appears to be related to geometric properties of the Fermi surface [13] (Fig. 1). There are also indications that the charge order lies predominantly on the bonds connecting the Cu sites [14,15].

Motivated by these remarkable experimental developments, we present a thorough exploration of charge density wave (CDW) instabilities in a strongly correlated, antiferromagnetic metal as described by a variational wavefunction in which doubly-occupied sites are projected out. Our main conclusions are that i) the antiferromagnetic interaction and electron correlations can cause the condensation of a d-wave CDW with the experimentally observed wavevector (we define a d-wave CDW as in Refs. [22,23]—see below), a result that proved elusive so far under controlled approximations, and ii) for a different range of parameters, a state is favored which supports time-reversal breaking permanent currents, known in the literature as the staggered flux (SF) state [17,21].

From a theoretical point of view [22,32], a charge/bond density wave is a natural instability of a metal with antiferromagnetic interactions. This was explored in the context of a weak coupling analysis in Ref. [23] which showed that a bond-density wave arises with a wavevector Q and a local d-wave pattern of the bond modulations. Consistent with expectations, the wavevector Q was found to be very close to that connecting two hot spots on the Fermi surface (FS), which are points of the FS connected by the antiferromagnetic wavevector $K = (\pi, \pi)$ (Fig. 1). However, the globally optimal wavevector was found to run diagonally. A restricted optimization for wavevectors parallel to the copper-oxygen bonds [23] (the wavevector direction observed in experiments) also yielded a wavevector close to that connecting hot spots (Fig. 1) and with a form factor which remained predominantly d-wave.

Here we show how strong electron correlations modify the picture above. We account for those Mott correlations variationally, using a Gutzwiller projected wavefunction which suppresses double occupancy of all sites [33-38]. We allow the condensation of a charge density waves with arbitrary wavevector and with tunable form factor (the form factors determines the intra-unit-cell structure of the density wave), as well as states which break time-reversal symmetry and carry different patterns of spontaneous currents. Among previously studied states, our study includes charged stripes [39], bond density waves [11,40], Ising-nematic order [41,42], staggered flux states [17,21], and states with spontaneous currents [44]. Our main results are summarized below in Fig. 3.
we find regimes where the globally optimal state has a CDW with wavevector very close to \((Q_0, 0)\) and a \(d\)-wave form factor.

We consider the following model of a metal with antiferromagnetic and Coulomb interactions,

\[
H = \sum_{\mathbf{x}, \mathbf{a}} \left[-t_a c_{\mathbf{x}+\mathbf{a}}^\dagger c_{\mathbf{x}} + \frac{J_a}{8} c_{\mathbf{x}+\mathbf{a}}^\dagger \sigma c_{\mathbf{x}+\mathbf{a}} \cdot c_{\mathbf{x}} + c_{\mathbf{x}}^\dagger \sigma c_{\mathbf{x}} + \frac{V_a}{2} c_{\mathbf{x}+\mathbf{a}}^\dagger c_{\mathbf{x}} c_{\mathbf{x}+\mathbf{a}}^\dagger c_{\mathbf{x}} \right] + H_U,
\]

where the electrons \(e\) live on the sites \(\mathbf{x}\) of a square lattice with spacing \(a = 1\) and \(\sigma\) is the vector of Pauli matrices, which act on an implicit spin index. The vector \(\mathbf{a}\) connects neighboring sites, and we allow first, second, and third neighbor hoppings \(t_1, t_2, t_3\), respectively. However, we limit the Coulomb \((V)\) and exchange \((J)\) interactions to the nearest neighbors. \(H_U\) represents an infinite onsite Coulomb repulsion, which we account for by projecting out doubly occupied sites. The couplings are real and preserve all lattice symmetries, and we work at fixed density.

We seek to minimize the energy of the Hamiltonian \([1]\) within the space of states

\[
|\text{var} \rangle = \left[\prod_i \left(1 - n_{i\uparrow} n_{i\downarrow} \right) \right] |\text{gd}(H_{\text{var}})\rangle,
\]

where \(|\text{gd}(H_{\text{var}})\rangle\) is the ground state of the quadratic hamiltonian

\[
H_{\text{var}} = \sum_{\mathbf{x}, \mathbf{a}} \left[-T_a + \phi_a \cos Q \cdot (\mathbf{x} + a/2) \right] c_{\mathbf{x}+\mathbf{a}}^\dagger c_{\mathbf{x}},
\]

and the state \(|\text{var}\rangle\) has no doubly occupied sites by construction. \(T_a\) are variational hopping parameters and \(\phi_a\) parameters for the ordering wave-function. We note that the particular parameterization in Eq. \([3]\) is carefully chosen \([22, 23]\): it is crucial that \(Q\) couple to the center-of-mass co-ordinate of the particle-hole pair for an efficient symmetry characterization of order parameters at incommensurate \(Q\). Previous analyses \([19, 44, 45]\) did not make this choice.

This variational ansatz allows for the condensation of a charge/bond density wave with wavevector \(Q\), whose local pattern (the form factor) is determined by the wavefunction \(\phi\). That is,

\[
\langle c_{\mathbf{x}+\mathbf{a}}^\dagger c_{\mathbf{x}} \rangle_{\text{var}} = -T_a + \bar{\phi}_a \cos \left(Q \cdot (\mathbf{x} + a/2) \right),
\]

where \(\bar{\phi}\) is nonzero if and only if \(\phi\) is nonzero, and they both have the same symmetries under point group transformations and time reversal. We further restrict \(\phi_a\) to have the form

\[
\phi_a = P_1 \delta_a + P_2 (\delta_a - \hat{\mathbf{x}} \cdot \mathbf{a} + \delta_a - \hat{\mathbf{y}}) + P_3 (\delta_a - \hat{\mathbf{x}} + \delta_a + \delta_a + \hat{\mathbf{y}}) + P_4 (\delta_a + \hat{\mathbf{x}} + \delta_a - \hat{\mathbf{y}} - \delta_a - \delta_a + \hat{\mathbf{y}}) + P_5 (\delta_a - \hat{\mathbf{x}} - \delta_a - \hat{\mathbf{y}} + \delta_a + \delta_a + \hat{\mathbf{y}}),
\]

with \(\hat{\mathbf{x}} = (1, 0), \hat{\mathbf{y}} = (0, 1)\). Time reversal is preserved if \(P_3 = P_5 = 0\). If \(P_1, P_2 \gg P_3\), a predominantly \(s\)-wave charge/bond density wave is induced, whereas \(P_1, P_2 \ll P_3\) induces a predominantly \(d\)-wave bond density wave. It is important to notice that, for generic \(Q\), \(s\) - and \(d\)-wave characters mix, so that \(P_3 = 0\) does not imply that \(\bar{\phi}_a\) is purely \(s\)-wave. If \(P_1\) or \(P_3\) are nonzero, a time reversal breaking pattern of spontaneous currents is created. In particular the state with only \(P_3 \neq 0\) and \(Q = (\pi, \pi)\) is the staggered flux state. Figure 2 shows a schematic representation of a few relevant CDW and spontaneous current patterns.

We carry out the variational computation in a slightly unusual way. Ideally, we would like to prescribe, and keep fixed, the Fermi surface of the system, especially the presence and location of hot spots. This is the Fermi surface seen in, say, photoemission experiments, and it is different from the one obtained from the kinetic term in \([1]\), because of interaction effects. This “true” Fermi surface is not easily accessible, but the Fermi surface of the optimal variational Hamiltonian is a close proxy. Therefore, instead of minimizing with respect to the variational hoppings \(T_a\), we set them to values of our satisfaction, and tune the bare hoppings \(t_a\) in such a way as to make our choice a variational optimum \([30]\). We carry out this procedure while having all \(P_i = 0\), then we look at what

FIG. 2. Schematic illustration of the ordering patterns in real space. a) diagonal \(d\)-wave CDW \((P_3 \neq 0, Q = (0.25, 0.25)\pi)\) b) horizontal, predominantly \(d\)-wave CDW \((P_3 \neq 0, Q = (0.25, 0)\pi)\) c) staggered flux state \((P_3 \neq 0, Q = (\pi, \pi))\). For the time reversal invariant orders a) and b) we show the fluctuation of \(c_{\mathbf{x}+\mathbf{a}}^\dagger c_{\mathbf{x}}\) about the average with positive (red) and negative (blue) values. For the time reversal breaking order c) we show the pattern of permanent currents.
CDW order can further improve the variational bound, while keeping \(T_2 \) fixed. For each wavevector \(Q \), we minimize the variational energy, \(\langle \text{var} | H | \text{var} \rangle \), with respect to the parameters \(P_i \), one at a time. For a few choice wavevectors \(Q \) we also looked at simultaneous minimization with respect to \(P_1 \), \(P_2 \) and \(P_3 \), without finding significant additional energy gains. This three parameter minimization is the limit of the computational resources at our disposal.

In order to have sufficient momentum resolution, we use a lattice of \(32 \times 32 \) sites. Because the wavefunction is not a smooth function of the variational parameters, we cannot use derivative information to carry out the minimization, so we compute the energy over a grid of points in variational space. More precisely, we store the expectation value of every operator making up the Hamiltonian \([4]\). This allows us to explore the parameter space without having to compute the energy for every setup. Our grid comprises a total of about 30,000 points in variational space, each point requiring about 12 hr of CPU time on a 1.7GHz AMD Opteron.

Fig. 3 illustrates the results of this variational analysis. For a few representative choices of model parameters, we show the \(Q \) values the system finds it energetically favorable to order. The form factor corresponding to each energy minimum is not explicitly shown in the plots above. The setup corresponding to the plot above is indicated with a black dot. Model parameters (values in the brackets correspond to plots from left to right): \(x = 10\% \), \(t_1 = 1 \), \(t_2 \in \{0.5, 0.16, 0.18\} \), \(t_3 \in \{0.6, 0.9, 1.6\} \), \(J \in \{0.09, 0.235, 0.4\} \), \(V \in \{1, 1.5, 0.5\} \). Variational parameters: \(T_1 = 1 \), \(T_2 \in \{-0.1, -0.32, -0.5\} \), \(T_3 = 0.128 \). As described in the text the Fermi surface is determined by the \(T_2 \) parameters.
we expect that the \(Q = (Q_0, 0) \) CDW can coexist with the staggered flux state, since their mixing is prevented by time-reversal symmetry.

Our computations have shown that the observed charge order with \(Q \) along the copper-oxygen bonds appears over a regime of parameters in a variational computation of a correlated metal with antiferromagnetic interactions. The magnitude of \(Q \) is close to that determined by the antiferromagnetic hot spots (Fig. 1), and its form factor was robustly found to be predominantly \(d \)-wave (defined as in Refs. [22] [23]).

After our study was complete, we learnt of the related study of Ref. [46] addressing symmetry breaking in the superconductor, rather than the metal, in a model with only nearest-neighbor hopping.

We also note recent experimental reports [47, 48] concluding that the charge order at \((Q_0, 0)\) is predominantly \(d \)-wave, as discussed above.

We thank D. Chowdhury, A. Georges, and J. Sau for valuable discussions. The research was supported by the U.S. National Science Foundation under grant DMR-1103860, and by the Templeton Foundation. JB acknowledges financial support from the DFG through SFB 689.

References: