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Abstract 

Students' struggles with algebra are well documented. Prior to the 

introduction of functions, mathematics is typically focused on applying a set of 

arithmetic operations to compute an answer. The introduction of functions, 

however, marks the point at which mathematics begins to focus on building up 

abstractions as a way to solve complex problems. A common refrain about word 

problems is that “the equations are easy to solve - the hard part is setting them 

up!” A student of algebra is asked to identify functional relationships in the world 

around them - to set up the equations that describe a system- and to reason about 

these relationships. Functions, in essence, mark the shift from computing 

answers to solving problems.  

Researchers have called for this shift to accompany a change in pedagogy, 

and have looked to computer programming and game design as a means to 

combine mathematical rigor with creative inquiry. Many studies have explored the 

impact of teaching students to program, with the goal of having them transfer what 

they have learned back into traditional mathematics. While some of these studies 

have shown positive outcomes for concepts like geometry and fractions, transfer 

between programming and algebra has remained elusive. The literature identifies a 

number of conditions that must be met to facilitate transfer, including careful 

attention to content, software, and pedagogy. 



  

 

This dissertation is a feasibility study of Bootstrap, a curricular intervention 

based on best practices from the transfer and math-education literature. Bootstrap 

teaches students to build a video game by applying algebraic concepts and a 

problem solving technique in the programming domain, with the goal of 

transferring what they learn back into traditional algebra tasks. The study 

employed a mixed-methods analysis of six Bootstrap classes taught by math and 

computer science teachers, pairing pre- and post-tests with classroom observations 

and teacher interviews. Despite the use of a CS-derived problem solving 

technique, a programming language and a series of programming challenges, 

students were able to transfer what they learned into traditional algebra tasks and 

math teachers were found to be more successful at facilitating this transfer than 

their CS counterparts. 

 



  

 

 
Chapter 1 

Introduction 

Many disciplines rely on functions as a foundational concept for thinking 

about abstraction: a physicist uses functions to describe the movement of a 

projectile, a chemist to model reactions, and a biologist to reason about population 

growth. As a gateway concept for so many disciplines, it is no surprise that the 

course where students are first introduced to functions – algebra – is a key 

component of standardized tests across the United States. Algebra is a graduation 

requirement for high schools in many school districts (Loveless, 2008), and 

studies have found that student performance in algebra is the greatest predictor of 

future income out of all high school classes (Rose & Betts, 2004). For years, 

researchers have pointed to functions as an essential concept in math education 

(Breslich, 1928; Schaaf, 1930), and modern reforms have called functions a 

“unifying idea in mathematics” (National Council of Teachers of Mathematics, 

1989, p. 154).  

If algebra is thought of as a gateway class, it is a gate students often 

struggle to pass through. Our collective fear of algebra is well known, with the 

phrase “a train leaves Chicago, traveling east at 60mph…” teasing uneasy laughter 

from most Americans. A recent study (Fong, Jaquet, & Finkelstein, 2014) of 

California students found that 44% repeated Algebra 1, and that percentage is even 

higher for traditionally underserved groups. With Algebra 1 being a graduation 



  

 

requirement, the students who finish high school are by definition more likely to 

be higher performing math students than their peers. Even among this group, 

however, a 2012 National Science Board report found that only 76% of graduating 

seniors even completed Algebra 2, despite graduation requirements in 32 states 

that mandate a third year of mathematics. 

Many people see math and computer programming as closely related, and 

researchers have long viewed programming as a promising domain in which to 

learn mathematical concepts (Feurzeig, 1969; Khan, 1996; Papert, 1972; Resnick, 

2009). The approach taken by many of these studies relies on the achievement of 

transfer: a student’s understanding of a particular concept in one domain should 

translate to better understanding of the same concept in another. Perhaps the best-

known example of this approach is found in “Turtle Geometry” (Abelson &  

DiSessa, 1986), with students directing an on-screen “turtle” to draw shapes using 

the Logo programming language. If transfer is successful, students should gain a 

better understanding of geometric properties by experimenting with the routines 

they have written and then apply that understanding to solve a conventional 

geometry problem. While some studies have shown successful transfer of various 

concepts from programming to mathematics (Milner, 1973), transfer has eluded 

those who wish to teach algebra (Pea, 1984). After much excitement and activity 

in the 1980s, a survey of the literature concluded that “It may very well turn out 



  

 

that programming can play a very positive role in mathematics education, but we 

have not yet done a very good job of realizing that promise" (Fey, 1984, p.261). 

Much has changed in the intervening years. Research on transfer has 

identified specific factors that influence the likelihood of success, and has 

highlighted the importance of drawing explicit connections between domains. 

Researchers have examined the cognitive challenges that are specific to algebraic 

functions and hypothesized precise conceptual barriers than might be prime targets 

for transfer-based interventions. Programming languages have evolved as well, 

offering refined tools for expressing concepts mathematically, and enabling 

activities and interactions that were impossible when Logo began. Recent calls to 

bring programming into middle and high schools have given the topic renewed 

energy, funding and political clout. These changes warrant a second look at the 

challenge of transfer from programming to algebra. However, the majority of 

recent transfer studies involving algebra focus on software tools for analyzing and 

manipulating functions (Confrey, 1991; Ellington, 2002; Hegedus & Kaput, 2003; 

Schwarz & Dreyfus, 1995), rather than programming as a vehicle for building 

them.  

My dissertation is a feasibility study of a transfer-based intervention called 

Bootstrap, which aims to teach students about algebra through programming. The 

study uses established measures of algebra performance, as well as interviews, site 

visits and fidelity measures to determine the strengths, challenges and outcomes 



  

 

for Bootstrap students. By examining teaching experience alongside student 

performance, I hope to provide a list of best practices, challenges and pitfalls 

specifically tailored to Bootstrap but also applicable to other transfer-based 

interventions.  

  



  

 

Chapter 2 

 Literature Review 

Much has been done to understand the challenges students face when 

learning algebra. The 1990s saw extensive work done around the concept of 

function, both as an abstract idea and as a collection of representations. Work on 

transfer has also evolved, as researchers uncovered specific conditions under 

which transfer from one domain to another is more (or less likely) to occur. In a 

review of the empirical work done around transfer, I will establish the origins of 

the field, various types of transfer, and the conditions that are known to facilitate 

or hinder that transfer. I will then examine the domain of algebra, and address the 

specific reasons why transfer is especially difficult in this domain. Finally, I will 

consider prior work done to address these challenges, using technology as a means 

to facilitate transfer. 

Transfer 

The phenomenon in which skills are said to transfer from one task to 

another has been observed for centuries. Stemming from a long-held belief that 

humans possess a common set of general faculties such as “logic,” “language,” or 

“creativity,” philosophers dating back to Aristotle have argued that a collection of 

tasks are necessary to stimulate and develop these faculties (Boring, 1950). Those 

who share this belief would expect that students who learn chess would develop a 

better understanding of military strategy, or that teaching them Latin would help 



  

 

them learn another language (Figure 1). The 

association between task and concept was believed to 

be direct, and it was thought that a well-rounded 

education would come from studying a handful of tasks that belonged to each 

general faculty. In what amounts to a “four food groups” theory of education, it 

was believed that a smattering of logical, linguistic or creative tasks would 

appropriately nourish all the basic faculties of the mind. 

This way of thinking continued into the early 20th Century. Like Aristotle, 

Thorndike viewed the mind as a collection of associations, with transfer possible 

within these associations but not between them (Thorndike and Woodworth, 

1901). However, he found the scope of association to be far narrower than what 

the Greeks believed. There was no correlation, for example, between word recall 

and number recall (Singley and Anderson, 1989). “The mind is so specialized,” he 

concluded, “…that we alter human nature only in small spots, and any special 

school training has a much narrower influence upon the mind as a whole than has 

commonly been supported” (Thorndike, 1906, p.246). Thorndike viewed transfer 

as a two-level problem, with rote tasks occupying one level and the discrete 

association ranges in the mind occupying the other. For him, and other 

“associationists” like him, transfer is defined as the presence (or lack) of 

connection between related stimuli or specific tasks. Absent from the theory is any 

mention of how knowledge is cognitively constructed, with Thorndike’s 

Figure 1 - Direct association between 
closely related tasks 

Association 



  

 

association ranges acting merely as conduits between tasks, rather than 

repositories of general knowledge. Without considering how knowledge might be 

stored or applied, the role of representation is conspicuously absent. 

Mental Models 

Thorndike’s critics pointed out the importance of instruction, citing 

examples of successful training as a mediating factor for transfer between tasks 

(Dorsey and Hopkins, 1930; Judd, 1908). In one well-

known example (Judd, 1908), two groups of students 

were taught to throw darts at a target located one foot 

under water, one of which was given instruction about 

the phenomenon of refraction. When the target was raised eight inches, the group 

that received the instruction outperformed the other. This phenomenon (and others 

like it) suggests that another factor must be at work, which has to do with a 

particular mental model on the part of the learner (Figure 2).  

If transfer between two tasks is more likely to occur when the learner 

develops a model that applies to both tasks, it becomes necessary to consider the 

role of instruction in building that model. In 1945, Wertheimer criticized 

Thorndike’s theory, pointing out that musical melodies are identified not by the 

individual notes, but by functional relations between groups of notes (cited in 

Singley, 1989, p.9). This grouping, he argues, is a form of musical representation 

at work. Wertheimer also experimented with mathematical contexts for the 

1+2 

Figure 2 – Two concrete tasks 
associated with a mental model 

5+6 

Addition 



  

 

importance of representation, using a parallelogram-area task that required 

students to develop representations of parallelograms as simple rectangles that had 

been transformed in a predictable way. After identifying those transformations, 

students could provide the area of the parallelogram by instead calculating the area 

of a simple rectangle. Students were then able to apply this “transformed” 

representation of shapes to a variety of area-finding tasks, even those that did not 

use parallelograms.  

Having established the role of models as central to transfer, researchers 

began to study the role of instruction in building those models. At its most basic 

level, the desired outcome is called Analogical Transfer. We hope that Latin 

students will see the need for conjugation in French as analogous to Latin, or that 

the dart-throwers from Judd’s (1908) experiments will be just as able to adapt to 

throwing stones. One of the main factors in analogical reasoning is the flexibility 

of a model, allowing it to be applied in appropriate situations (Reed, Ernst and 

Banerji, 1974). Judd’s students developed a mental model for refraction, 

Wertheimer’s subjects developed a mental model for shape transformations, and 

both groups were able to apply their models to a variety of related tasks. Transfer, 

then, is more than a matter of noticing that Task A is similar to Task B. Given the 

role of instruction as a mediating factor for performance, there must be an 

intermediate step in which a learner first develops a mental model for “A-like” 

Tasks, and is then able to apply the model to “B-like” Tasks. As the model 



  

 

becomes more abstract and flexible, we might expect performance on more and 

more novel tasks to improve. But what makes for a good model? 

David Perkins (2009) explored the notion of model flexibility, 

distinguishing between Near Transfer and Far Transfer (p. 112-113). Near 

Transfer takes place when a model is recognized as being applicable to a very 

similar task (throwing darts, for example), while Far Transfer involves forming 

connections between very different contexts, or even different domains altogether. 

Perkins (2009) cites an example of a classroom where students study the effect of 

gravity on objects dropped from towers of various heights. The professor hopes 

that his students will master the underlying concepts of force and acceleration, but 

the students fail to distinguish these concepts from supposedly unimportant 

qualities of the sample problems. When the students fail a quiz involving objects 

falling down holes, one student complains: “all semester, we didn’t have any hole 

problems” (pg. 111). In this example, the students’ model for falling objects was 

too rigid to be adapted to the new task, which Perkins categorizes as a failure to 

achieve Near Transfer. 

These examples illustrate a form of model 

building that gives us clues into the way students 

learn. Perkins’ physics class falsely integrated the 

“tower” component into their mental model, which 

made it inflexible and prohibited transfer to similar tasks (Figure 3). This 

Figure 3 – A mental model for Falling 
Objects, incorporating irrelevant 
information (in bold) that prevents 
application to a similar task. 

Tower 
Task 

Hole 
Task 

 
Things falling from 

towers 



  

 

phenomenon is widely documented in literature that deals with novice vs. expert 

learning. In situations where the deeper meaning of a representation is obscured, 

novices will often fixate on less-relevant, surface-level components of a model 

(Chi, Feltovich and Glaser, 1981; Silver 1979). This phenomenon can hinder 

performance not only by preventing transfer, but also by facilitating transfer when 

it is inappropriate. A student may wrongly attribute a rule or idea to some small 

detail of a particular domain, and then apply that rule to other problems that share 

the same detail. This phenomenon is described as negative transfer (Perkins, 

1990). In a study reminiscent of Wertheimer’s transfer studies with parallelograms 

(see above), Schwartz and Yerushalmy (1985) found that geometry teachers 

typically draw right triangles with one side parallel to the horizon. During 

assessment, their students failed to correctly identify right triangles that had been 

rotated, having falsely associated the orientation with the concept and created an 

inflexible mental model for right triangles. A flexible model is an important 

condition for transfer, and there is a strong connection between model flexibility 

and domain expertise.  

Unfortunately, the existence of such models is purely theoretical – there is 

no microscope that allows us to “see” a mental model for dart throwing, refraction, 

or algebraic functions. What is observable, however, is how a learner performs on 

various tasks. In the concrete realm, we deal with performance over 

understanding, skills over concepts. A number of alternate theories of learning 



  

 

exist, which seek to explain the same phenomena while relying on purely 

empirical data. With their potential to obviate the discussion of transfer altogether, 

it is worthwhile to consider their position in this review before taking the transfer 

literature as gospel. So for the moment, let us put aside the notion of mental 

models and instead begin in the realm of empiricism, shifting our discussion to the 

intersection of learning and task-accomplishment. 

Skill Theories 

Rather than guess as to what a learner might understand, skill acquisition 

theories focus on what the learner can do. One might imagine a robot 

programming itself by memorizing rules, associating them based on problem type 

and forming higher-level rules for breaking down more complex problems. This 

robot’s performance can be measured, and its success or failure on a battery of 

tasks would allow us to reason about possible gaps in its rule system, without 

making any statement about what the robot understands.  

Gagné (1962, 1968) first theorized the notion of skill hierarchies, in which 

the acquisition of a set of skills depended on the 

successful mastery of subordinate sets. Solving an 

equation, for example, requires a set of smaller skills 

that include Combining like Terms, Factoring, etc. 

(Figure 4). Each of those skills can in turn be broken 

down into sets of subordinate skills, such as factoring constants v. factoring 

Figure 4 – A higher-level skill, broken 
up into subordinate skills (associated, 
concrete tasks shown as examples) 

Counting 
Carrying 

… 

Adding 
Numbers 

3+5=8 
5+6=11 



  

 

binomials. Gagné suggested that once each skill in a subordinate set was mastered, 

the larger skill was likely to be mastered as well. In this way, students would build 

skills that are more general by gradually building up smaller ones. He called 

transfer within sets Lateral Transfer, and the merging of skills into a larger skill 

Vertical Transfer, but note that his use of the term ‘Transfer’ is much closer in 

meaning to the Associationists’ use of the term: Gagné does not employ mental 

models to explain the phenomenon. Several educational psychologists and 

cognitive scientists (Bruner, 1996; Fischer, 1980) have supported the notion of 

skill building through careful identification of related and subordinate skills. 

Gagné’s skill-based definition of Lateral Transfer can be used to explain the dart-

throwing example (Judd, 1908) without resorting to mental models: students 

developed a skill at compensating for refraction at, and were able to apply it to a 

different depth. This differs from Vertical Transfer, in which Gagné would expect 

to see the children improve at a wider array of refraction tasks (perhaps one in 

which the target image was inverted). Skill theory would suggest that sufficient 

exposure to inversion tasks would increase the likelihood of students acquiring a 

generalized skill for dealing with refraction, without making any claims about the 

formation of a mental model for the phenomenon. 

In Mind Bugs (1990), Kurt VanLehn explores the origins of incorrect and 

unexpected behavior in the context of a rule-building system. The use of the term 

“bug” is borrowed from computer programming, which draws a distinction 



  

 

between random mistakes and encoded, reproducible errors. Indeed, VanLehn 

finds empirical evidence to support his theory, noting that accidental “slips” are 

not enough to account for the number or type of mistakes students make. Dynamic 

Skill Theory (Fischer, 1980; Fischer & Granott, 1995; Yan & Fischer, 2002), 

developed by Kurt Fischer, seeks to bridge theories of skill development to 

existing literature on cognitive development, genetics and neuroscience. Fischer 

broadens the types of association that are possible between skills, incorporating 

theories from other fields to explain the formation of other connections as a 

learner matures.  

However, there are limits to what can be explained through a skill 

hierarchy. When a child learns to tie her shoes, she first repeats the steps 

consciously, one at a time. As her skill improves, the process can be executed 

faster or with greater flexibility, but there is a side-effect not purely explained by 

skill hierarchies. The amount of conscious attention she needs to tie her shoe 

decreases, until the process becomes nearly automatic. A strict, observation-only 

reading of Skill Theory would explain how this skill might feed into a greater 

understanding of knots, or how its acquisition would eventually lead to greater 

flexibility with lacing other footwear, but would fail to explain the reduction in 

cognitive load. Related phenomena can be found in memorization tasks, in which 

subjects are able to group items in such a way as to maximize recall (Gagné & 

Glaser, 1987. p. 54). Without giving up their position as strict empiricists, skill 



  

 

theorists refrain from postulating about the mechanism by which this “chunking” 

phenomenon occurs (Figure 5). However, even acknowledging the phenomenon 

suggests the operation of an internal, 

unobserved mechanism. While the locus of 

Skill Theory remains firmly rooted in the 

development of skills as they pertain to task completion, it is clear that there are 

compelling reasons to shift this focus inward, and to consider where and how these 

skills might be stored in the mind.  

Cognitive Architectures 

Theories of cognitive architecture seek to map the observed process of skill 

acquisition to a brain-based theory for program storage, retrieval, and execution 

(Anderson, 1976; Newell & Simon, 1972). Because these theories can be modeled 

as computer programs that “learn,” many of the theories in the field have produced 

software whose behavior can be compared to human learners. Examples include 

the collection of ACT-derived systems (Anderson, 1976, 1983; 1992; Anderson, 

Corbett et al, 1995) and the Soar architecture (Rosenbloom, Laird, et al, 1985), 

both of which have been employed as cognitive tutors and learning tools across a 

variety of domains. As with model-based theories of transfer, Cognitive 

Architectures assume that some intermediate representation of knowledge exists in 

the mind of the learner, and that the representation grows and evolves through 

Figure 5 – A skill hierarchy becomes 
chunked into an atomic skill 

 

Counting 
Carrying 

… 

Adding 
Numbers 

Addition 



  

 

experience. By making these models testable and concrete, these theories manage 

to avoid some of the criticisms of purely theoretical, model-building frameworks.  

A child who is learning to tie her shoes may 

begin by memorizing a list of instance-specific steps, 

storing them away and then repeating them the next 

time she is asked to tie her shoes. She may be able to 

recall this list whenever she is asked to tie her shoes, 

but be completely flummoxed when presented with two pieces of rope that must 

be joined together. According to the cognitive architecture literature, this child has 

stored the steps and context for shoe-typing in what is called declarative memory 

(figure 6). This memory may include information that is irrelevant to the task, as 

we saw in the Tower v. Hole confusion posed by students in Perkins’ example 

(2009). She may, for example, assume that the first step is to put her shoes on, and 

to sit comfortably on the floor. Declarative knowledge is brittle, and can only be 

applied only if the new task is identical to one that has been seen before. 

Procedural memory, on the other hand, parameterizes these steps as being 

associated with a goal (e.g., “knot tying”). Anderson (1983) describes declarative 

memory as stored facts or information (the “what”) and procedural memory as 

goal-oriented statements (the “how”). To solve a problem, a learner may call upon 

declarative knowledge of similar problems or facts, or procedural knowledge of 

strategies. Procedures are characterized by their flexibility and speed, reminiscent 

Figure 6 – Two summation-by-
counting tasks are stored in declarative 
memory (procedural memory – on the 
right – is shown as empty).  

3+5=8 

1+2=3 



  

 

of “skills” or “models” discussed above. Procedures can be adapted to a variety of 

tasks, and procedures can be combined to form higher-level procedures. A learner 

may execute a procedure without ever being consciously aware of the steps he or 

she takes, which explains the chunking phenomenon described earlier. However, 

where Skill Theory merely acknowledges this experience, the Cognitive Architects 

go to great lengths to analyze the process.  

Anderson et al. (1995), describe the process 

of shifting knowledge from the declarative to 

procedural store as “knowledge compilation” (p. 

169), in which the learner generalizes over 

examples stored in declarative memory, creating a procedure to achieve a task 

(Figure 7). The exact steps of the procedure are also stored in declarative memory, 

but the goal is stored in procedural memory. When confronted with a similar task 

in the future, the learner need only match the goal at hand with goals stored in 

memory, then access and execute the appropriate procedure. Procedures can also 

be compiled together, to create a more general procedure with a more widely 

applicable goal. For our purposes, knowledge compilation serves as the 

mechanism by which skills are generalized and mental models are developed. 

 

Counting 

Figure 7 – The tasks are compiled into a 
procedure, which is stored in Declarative 
Memory, with the “counting” goal stored 
in Procedural Memory. 

count(a, b) 



  

 

In their study of algorithmic problem 

solving, Newell and Simon (1972) observed a 

similar trajectory to Anderson’s: learners would 

first blindly repeat a list of steps, then memorize 

those same steps, and finally internalize them in a 

more compact representation. However, they also point out that the compilation 

process results not only in efficiency and flexibility gains, but also in an increased 

understanding of the algorithm itself (p. 822). It is interesting to note that the term 

has the same meaning in computer science as it does in cognitive science: 

compilation is a process through which a verbose structure is boiled down to a 

simpler one, and along the way something is learned about the meaning of the 

original structure. This compilation occurs constantly, as new subroutines are 

added, trimmed, or optimized, and the goals become more flexible and more 

adaptable.  

Synthesizing Transfer 

Model-building theories focus on the way knowledge is represented in the 

mind, highlighting the importance of a model that accurately represents a concept 

and can flexibly be applied to relevant tasks. Skill Theories, on the other hand, use 

task performance to identify the hierarchical connections between related skills, 

emphasizing an empirical approach that tracks the development of rules through 

experience. These theories are orthogonal, rather than mutually exclusive. If skill 

Counting 

Carrying 

Figure 8 – Carrying is compiled as a 
procedure too, and the goal stored in 
procedural memory has been generalized 
to include both counting and carrying 
subroutines 

 

add(a, b) 



  

 

acquisition is constructed as a form of programming, what is the nature of the 

computer on which these programs run? In what machine might mental models be 

stored, modified and retrieved? Drawing from a number of diverse, learning-

related fields, the study of Cognitive Architectures offer a possible bridge between 

these two frameworks. 

Cognitive Architectures propose a mechanism by which learners gradually 

integrate information they have seen into concepts they understand. A learner may 

begin by memorizing the steps and information involved in a task, allowing them 

to carry out the task through brittle, rote repetition. Through experience, they 

compile the list of steps into a procedure, replacing the memorized list with a 

flexible goal. It is Compilation and Goals that form the bridge between skills and 

models. When closely related tasks are stored as a compiled procedure, this 

phenomenon may be considered “near” or “lateral” transfer. When individual 

procedures are compiled into a more general one, we find links to Gagné’s 

description of “vertical transfer”. As suggested by Skill Theory, this compilation 

results in accelerated execution, and subordinate procedures that are used often are 

more likely to be compiled into a more general, higher-level procedure. Mistakes 

in compilation may occur as well, resulting in negative transfer and reproducible 

slips, à la Van Lehn’s Mind Bugs.  

Like the model-builders, Cognitive Architects assume that these procedures 

actually exist somewhere in the mind, and are shaped by experience. For example, 



  

 

a procedure for falling-body problems is shaped by the experience of watching an 

objects fall from towers or down holes, from learning about gravity in physics 

class, etc. When we talk about the fitness of these procedures, we consider the 

degree to which they accurately describe the structural properties of particular 

concept. Does a students’ “falling-body procedure” include general parameters for 

distance and acceleration, or has irrelevant information about towers been 

compiled in by mistake, as a form of Perkins’ “negative transfer”? Is the goal 

flexible enough to be applied to problems that deal with holes?  

My use of the term “transfer” is closest to the concept of knowledge 

compilation. It is both a singular occurrence (the immediate recognition of one 

task’s similarity to another) and a permanent change (the compilation of that new 

information into a new procedure). When I refer to a student’s “model” for 

functions, I describe the structure of goals and procedurals that is constantly being 

revised, rebuilt and refactored, and the associated goal that signals to the student 

that this structure should be applied to a given task.  

This compilation is influenced by experience: rich models are more likely 

to be formed by completing rich tasks. But what defines a “rich task”? A rich task 

may have many valid solutions, but only a handful of optimal ones. The game of 

chess is easy to learn, but difficult to master (Singley, 1989, p. 29). Singley points 

out that chess is about picking an optimal move out of many valid ones – and the 

intuition for such a move is built after thousands of hours against multiple 



  

 

opponents. Perkins (2009) draws a similar conclusion when he advises learners to 

“play out of town,” emphasizing the importance of applying a concept in diverse 

settings in order to deeply understand it. Like a Grand Master’s understanding of 

chess, a rich model is built through vast experience in a variety of settings. 

However, merely completing a rich task does not guarantee that 

compilation will result in a rich model. Cognitive Architectures include limits on 

working memory, and there is evidence that compilation imposes its own memory 

overhead. Reed, Ernst and Banerji (1974) studied the relationship between 

memory and compilation by having students complete the closely related 

“Missionary-Cannibal” and “Jealous Husband” puzzles (p.438), both of which are 

known to strain working memory. The solutions to both puzzles are similar, and 

the authors expected their subjects to transfer what they had learned when solving 

one puzzle to the next. What they found instead was that few subjects recognized 

the structural similarities between the problems, even after completing them. The 

first puzzle was sufficiently complicated as to prevent compilation, and even after 

solving it successfully students were no better off when solving the second one.  

Educators must strike a balance between task richness and working 

memory. Simple tasks are unlikely to result in complex models, but complex, 

monolithic tasks may be too large to be compiled at all. To consider the challenge 

of formulating a rich task in algebra, it is necessary to understand the wealth of 

concepts at play when dealing with functions. In the next section, I will discuss 



  

 

various representations of algebraic functions, and how their interaction forms a 

rich model for algebra.  

The Algebraic Domain 

From an early age, children are presented with mathematical notation like 

“2+3” or “5+x=10”. The implication is that math is a process, and that 

mathematical expressions are essentially questions for which the student must find 

an answer (“5” and “x=5”, respectively). When they enter an algebra class, 

however, math is constructed quite differently. The notation “f(x)=x+10” will be 

confusing to a student who is looking to find an answer, because there is no 

question. Instead, the notation defines a mathematical object: the function f. Rather 

than asking for students to calculate an answer, an algebra teacher asks their 

students to reason about their properties (Breidenbach et al., 1992; Sfard, 2000). A 

student might be asked to identify the y-intercept of a function, how many roots it 

has, or whether or not it has an asymptote. 

An Object Model for Functions 

At the very least, a model of functions requires that students develop an 

ontological understanding of processes as objects. This shift requires a level of 

abstract thinking beyond what is required for arithmetic (Piaget, Grize, Szeminska 

et al., 1977). Unfortunately, this switch is decidedly nontrivial. Sfard and 

Linchevski (1994) explored the challenges of viewing functions as objects and 



  

 

processes, which they call “Reification”. They define reification as “our mind’s 

eye’s ability to envision the result of processes as permanent entities in their own 

right" (p.194), the ability to name a process and to recognize that an arithmetic 

relationship can be viewed as an entity by itself. This shift requires that students 

cross a “cognitive gap” (Herscovics & Linchevski, 1994, p. 63), in which named 

objects (“f(x)”) are also thought of as processes acting upon unknowns (“2x+4”). 

A related construction is found in Slavit’s (1997) “Property-Oriented View” of 

functions, in which the objects are made concrete by considering various 

properties that are preserved across transformations. This also mirrors the 

approach taken by Schwarz and Dreyfus (1995), who focus on the transformations 

rather than the properties they preserve. Despite these differences in focus, these 

characterizations are not mutually exclusive (O’Callaghan, 1998). All of them 

require the formation of an object model for abstract arithmetic processes, as 

opposed to the strict application of those processes to find an answer. For students 

who still think about “doing math” as “getting the answer”, questions about 

properties of a function are not just difficult – they are beyond the limits of the 

students’ conceptual model. 

Once this gap has been crossed, the objects must be fleshed out to gain 

properties (e.g., linearity, number of roots, etc.), and students are asked to reason 

about these properties. This closely parallels the notion of goals being associated 

with compiled procedures: a goal must be flexibly defined in order for the 



  

 

procedure to be flexibly applied. Asking a student to identify the roots of a 

function, for example, assumes that they understand functions as objects and that 

“root-having” is a property of those objects.  

Moreover, these properties may be 

discussed in a variety of representations, with 

students thinking of functions as lines on a 

graph, tables of inputs and outputs, symbolic 

formulas, or a mapping between domain and 

range. In this construction, it is necessary for 

a student to understand the representation in order to decipher that which it 

represents. This definition is closely hewn from that of Kaput (1991), who writes 

about notational systems that are “materially realizable cultural or linguistic 

artifacts shared by a cultural or language community” (p. 55). It is because we 

agree on conventions for graphing, for example, that we are able to discern the 

meaning of a graph. Slavit, in his argument for a property-oriented view of 

functions (1997), addresses the problems of notational settings, again referring to 

the mix of terms and symbols that define a representation. 

Algebra textbooks vary somewhat in the number, type and order of 

representations they use (Dreyfus & Eisenberg, 1982; Fey, 1984), but there exists 

a core set of representations that I will draw from in this study. This set finds 

common ground in the literature, but is also endorsed by modern standards 

Figure 9 - Four representations of a single function 



  

 

(Common Core Standards, 2010; Mayer et al., 1995 NCTM, 2000): Tables and 

Function Machines, Graphs, Sets and Symbolic Equations. It should be noted that 

this corresponds exactly to Kaput’s “Big Three” (1998, p. 272), with the addition 

of the Set-Mapping representation. Each representation has its own properties, 

vocabulary and operations – all of which must be incorporated into a complete 

model for algebraic functions.  

Tables and Machines 

The idea of the “function machine” as an entity is recommended as an ideal 

way to introduce students to functions (McGowen et al, 2000; NCTM, 2009). The 

machine itself is the Object, while the inner workings symbolize the Process 

(Slavit, 1997). Wilson (1994) shares a student’s explanation of functions, which 

mirrors this representation: “What I mean ... is with the f, the f(x), you have to put, 

it's like a grinder. You put a number in right here and this f is going to change this 

x in some way” (p. 354). This representation is analogous to lists or tables of 

ordered pairs (p. 261), by emphasizing the discrete inputs and outputs of a 

function. 

Graphs 

In contrast to a table’s emphasis on input-output pairs, a graphical 

representation highlights the behavior of a function over a range inputs. Graphical 

representations rely on a large number of inert skills, which must be acquired 



  

 

before the underlying mathematical concepts can be explored (Curcio, 1987, 

p.383; Mevarech & Kramarsky, 1997). Students must understand what the axes, 

origin and coordinates represent, and be familiar with the visual concepts of 

points, scale, and magnitude in order to reason about a graph, plot a point, or 

locate a root. Once they have mastered the skills, however, students can use this 

representation as a powerful tool for analyzing the behavior of a function over 

groups of inputs, identifying properties such as roots, maxima and minima, etc.  

Set Mappings 

Functions may also be represented a mapping between input and output sets 

(Slavit, 1997). In this representation, the set of all possible inputs is transformed to 

the set of all possible outputs by the behavior of the function. When describing 

this transformation, students must determine if the mapping is “one to one” and 

“onto” as they consider the properties of the function. The representation of a 

function as a mapping from one set to another is familiar to many, as the concept 

of related quantities is rooted in everyday experience (gallons of milk per dollar, 

miles per gallon, etc.). Ponce (2007) suggests that a ‘mapping’ representation is 

relatively intuitive, and forms the “first core idea” in his survey of functional 

concepts.  



  

 

Symbolic Equations 

When represented as series of symbols, a function can be construed as a 

sentence waiting to be filled in, with variables being replaced by values in order to 

provide an answer. These “math sentences” can be composed with one another to 

generate new sentences, and can be manipulated by many of the rules students 

have learned from arithmetic. For students who are new to algebra, this 

representation allows them to focus more on the familiar process, and largely 

ignore the object notion (Usiskin, 1998).  

Rich Tasks for Algebra 

The two problems for model building outlined above involve (1) building 

an object-based model for mathematics that includes all relevant properties, and 

(2) making that model flexible enough to span multiple representations. A rich 

model should include multiple properties or representations of a function object. 

As we have seen from the transfer literature, abstract rules such as light refraction 

or chess strategy may be easy to memorize and recall, but can be difficult to apply 

in novel situations. Singley (1989) and Perkins (2009) emphasize the importance 

of concrete experience in overcoming this obstacle, suggesting that an instructor 

should use tasks in which students are able to apply their understanding of 

functions in a concrete way. Teachers often seek out real-world tasks to provide 

this experience, such as the relationship between gears on a bicycle or the position 



  

 

of a car as it changes speed. This allows students to refer to a concrete base of 

knowledge, and use that as a check against functions they have built or 

manipulated.  

Word problems are a complex application of function models, in which an 

informal description of processes must be formalized or solved for a given 

constraint. Despite having arithmetic solutions, the challenge of word problems is 

about identifying the functional relationships embedded in a narrative, and 

potentially bringing to bear a number of properties and representations to arrive at 

a solution. Consider this well-known word problem:  

A train leaves Chicago for New York, traveling at 75 mph. At the exact 

same time, another train departs New York for Chicago, traveling at 60 mph. If 

New York and Chicago are 700 miles apart, how long will it take the trains to pass 

each other?  

 

The goal of this puzzle is clear, yet there are no instructions for which path 

will take us there. A student can use simple arithmetic to determine the location of 

each train every hour, as they seek the time when both trains have the same 

location; they could formalize the relationship between train-distance and time 

using a formula, or by drawing a line on a graph. Each approach has its own 

strengths and weaknesses, and the freedom to select an appropriate representation 

requires students to marshal their understanding of each representation. As with 



  

 

chess games or logic puzzles, word problems like this one allow students to 

choose an optimal solution from several valid ones. The ability to derive the 

functional relationships at work in unstructured word problems can be seen as a 

perfect rich task: to solve the problem, a student’s goal must be flexible enough to 

apply the appropriate model, and the model itself must be rich enough to 

encompass the conceptual depth of the task at hand. However, we know from our 

synthesis of the transfer literature that this richness comes at a price. 

Obstacles to Compilation 

In order to be compiled, a rich task must fit within working memory, 

leaving enough space for compilation overhead. Unfortunately, this is a 

particularly difficult challenge for algebraic functions. Each representation 

includes a large collection of specific vocabulary, mechanical skills, and concepts. 

For example, students must learn how to draw and label their axes, plot points and 

understand words like “scale,” “origin,” “slope,” and “root” just to work 

comfortably with graphs. How much “graph knowledge” are they able to employ 

when solving symbolic equations? Additionally, the amount of raw computation 

necessary to convert one representation to another makes the task prohibitively 

time consuming for students, forcing them to focus on the rote computation rather 

than the higher level task at hand. Schwarz and Dreyfus (1995) found that 

“beginning students cannot be expected to simultaneously think at the higher level 

needed to decide which bounds and scales are appropriate to a given task” (p. 



  

 

263). Given the wealth of knowledge students must engage in rich algebra tasks, it 

is no surprise that these tasks are difficult to complete, and unlikely to result in 

compilation.  

This forces teachers to focus on tasks that deal with a single representation, 

resulting in predictable learning outcomes. Students may be given activities that 

stress their knowledge of tables, graphs, or formulas, but never more than one at a 

time. While these tasks may be challenging by themselves (Kieran & Sfard, 1999; 

Kirshner, 1989), we would expect the focus on individual representations to result 

in the compilation of separate, disconnected models. Indeed, a wealth of studies 

shows that students struggle to see the connections between representations 

(Bloch, 2003; Campbell, 1992; Charles & Silver, 1988; Resnick & Ford, 1981; 

Wagner & Kieran, 1989). Schwarz & Dreyfus (1995) found that students who are 

highly proficient when working with one representation of functions might be 

completely unable to reason about another. Likewise, the large number of 

prerequisite skills involved in graphing may explain why a student’s 

understanding of graphs translates so poorly into other representations (Carreira, 

2002; Cunningham, 2005; Dreyfus, 1999). Wilson (1994) found that even teachers 

themselves are often unable to explain what a graphical property (such as the 

vertical line test) means outside of the graphical context. For many students and 

teachers, the symbolic notation is felt to be the “real” function (Carriera and Evan, 

2004), which can be frustrating for students who are uncomfortable with this 



  

 

representation. Because of the bias towards symbolic representations, “persistent 

algebra errors may reflect disengagement from declarative content rather than 

inability to deal with it” (Kirshner, 2004). 

In each of these situations, students have developed representation-specific 

models for functions and are unable to compile them into a unified model. Like 

the physics students struggling with “hole problems,” these students have falsely 

identified the representation as a necessary condition for applying each model. 

Perkins (2009) calls this process “conceptual welding,” in which the various 

representations become inseparable from the mathematical concepts they 

represent. This aligns closely with Van Lehn’s compilation errors, in which an 

erroneous facet is compiled into a procedure, preventing it from being flexibly 

applied. To address these challenges, teachers must find ways to optimize rich 

algebraic tasks, reducing demands on working memory and making compilation 

possible. 

Optimizing Rich Tasks 

Teachers employ a number of strategies to optimize these tasks for clarity. 

One of the most common is the use of real-world situations for rich tasks, which 

allow students to link the behavior of a function object to a concrete experience. 

For example, asking students to consider the trajectory of a baseball can easily 

describe a quadratic relationship, allowing students to rely on a familiar 

experience. Another popular technique is demonstration by example: teachers will 



  

 

often walk through the application of a function on a number of inputs, to 

demonstrate exactly how the object behaves. Likewise, it would be helpful to 

explicitly connect representations, allowing students to manipulate a function in 

one representation and see their changes reflected in another. Teachers may offset 

the computation load of converting between representations by doing the work 

themselves, or by providing students with a formula, a table and a graph as part of 

an assignment. This echoes the recommendations for explicit connections 

(Bransford, 1999, Bransford, 2005; Singley, 1989; Van Eck, 2001), as is it now 

frequently suggested that representations should be taught in parallel or explicitly 

connected by the instructor (Bazzini, 2001; NCTM, 2000; Resnick & Omanson, 

1987).  

Unfortunately, these techniques only go so far. It is prohibitively labor 

intensive for a teacher to check the behavior of multiple functions at once, or to 

quickly translate a single function across multiple representations. Asking students 

to incorporate these calculations into their own practice might be helpful, but it 

only increases the number of steps necessary to complete the task and makes 

compilation less likely. Word problems help relate functional relationships to a 

concrete domain, but students are confined to the abstract when trying to solve 

them. Finally, there remains the ontological problem of functions as objects: 

students who calculate an answer using rules and conventions of the algebraic 

domain may not understand anything about the functions themselves. As with long 



  

 

division, correctly calculating an answer does not necessarily give students a sense 

for the underlying concepts at work. Having established the specific challenges 

faced by teachers and students around rich algebraic tasks, we can now turn our 

attention to the ways technology has historically been used to address them. 

The Promise of Technology  

Technology aims to reduce the cognitive load of rich algebraic tasks, 

improving the chances of compilation. While the scope of algebra-focused 

technologies is broad, all of these tools offer a mix of four specific advantages, 

which address the challenges outlined in the previous section: 

1.! Rapid Computation – students are free to spend more of their time 
on analysis rather than calculation, which may reduce cognitive 
overhead by shrinking the amount of time and effort needed to 
generate a graph, complete a table, etc.  

2.! Rich Visualization – programs can be used to display functions in 
multiple representations simultaneously, or to switch back and forth 
rapidly between them. Comparing these representations side-by-side 
may reduce memory overhead. 

3.! Concrete Examples – software can be used to demonstrate 
functional relationships through multimedia, which may preserve 
real-world connections (e.g., actually seeing two trains move 
towards one another, modeling a situation described in a word 
problem). 

4.! Conceptual Similarities – the act of computer programming can 
employ concepts such as abstraction, variables and functions. If a 
programming language is sufficiently similar to algebra, rich 
programming tasks might serve as a viable surrogate for rich algebra 
tasks. 

 

These propositions have made so-called “cognitive technologies” (Pea, 

1987) an attractive fit for educators struggling to balance richness with clarity 



  

 

(Mayer, 2005; Marzano, 1998). Graphing calculators, for example, have become a 

staple of the modern-day algebra classroom (Berger, 1998), allowing students to 

see a function translated across representations without any computational 

overhead. Programs like Mathematica and Maple offer sophisticated tools for 

building and exploring functions, with instant computation designed to free up 

cognitive load and facilitate compilation. 

While these tools may reduce the transfer barriers between functional 

representations, they introduce barriers of their own. Each tool brings its own 

conventions, vocabulary and skills, which creates familiar the risks of conceptual 

siloing and welding: can students connect operations in a computer program to the 

algebraic ones they represent? If they build a rich model by solving word 

problems with a calculator, can they apply that model when the calculator is taken 

away? As we consider the various technologies in this section, we must bear in 

mind the added cost of teaching students to use each tool, as well as the potential 

for the tool to become a problem solving crutch. 

The previous section defined the constraints of a rich model for functions in 

algebra: a concrete understanding of functions as objects, and the ability to view 

these objects in multiple representations. All of the technologies designed to 

address these constraints allow students to both create functions and then view 

them in multiple representations, but each one makes tradeoffs that it better suited 

to one challenge or another. Graphing calculators, for example, impose tight 



  

 

restrictions on how students define functions (e.g., enforcing specific names for 

variables or functions, rejecting mathematically-valid equations that fail to match 

a specific format, limiting functions exclusively to the domain of numbers, etc.), 

but allow them to explore those functions flexibly in multiple representations. 

Tools like Logo, on the other hand, have far fewer restrictions on how functions 

are defined, but require a great deal of extra work to view these functions across 

traditional representations. While each tool attempts to straddle the line in a 

different way, it is useful for our discussion to group these 

technologies into two categories, following the dual challenges 

of representing and reifying functions: those whose primary 

focus is the visualization of functions, and those whose focus is 

on programming them.  

Visualizing Functions 

Perhaps the best-known example of technology as a 

means of visualizing functions is the graphing calculator. On a 

graphing calculator, students define a function in one 

representation (symbolic), and then see the corresponding 

graphical representation instantaneously. Other visualization 

tools offer variations on this theme, allowing students to define 

functions in one way and instantly them using a variety of 

representations utilizing the rapid computation afforded by computers. In the 

Figure 10 – The 
Function Probe interface 



  

 

CARAPACE software program (Kieran, Boileau and Garançon, 1996), students 

define functions in a language-like interface (for example, “price of pen × 

3 gives price of watch” (p. 266)) rather than using pre-defined symbols, 

and can then explore various representations of those functions. The Triple 

Representation Model (TRM) tool also focuses on displaying multiple 

representations, allowing students to see changes translated across each 

representation in parallel (Baruch & Dreyfus, 1995). Jere Confrey’s Function 

Probe (1991, 1996) adds a unique feature that allows students to define a function 

by recording sequences of calculator operations, and then store them as a single 

button on a simulated calculator, essentially chunking a process into a single 

object. Like the other tools in this category, these objects can then be explored 

across multiple representations. 

SimCalc (Kaput, 1998; Hegedus and 

Kaput, 2003) adds concreteness to the 

computation and visualization benefits of 

technology. As with programs like TRM and 

the Function Probe, SimCalc allows students 

to view multiple representations of a function 

at the same time. However, SimCalc is unique in that it also allows students to 

model behaviors using the functions they have defined, and see these behaviors 

animated on-screen. A student who models the position of a train over time can 

Figure 11 - The SimCalc interface 



  

 

import an image of the train, and then watch it move across the screen in 

accordance with their function. 

This modeling functionality makes SimCalc unique among visualization 

tools, allowing it to address some of the ontological challenges of function objects. 

Functions become the blocking instructions for “actors” on a “stage,” putting 

students in the role of a director who decides how their actors should move. This 

provides not only an engaging visual experience, but also a connection to real life 

events. The modeling activity forces students to consider behaviors in their own 

right, and to abstract individual calculations into rules and patterns. SimCalc also 

provides rich tools for sampling these simulations, displaying a graph or table of 

position of the train’s position with respect to time. This puts the concrete nature 

of physical phenomena first, and shifts the focus from “multiple linked 

representations to multiple linked descriptions of real situations” (Kaput, 1998, p. 

275).  

Research on the learning impacts of these tools is mixed. Graphing 

calculators, by far the most widely adopted technology, have surprisingly little 

data to support their use. A meta-analysis of graphing calculator evaluations 

(Berger, 1998) found many problems in experimental design, with studies lacking 

a control group or a proper form of assessment. Other studies are more promising: 

a single-classroom study of the Function Probe (Confrey, 1996) found marked 

improvement in students’ ability to connect functional representations and a more 



  

 

flexible mental model for functions, while two classroom studies of TRM (Baruch 

and Dreyfus, 1990 and 1995) also found strong gains on transfer tasks. While both 

of these studies used control groups, the individual assessments were carefully 

tailored to the tools themselves, making it difficult to gauge transfer into 

conventional tasks. Moreover, the small sample sizes and reliance on a single 

teacher make it difficult to generalize the conclusions made in these studies. 

Studies of SimCalc, by contrast, have consistently utilized rigorous 

experimental design, traditional math assessments and large sample sizes. In a 

study conducted with grade school students in Texas (Roschelle, Tatar & 

Shechtman, 2007), SimCalc was used to replace a multi-week unit in a traditional 

mathematics curriculum for more than 800 students. Those in the treatment group 

made much larger gains than the control group when dealing with questions that 

required them to reason about the behavior of a function across multiple 

representations. These gains were shown to be significant across teachers, 

strengthening claims about the tool’s effectiveness. A multi-year study in 

Massachusetts high schools (Hegedus, Dalton, Kaput et al., 2007) demonstrated 

similar gains. 

Unsurprisingly, these studies provide evidence of both siloing and welding. 

Because of their focus on exploring functions rather than defining them, these 

tools require students to define functions in an inflexible format. A student who 

wishes to model the location of a moving train, for example, must still derive the 



  

 

function on their own before entering it into their graphing calculator or software 

program, and must do so using the conventions or syntax of that program. The risk 

of siloing lies in the requirement that students translate their understanding of a 

task into a specific representation before entering it into the tool. As a result, it 

may be difficult for novices to distinguish between the limits of the tool and the 

limits of the math it is designed to explore. If a calculator is unable to solve a 

specific expression, is that because the expression is entered incorrectly or because 

there is no solution? Indeed, several studies have found that the restrictions of the 

calculator interface constrain the ability of students to directly access the material 

(Berger, 1998; Drivjers, 2000; Zheng, 1998). The authors of CARAPACE’s 

natural-language interface for defining functions found that students were unable 

to connect the underlying mathematics to the English-like statements they had 

defined in the software (Kieran, Boileau and Garançon, p. 267). Meanwhile, a 

meta-analysis of impact studies found that any positive effect from graphing 

calculators disappears when students are assessed without them (Ellington, 2003). 

If students are able to build a better model with these tools, they are unable to 

apply it without them. In their concluding remarks, Kieran, Boileau and Garançon 

conceded, “not all technology supported roads that are intended to be algebraic 

reach developing meaning for traditional algebraic representations and 

transformations.” (p. 267).  



  

 

Intermezzo 

The gains demonstrated by users of SimCalc are encouraging, and deserve 

further discussion. What distinguishes SimCalc from other exploration-focused 

tools is its use of modeling, which forces students to think concretely about 

functional relationships within real-world phenomena. In this way, SimCalc may 

be considered a limited programming language, tailored exclusively to animation 

of objects using a narrow class of functions. SimCalc is the only tool in this 

category that seeks to make functions concrete, and its emphasis on 

representations as linked descriptions of program behavior is directly in line with 

best practices involving transfer and compilation. However, SimCalc’s modeling 

environment imposes a constraint on the content being modeled. While 

phenomena involving position, velocity and acceleration are easy to model, a 

teacher would struggle to model other relationships, such as those between price 

and profit, heat and pressure, or radius and circumference. 

The limitations each of these tools impose on the definition of functions or 

the ways they are represented should give us pause. TRM, the Function Probe, and 

Graphing Calculators force students to translate from real-world phenomena to 

pure mathematical forms before they can be explored. SimCalc attempts to bridge 

this divide by allowing the tool to visualize the phenomenon itself, but places deep 

restrictions on what can be visualized. When viewed as a programming tool, the 

primary drawbacks of SimCalc involve the limitations of the language for writing 



  

 

programs and the visualization of their output. These limitations are 

understandable, as the goal of SimCalc is to explore algebraic concepts from a 

familiar mathematical domain, while minimizing the overhead necessary to use 

the tool. But at this point, it is fair to consider whether the domain of algebra may 

simply be too complex to be explored in this way. Analogies are often used to 

explain difficult concepts, by embedding them in a more accessible or familiar 

domain. For algebra, the most commonly explored domain is computer 

programming, which has been used as a source domain in transfer experiments 

going back nearly half a century.  

Programming Functions 

At first blush, programming and algebra have a great deal in common. A 

programmer identifies sequences of instructions and combines them into a 

function, just as a mathematician combines a sequence of calculations into a 

function object. Given their similarities, it is no surprise that researchers have long 

considered programming as a possible “surrogate domain” for algebra. Teaching 

algebra was one of the original design goals of the Logo programming language 

(Milner, 1973), and many researchers have 

studied it as a vehicle for algebra 

(Clements, 1985; Feurzig, Papert, Bloom et 

al., 1970; McCoy & Burton, 1988; Milner, 

Figure 12 - The Scratch programming environment 



  

 

1973; Noss, 1987). As Logo waned in popularity, other introductory-programming 

tools rose to take its place, such as BASIC (Hatfield and Kieran, 1972), Interactive 

SET Language (ISETL) (Breidenbach, Dubinsky et al., 1992), ToonTalk (Kahn, 

1996), Boxer (diSessa, 2000), ALICE (Cooper et al., 2000), Scratch (Resnick, 

Maloney et al., 2009) and others. Some of these tools were, like Logo, explicitly 

designed to teach mathematical concepts. Other tools were focused elsewhere, but 

teachers and parents maintained the expectation that all programming is deeply 

connected to mathematics: if a student learns to program, the thinking goes, surely 

they will get better at math in the process. 

In contrast to visualization tools, the value proposition of programming is 

that it shifts the learning of mathematics from the task of analysis to that of 

experience (diSessa, 2000). A particular strength of programming is its use as a 

modeling tool, in which students are able to model complex mathematical 

relationships to explore concepts such as statistical distributions, the movement of 

gas molecules, etc. (Wilensky, 1997). As with SimCalc, students engage in the act 

of creating worlds governed by functional relationships, defining the rules that 

control a simulation they observe and modify.  

Ultimately, the hope is that students will be able to transfer the rich model 

they compile while building and manipulating these worlds back into the domain 

of algebra. Papert (1972) famously argued that children would develop a  

“mathematical way of thinking” that would then transfer into their conventional 



  

 

math classroom, simply by learning to program in the language. Noss (1986) 

explains, “in learning Logo, the student is not simply solving problems; she is 

solving problems in a mathematical domain. The objects and processes available 

to her for the construction of programs are themselves mathematical… the 

question is whether, in learning to program in Logo, the child may develop a 

bridge between the pseudo-concrete mathematical world of a computer screen and 

the abstract world of mathematics” (pg. 336). 

There is ample evidence that students can and do transfer the models they 

build by programming functions into more traditional algebra contexts, but the 

complexity of those models is limited. In a study of the ISETL programming 

language, researchers found marked improvement in students’ conceptions of 

algebraic functions (Dubinsky 1992, 1995; Leron and Dubinksy, 1995). Logo has 

been used to successfully teach students about the notion of angles, measurement 

(Clements, 1999) and variables (Milner, 1973). While transfer of specific concepts 

is a promising outcome, this is not sufficient for the kind of higher-level 

compilation we seek. Will students who learn to program actually perform better 

than their non-programming peers when confronted with a rich algebra task? 

Clements (1999) found that students who mastered the concept of variables in 

Logo were unable to apply that understanding to algebra tasks. In a study that 

sparked a debate between a young researcher and Seymour Papert himself, Pea 

and Kurland (1984) found no evidence of improved mathematical reasoning 



  

 

among students who had been exposed to more than 30 hours of instruction in 

Logo by tech-savvy teachers in a progressive school. In the very-publicized 

argument that followed, Pea later questioned the entire proposition that transfer 

could be expected (1984). SimCalc, on the other hand, was able to demonstrate 

meaningful transfer into algebra despite having an extraordinarily limited 

language. What could be preventing this transfer when dealing with more a 

powerful programming language like Logo or ISETL? 

Just as the idiosyncrasies of a program or calculator interface may limit the 

way students think about algebra, each programming language comes with its own 

syntax, semantics and restrictions. Students must learn the idiosyncrasies of each 

new language, which can pose problems for compilation and transfer into the 

algebraic domain. Like the students from Perkins’ (2009) physics classroom, they 

may draw a faulty distinction between “computer problems” and “math 

problems,” failing to apply what is learned in one domain to the other. Indeed, 

syntax is often considered the main culprit for transfer, with the implications that 

students are tripped up by the complexity of symbols, keywords and conventions 

found in most programming language. A recent study of the programming 

language Python (Konidari and Louridas, 2010) found that students struggled to 

understand a number of syntactic rules, despite the language’s reputation for being 

clear and concise. Logo was explicitly designed with a simple syntax, and drag-

and-drop languages like ToonTalk, Scratch and ALICE are often held up as 



  

 

models for teaching children to program. While a simpler syntax has been shown 

to facilitate writing code, there is little evidence to suggest that it also facilitates 

transfer into algebra. But if syntax is not the limiting factor, something else must 

be acting as a barrier for transfer into algebra.  

In the realm of computer science, the semantics of programming languages 

is a contentious one. Programmers and researchers alike hold their own 

preferences and allegiances to one language or another, often because of the way 

certain types of tasks can be expressed in their language of choice. The fit between 

language and task is not entirely subjective, however. Because each language has 

its own semantics, we would expect each language to better suit tasks that can be 

expressed in those semantics. Scratch, for example, is designed with a focus on 

tinkering and experimentation (in keeping with its constructionist roots), but this 

approach has tradeoffs: in addition to demonstrating high engagement levels, the 

Scratch language has also been linked to poor programming habits (Meerbaum-

Salant, Armoni & Ben-Ari, 2011). This tradeoff makes a lot of sense given 

Scratch’s emphasis on engaging younger students, but it may not be desirable for 

other purposes. Semantics matter, and ideally a programmer would always select 

the best tool for each job. At this point, we may wish to consider what language 

one might select if the job was teaching algebra: what semantics matter for 

algebraic tasks? 



  

 

The Notional Machine 

The notional machine is the mechanism by which we construct what the 

computer is doing. Benedict du Boulay (1981) defines it as “the idealized model of 

the computer implied by the constructs of the programming language.” In his 

study of novice programmers, du Boulay observed them talking about and 

thinking about their programs as following as set of rules. When the rules did not 

match the actual behavior of the language, programming errors would appear 

frequently, reminiscent of Van Lehn’s Mind Bugs. Linking back to the transfer 

literature, the notional machine is the mental model that students build when they 

think about programming. When a new problem is confronted, a student tries to 

employ the capabilities of the machine to solve it. 

In “The black box inside the glass box,” du Boulay advocates the use of 

teaching using notional machines whose behavior is simple and explicit, to 

facilitate the creation of an accurate mental model. These models display the same 

phenomena of welding, siloing, and negative transfer (Perkins, 2009). When two 

languages are similar, a programmer will be able to apply what he or she knows 

about one language to solve problems in the other. An unfamiliar language may be 

challenging for a programmer to use simply because it is different, not because of 

any inherent complexity or limitation of the language.  

Programming languages differ in a variety of ways, ranging from subtle 

syntactic distinctions to deep, semantic differences. One of the largest differences 



  

 

in semantics of various languages is the notion of state, in which a language 

exposes features of the machine on which it is being executed. This concept is 

deeply embedded in many popular programming languages, such as C, C++, Java, 

Python, and FORTRAN. Consider the following (annotated) sample code: 

var foo = 0;  // initialize ‘foo’ to zero 
function f(x){  // declare ‘f’ as a function of x 
 foo = foo+1; // increment foo 
 return foo; // return the new value of foo 
}  
var a = f(1);  // store f(1) in a 
var b = f(4);  // store f(4) in b 
var c = f(4);  // store f(4) AGAIN in c!! 
 

The first line of code uses the var (variable) keyword to instantiate a new 

value, foo, and initializes it to be zero. The next four lines define a new function 

f, which takes in a variable x and performs two operations. These operations 

change the value of foo, and then return the foo’s new value. The last three lines 

of code evaluate the function f using 1 as the first input, then 4 as the input twice 

in a row, storing the result in variables a, b, and c. After the whole program is 

executed, the values of a, b, and c will be 1, 2 and 3, respectively. This result is 

surprising, since b and c were both given the result of evaluating f(4). We know 

from algebra that a function cannot have multiple outputs for the same input, 

therefore our function f is violating the vertical line test! How can this be? 

The explanation is that foo is not actually a variable, and f is not actually 

a function - at least not in the mathematical sense of the word. Instead, foo is a 



  

 

location in memory, somewhere on the computer. We can imagine a box labeled 

“foo,” with a value that is initialized to zero at the start of the program and then 

changed every time f is executed. The programmer must be aware of the value of 

this box during execution, because the behavior of f is not predictable without 

also knowing the state of the machine. Programming languages that use state in 

this way, called imperative languages, treat a program as a list of instructions for 

pushing data around inside a machine. The notional machines for these languages 

can be thought of as having a series of slots, with values being stored, modified 

and retrieved from them. 

However, a stateful notional machine is radically different from the 

declarative machine used in mathematics, in which a function’s behavior is 

defined by the function and nothing else. State mixes the execution of a procedure 

with its definition, forcing the programmer to consider both the code they write 

and the machine on which it runs. Mathematicians can rely on the fact that f(1) 

will always evaluate to the same result, regardless of how many times f - or any 

other function - has been evaluated, while imperative programmers have no such 

guarantee. Translating stateful computation to mathematical evaluation requires a 

formulation of the stateful machine as an implicit variable, and every function to 

be redefined over a domain that includes that machine, and maps to a range of 

possible machine-states. In this construction, f(x) would become f(x, MACHINE), 

and f would now be described as f: MACHINE × Input! MACHINE × Output. 



  

 

While this transformation is possible (and surely educational!), it serves only to 

raise the barrier for students of algebra. Conflating parameters and procedures 

with variables and functions is unlikely to help students understanding either one, 

especially when both concepts behave in such different – and incompatible – 

ways. 

If we want students to build a notional machine that reflects the properties 

of mathematics, we must ensure that the notional machine gained from 

programming does not include state. Unfortunately, the use of state is pervasive in 

imperative programming. When students are confronted with questions about 

initialization or array indices, they are dealing with state. Common programming 

constructs like for loops and goto statements are stateful. Even the familiar 

print command is stateful, since it modifies a machine and has no return value 

itself. Such functions are often considered to have a “void” return value, indicating 

that their sole purpose is to change the state of the machine. The simplest program 

in Java, which is used on the popular AP Computer Science exam, requires 

students to consider a main() function that returns no value whatsoever! State is 

widely used in microworlds, which are often targeted at children: the Logo turtle 

and Scratch cat have stateful properties such as orientation and position. Before 

students have written a single line of code, each of these properties is “initialized” 

to some value, and students write programs that modify those properties just as our 

example modified foo. When a student wishes to create a variable in Scratch, 



  

 

they must assign an initial value. The notional machine represented by these 

languages presents obvious barriers for transfer into algebra. 

There are, however, programming languages that eschew state altogether. 

LISP, Scheme, IPL, and ML are all examples of functional languages. These 

languages trace their lineage to the Lambda Calculus, a mathematical language for 

describing the definition and behavior of functions. Programmers (especially 

novices) develop habits in relationship to the languages they use. A novice C 

programmer is likely to use a stateful solution to a problem, regardless of how 

suitable that solution is to the task at hand. This is problematic for teachers who 

wish to use imperative programming to solve algebraic problems, as the solutions 

are likely to involve constructs that inhibit the transfer they seek.  

To demonstrate this phenomenon, let us explore an example that is 

common to both math and programming classes. Consider the stateful (left) v. 

functional (right) definition to an algebraic definition of the factorial function 

(middle): 

Stateful Algebraic Functional 
function factorial(n){ 
 var result = 1; 
 while(n > 0){ 
   result = result*n; 
   n = n-1; 
 } 
 return result; 
} 
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function factorial(n){ 
 if(n == 0) 1; 
 else n*factorial(n-1); 
} 

 

In the stateful example, the programmer is intimately aware of the machine: 

a location in memory is named result and initialized to 1; the program uses the 



  

 

value of n as a condition inside a while loop, which executes some code until n 

is no longer greater than zero. Inside the loop, the value of n is being multiplied by 

result, and then decremented. Finally, the value of result is returned, as 

control of the machine is handed back to whatever function called factorial in 

the first place. 

By contrast, the functional solution makes no reference to the machine at 

all. The function is simply defined as a process applied to its input: 

factorial(4) doesn’t return 4*factorial(3), it is 4*factorial(3). 

The code in the functional solution is precisely what was described mathematical 

definition – no more, no less.  

It is important to note that both programs will produce the same output for 

any given input. When treated as a black box, both functions are equivalent. 

However, their construction is completely different, with one function being an 

almost-perfect translation from mathematics and the other being heavily grounded 

in the semantics of a machine executing a program. And while it is possible for 

each language to construct the other’s solution, the semantics of each language 

make it less intuitive to do so. The imperative factorial program describes 

both a computation and the mechanical process by which it takes place, much as a 

student might describe long division by including both the underlying math and 

directives for “move the next digit down next to your result.” As with long 

division, focusing on the mechanical process by which an answer is achieved can 



  

 

make it easier for students to obtain the answer. However, it may also serve to 

undermine their mathematical understanding of why it works, as they are 

overwhelmingly focused on the process instead.  

When we consider the process-object gap that students must cross when 

dealing with functions, the implications of imperative v. functional programming 

become clear. Imperative languages force students to separate the mathematical 

object they are programming from the computational process by which it will be 

evaluated. Given the concrete, experiential nature of programming, one would 

expect a student’s mental model for an imperative language to be flexible and rich 

– but it would also contain constructs that are incompatible with algebra. In fact, 

the transfer literature would predict situations in which this model is falsely 

applied to mathematics, resulting in the sort of persistent “mind bugs” that reflect 

fundamental gaps or errors in a student’s understanding of algebra. 

There is ample evidence to suggest that these misunderstanding do in fact 

occur, and that procedural semantics are a real barrier for transfer into 

mathematics (Sutherland, 1989; Usiskin, 1998). In interviews with children who 

had learned to program in Logo, Pea and Kurland (1984) found that children had 

internalized a procedural understanding of control flow, rather than algebraic 

understanding of function application. “Many children believed that placing the 

name of the executing procedure within that procedure causes execution to ‘loop’” 

(p. 147) rather than to apply that function again to a new set of inputs. Many 



  

 

students made mistakes that suggested a misunderstanding of simple function 

application, utilizing only a rigid, context-bound framework for applying common 

Logo functions like REPEAT (p.147). Similar differences exist in the use of 

variables across domains (Usiskin, 1998), with students often struggling to 

generalize a variable to stand for more than one value at a time (Knuth, Alibali et 

al., 2005). The notion that x in the expression “2x +5” could stand for more 

multiple values (or entire sub-expressions!) is a vital step in symbolizing 

relationships (p. 69). The fact that a computer happens to execute a computation 

with one value at a time is merely an implementation detail, but imperative 

programming requires that students incorporate this detail into their mental model. 

Transfer is demonstrably possible, but studies like these prove the choice of 

language semantics to be deeply relevant. If a programming language is chosen as 

a vehicle for algebra, its semantics should conform to the rules of algebra as 

closely as possible. At this point, it should come as no surprise that the language 

of SimCalc is completely functional: there is no notion of control flow, 

initialization, assignment, or program return. A SimCalc program looks like 

algebra because it is algebra. 

Unpicked Fruit 

SimCalc opened the door to modeling as an effective optimization strategy 

for rich algebra tasks, but the range of those tasks is tightly constrained by the 

limitations of the language and the interface. Full-blown programming languages 



  

 

have shown positive transfer for a handful of concepts (Clements, 1999; Dubinsky 

1992, 1995; Leron and Dubinksy, 1995; Milner, 1973), but evidence of transfer 

into algebra has remained elusive. It is our contention that one of the primary 

reasons for this is their pervasive use of state. As we have seen in our discussion 

of the algebra literature, attachment to a process-oriented view of mathematics is a 

significant obstacle for the understanding of the function concept. With procedural 

execution so deeply embedded into stateful language languages, it is no surprise 

that there is a high barrier for transfer into algebra.  

The literature on transfer highlights the importance of relevant and rich 

tasks, making it important that the scope and sequence of any programming 

curricula be carefully tailored to algebraic activities. This has implications for the 

choice of programming language, but also for the activities and exercises the 

students perform. If the ultimate goal is to facilitate transfer into algebra, a 

programming language should be as syntactically and semantically similar to 

algebra as possible. Students should work with this language in contexts that they 

are likely to see in algebra class as well, solving problems or studying properties 

that are closely tied to algebra. I believe there is unexplored territory for a 

technology-based intervention that uses functional programming, a simple syntax, 

and authentic, rich algebra tasks to facilitate compilation and transfer into the 

algebraic domain. 



  

 

For my dissertation, I will perform a feasibility study of an intervention 

called Bootstrap, which uses programming to facilitate student compilation of a 

rich model for algebraic criteria. Created in 2005, Bootstrap has been refined 

through repeated trials in afterschool and in-school settings. The intervention uses 

an algebraically sound subset of a simple, functional programming language called 

“Racket” (closely related to the well-known “Scheme” language). The lesson 

plans, handouts and materials confront students with a series of rich tasks, each of 

which builds towards the design and completion of a working video game. 

Importantly, the tasks and pedagogy are drawn wherever possible from 

conventional algebra: the vocabulary, problem solving approach and notation are 

semantically and syntactically close to recommendations by the NCTM and 

Common Core Standards. This feasibility study will focus on an in-school 

implementation across several schools, and include an analysis of student and 

teacher outcomes. 

  



  

 

Chapter 3 

The Bootstrap Curriculum 

Bootstrap is a 20-hour curricular module that teaches students to program 

their own video games by completing a series of algebra tasks using a functional 

programming language. Along the way, students learn the concepts necessary to 

complete these tasks (order of operations, function composition, linear and 

piecewise functions, inequalities in the plane, etc.), and apply them to tasks on the 

computer and on paper. The curriculum is divided into nine units, with each one 

introducing a new concept. Each unit presents the concept as the solution to a 

missing piece of their video game, has students apply it to small project, and then 

asks them to apply it to their own video games.  

The idea of having students create a video game is hardly novel. In 

Bootstrap, the video game merely brings a coherent narrative to the course, and 

gives students a concrete image of the finished product: a student might lack a 

sense for which set of inequalities determine a range on the number line, but 

intuitively knows that a character is onscreen if their x-coordinate falls between 

two points. The intrinsic motivation to make a video game is carefully channeled, 

such that each mathematical concept becomes the answer to a question the student 

cares about. In her work with elementary school students, Kafai (1998) challenged 

students to come up with games that could be used to teach others about fractions. 

In this activity, the mathematical content was embodied in the mechanics of the 



  

 

game. By comparison, the mathematical content in Bootstrap is embodied in the 

programming process, with the game being merely an engaging outcome of that 

process. This more closely resembles Harel’s (1990) use of programming 

activities to build mathematical understanding, though even that work situated the 

mathematical content in the design of the software, rather than in the construction. 

The Shoulders of Giants 

Bootstrap’s use of functional programming is by no means novel or 

innovative. Such languages have been used at the university level for decades, and 

many instructors have developed similar curricula for younger students. One of the 

most well-known functional programming textbooks is called Structure and 

Interpretation of Computer Programs or “SICP” (Abelson & Sussman, 1985), 

which was first taught at MIT in 1980 and has been used as an introductory 

computer science course at universities around the world. The “Wizard Book,” as 

it is affectionately called, uses the Scheme programming language to introduce 

fundamental computer science concepts, and has been called one of the “Top 9 

Books in a Hacker’s Bookshelf” (Grokcode.com, 2008). In recent years, however, 

SICP has fallen out of favor with many instructors. Many teachers felt that the 

material was too difficult for non-MIT students, earning it an undesirable 

reputation in some circles as a rite-of-passage for academics. SICP was even 

removed from MIT’s introductory curricula in 2008. 



  

 

If SICP is the academic’s bible, Program by Design is the working 

teacher’s curriculum kit. The Program by Design curriculum (née “How to Design 

Programs”) was first conceived in 1995, and includes multiple textbooks, 

professional development workshops and software for writing programs. Program 

by Design represents nearly two decades of work by a community of researchers, 

professors and educators called PLT (see http://www.racket-lang.org/people.html), 

and uses a Scheme-like language called Racket. The PLT group offered a different 

explanation for the SICP backlash, (Felleisen, Findler et al., 2004), namely the fact 

that SICP makes the writing of programs explicit, but not their design (p. 373): 

While the course briefly explains programming as the definition of 
some recursive procedures, it does not discuss how programmers 
determine which procedures are needed or how to organize these 
procedures. While it explains that programs benefit from functions 
as first-class values, it does not show how programmers discover the 
need for this power. While SICP introduces the idea that programs 
should use abstraction layers, it never mentions how or when 
programmers should introduce such layers of abstraction. Finally, 
while the book discusses the pros and cons of stateful modularity 
versus stream-based modularity, it does so without explaining how 
to recognize situations in which one is more useful than the other.  
 
In short, SICP amply teaches the merits of various tools in a programmer’s 

belt, but fails to communicate the design process by which a programmer uses 

them to go from a problem statement into programmed solution. While never 

stated explicitly, the expectation is that students will develop the sense for design 

by working through the examples embedded in SICP. 



  

 

While not a direct response to SICP, it is no accident that Program by 

Design includes a sophisticated pedagogical technique for writing programs called 

the Design Recipe, which aims to explicitly address the process a programmer 

takes to solves a problem. The recipe consists of six steps for writing a function: 

1.! Data definition – Create examples of the function’s input and 
output data. 

2.! Contract and Purpose – Describe the type of data that the function 
consumes and produces, and writes a concise statement of the 
function’s purpose. 

3.! Examples – Illustrate how several example inputs are transformed 
into the appropriate outputs. 

4.! Template – Enumerate all of the relevant code that may be used in 
the function, based on steps 1-3. 

5.! Define – Assembling the needed portions from the template (step 4), 
define the function. 

6.! Test – Using the examples from Step 3, verify that the function 
behaves as expected. 

 

The Design Recipe forms the core of the curriculum, which has been 

implemented successfully at dozens of colleges and universities around the word, 

as well as a number of high schools. While many programming classes have 

utilized software that is carefully aligned to the needs of their chosen curriculum, 

the Design Recipe represents an explicit approach to pedagogy that is also aligned 

to both the software and the curriculum. It is this emphasis on the trifecta of 

pedagogy, curriculum and software – and how they must be developed in concert 

with one another – that has led to my interest in Program by Design. The chief 

criticisms of Program by Design over the years deal with its emphasis on recursion 



  

 

and data structures in an introductory class, which are often reserved for upper-

level computer science classes and seen as being too difficult for first-year 

students. At the same time, Program by Design avoids common indexed data types 

(such as arrays) and the control flow constructs associated with them (such as for 

loops), which are often used in introductory courses which have a history of using 

imperative programming. These differences have led to concerns that Program by 

Design is inappropriate for an introductory course. Bootstrap does not address 

these criticisms directly, as recursion, data structures and arrays are outside the 

scope of the course. The content Bootstrap leverages from Program by Design is 

only the material one would find in a traditional algebra class. 

Introducing Bootstrap 

Bootstrap’s origin is firmly rooted in Program by Design, and I have had 

the good fortune to work with many of the PLT team over the last 10 years to 

guide its development. In many ways, Bootstrap can be thought of as a re-

imagining of the first few chapters of How to Design Programs, focused on 

algebra, designed with a traditional K-12 classroom environment in mind, and 

wrapped around a set of carefully scaffolded projects. 

Language and Software 

To facilitate knowledge compilation for algebra, a programming language 

should introduce as few non-algebraic concepts or syntactic rules as possible. 



  

 

Stateful programming languages require the student to think about the elements of 

the machine on which their program is running. Tracking attributes like memory, 

stacks and pointers greatly increases cognitive load, reducing the likelihood of 

compilation. While PLT and SICP value the simpler semantics of a functional 

language more for what they remove than for what they embody, Bootstrap uses 

the algebraic semantics of Scheme as the core of a transfer-oriented math 

intervention. The notional machine for this language, then, is as close to a mental 

model for algebra as possible. 

The Racket language can be thought of as a close cousin to Scheme, 

bringing the pure-functional semantics to a variety of contexts that are not 

traditionally treated functionally by other languages. For example, images are 

treated the same way as any other value, and image-manipulating functions can be 

composed just as easily as number-producing functions. A math teacher might 

teach function composition by defining functions f and g, and having her students 

compose them in different ways and apply them to different values. Using Racket, 

these functions can be used to flip, scale, or rotate image values. Instead of 

figuring out how f(g(3)) produced the number 18, students instead must discover 

how an image of a cat was flipped upside down and doubled in size. By allowing 

the same concept to be expressed using images, Racket offers an engaging 

alternative to a traditionally dry activity. Racket also offers built-in testing, 

allowing students to create test cases for their functions (e.g., “if Sally sells no 



  

 

lemonade today, her income is $0”) that are automatically compared to the output 

of the functions. For teachers who are tired of reminding their students to “check 

their work,” this feature offers a compelling reason for students to finally do so 

(“if you write your test cases, the computer will help find your bugs”). While 

testing packages can be incorporated into languages like Python and Java, they are 

far more difficult to use due to the stateful semantics of those languages. 

Until 2009, Bootstrap students would download and launch the same 

software used by Program by Design. However, this approach suffered from a 

number of logistical and pedagogical problems. First, most public schools lacked 

the permissions or IT staff needed to download and install software. For the small 

number of schools where installation was possible, the schools’ file-management 

or backup solutions were either unaware of this new software (ignoring student 

files during backup) or hostile (erasing student files during the nightly backup). 

Second, the software also had unexpected impacts on behavior management: to 

move a student to a different seat, a teacher would have to stop teaching and 

transfer the files from one computer to another. The time required to do so was 

unacceptable to most teachers, which forced teachers to keep students together 

who they might otherwise separate. Finally, Bootstrap diverges from Program by 

Design in several important ways, and the need to align software to these changes 

necessitated the creation of an environment that could be tightly coupled to 

Bootstrap. 



  

 

The Bootstrap software environment is called WeScheme (Yoo, Schanzer, 

Krishnamurthi and Fisler, 2011), and is designed to be student-centric. WeScheme 

lives entirely in a web browser; there is nothing to download or install, and all 

student files live in the cloud and can be accessed from any device. WeScheme 

implements a Bootstrap-specific subset of the Racket language, with many 

additions that are tailored to Bootstrap’s audience. WeScheme addresses all of the 

aforementioned obstacles, and teacher 

feedback has been extremely positive 

since the environment was introduced. 

WeScheme includes a number of 

student-centered enhancements that go 

beyond similar products such as Khan Academy, Udacity, etc., such as structured 

error messages (right) and a stop button that allows a runaway computation to be 

halted (the technical details of these features are beyond the scope of this paper, 

but the features themselves are included as specific examples of student-centric 

design). Finally, WeScheme includes explicit scaffolding for the Design Recipe, in 

the form of a “Recipe Widget” that presents students with one step at a time, with 

question prompts and instant feedback. 

Pedagogy 

Bootstrap introduces a number of pedagogic techniques aimed at various 

obstacles students face when moving from arithmetic to algebra. The three most 

Figure 13 - A structured error message in WeScheme. 
Note the use of color and readable language. 



  

 

significant techniques are the Circles of Evaluation, the (modified) Design Recipe, 

and Battling.  

Circles(of(Evaluation(

Many teachers of algebra find that their students are still struggling with 

Order of Operations. The infix notation used by arithmetic is inherently 

ambiguous, and Order of Operations is a grammatical convention that allows 

humans to properly parse a sentence like “4+2-7*1.” Oftentimes, students practice 

this grammar by computing the result for a number of arithmetic expressions, with 

the correctness of their answer serving as a proxy for their mastery of the concept. 

If a student gets the answer right they are assumed to understand the Order of 

Operations. This approach suffers from several flaws. First, the assessment itself 

suffers from false positives and false negatives: a student might answer “1*1+1” 

correctly without using the proper order at all, and a student who miscalculates “7-

5÷4” may have used the right order, but struggled with their long division. More 

importantly, this approach casts Order of Operations as a computation skill, when 

it more closely resembles a literacy skill.  

In developing the Bootstrap curriculum, I spent 

considerable time coming up with something akin to sentence 

diagramming, but focused on arithmetic. The result of this work is 

the Circles of Evaluation, which is a visual-spatial metaphor for arithmetic that 

Figure 14 - A Circle of 
Evaluation for "4 - 5" 



  

 

involves a set of formal rules for construction and translation. Each circle includes 

the name of a function and the inputs to that function, and circles can be nested 

inside one another. Even students who fear anything beyond addition and 

subtraction feel comfortable in this setting, since it can be introduced using 

nothing more than those two operations. By offering students a chance to make 

sense of something they already recognize, there’s an immediate sense of 

accomplishment. Students succeed in the early material because it feels 

completely within the realm of the familiar, which gives them the confidence to 

tackle more challenging material. When the material gets harder, students have a 

set of simple, ironclad rules they can fall back on.  

The Circles of Evaluation are a powerful metaphor for 

introducing functions. Instead of conceptualizing sequences of 

operations, students begin to visualize functions being 

composed on one another. By providing a consistent syntax for 

function application, students are able to build their understanding 

of functions atop familiar operations. For example, the Circle of 

Evaluation would diagram f(u,v) the same way as a+b, merely 

substituting f for +. This metaphor is easily extended to other 

functions, from traditional algebraic names like f and g to those from more 

traditional programming contexts like star, triangle, and sort. 

Figure 15 - A Circle 
of Evaluation for  
"6 * (4 + 5)" 

 50  “solid”  “red” 

star 

Figure 16 - Circle 
of evaluation for an 
image-producing 
expression 



  

 

The Circles of Evaluation also 

serve as a natural bridge to the syntax 

of the Racket language. To convert 

any Circle of Evaluation into code, 

the student “tears open” the Circle, splitting it into two parentheses. The student 

then copies the contents of the Circle, starting with the function at the top and then 

reading the inputs from left to right. The Circles of Evaluation dramatically 

accelerate the speed at which students pick up the Racket programming language, 

and eliminate many of the most common syntax errors. Both of these are evidence 

of the technique’s impact on cognitive load. 

  

The(Design(Recipe(

The six-step PLT Design Recipe is powerful and flexible enough to support 

a wide range of programming challenges, and is used by upper-level computer 

science majors at many colleges and universities. This power comes at a price, 

however, in the form of a substantial cognitive load. Younger students are easily 

bogged down by the large number of steps, many of which are unnecessary for the 

types of problems encountered in an algebra class. It is for this reason that 

Bootstrap uses a modified Design Recipe, which is both simpler and more directly 

geared towards algebra. 

Figure 17 - Converting a Circle of Evaluation into Racket 
code. The edges of the circles are bolded to show the origin of 
the parentheses. 



  

 

Bootstrap’s Recipe consists of only three steps, omitting original steps 1, 4 

and 6: 

1.! Contract and Purpose – Describe the type of data that the function 
consumes and produces, and writes a concise statement of the 
function’s purpose. 

2.! Examples – Illustrate how several example inputs are transformed 
into the appropriate outputs, and draw a circle around the parts that 
are changeable between those examples. These inputs and outputs 
are derived from the type information used in step 1, and the 
changeable portions are given names based on the purpose statement 
in step 1. 

3.! Define – Define the function, using the Examples from step 2. 
Everything that remains constant between examples is copied 
verbatim in the body of the function definition, and the changeable 
are replaced with variable names. 

 

The changes from the original Recipe are significant. Note that the Data 

Definition step from the original recipe has been eliminated, while two of the other 

steps (4 and 6) are still present in some form. Small portions of the Template (step 

4) are embedded in the identification of common structures in the Example step, 

which masks the separate tasks of identifying concrete examples and abstracting 

over them. These Examples are then used as automated Tests (step 6), thanks to 

support from the software environment. Given the simpler class of problems 

Bootstrap is designed to address, the tradeoff in problem solving power is well 

worth the gains in cognitive load. 

Reducing the cognitive load fosters knowledge compilation, but choosing 

these three steps has an additional benefit when it comes to teaching algebra. Each 



  

 

step corresponds to a particular representation of functions: The Contract 

represents the domain and range of a function, the Examples represent a table of 

input-output pairs, and the Definition represents the symbolic form of the function. 

A math teacher might use all three of these representations when explaining a 

function. These three representations are illustrated below, as they might be 

written in a traditional math class or Bootstrap class (note the circling and labeling 

that occurs as part of step 2, in which the changeable elements become variables): 

Traditional Math class Bootstrap class 
profit : Integer ! Integer 
each widget (w) sold is worth $5, with 
$3 in fixed costs 
 
profit(2) = (5 * 2) - 3 
profit(9) = (5 * 9) – 3 
 
profit(w) = (5 * w) - 3  

; profit : Integer ! Integer 
; each widget (w) sold is worth $5, 
with 
; $3 in fixed costs 
 
(EXAMPLE (profit 2) (- (* 5 2) 3)) 
(EXAMPLE (profit 9) (- (* 5 9) 3))  
 
(define   (profit w) (- (* 5 w) 3)) 

 

By embodying each representation as a step in the problem solving process, 

the connection between representations is made more concrete. In addition, each 

representation is utilized in a different way during the process, explicitly 

reinforcing the idea that each representation has its own strengths and weaknesses 

in describing the behavior of a function. The National Council for Teachers of 

Mathematics and Common Core Standards both recommend that students be 

exposed to multiple representations of functions, and the Design Recipe provides a 

concrete framework to do just that. In the context of a math class, the Domain and 

Range refer to the inputs and outputs of a function machine, while the Examples 



  

 

are a table of input-output pairs and the definition is the symbolic form of the 

function. 

The Bootstrap curriculum also includes an integrated student workbook, 

with pages of activities that allow students to practice the Circles of Evaluation 

and the Design Recipe without using a computer. While some in the CS education 

field view pencil-and-paper activities as obsolete artifacts to be replaced, the 

workbook has proven to be incredibly popular among students and teachers. For 

students, working through the Design Recipe on paper allows them to focus on the 

task at hand, without the cognitive load of slow typing or the distractions of a 

computer screen. For teachers, these workbooks are a way to check student work 

and assign homework to those who may not have a computer at home. Finally, the 

workbook serves as a valuable bridge between the programming and math 

domains, reducing the mistaken belief that Bootstrap concepts are only valuable 

for “computer problems.” 

To help build this bridge between on-

paper math and programming, the workbook 

pages are filled out by hand, and their contents 

can be entered directly into WeScheme. 

However, WeScheme also includes tools to 

facilitate the use of the Design Recipe directly 

from within the program. The “Design Recipe Widget” (Figure 18) is a web form 

Figure 18 - A partially complete Design Recipe 
widget in WeScheme. 



  

 

that matches the pencil-and-paper version, providing limited feedback and error 

checking to students at each step of the way.  

Battles(

If SICP gives CS majors the tools but no explicit guidance on how to use 

them, then a similar critique might be leveled against the way problem solving is 

often taught in an algebra class. Math teachers might spend enormous amounts of 

time on specific tools and tricks for setting up, simplifying, and solving equations, 

but then leave it up to students to discover how to use those tools on a battery of 

word problems. PLT’s Design Recipe has made problem solving explicit for CS 

majors on programming tasks, and Bootstrap’s Recipe is intended to do the same 

thing for middle and high school math students struggling with word problems.  

PLT’s Recipe allows each step to draw upon the work done in earlier steps, 

but Bootstrap’s Recipe starts out being far more tightly constrained. In fact, 

students are told that each step must be completely derived from the step that came 

before it. This process is reinforced through a technique called Battling, in which 

students challenge one another to “defend their reasoning.” In a Battle, the Design 

Recipe becomes the scaffold for the dialog between students, with one student 

pointing to any item on the page and asking their partner to explain its origin. 

Their partner must respond by pointing to the location in the previous step from 



  

 

which that item was derived. A sample battle might unfold as follows (left), for a 

worked-through Design Recipe (right): 

Student 1: Where did you get the name of function? 
Student 2: The word problem says to describe the 
“profit” of the function, so that’s what I called it.  
 
Student 1: What about the Domain and Range? 
Student 2: The word problem says “number of 
widgets”, and I don’t think you can sell half a 
widget. 
 
Student 1: Why did you circle the 2 and the 9 in 
your examples, and why did you call them “w”? 
Student 2: Those are the only things that change 
from example to example, and I knew they stood for 
numbers of widgets sold. I picked “w” because it's a 
short form of the word “widget”. 
 
Student 1: Where did you get the 5 and 3 from in 
your function definition? 
Student 2: The 5 and the 3 were used in both my 
Examples, so I had to use them as-is in my 
definition. 
 
Student 1: Where did you get the 5 and 3 from in 
your Examples? 
Student 2: They came from the values in my 
purpose statement. 

 
 
 
 
 
 
Word Problem: a company sells 
widgets for $5/ea, and spends $3 in 
fixed costs. Describe their profit 
as a function of the number of 
widgets sold. 
 
 
 
 
; profit : Integer ! Integer 
; each widget sold is worth $5, 
with 
; $3 in fixed costs 
 
(EXAMPLE (profit 2) (- (* 5 2) 3)) 
(EXAMPLE (profit 9) (- (* 5 9) 3))  
 
(define  (profit w) (- (* 5 w) 3)) 

  

The impact of these Battles is threefold. First, they give students a structure 

through which to talk about solving word problems, and a common language and 

format for doing so. Second, they reinforce the notion that solutions are iteratively 

constructed, not spontaneously invented. Over time, students begin to trust that the 

process will result in an answer, even if they cannot immediately guess at the 

answer when reading the word problem. Finally, they improve student confidence 

and engagement, because students are able to trace their own reasoning in a low-

risk, conversational setting.  

w w 



  

 

Teachers often ask students to explain how they arrived at a solution, but 

that can be extremely difficult even for advanced students, who may be unable to 

untangle or articulate the process by which they reached a solution. Likewise, it 

may be impossible for a struggling student to identify where they are stuck. Both 

the struggling and advanced students in these examples are held back by the lack 

of an explicit problem solving process. The Design Recipe and the Battles aim to 

be that structure, which a teacher can use with students and those students can use 

with one another. Now the advanced student can refer to steps of the Recipe to 

trace their thinking, and a struggling student can articulate specifically where they 

are stuck. 

Curriculum 

The curriculum, software and pedagogy are carefully aligned with one 

another. Bootstrap is a project-based curriculum, inviting pairs of students to 

brainstorm a simple video game (within a set of constraints) on the very first day 

of class. Given the near-ubiquity of gaming across gender (Entertainment 

Software Alliance, 2003), class, and ethnic group for this age group, the video 

game project sets a concrete goal for the class that is immediately accessible and 

relevant to students. The fact that the game is something students design for 

themselves provides a sense of ownership, with students able to visualize “their 

game” as an incentive for completing the class. The constraints of the game have 

been carefully chosen so that each element of the project maps directly to a 



  

 

specific learning outcome from the class. Bootstrap’s focus on algebra means that 

these elements (e.g., animation, key events, collision, etc.) are tied firmly to 

mathematical concepts (e.g., linear functions, piecewise functions, the distance 

formula, etc.), with each element of the game introduced as a traditional word 

problem.  

Unit(1(

Students discuss the components of their favorite 

video games, and reverse-engineer a simple game 

called “NinjaCat” to determine what is changing from 

one frame of the game to another. In doing so, students 

discover that the game can be reduced to a series of 

coordinates, which change in predictable ways. A Dog 

moving to the left, for example, can be represented as a 

fixed image with a changing x-coordinate. They then 

explore coordinates in Cartesian space, using on- and off-screen positions to 

discover negative values of x and y. For practice, students identify the coordinates 

for the characters in a game at various points in time. Once they are comfortable 

with coordinates, they brainstorm their own games and create sample coordinate 

lists for different points in time in their own game. 

Figure 19 - the NinjaCat game 

Figure 20 - The Dog's position 
on a number line 



  

 

Capitalizing on the high engagement created by the game design activity, 

teachers introduce the Circles of Evaluation as the first steps in making these 

games come alive. This motivates a discussion of Order of Operations, and 

teachers can use any Order of Operations problem from their existing textbooks 

with the Circles of Evaluation.  

Unit(2(

Students review the Circles of Evaluation, and the teacher introduces a set-

mapping representation for functions, called a Contract, in which the function 

object exists as a means of translating points from a Domain into a Range. 

Students begin compiling a list of Contracts for every function they can 

brainstorm. Coupled with their understanding of Circles of Evaluation, students 

generalize their understanding of functions to include other data types, including 

Strings and Images. They add Contracts for image-producing functions like star, 

triangle, circle, as well as image-manipulating functions like scale and 

rotate. These functions can be composed to create very sophisticated images, 

such as flags for various countries. The Circle of Evaluation necessary to generate 

the flag of Panama, for example is extremely complex, and requires quite a bit of 

thinking about the coordinate plane. Despite the challenge and rigor of the flag 

activity, it has proven to be one of the most popular among students and teachers 

alike. 



  

 

Unit(3(

Students are introduced to an 

abbreviated form of the Design Recipe (the 

Purpose Statement is removed to further 

reduce cognitive load), and are given a series 

of trivial word problems in order to 

internalize the pattern of the Recipe. Students 

define simple functions to generate shapes (e.g., “given a radius, produce a solid 

red circle of the given size”), and practice using those functions alongside other 

functions that are built into the language. Students are also shown how to name 

values in the language, the programmatic equivalent of writing “x=3” or 

“food=‘pizza’.” As a motivation for naming these values, students are shown how 

to define various images in their video games (Figure 21).  

Unit(4((

Unit 4 is completely devoted to reviewing and 

deepening the Design Recipe introduced in Unit 3. Students 

continue to practice the Design Recipe by applying it to 

simple problems. In this Unit, students use the full Design 

Recipe to define a linear function that relates height to time, 

which is then used to make a rocket blast off (Figure 22). This 

Figure 21 - Definition of game character values 

Figure 22 - The 
interactive Rocket activity!



  

 

is also the point in the curriculum where Battles are first introduced, with the 

teacher first modeling the exchange and then turning it over to the students to 

practice with one another. When students complete the rocket activity, they are 

challenged to make the rocket fly faster, slower, backwards, or even accelerate 

over time.  

Unit(5((

Like Unit 4, Unit 5 is devoted entirely to practicing the Design Recipe. This 

time, however, the word problems students solve are all directly related to the 

motion of their game characters. After writing a series of linear functions, students 

see the images they defined in Unit 3 come to life, entering from one side of the 

screen and flying across to the other. Their excitement is short-lived, however, 

when they realize that their characters keep moving, leaving the screen and never 

coming back.  

Unit(6((

At this point in the curriculum, students are motivated to make their 

characters come back to the screen once they have 

gone off the edge. This is used to ground a 

discussion of what it means for a character to be off 

the edge of the screen, and how to represent a test 

for “off-screen-ness” in the form of an inequality. 
Figure 23 - Sam the Butterfly 



  

 

Students discover Boolean types, and use them to create programs that test values, 

and then model scenarios using these programs. Just as the Rocket was used to 

introduce linear functions, this Unit employs an artifact known as “Sam the 

Butterfly” to introduce inequalities in the plane (Figure 23). Sam is an 8th-grade 

butterfly, who has been told to stay inside his mother’s yard. Students quickly 

discover that they can move Sam outside the yard using the arrow keys: being an 

8th grader, Sam doesn’t always listen to his mom! Students are then informed that 

Sam might be eaten by an evil, butterfly-hungry cyborg that patrols the 

neighborhood, and tasked with writing a series of inequalities that will describe all 

of Sam’s safe positions. Students are introduced to and (intersection) and or 

(union), and use these functions to compose their inequalities into a single 

function that returns true or false if Sam is on the screen. This same code can 

then be implemented in their video games, allowing their characters to regenerate 

if they go off-screen. 

Unit(7((

At this point, students know how to write functions that evaluate all inputs 

in the same way. This is sufficient for moving a character to the left or right, or for 

detecting when an x-coordinate is off-screen. However, students quickly realize 

that this is insufficient for making their players respond differently to key-presses, 

moving up for one key and down for another. Students once again begin with a 



  

 

mini-project, this time involving a pizza parlor that needs to produce different 

prices depending on the topping a customer orders. This unit introduces piecewise 

functions, which use the Boolean logic from Unit 6 to define sub-domains for a 

function’s inputs. In the pizza parlor example, each sub-domain can be evaluated 

differently, with students returning one price for a cheese pizza and a different one 

for pepperoni. Students then use geometry and piecewise functions to add or 

subtract from their players’ y-coordinates, depending on which key the user has 

pressed. Teachers can challenge students further, by asking them to create “cheat 

codes” that move their players at different speeds for different keys, cause them to 

jump to various parts of the screen, or wrap from one side to the other. 

Unit(8((

At this point, students have an almost-working 

game. Their characters move around the screen, 

regenerate when they go off-screen, and their avatars are 

controlled using keyboard input. However, nothing 

happens when the avatar collides with an enemy, or when 

it captures a target. Drawing on their knowledge of how 

video games work, students are quick to point out that something should happen 

when their characters are close enough to touch. “Close enough to touch” appears 

deceptively simple, and many students expect this to be a simple review of 

Figure 24 - A running Bootstrap 
game showing the distance 
between characters 



  

 

Boolean inequalities. Students find that measuring the distance between two points 

is not so easy! The software facilitates this discussion, allowing students to see the 

distance between each of their characters measured by a series of right triangles 

(Figure 24). This leads to a discussion and geometric proof of the Pythagorean 

theorem, with students then programming the distance function into their games. 

This function can be composed with an inequality to determine collision, which 

completes the games. 

Unit(9((

Unit 9 does not include any explicit 

programming activities, and is instead focused 

entirely on improving students’ ability to talk about 

their code and design choices. This exercise is taken 

directly from math activities in which students walk 

through solutions to a word problem; however, in this 

case the solutions are presented as Racket code and the walkthrough is scaffolded 

using the Design Recipe Battles (Figure 25). Students often create tri-fold posters 

to accompany these talks, mimicking a science fair format. This element of the 

curriculum is especially popular with math teachers, who see it as chance for their 

students to show off their work concretely in the same way they might in a science 

or social studies class. 

Figure 25 - Bootstrap students present 
their code to the class 



  

 

Implementation 

The curriculum includes ample supplemental material, consisting of follow-

up lessons, homework assignments, warm-up activities, exit slips and quizzes. 

Some teachers (particularly those using Bootstrap as a stand-alone class) make use 

of all of these resources, while others use only the core materials.  

The core of Bootstrap can be integrated into an existing algebra class or 

taught as a standalone class. Over 15 hours of the curriculum cover material that is 

already a part of the Common Core Standards for Mathematics, meaning that a 

math teacher can integrate Bootstrap into their classroom without having to find 

20 additional hours in the school year. The software environment, curriculum, 

pedagogical techniques and the student workbook are all carefully designed in 

concert with one another, and are intended to be used together.  

 

  



  

 

Chapter 4 

Conceptual Framework 

During my survey of the literature, several models were described for the 

multiple, interconnected representations that make up the “function” concept. Star 

and Rittle-Johnson (2009) identify the abilities to operate within and between 

representations as complimentary: The first skillset involves flexibility when using 

a particular representation, while the second involves the ability to make 

connections between more than one. “Understanding in algebra means being able 

to use multiple representations and then to connect between them” (p. 6). 

O’Callaghan (1998) provides a measurement for conceptual knowledge that 

involves four constructs: Modeling, Interpreting, Translating and Reifying (p. 24-

26). This task-oriented view of functions draws from several authors, most notably 

Schwarz & Dreyfus (1995) and Slavit (1997) – both of whom define sets of 

actions or properties that transcend individual representations. Bloch (2003) also 

embraced a property-oriented view, defining an understanding of functions in 

terms of a student’s ability to identify properties across representations. Given the 

emphasis on cross-representational tasks, my framework operationalizes 

understanding of functions primarily as students’ ability to operate between them. 

This synthesis of the literature into a set of tasks serves as the conceptual 

framework for the study, which is intended to serve as a meaningful and accurate 

representation of the function concept. The framework, in turn, will guide the 



  

 

quantitative component of the study and the eventual data collection and analysis. 

These tasks – and the conceptual knowledge necessary to complete them - are 

described in a later section. However, it is important to consider the procedural 

knowledge that is often invoked when working with functions. While this 

knowledge is valuable, it is not assessed as part of this study. 

Procedural Knowledge 

Each representation outlined in the literature comes with its own set of 

basic skills and vocabulary. In order to work with graphs, for example, it may be 

necessary that students be able to plot points, label axes, etc. O’Callaghan draws a 

line between these skills and deeper understanding, calling them procedural, 

rather than conceptual knowledge (p.22). He also notes that traditional algebra 

curricula tend to produce stronger procedural outcomes than conceptual ones 

(Boers-van Oosterum, 1990). In this context, procedural knowledge includes basic 

familiarity with tables, graphs and Cartesian planes, order of operations, and 

function application. In my framework, I consider procedural knowledge to be a 

moderating factor, as these skills are a necessary but insufficient condition for 

understanding functions. 

Conceptual Knowledge 

Borrowing from O’Callaghan’s (1998) work, I am defining conceptual 

knowledge in terms of four discrete tasks: modeling, interpreting, translating and 



  

 

reifying. The Bootstrap curriculum introduces these tasks in the programming 

domain, using syntax and problem solving approaches drawn from a computer 

science curriculum. This study examines the degree to which proficiency with 

these tasks in one domain (programming) can transfer to success on similar tasks 

in another (algebra). 

Modeling  

The challenge of many word problems is not in solving an equation, but in 

setting up the equation in the first place. This activity requires the student to 

describe quantitative relationships formally, using functions and variables to 

model the problem. Modeling is described as a high level skill by numerous 

sources in the literature (Dede, 2007; Edwards, 1998; Herscovics & Linchevsky, 

1994; NCTM, 2000), and is well suited to programming based interventions 

(Resnick, 1994; Wilensky, 1994). A common modeling exercise might describe 

the flight of a rocket over time, and ask students to derive the symbolic 

relationship from the written description. 

Interpreting 

Essentially the opposite of modeling tasks, interpreting a function requires 

students to reason about its behavior, and often to draw connections to real-world 

situations. This mirrors a similar construct found in Hillel et. al (1992), and Kaput 

(1987). Interpretation is also highlighted as an essential skill for deep 



  

 

understanding by standards bodies (MAA, 1991; NCTM, 1989). In contrast to our 

rocket example, an Interpretation task might provide the student with a height 

function (e.g., h(t)=-t2 +10”), with various questions that can only be answered by 

reasoning about the meaning of the function (“How high is the rocket after 10 

seconds? Is there a maximum height that the rocket will reach?”).  

Translating 

In the literature dealing with multiple representations of algebraic 

functions, the ability to translate between representations is commonly cited as 

evidence of deep understanding (McGowen, Demarois & Tall, 2000; Slavit, 1997). 

In one translation task, a student must convert a function from one representation 

to another (e.g., “make an input-output table for this function”). In another task, a 

student is shown a set of possible conversions for a given function and must 

choose the correct one (“matching”). This latter formulation allows for a multiple-

choice instrument, and is closely follows the “linking” tasks employed by Schwarz 

& Dreyfus (1995).  

Reifying 

 Reification is one of the more esoterically defined terms in the literature. 

Sfard and Linchevsky (1994) describe reification as “our mind's eye's ability to 

envision the result of processes as permanent entities in their own right" (p. 194). 

Slavit (1997) compares the reification of the function concept to understanding the 



  

 

“bowlness” of a bowl and the “cupness” of a cup (p. 260). Reification can be 

thought of as a student’s ability to view functions as objects. These objects have 

distinct properties, and actions can be performed on them (Breidenbach et al., 

1992; Sfard, 2000). These actions may include addition, subtraction or 

composition of functions (O’Callaghan, 1998, p. 25). Likewise, a student’s 

understanding of variables as more than mere placeholders for a single value 

requires a rich understanding of functions-as-objects.  

Attitudinal Factors 

While the primary goal of the curriculum is content-focused, there is 

justification in the literature for adding an affective assessment to our study. 

Several authors have found negative correlations between math anxiety and 

performance (Ashcraft & Faust, 1994; Hembree, 1990), particularly when the 

tasks are more complex and assessment conditions are stressful. For students 

taking algebra, these complex tasks are often encountered during high-stakes tests, 

all but assuring a stressful condition. Standards bodies have highlighted the 

importance of other attitudes, particularly perceived value and applicability in the 

real world (NCTM, 1989). Given the potential for these attitudes to impact math 

performance, and Bootstrap’s explicit claims about “real-world” algebra 

applications, it makes sense to look for attitudinal shifts as part of our study.  

While aptitude in computer programming is neither a prerequisite or 

primary goal of interventions like Bootstrap, programming knowledge may be a 



  

 

moderating factor for subjects: a student who is completely familiar with 

programming will be expected to grasp the material much faster than a student 

with no experience. For this reason, it is appropriate to include programming 

attitude and experience in our conceptual framework.  

Research Questions 

In this feasibility study of the Bootstrap curriculum, I will answer the 

following questions: 

1.! How do implementations of Bootstrap vary across different teachers? What 
strategies and practices emerge? 

2.! What are the major challenges for implementing Bootstrap? 
3.! How are students’ attitudes toward mathematics related to how they 

experience the Bootstrap curriculum?   
4.! How is student performance on specific algebraic tasks related to how they 

experience the Bootstrap curriculum?   
 

Each question will add context to the others: if students demonstrate 

positive gains in spite of teacher struggles, it may suggest that the curriculum is 

overly-prescriptive; poor student outcomes in spite of a successful implementation 

may point to flaws or unrecognized transfer challenges. A mixed-methods 

approach allows me to add context to raw numbers obtained from tests, and data to 

back up themes that emerge from interviews. 

  



  

 

Chapter 5 

Research Methods 

Design 

Bootstrap has been implemented for audiences outside the target for which 

it was designed, ranging from a once-a-week after-school program for gifted 4th 

graders to an intensive, remedial summer class for high school seniors. This study 

focuses on a convenience sample of six in-school math and computer science 

teachers, primarily serving students in urban centers in grades 8 and 9. Four of the 

teachers work in schools where non-white students make up a majority of the 

student body. One of the six schools is parochial, one is private and the rest 

operate in the public school system. The teachers range from a first-year instructor 

to a teacher with more than 10 years’ experience. With two exceptions, students at 

each of these schools score below grade level on state math exams, and in each 

case the teacher or district selected Bootstrap for its use as a tool to address 

perceived gaps in students’ performance in algebra. While it is not be possible to 

conduct a full impact study, this research is intended to inform future thinking 

about student impact in traditionally challenging classroom settings. 

Data Set 

The data set consists of quantitative pre- and post-test data, measures of 

implementation fidelity, and transcripts of teacher interviews. I collected this data 



  

 

from participating teachers and the students in their classrooms during the 2013-

2014 academic year. Fidelity measures were collected through a combination of 

site observations and interviews (30-45 minutes in length), to explore the different 

ways teachers implement the program and the challenges and best practices for 

doing so. Site observations were coded using a protocol I have developed (see 

Appendix D), and interviews were coded to discern common experiences 

(perceived effectiveness, challenges, teacher confidence and student attitudes). 

Both the interview and observation protocols were piloted with a second rater to 

determine their reliability. To detect potential shifts in student performance, I 

developed a set of pre/post tests that blend measures of core competencies in 

algebra. These tests underwent cognitive pretesting and reliability studies during 

the 2011 and 2012 school years, and were found to be reliable measures of the 

specific competencies I intended to study (see the following section for detail).  

A formal impact study is beyond the scope of this dataset, given the sample 

size and the noise introduced by teacher- and school-level effects. However, 

having this data for individual classes will allow me to add context to feasibility 

measures (discussed later in the Analysis section). Through agreements with five 

of the six schools studied, I obtained permission to access the pre- and post-test 

data from teachers, each of whom used my instrument as part of the normal course 

of instruction. While I was unable to obtain IRB clearance for student data from 



  

 

the sixth school, I was able to include the classroom observations and interview 

data from the teacher in my analysis. 

Measures 

Fidelity 

To assess program fidelity, I developed an observation protocol (Appendix 

D) that evaluates the use of the teaching methods and activities that are specified 

in the curriculum. Observations were taken when the teacher covered Units 4-7, 

which deal most directly with the concept targeted for transfer (Appendix E). At 

the end of the year, the same teachers participated in phone interviews, so that 

observed variations could be further explored. A teacher who chooses an 

improvised activity over the recommended one, for example, may have done so in 

response to a particular classroom need or a change in direction. These interviews 

add context to the variations seen during observation, allowing me to report on 

what went well, what was challenging, and how students responded. 

Affective Outcomes 

Student attitudes towards mathematics can have a significant impact on 

student performance (Ashcroft & Moore, 2009), and are also likely to play a role 

in academic choices students will make after the intervention (e.g., course 

selection). I originally planned to use the “Attitudes Towards Mathematics 

Inventory” (ATMI) assessment in this study, but time constraints required me to 



  

 

choose between qualitative pre/post measures of affective and transfer outcomes. 

Given Bootstrap’s goal of facilitating transfer, I chose to rely on teacher 

interviews as a proxy for affective outcomes. My interview protocol includes 

specific questions about student confidence and anxiety over time, and my 

analysis will address this outcome in the following chapter. 

Learning Outcomes 

One of the value propositions of Bootstrap is that students learn to program, 

making the programming tasks a measure of the one of the program’s intended 

impacts. However, this learning outcome will also have a strong impact on 

transfer: if students do not learn about functions in the programming domain, they 

cannot be expected to transfer any understanding into algebra. Short (1-2 min) 

programming activities (see Appendix B) serve as a form of embedded 

assessment, to determine if students have learned the requisite programming skills. 

With the intervention being specifically targeted at teaching programming, it is 

likely that most students will learn the basic programming constructs of the 

language. I expect this measure to be extremely positive, though not altogether 

useful as anything beyond a check on the likelihood of transfer. 

Transfer Outcomes 

To ensure that the tasks chosen for this measurement accurately represent 

the field, I developed an instrument that draws tasks from the Massachusetts 



  

 

Comprehensive Assessment System (MCAS). Massachusetts has adopted the 

Common Core Standards for Mathematics, raising the likelihood that these tasks 

are representative of similar assessments in other states that have adopted the 

Common Core. Given the time constraints of a normal classroom, the questions on 

the assessment must be carefully targeted to the relevant concepts targeted by the 

intervention. These state tests cover a wide range of mathematical concepts, and 

even the items that deal specifically with algebra may not reflect what the 

literature defines as conceptual knowledge. In my conceptual framework, I laid 

out Callaghan’s (1998) four constructs for appropriately rich tasks for assessing 

knowledge of functions:  

1.! Reification – Students are given a list of functions, and asked to 
evaluate the functions’ behavior on inputs when composed with one 
another. 

2.! Interpretation - Students are given a single representation of a 
function, and asked to explain the behavior of the function in their own 
words.  

3.! Translation - Students must match representations for a given function 
(e.g., pairing a list of graphs with the corresponding list of x-y tables).  

4.! Modeling – Students are given word problems that describe a situation, 
and must define a formula that describes that situation accurately. 
 

This view of functions draws from several authors (notably Sfard, Schwarz & 

Dreyfus, and Slavit) and is echoed in the Common Core Standards for 

Mathematics. The questions drawn from these sources are selected for their 

suitability as tasks conforming to three of the four constructs (see Appendix C). I 

have chosen to leave out Interpretation tasks, as they are not a focus of the 



  

 

intervention. To increase the number of items used in the assessment, new 

questions were formulated to match the wording and category of those drawn from 

these tests. For a number of the questions, additional steps were inserted into the 

problem statement to encourage students to “show their work” and to gain better 

insight into their mental model for functions.  

These instruments underwent cognitive pretesting with volunteer students 

from DC Public Schools to ensure that the wording and presentation was 

appropriate for the sample population. Pilot studies of three classes (with similar 

populations to the ones used in this study) found that the composition, translation 

and modeling instruments had moderate-to-high reliability (α=0.71, α=0.87, and 

0.96, respectively). T-tests conducted on the pilot data found student improvement 

on both the composition (from 0.51 to 0.61, p≤0.01) and the modeling tasks (from 

0.30 to 0.57, p≤0.01), with no significant change on translation tasks. Given the 

possibility of both positive and negative transfer, a 2-tailed t-test will be used to 

analyze transfer outcomes. Despite the small sample size, the use of paired pre- 

and post-tests should provide sufficient statistical power to detect changes in 

student performance. 

Analysis 

The first two research questions (variations and challenges in implementing 

the curriculum) are addressed through classroom observations and phone 



  

 

interviews. The observations will detect variation from recommended strategies, 

informing me of how the implementation varies between teachers (RQ #1) and 

what the challenges were to successful implementation (RQ #2). These variations 

were discussed in phone interviews, during which teachers shared the challenges, 

successes and student reactions that explained why they chose one strategy over 

another. This allows me to construct detailed descriptions of what happened in 

each classroom, including the activities used, challenges faced, and student 

outcomes.  

I also analyzed the interview data for changes in student attitudes towards 

mathematics (RQ #3). Analysis of the performance data will mirror the analysis 

used for the anxiety measure: a statistically significant result will allow me to 

conclude that their performance has shifted during intervention (RQ #4), and I 

may be able to examine these shifts along gender or achievement lines. 

As the creator of the curriculum, I am aware of the risks involved in 

developing coding categories of my own, which may not align with the 

experiences of the teachers in the study. It is for this reason that I chose to code the 

interviews using thematic analysis (Boyatzis, 1998). Thematic analysis uses a two-

phase approach. The goal of the first analysis phase is to paint an accurate picture 

of what was said, before examining that picture for broader themes. These codes 

are developed iteratively, starting with a schema derived from a small sample of 

the text and then adapted to larger and larger samples. These codes may be 



  

 

created, modified or deleted in each iteration, and overly specific codes may be 

combined and overly general codes may be split into smaller ones. It is important 

to note that these codes are developed without any eye towards the research 

questions themselves, limiting the confirmation bias of a deductive approach. 

While no method can completely mitigate researcher bias, this element makes 

thematic analysis a particularly effective tool for this study. The codes from the 

first phase serve as a form of data compression, chunking the interviews into a set 

of summary fragments. In the second phase, the researcher develops themes as a 

bridge between the research questions and the codes. During analysis, the codes 

point the researcher towards a location in the text in which a relevant theme is 

mentioned. When describing a theme’s connection to a research question, a closer 

analysis of relevant fragments is performed to ensure that themes are actually 

answering the question at hand. 

Thematic analysis allows the researcher to make a choice between two 

levels of analysis when identifying themes. Semantic themes are closely tied to the 

specific sentences or fragments in the text, providing a localized lens into the data 

at the expense of cross-interview analysis. By contrast, latent themes allow the 

researcher to start with a small set of questions and search the data set for patterns. 

I opted to employ latent themes, taking a separate pass through the dataset for each 

of my research questions.  

  



  

 

Chapter 6 

Results 

Fidelity 

Bootstrap has been used in various contexts since 2005, and its pedagogical 

roots in Program by Design go back to the early 1990s. I drew on these 

experiences to determine which elements of the curriculum were essential, without 

which a teacher could not be said to be “teaching Bootstrap.” The observation 

protocol (see Appendix D) includes measures for eleven of these essential 

features, each of which can be scored as “low,” “medium” or “high,” based on the 

frequency with which a feature is used. One of the features is based on the 

classroom environment (students working in pairs, using their workbooks, etc.). 

There are two features for the correct and consistent use of appropriate math 

terminology, given the importance of using mathematical (rather than 

programming) terms for key concepts. A fourth feature describes the frequency 

with which a teacher gives students time to wrestle with a problem before walking 

them through the solution, a practice that is stressed heavily in the Bootstrap 

training. 

Over the years, I have watched many teachers try a new method when 

explaining a problem, only to abandon it and fall back on a more familiar method 

when a student needs help. For example, a novice Bootstrap teacher might teach 

students the Circle of Evaluation when introducing Racket syntax, but then jump 



  

 

immediately to counting parentheses when diagnosing a syntax error. Another 

teacher might use the Design Recipe when walking students through a problem 

relating distance to time, but then go straight back to the word problem when 

explaining why the variable is called “hours.” By contrast, a seasoned Bootstrap 

teacher would be expected to refer back to the student’s Example step and point 

out that they had used “hours” as a label.  

This observation is not unexpected: standing in front of a classroom 

introducing a problem requires less mastery of the technique than using it flexibly 

to answer student questions. However, it is essential to use these methods both 

when introducing a problem and when assisting a student who has questions. I 

developed a set of three “introductory” measures for the Design Recipe (using the 

Recipe to walk through a problem) and another three “assisting” measures (using 

the Design Recipe to help a struggling student). For the same reason, I also 

included a fourth assistive measure, to identify whether teachers fall back on the 

Circles of Evaluation when students need help with syntax errors.  

When calculating a teacher’s overall fidelity, each indicator is worth up to 3 

points, and the teacher’s score is reported as a percentage of the highest possible 

score (33). When applicable, scores are averaged between two observations. 

Assistive indicators (shaded) are grouped together, as are introductory indicators 

(italicized). Travel constraints prevented me from observing Hadiyah’s classes, so 

her scores are absent from the table. 



  

 

Indicator   Aaron Ernest Fatima Libby Mallory Avg 

Room setup (language table, pair 
programming, workbooks) 

100.00% 83.33% 66.67% 66.67% 33.33% 70.00% 

Math vocabulary used correctly  100.00% 83.33% 100.00% 100.00% 33.33% 83.33% 

Math vocabulary used consistently 66.67% 83.33% 100.00% 83.33% 66.67% 80.00% 

Time for students to work on their own 100.00% 100.00% 66.67% 83.33% 83.33% 86.67% 

Contracts before Examples  100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Examples before Definition  100.00% 100.00% 66.67% 100.00% 83.33% 90.00% 

DR used for introducing or reviewing a 
word problem 

100.00% 66.67% 66.67% 100.00% 66.67% 80.00% 

Circles of Evaluation used for errors in 
syntax  

50.00% 100.00% 66.67% 100.00% 50.00% 73.33% 

DR used when students ask for help 100.00% 33.33% 66.67% 66.67% 33.33% 60.00% 

Explicitly identifying variables in 
Examples 

100.00% 33.33% 66.67% 100.00% 66.67% 73.33% 

Definition is explicitly tied to Examples 100.00% 66.67% 66.67% 100.00% 33.33% 73.33% 

  Total: 92.42% 77.27% 75.76% 90.91% 59.09% 79.09% 

Figure 26 - Fidelity scores for Bootstrap teachers (the four assistive measures are shaded) 
 

Some summary observations about fidelity not covered in the table above: 

•! Every participant used the student workbooks in their classroom. 

•! Only Ernest and Aaron displayed the Language Table in their classrooms. 

•! With the exception of Mallory, teachers were generally successful 
applying math vocabulary in a programming class. 
 

The heavyweight nature of the Bootstrap pedagogy is evident in this table, 

with a noticeable drop between introductory and assisting measures. Most 

participants had high scores when introducing a problem using the Design Recipe 

(averaging 80% across teachers), or when explicitly asking students to complete 

the steps of the Recipe in order (100% and 90%, respectively). When a student 

was stuck using a word problem, however, teachers had a tendency to revert back 

to non-Bootstrap methods (60%). Teachers also scored lower on measures that 

identify explicit connections between the steps of the Design Recipe, successfully 



  

 

“Identifying Variables” and “Connecting the Definition to Examples” only 73% of 

the time. When a student needed help with a syntax error, teachers used the Circles 

of Evaluation to diagnose the problem only 73% of the time. 

I observed fairly high fidelity from four of the participants, who applied 

Bootstrap techniques at least 75% of the time. It is interesting to note that Aaron 

and Libby, who work in more middle-class schools, stood out with scores above 

90%. One possible explanation may be that these teachers had more planning time 

than their counterparts, which is not uncommon in suburban or private schools. 

Another possibility is that these teachers may have spent less energy on behavior 

management, allowing them to focus more on internalizing the Bootstrap 

techniques. However, this may simply be coincidence: Fatima and Ernest work in 

public schools with traditionally under-performing students, and their fidelity 

measures were not so far behind (77% and 75%, respectively). Mallory is a 

noticeable outlier, however, with a much lower fidelity measure (59%) than the 

other participants. This delta is even more noticeable when comparing her fidelity 

on assisting indicators. 

Teacher Interviews 

During the summer of 2014, I conducted video interviews with each of the 

teachers chosen for this study. Each interview ran for 30 to 45 minutes, and 

recordings were transcribed and time-stamped for coding using thematic analysis. 

In discussing my observations for the teacher interviews, I will begin with a broad 



  

 

description of the coding scheme I developed for analyzing the interviews, before 

discussing how those codes manifest for each participant. 

Codes 

The first phase of thematic analysis involves the creation of codes from the 

raw interview data. These codes are based only on the text itself (not the research 

questions), and serve as a form of data compression for the bulk of the original 

text. The initial scheme I developed was based on a reading of the text, starting 

with the following codes: 

•! Student Anxiety – teacher describes students are described as “afraid,” 
“scared,” “worried,” etc. 

•! Student Interest – teacher describes students are described as “engaged,” 
“curious,” “excited,” etc. 

•! Student Confidence – teacher describes students are described as 
“proud,” “certain,” “prepared,” etc. 

•! Teacher Challenges – teacher describes difficulties (Bootstrap-related or 
otherwise). 

•! Transfer – teacher identifies specific applications of Bootstrap material to 
mathematics. 

 

After applying these to a subset of the interviews, I analyzed the remaining, 

uncoded text and created new codes based on patterns that emerged: 

•! Relevance – teacher describes material as being “useful,” “applied,” or 
“personal” for students. 

•! Teacher Success – teacher describes an activity or technique that they feel 
had a positive impact on his or her students. 

•! Collaboration – teacher describes students as “working together,” 
“helping one another,” etc. 



  

 

•! Step-by-Step – teacher talks about a process being “broken down,” “easy 
to follow,” etc. 

 

I found the Student Interest code to be far too general. Teachers spoke 

broadly about student interest, citing it as both evidence of success (a positive 

output) and as a mechanism for further engagement (a positive input). Once I 

recoded the original subset using the new codes, I found that the code for 

Relevance had effectively covered the latter use of the Student Interest code. As a 

result, the definition of that code was constrained to include only those phrases 

that describe student interest without the notion of application or ownership. 

The remaining text was then reanalyzed using these nine codes. I enlisted a 

fellow graduate student to code a subset of the interviews in parallel, in order to 

gain a measure of inter-rater reliability. She coded two of the interviews (Ernest 

and Aaron) independently, using the same set of codes I had developed. When 

comparing these interviews, I found high reliability for six of the codes, nearly all 

of which were used consistently between readers. Teacher challenge and teacher 

success were used broadly by both of us, often as a secondary code for fragments 

that were already coded with something else. Our use of the Relevance code, 

however, differed in a number of places. Most of these instances saw relevance 

being used in place of another positive code (Student Interest, Transfer, or Teacher 

Success). This suggested that the code might be unnecessary, in the presence of 

the other codes in the schema. I attempted to recode Aaron’s interview without it, 



  

 

but found far too much text that that fell outside of the remaining codes. Given 

that thematic analysis allows for multiple codes to be assigned to a single 

fragment, I decided to keep the code for Relevance during my analysis, despite 

potential inconsistencies in its application. 

Participants 

Ernest:(New(York(City,(New(York(

Ernest teaches at a technology-focused public school in New York City, 

and had just begun his first year of teaching when this study was conducted. 72% 

of the students at Ernest’s school are African-American or Latino, and 71% come 

from families that live below the poverty line. The school has open admissions 

criteria and does not filter or screen students based on academic background. 

Ernest became a teacher “after several years of working as a craftsman with a 

background in liberal arts, mathematics, also history and philosophy.” Ernest was 

assigned to teach a 9th grade class aimed at blending computer science and 

mathematics. He spent some time tinkering with electronics and programming in 

his early 20s and used GeoGebra with students during his residency. He had no 

formal training in programming or computer science, but decided to build a 

semester-long class around Bootstrap, which he delivered in the fall and again in 

the spring. 



  

 

Ernest describes his students as being incredibly varied in their strengths 

when it comes to math and computer science. “Most students who come into [my 

school] are not at grade level in their skills,” he says. “I have a large number of 

students who have never felt successful in a school environment.” Many of his 

students are interested in technology and talk as if they know something about 

programming. However, he describes their attitude as “kind of a macho-lingo 

approach,” pointing out that “they couldn’t even articulate the basic conceptual 

understanding of a variable as [an] abstraction.”  

Ernest found many curricular elements useful, especially the Circles of 

Evaluation and the flag activity. He felt that there were hard skills being practiced 

and cited that as the reason he and his students enjoyed it: 

“…teaching the Circle of Evaluation, it was really a kind of very 
rapid growth because of being able to really easily pick out 
misconceptions and ‘This is what you're doing wrong, I need you to 
fix that.... Some of these Circles of Evaluation got like unbelievably 
complicated, but they were gorgeous. So as soon as they really kind 
of got it and could use that heuristic, they were very nice. It's a 
beautiful, powerful visual.”  
 
“Many of my students that really didn't like computer science 
remember [Bootstrap] very fondly. They really did feel confident 
while they were doing it. Since then, what I presented to them was 
much less well-defined and I can feel a difference and they did, too.” 
 

Ernest is one of the most reflective teachers with whom I have ever worked. 

On his own, he studied the entire college-level curriculum from which Bootstrap 

evolved, gaining a mastery of the programming content that goes well beyond 



  

 

what is necessary to teach the curriculum. Throughout the year, he expressed 

frustration that his students were not gaining the level of conceptual understanding 

he wanted from them. In order to spend more time on the concepts during the 

spring semester, he taught Bootstrap without the video game component. It did not 

go well. He explains, “in the second semester, I didn't [use the video game project] 

and that was a mistake. It was, definitely… the students hated me for it. It felt 

good for me, but not for them.” 

The Design Recipe appealed to Ernest on a number of dimensions, calling 

it “the best curriculum for structured problem solving that I’ve found.” He 

continues, “Any stop along the way you get stuck, you don't have to worry about 

it. It's a software development process that we try to teach students, that you can 

keep working on a project but you can keep trying if the execution didn't work.” 

However, he also found the Recipe cumbersome to teach due to the many steps 

involved. “The overhead of the pedagogy,” Ernest says, “is you have to teach it 

[and] experience the students struggling, and know why you have to pace it the 

way you have to pace it and how you have to use the tools, in order to get them to 

use the tools.” Fortunately, Ernest sees this overhead as a one-time investment. He 

plans to use the Bootstrap materials in the year ahead, noting that he sees 

opportunities for working the Design Recipe into his practice more smoothly and 

consistently. 



  

 

Aaron:(Pembroke,(Massachusetts((

Aaron teaches 7th and 8th grade math at a Massachusetts public school. His 

is a majority white population, and the students score slightly above the state 

average (68% v. 52%) on MCAS math test. Just under one-fifth (18%) of the 

students at his school come from families that fall below the poverty line. Aaron 

studied Business Management in college and worked for several years in the 

private sector. He went into teaching for the sense of community and personal 

satisfaction, and got his certificate to teach mathematics. Aaron has no formal 

training in programming or computer science. He is certified as a math teacher but 

spent five years teaching a computer applications class using a mix of Microsoft 

Office applications and a small amount of Scratch programming. This year, his 

principal asked him to develop a specialized, math-focused computer science 

class, which he delivered to his 8th grade students.  

He taught Bootstrap as a one-semester elective in the fall and spring 

semesters, with students spending two of every four days on the material. He 

describes his students as having serious math anxieties. “They're all very scared,” 

he says, “students are scared, right off the bat.” Like Ernest’s class, Aaron’s 

students are excited about technology but have little understanding about what 

programming is. “They're interested in it, but they don't have much background on 

what it is or what it could be.”  



  

 

Aaron found the Circles of Evaluation and the Design Recipe to be very 

useful, speaking at length about how the Design Recipe gives struggling students 

the confidence to work through word problems and explain their answers when 

they’re done: 

“I love the design recipe because it levels the playing field for some 
kids who are used to really grinding out their work as opposed to 
students who may skip ahead a little too fast. It forces students to 
slow down and take a look at their work and really understand what 
they're doing… It's manageable and they can see the progress from 
one step to the next and how to start with the word problem and end 
up with the solution. I love that the students can then explain to you 
why their answer is their answer. It's never a, ‘this is the answer, but 
I don't know how I got it’ answer. They can easily go back and see 
their trail and what they did. If they make a mistake or if they find 
that they need to change something, make him go back and 
everything is right there for him. It's very easy to tweak and adjust to 
make it work.” 
 

Aaron spoke a great deal about Bootstrap’s value proposition as an 

application of the math students learn in school. “They get that real confidence 

that what they’re learning is not necessarily going to be used later, but it can be 

used right now,” he explains, “The tangible proof is that they have a fully 

functional video game in front of them.” For Aaron’s students, the project is what 

made the concepts from their math classes useful and relevant. Aaron has 

continued to teach Bootstrap to his students, and plans to train a second teacher at 

his school this year. 



  

 

Mallory:(Washington,(DC(

Mallory is the senior technology teacher in the group, having taught various 

IT and computer science classes for ten years. She currently teaches at a 

technology-focused high school in Washington, DC. The school is high 

performing, with 93% of the students passing the districts’ standardized math test. 

It also reflects the demographics of the District, with African-American students 

making up 92% of the school (Latino students make up an additional 5%) and the 

majority (59%) qualifying for meal assistance. She studied business administration 

in college and took a number of business-oriented programming classes out of her 

own personal interest. As a computer science teacher, she taught classes in C++, 

Visual Basic, HTML and Scratch, before teaching Bootstrap for the first time in 

2011. While the data obtained for this study comes from her high school students, 

she has also taught the class to 8th graders at a nearby middle school, which has a 

reputation for having difficult students and poor test scores.  

Mallory has been recognized as a master STEM teacher, winning numerous 

accolades and named “DC STEM Teacher of the Year” twice during her tenure. 

Her teaching style is very positive and upbeat. She praises nearly every student 

response, emphasizing the success of a correct answer or the bravery and 

creativity of one that “wasn’t quite right.” While Ernest spent a lot of his interview 

time focusing on the conceptual understanding he wanted to see in his students, 



  

 

Mallory focused more of her attention on affective qualities like comfort, 

confidence, and ownership: 

“I truly believe, Emmanuel, that if you can create comfort in the 
classroom, that's going to open up students to learn and they're 
going to get confident. Honestly, no matter what, if there's anything I 
want my kids to have, it's confidence because once they're confident, 
you can do really anything with them.” 
 
I believe that Mallory’s low fidelity score is explained by her accustomed 

teaching style and background as a pure technology teacher. Mallory struggled 

with a number of the math terms, at times using a word to refer to the wrong 

concept (at one point, she referred to “x+y” as a function). Her use of proper math 

terminology (33%) was far less than that of other participants (83% and above). 

Mallory also had the lowest score among “assisting” indicators, which may be 

explained by her deep experience as a programming teacher. After ten years of 

dealing with syntax errors by finding and fixing them for her students, Melanie 

struggled to break the habit and instead have her students draw Circles of 

Evaluation. Finally, her “classroom environment” score was also significantly 

lower than other teachers, due to her decision to eliminate the use of pair 

programming.  

The project-based aspect of the curriculum was a significant draw for 

Mallory, for whom students’ pride in their finished product is a crucial component 

of the classroom experience. She appreciated “that students could walk out of 

there with a video game storyline that they chose.” She echoed this sentiment at 



  

 

several other points in the interview, emphasizing how important it is to for 

students to create artifacts as part of their learning. “I mean you've got to create, 

especially when it comes to math.”  

This emphasis on pride and ownership led her to deviate significantly in 

one element of the curriculum, having each of her students work on their own 

game rather than working in pairs. She saw pair programming as an impediment to 

ownership, saying, “I have found personally, I want everyone to work out of their 

video game. It's a serious strategy. It's ownership… What I mean by that is anyone 

can get up and help anybody whenever they want to. They can help each other, but 

they all have an artifact at the end.” 

Mallory described her challenges at the middle school as being unlike 

anything she had experienced. The behavior problems she faced were severe and 

in several of our conversations she described frequent student outbursts as her 

biggest obstacle when working with the class on earlier material. Despite a 

number of reservations, however, she decided to try teaching Bootstrap later in the 

school year. Mallory has enormous faith in her students and believed they would 

be capable of learning the material and that the behavior management strain would 

be worthwhile in the end. What she does not expect, however, is to see behavior 

improve as a result of the increased rigor: 

“[During Bootstrap], my middle school kids felt very confident and 
so much so in themselves in an academic manner that their behavior 
fine-tuned to be more conducive to learn more. They like the feeling 



  

 

of being confident. They got very excited because they were very 
confident… I didn't have any problems with them anymore, and two 
of them came up to me and said, ‘I can't believe I did this and I can't 
believe you thought I could do this.’” 
 
This year Mallory is teaching the Exploring Computer Science (ECS) 

curriculum at her high school and has decided to replace the ECS lessons on 

programming with Bootstrap lessons. She is also returning to teaching Bootstrap at 

the middle school. 

Fatima:(Oakland,(California(

Fatima teaches math at a credit-recovery school in Oakland, which serves 

students who have fallen off the traditional educational pathway. Several of her 

students have been expelled or have dropped out of other schools, or have delayed 

their education due to childbirth or incarceration. The school reflects the 

surrounding demographics, with 67% of the students identifying as African-

American and another 24% as Latino. Her students struggle with math, with none 

of the school’s sophomores scoring at or above grade level on the CA math exam. 

“They're totally scared of math,” she explains. “When they come in, they think 

that it's going to be business as usual, first of all, so they think, ‘I failed it so many 

times, I'm going to fail it again this time.’” However, Fatima is quick to point out 

the strengths these students possess, and speaks with pride of how she has been 

able to bring out the best in students with whom others have struggled: 



  

 

“What I like, for example…we had some kids who came to [my 
school] from that [other] school, and when I tell the principal now 
how those students turned around, she totally does not believe that 
those are the same kids that were at her school. Until I showed her 
the plaque from the robot competition, ‘This guy who you kicked out 
of your school is now on our robot team!’” 
 

Fatima has been teaching math for seven years and has always known that 

she wanted to be a teacher: “When I was in the seventh grade I was in a journalism 

class and we had to write a report about what we wanted to do when we grew 

up…I wrote that I was going to be a teacher.” She has staunchly avoided using 

programming in her class, despite pressure from her peers. Her aversion to 

programming is not from lack of confidence, but from a lack of relevance: “For 

years a co-worker, Mr. Orange, has been trying to get me to try computer science, 

and things that are related to computer science, but I've always not wanted to do it, 

because I'm like, ‘Where am I going to find the time? How is this related to what 

I'm doing?’” Bootstrap was the first programming class that she saw as being “real 

math,” and she decided to co-teach it with help from the school science teacher.  

As a veteran math teacher in an alternative school, Fatima has seen dozens 

of alternative approaches to teaching algebra that have left her skeptical of novel 

approaches. In our conversations in the past, she has characterized herself as 

someone “with a low tolerance for you-know-what.” I was pleased to hear her 

speak highly of the Design Recipe as a tool for solving math problems: 



  

 

“[The students] said, ‘Oh, this makes a lot of sense.’ They were able 
to write examples for themselves and then to turn them into 
equations with variables. I'm not one to say the stuff works when it 
doesn't work, because I have tried some things in algebra that do not 
work. I've tried cups and chips, and turning things upside down, and 
equal signs. If it crosses over the line, then it becomes negative. I'm 
like, ‘What are you talking about?’ [laughs] I really think the 
Design Recipe works because the examples make sense. I'm like, 
‘Just think about what is the cost of three chairs and two pens? OK. 
Now, let's put some variables in there.’ I mean, it's so 
straightforward. I don't know. I've tried a lot of things with teaching 
word problems and this, for me, works. 
 
Like the other participants, she also spoke about the importance of applying 

the mathematical content to problems that her students saw as being personally 

valuable. In the excerpt below, she compares a word problem from her math book 

to a similar problem in the Bootstrap curriculum called “Sam the Butterfly”: 

“Today we're dealing with inequality systems. It's something about if 
Africa needed some food and they only had up to $500,000, how 
many packages of rice and how many packages of beans? I'm like, 
‘Come on now people. Can you give me something real?’ How far 
before Sam gets out the gate, right? That's more realistic than 
somebody going to drop some packages in Africa because my 
students can see, ‘Oh, man. I need my butterfly to come back.’ You 
should have seen them, too! ‘When is it going to come back, Ms. V? 
It's not coming back. When is it going to come back on the screen?’ 
[chuckles] They were really excited about it, and I was excited about 
it too. I'm looking forward to doing it again.” 
 
Fatima draws an important distinction here between “real” and “relevant” 

problems. Despite the real-world nature of the conventional word problem 

(sending rice to Africa), the use of the computer program was able to turn an 

otherwise irrelevant and abstract problem (trapping Sam) into something that 



  

 

engaged her students. Many teachers struggle to come up with “real world” 

applications of each concept. Technology’s ability to make narratives more 

engaging may lower the need to create such problems altogether. 

Libby:(Jacksonville,(Florida(

Libby has the strongest programming background of any teacher in the 

study, having worked as a professional programmer for many years before 

switching careers. For the last thirteen years, she has taught mostly computer 

applications in her technology class, with a small amount of programming in 

HTML and Scratch. She has also been a math teacher for the last three years, 

teaching 8th grade algebra at a majority white (74%, 19% African-American) 

parochial school in Jacksonville, Florida. The school does not publish standardized 

test scores, so it is difficult to gauge how well their students perform relative to 

others in the district. Libby began teaching algebra the year the study was 

conducted, but at the time was only able to use Bootstrap as part of a one-semester 

elective class, which delivered in the fall and spring semesters to a mixed group of 

6th, 7th and 8th grade students over roughly 26 contact hours. 

Libby spoke highly of the Circles of Evaluation, calling them “one the 

golden nuggets of the class.” Like Ernest, she described the Design Recipe as 

being high on potential, but wished she had presented it to her students differently 

the first time around. “Last year I didn't really give the appreciation for it that I 



  

 

have now... It is elegant, it is comprehensive, it's a wonderful design tool and I 

think this year they are going to appreciate it a little more, because I do.” 

Student ownership was also a primary motivator for Libby when using 

Bootstrap. In addition to the video game, which is constructed in pieces 

throughout the course, the curriculum includes a number of mini projects that are 

designed to introduce individual concepts. Libby described these enthusiastically: 

“I think those are especially good because they get an immediate 
reward. They define a function, they copy the function into the 
program and something cool happens. I think those are the kind of 
things that the kids who aren't really interested in math or...those 
are the kind of things that will sit with them well, and keep them 
open to math more than they would be.” 

 

Hadiyah:(Chicago,(Illinois(

Hadiyah studied systems engineering in school but started a career in 

education as the technology teacher for a parochial school three years ago. 

Roughly 50% of the students at her school are Asian-American, with the African-

American and Latino students making up only 10% and 2% of the population, 

respectively. While her school does not share the standardized test scores of her 

students, she expressed the school administration’s concern about the math 

performance of their students. This concern is what led her to adopt Bootstrap, and 

what convinced her principal to allow the former “business applications” course to 

be changed. 



  

 

Continuing the pattern of applications-focused content, her technology 

class mainly involved word processing, slide-show creation and spreadsheets, with 

a small amount of Scratch programming or HTML included. Programming is 

largely absent from what Hadiyah describes as “computer science.” Not only does 

she refer to her applications class this way, she also describes an afterschool 

“computer science” club in which she “taught another application for photo-

editing.” Bootstrap was her first experience teaching a formal programming class, 

and none of her 9th graders had done any programming before entering her 

classroom. 

Like Mallory, Hadiyah took steps to raise the level of personal ownership 

by having each student work on their own game. However, she then felt frustrated 

by her students’ need to get their graphics to look exactly the way they wanted. “I 

know it's not a big part of your curriculum, but that was a hard part for them. I 

didn't feel like I wanted to spend that much time with it because it's like you can 

use a triangle function. You don't even need this...They had to have, like, their 

special player according to the way their game looked.” I was somewhat surprised 

by her desire to encourage students to work individually, yet also work together. 

At times, these sentiments were expressed in the same breath, one after another: “I 

really wanted to see what they could do on their own. I really encouraged them to 

share, collaborate, and help each other.” 



  

 

Another parallel between Hadiyah and the other teachers is the statement 

that Bootstrap requires a significant one-time planning cost. 

“I would say that that teacher has to have a love of math and be 
comfortable with it, that teacher has to be a problem solver, and that 
teacher needs to be ready to spend some time understanding this 
program, this mode of instruction, and all the components of it. It's 
like I said before, the second time you teach it, it would be so much 
easier. It's a lot of up-front work, but it's definitely worth it because 
you can keep repeating that.” 

Themes 

The following table summarizes the themes that emerged from each set of 

codes when looking for answers to my research questions. In most cases, a code is 

“clustered” around a particular theme, creating a comfortable hierarchy of 

concepts. For example, the Step-by-Step code appears almost exclusively within 

the theme for Demystifying Problem Solving, identifying that code as one of the 

concepts that makes up the theme. In contrast, some codes make an appearance in 

more than one theme, reflecting the broad impacts of a particular idea (e.g., 

Student Anxiety) across a number of dimensions. Finally, the Teacher Challenge 

and Teacher Success codes appeared in every theme, as teachers spoke about their 

own struggles and triumphs when dealing with student attitudes, outcomes, or 

classroom implementations. In thematic analysis, a code that cannot be usefully 

grouped in a subset of themes is often a sign that the code is too general. When I 

attempted to subdivide the Teacher Success code, I found that different teachers 

measured their success using existing codes, such as Student Confidence or 



  

 

Student Interest. I removed the Teacher Success code from the following table, 

opting to discuss its presence alongside other codes in the following section. The 

Teacher Challenge code followed a similar pattern, with the exception of its 

appearance when teachers discussed implementation challenges (the sole use for 

this code in the table).  

Research Question Theme Codes 
How do implementations 
of Bootstrap vary across 
different teachers? What 
strategies and practices 
emerge? 

Content v. 
Confidence 
 

•! Student Confidence 

•! Collaboration 

What are the major 
challenges for 
implementing Bootstrap?  

Start-up 
Cost 

•! Teacher Challenge 

 

 

How are students’ 
attitudes toward 
mathematics related to 
how they experience the 
Bootstrap curriculum?   

Demystifying 
Problem-
Solving 

•! Step-by-Step 

•! Student Confidence 

•! Student Anxiety 

 
Making 
Math 
Important 
 

•! Relevance 

•! Student Interest 

•! Student Confidence 

How is student 
performance on specific 
algebraic tasks related to 
how they experience the 
Bootstrap curriculum?   

Making 
Transfer 
Explicit 

•! Transfer  

•! Student Confidence 

Table 1 - Latent Themes from interviews with six Bootstrap teachers 
 



  

 

Content(v.(Confidence(

When looking for differences in strategy and practice (RQ1), I noticed a 

theme that dealt with the teachers’ own priorities for their students: Some teachers 

focused most heavily on the content, wanting their students to understand the 

concepts at work and apply them to novel programming and math problems. 

Others were focused on confidence, and wanted to see their students take 

ownership in their work, or feel more comfortable and empowered. These 

differences led to variations in implementation, as well as sharp distinctions in 

what text was coded as Teacher Challenge or Teacher Success. More than 75% of 

“teacher success” codes for the first group were clustered alongside codes for 

transfer and step-by-step, with most of the second group’s “success” codes being 

collocated with student collaboration, student interest and student confidence. 

Ernest, Aaron, and Fatima (all certified math teachers) were primarily 

focused on content, wanting to see their students learn how to program and to 

succeed in traditional math contexts. All three teachers measured their success or 

struggle through the lens of student mastery. Ernest expressed frustration with his 

students’ grasp of the concepts at work when describing his challenges, and 

describes his success through anecdotes where students learned specific skills that 

they could apply elsewhere. Aaron and Fatima spoke proudly when describing 

instances where students had applied Bootstrap in a traditional math setting.  



  

 

Mallory, Hadiyah and Libby focused more heavily on student attitudes, 

emphasizing the importance of creativity, play and ownership. One of Mallory’s 

favorite qualities of Bootstrap is that it “gets the kids to play and manipulate with 

the math.” Bringing creativity to her classroom was valuable for her even in the 

absence of mastery (“they felt good that they were using math to create their video 

games, but I don't think it made them experts. It made them comfortable to learn it 

again”). Hadiyah also emphasized the pride her students felt in the creation of an 

end product and talked about the video game demo party she organized for her 

students: 

“They loved it. They all wanted to play each other's games. In fact, 
we had a debut or a coming out party, or a launching of games. It 
was really sweet and nice because a lot of their themes were kid 
friendly. We had our younger students come in and play the games. 
It was so neat to see the younger students sitting with the older 
student and the older student encouraging them on. ‘Oh, you got this 
much points, keep going.’ They loved it. They felt really proud of 
themselves!” 
 
In talking about her positive feelings from this party, she did not mention 

evidence of transfer or student learning. Hadiyah’s sense of accomplishment came 

from how her students felt, not what she believed they had learned. Libby’s 

reflection on student outcomes were similar: 

“I think that they kind of feel a pride and an ownership in the video 
game. I think that will kind of sit with them in a good way. I think it 
will make them more open to mathematical concepts. It's just a 
feeling I get, I don't really have any proof of that, but I do think it's 
going to have some impact in the future.” 
 



  

 

The difference between these two groups is striking. One group perceived 

their success or failure in terms of students’ conceptual understanding. What they 

liked most about Bootstrap was the focus on hard skills and processes for problem 

solving. They cited concrete examples of mathematical applications as evidence of 

success, speaking only briefly about students’ excitement, creativity or confidence. 

At the other end of the spectrum are the teachers who judge their success or failure 

based on their perception of students’ feelings. They cited concrete examples of 

students demonstrating pride, ownership and creativity as evidence of success, and 

their modifications to the curriculum were designed to enhance these outcomes. 

This may be an artifact of the divide between math and technology classes, and the 

personalities of those who are drawn to teach those classes. Math teachers are 

traditionally given a fixed body of content (e.g., “teach all the content in Algebra 1 

by June”), which is structured as a list of testable skills. Technology teachers are 

given tremendous flexibility in their choice of content, and the lack of 

standardization makes learning outcomes difficult to measure. It may be no 

coincidence that Aaron, Ernest and Fatima are all certified math teachers, while 

Mallory, Libby and Hadiyah teach more open-ended “technology” classes. 

Both groups felt that they had learned something from teaching Bootstrap. 

Ernest reported that he had underestimated the importance of the video game as a 

tool for student engagement, and Libby found herself pulled towards more 

concrete forms of assessment. Where she once would allow students to experiment 



  

 

with small projects over large periods of time, she found herself valuing quick 

assessments and rapid feedback cycles: 

“I think keeping to that pace has tightened me up as a teacher, in 
terms of just assigning a certain amount of time to something and 
moving on. Just following the lesson plan in that amount of time, the 
12 weeks, forced me to go faster than I would like to, but that had a 
lot of benefits because I saw what kids will produce when you just 
give them five minutes to produce it. Where in the past, I probably 
would have given them longer for not much more reward.” 
 

These differences directly impacted the variations in the way teachers 

implemented the Bootstrap curriculum. Ernest changed his implementation 

dramatically in the second semester, all but eliminating the video game in favor of 

additional exercises that he hoped would enhance content knowledge. By contrast, 

Hadiyah and Mallory jettisoned the pair-programming element of the curriculum 

and had students work individually, out of a desire to maximize engagement and 

ownership. This has significant implications for the Bootstrap curriculum, 

suggesting that different types of teachers may have radically different definitions 

for success or failure when using the curriculum. These differences result in 

variations in implementation, teachers’ own perception of efficacy and impact, and 

may influence student outcomes as well. This also casts doubt on the suitability of 

the “one-size-fits all” professional development that Bootstrap currently offers to 

teachers of all backgrounds, and hints at the utility of additional scaffolding for 

each type of teacher. 



  

 

Startup(Cost(

A consistent theme across participants was the learning curve involved in 

using the curriculum for the first time. Bootstrap has a lot of moving parts, uses a 

number of techniques (Circles of Evaluation, Design Recipe, etc.) that are 

unfamiliar to teachers and deeply connects two domains (math and programming) 

when most teachers are only familiar with one. In addition, there are a number of 

small deliverables, each of which serves as an assessment and plugs into the video 

game project. All of the teachers described the experience as being difficult, but 

each one felt that it was a one-time cost.  

Having attended only a one-day professional development workshop before 

teaching, Aaron would have preferred more. “I would say that eight hours would 

probably not be my minimum,” he explains, “maybe three days, on top of that, to 

really feel like I could really wrap my head around everything. Fatima felt the 

same way, emphasizing the need to see the techniques in action in order to use 

them properly: 

“You need like a week, because you need to be able, as a teacher, to 
go through the entire 10 units and make your own game from start 
to finish. Because, you're going to see the bugs that happen, when 
you are programming and you are going to be able to see, how 
things are related to one another. You need to know where you are 
going, because, the students are going to ask, ‘Why do we need to do 
this, and how are these related to the game?’... You definitely need 
to see the whole curriculum, before you even try to start unit one.” 
 



  

 

Nowhere is this theme more evident than in the way teachers talk about the 

Design Recipe. Every teacher praised its potential and found it useful, but nearly 

all of them expressed concern about how difficult it was for them to internalize 

each of the steps involved and communicate it to their students. Libby’s students 

“did OK” following the recipe, but did not really understand why it was important. 

“Last year I didn't really give the appreciation for it that I have now,” she says. 

Ernest felt the same way, describing the difficulty of using it with his students 

before fully understanding the power of the tool. “[The Design Recipe] requires 

the teacher to have taught it before to really understand the power of it and what it 

can do for students. I know now, but I don't think I did [then].” He articulates the 

challenge as a classic knowledge-compilation problem: 

“It takes too long. There's a really long arc between problem and 
solution…They either can see the answer, and you're just trying to 
convince them to do this anyway (the whole show-your-work 
problem), or it's too hard and working through the steps seems like 
too much. They lack a sense of flow through it. There has to be a 
way to have all those steps that you can always point back to, so 
then they're like connected. Say like you do all of it, but at some 
point it becomes a single motion. I need to get to that stage quicker, 
where you're having them say, ‘I can complete the Design Recipe for 
this, and I can do it in five minutes’…That's probably what I 
experienced the most was that they found it tedious and they didn't 
want to do it and we never got past that point. We didn't break 
through.” 
 
Ernest points to a not unlike the “chunking” behavior described by the 

Cognitive Architects. When a task is compiled, it can be executed both faster and 

more flexibly. Ernest felt that the Design Recipe was too complex for many of his 



  

 

students’ working memory, which suggests a useful area of research for future 

curricular improvements. 

A number of questions in the interview protocol asked teachers about 

whether or not they made use of additional professional development resources 

that have been developed in recent years, such as classroom videos, additional 

exercises, or a teacher discussion board. Despite their difficulties, most teachers 

made little use of those resources. Coupled with Ernest’s feedback, it would be 

useful to channel the effort spent developing these resources into explicitly 

identifying when a student has or has not internalized the Design Recipe, and 

spending more time during the training discussing how to address specific gaps in 

students’ use of the recipe.  

Every teacher who expressed concern about the startup cost also felt that it 

was a one-time price to pay. All six teachers were enthusiastic about teaching 

Bootstrap again in the future, and felt confident that they would be more 

successful based on having taught the program in its entirety: 

Fatima: “[Preparation time] is getting cut in half, at least. Right 
now, I feel way more comfortable. It's just that initial, right? 
Because you need to be able to experience everything your students 
are going to experience, before you even start it. You will need to go 
through the entire 10 units, before you even think you are going to 
teach unit one.” 
 
Hadiyah: “It's like I said before, the second time you teach, it would 
be so much easier. It's a lot of up-front work, but it's definitely worth 
it because you can keep repeating that.” 
 



  

 

Aaron: “The planning time definitely went down once I was able to 
experience it for the first time, because I knew I had where the 
pressure points where I knew I could speed up.” 
 
The findings here point to a number of needed improvements to 

professional development. For scheduling reasons, school districts often look for a 

one or two-day training, but the experiences of these teachers suggest that more 

time would better prepare them for their first time using the curriculum. Bootstrap 

has recently begun to offer 3-day trainings, which provide opportunities for 

teachers to practice teaching the material. It would be valuable to interview first-

time teachers who attended these trainings and compare their experiences to these 

participants. 

Demystifying(Problem(Solving(

If problem solving is viewed as an innate ability, teachers and students are 

likely to see it as something that is both difficult to learn and impossible to teach. 

Looking back to the literature on rich tasks in algebra, problem solving has more 

to do with selecting which process to use in the first place than it does with the 

actual execution of that process. Word problems exemplify this challenge, 

presenting students with a verbal description of a situation that must be translated 

into a mathematical representation. It is no surprise, then that the both Student 

Anxiety and Teacher Challenge codes are used frequently within this theme. 



  

 

A Spanish teacher would likely describe their students’ struggles in terms 

of the skills upon which they need to improve. We might expect to hear that their 

students need to work on using indirect objects, or their use of the subjunctive. It 

would be a surprise, then, to hear them talk about students’ personalities as being 

“less Spanish-oriented” or lament their lack of “Spanish-style thinking”. When 

asked about the challenging parts of problem solving through math or 

programming, virtually all of the teachers in the study used language that 

describes fixed qualities of a student’s personality, more than a set of skills that 

can be taught. Hadiyah “disliked the fact that if [students] are not used to that way 

of thinking it was hard for them,” and Libby felt that only students with certain 

qualities would enjoy programming (“most students that I find that don't enjoy it 

are less likely to be detail-oriented, to think logically”). It is more difficult to 

change a personality than it is to develop a skill, and I was struck by the teachers’ 

choice of words when describing these challenges.  

This language echoes the “fixed mindset” described by Carol Dweck 

(2007), in which a student’s ability at a particular task is thought to be unchanging. 

This stands in contrast to a “growth mindset,” in which effort is the vehicle for 

improved performance. Ernest sees the fixed mindset in his own students, who feel 

“that you succeed if you’re smart. They're a fixed mindset. They’re used to 

thinking that you just have it or you don't.” Students in Mallory’s class feel the 

same way (“they either love math or they hate math.”), and Aaron has had students 



  

 

express their fears in terms of their identity as poor mathematicians (“some kids 

have said, ‘I'm no good at math. I'm not going to be able to do this’”). This would 

certainly explain student fears when it comes to problem solving, and this theme 

encompasses the majority of the codes for Student Anxiety.  

If the mystique of problem solving is a cause for fear and frustration, 

anything that serves to demystify the skill should be correlated with confidence 

and success. Bootstrap’s focus on the Design Recipe makes it unusual in the K-12 

programming space. Rather than emphasizing a list of commands or the creation 

of a finished product, Bootstrap focuses entirely on a general-purpose approach to 

problem solving. It was no surprise, then, when codes for Step-by-Step, Student 

Confidence and Teacher Success showed up together when teachers spoke about 

the Design Recipe as a tool for teaching problem solving. Aaron described his 

low-performing students as being afraid of word problems and talked about his 

high-performing students succeeding without really understanding why. He saw 

both of these as problematic and felt that the Design Recipe gave both types of 

students a roadmap for understanding: 

“I love how with the design recipe you see how you can take apart a 
complex word problem piece by piece and make something 
manageable out of it step by step. The kids that really grind it out 
can totally appreciate it. It's manageable and they can see the 
progress from one step to the next, how to start with the word 
problem and end up with the solution. I love that the students can 
then explain to you why their answer is their answer. It's never a 
‘this is the answer, but I don't know how I got it’ answer. They can 
easily go back and see their trail and what they did.” 



  

 

 
Aaron’s description of students being able to “grind it out” speaks to a 

possible shift from a fixed mindset to a growth one. Ernest wishes that his other 

classes broke down problem solving in a similar way (“I still look at everything 

else and want certain things out of it. But what I don't find is systematic problem 

solving”). Mallory felt successful in having imparted some of the “art” of problem 

solving. (“We’ve taught them how to decompose a problem, decompose the 

solution that we can do these little functions inside”). When problem solving is 

demystified, it becomes a skill that students can practice and teachers can coach. 

This quote from Aaron sums up the connection perfectly: 

“It's okay not to know the final outcome, but resiliency and 
determination are going to keep you functioning in it…I thought [the 
Design Recipe] was a really exciting way to learn anything, to be 
able to fail and see it not work, but understand that it's okay for it 
not to work and that you can go back and fix it again. That's a hard 
lesson for a lot of people to do with anything. Students, especially in 
math say ‘If I didn't get it, I'm not going to get it. The ship is sailed. 
That's it.’ But Bootstrap really stresses that it's okay, make it work, 
and to come back to the tools that you know in order to get 
something to function in it. It's a powerful critical thinking tool.” 
 

Teachers described the impact of the curriculum, on student confidence. 

Fatima, who teaches math to some of the most challenging students in the study, 

explains: 

“I think it also did raise their math confidence. I have students come 
into the math class afterwards who were more excited, who would 
lift their heads higher, definitely.” 
 



  

 

Aaron tells a similar story: 

“The girl who was in a pull-out math class and was selectively 
mute -- didn't talk unless she felt very comfortable -- was walking 
around helping other partners tweak their games… She would take 
time to help them work through the process of what was not working 
for them…Her math teacher did say -- when she was back in the 
math classroom – ‘Her confidence had changed.’ They mentioned 
that at a meeting. I said, ‘Well, I'm going to take credit for that 
one.’” 
 

Fatima was the most experienced math teacher in the study, and it was 

interesting to note that she was surprised by the focus on problem solving: 

“I think that one thing that I like about Bootstrap -- I don't know if 
this was one of the designs of it -- but this whole problem solving 
thing. ‘I don't care that you can get the answer. I want to know how 
you did it and that you can take that and apply it to something 
else’… The thing about it I like is, OK. First, you write an example. 
I'm like, ‘If I want to figure out how many miles so and so went when 
they went in the truck. OK, let's just do some examples. How much 
did you pay if you went 50 miles? How much did you pay if you went 
75 miles? OK. What is this thing that is changing? Yes. That's the 
variable!’ You can totally hear my excitement, right? This is how I 
am in the classroom! When they do that, it changes everything 
because now it takes this problem from being super abstract to being 
having some real examples that they can look at. Then, having real 
examples that they now turn back into the abstract, right? Pretty 
awesome.” 
 
The fact that she was unsure about whether the curriculum was designed 

around problem solving is surprising, given how much time was spent discussing 

this during the training. With every teacher expressing the need for more training 

time, it is possible that Fatima simply did not have time to internalize the Design 

Recipe until she actually taught with it.  



  

 

However, the teachers’ own descriptions of problem solving as a fixed 

quality suggests a different explanation. “Problem solving” is something of a 

buzzword in education circles, and it may be a phrase teachers hear often enough 

to drain it of any meaning. If those teachers hold beliefs about problem solving as 

something that cannot be taught, they may tune out the frequent references to 

problem solving in the Bootstrap training. If they were not looking at problem 

solving pedagogy with a critical eye to begin with, it would explain why they only 

appreciated the connection after seeing the change in their own students.  

Making(Math(Important(

Nearly all participants spoke about the importance of math being applied to 

projects that were both concrete and personally important to students. The 

fragments coded for Relevance are completely housed within this theme, along 

with a substantial number of fragments that deal with Student Confidence and 

Student Interest. Aaron shared the progress his students made when thinking about 

coordinate axes, describing “students who couldn't quite remember which axis was 

which totally remembered in the context of a video game of the movement and 

everything.” The game became a draw for students, who now saw math as being a 

means to an end that they deeply cared about. Aaron describes this phenomenon 

when teaching the distance formula: 

“The Pythagorean theorem, something that makes eighth grade 
students cringe and 7th grade students cry. Immediately, they all 



  

 

wanted to work and they wanted to understand how it works to make 
their game work. 8th graders who learned it had said, ‘This makes 
perfect sense. It's the most useful thing I've ever learned in math 
class. I love this.’ The context of the video game and seeing the 
actual math work, definitely positively increased their confidence in 
math.” 
 

Fatima talked about how siloed some of the math had become for her, after 

seven years of teaching. “A squared plus B squared, equals C squared is all I 

knew, like seriously, as a math teacher…those were just sums that I just had 

memorized and used them and had no idea.” She appreciated Bootstrap’s 

connection between the distance formula and collision detection. Libby, who is 

now teaching a traditional math class in addition to her technology elective, is 

using Bootstrap as a way to ground the discussions she has with her students: 

“I was talking about functions to my seventh graders today and they 
said, ‘Didn't we talk about that in Bootstrap?’...And we talked about 
the design recipe in the functions and what we use the functions for. 
We talked about domain and range. We just had a whole concept 
about, a whole conversation today about functions. I was able to use 
Bootstrap to make it real for them in terms of the input and the 
output, the domain and range and what the function did. It was 
great.” 
 

All but one of the teachers in this study spoke about feeling successful as 

educators when connecting mathematical concepts to a personally relevant project. 

It is interesting to note that the exception is Ernest, who was so concerned with 

students’ mastery of the concepts that he actively sought to remove the game from 



  

 

the curriculum. His interview was the only one of the six that did not contain a 

single code for “Relevance”. 

Making(Transfer(Explicit(

This theme divided the participants into two groups, each having different 

expectations for transfer and different approaches to facilitating it. Both groups 

observed students making their own, limited connections between programming 

and math, but only one expected concrete evidence of students applying what they 

learned in Bootstrap to traditional algebra tasks. The differences between 

expectations resulted in differences in practice, with one group making explicit 

connections for their students and the other merely trusting that those connections 

would happen naturally.  

As a baseline, most teachers had anecdotes about students making casual 

associations between math and Bootstrap: 

Libby: Definitely. The other math teacher, when she taught the 
distance formula, the kid said, “We used that in Bootstrap. We 
figured out how far players were apart and if they should collide.” 
 
Fatima: Everything that we were learning, the kids even remarked, 
“Oh my Gosh, you got me into a math class.” On the under[hand], it 
is kind of sneaky. 
 
Mallory: For example, when some of my students had Miss F. for 
algebra 1 and I talked about a function and then we were talking 
about Circles of Evaluation I heard some students say, “I wonder if 
we could use this in Miss Fishman's class.” 
 



  

 

While it is encouraging to see students make unprompted connections 

between Bootstrap and traditional mathematics, the literature on Transfer should 

give us pause. These types of connections are often superficial, and without a 

teacher explicitly bridging the two domains they are likely to remain that way. 

Aaron, for example, was surprised to see his students struggle in a traditional math 

class, instead of applying the Design Recipe they had learned in Bootstrap: 

“I was teaching another math teacher's class one day while she was 
out…The kids were staring at the ceiling and staring at the 
seatwork. They're a couple of kids that have been in my elective 
class and so I approached them. I said, ‘Is everything OK? How's it 
going?’ They're like ‘We don't even know where to start.’ I was like, 
‘How do you not know? I mean, the Design Recipe is one of your 
tools.’” 
 

Aaron’s experience is not surprising. Libby and Mallory both expressed a 

belief that their students’ exposure to Bootstrap would transfer in some way to 

their math classes, but without having explicitly made the connection themselves 

they were unsure of exactly how the experience would transfer. This is where 

differences between the groups begin to emerge, with some teachers merely 

feeling hopeful, and others pushing for evidence of the transfer they expected. 

Fortunately, making this connection is not a difficult task. Aaron’s anecdote 

continues, after he explicitly pointed out how the Design Recipe could be used on 

his students’ worksheet: 

Immediately, the worksheet is done. The kids that were in the 
Bootstrap elective were finished. Then, they turned around and they 



  

 

partnered up with other kids. They're like, “Let me show you how 
this works. Decide what the domain and range is,” something that 
they weren't going to talk about in math class for months. Without 
prompting, they weren’t hesitant to try it in another classroom. As 
soon as they saw that it works no matter the venue, they were more 
than eager to use it.” 
 
Once Aaron had demonstrated the use of the Design Recipe for traditional 

word problems, his students were able to apply it (and were confident enough to 

teach it to their peers). Libby reported no evidence of transfer when she was 

teaching the class as a technology elective, but has since led a successful 

discussion of domain and range with her Algebra 1 students in the current second 

year. As a veteran math teacher, Fatima made sure to use the Design Recipe with a 

number of regular math problems and was pleased to see at least one of her 

students applying it in a regular math class. 

Fatima: I see one student using the Circle of Evaluation. He was 
doing some [inaudible] operations. He was just thinking about it in 
what comes first and stuff. I did see him use the Circle, and I was 
like, “What?’ I do see students using -- they might not call it Design 
Recipe -- but I know that once I teach students to write examples, I 
see them doing that like in other word problems. 
 
Mallory, Hadiyah, Ernest and Libby focused more heavily on the 

programming aspects of the course, and the excerpts from their interviews that 

were coded as Transfer range from skeptical to hopeful – but never certain. In 

contrast, Fatima and Aaron made the connection for their students and spoke 

confidently about Bootstrap’s role in improving students’ understanding of math. 

Libby also found this connection, but only when teaching an actual math class. 



  

 

 
Before considering the actual data gained from the pre/post tests, this theme 

highlights the importance of teachers’ expectations and demonstrates how this 

perception can influence practice. While previous themes demonstrated a strong 

teacher belief that Bootstrap teaches mathematical skills, the parts of the data set 

coded as “Transfer” only applied to instances where that transfer was made 

explicit by teachers who expected it, or else referred to very shallow instances of 

transfer from teachers who did not. This grouping of teachers is similar to the 

“Content v. Confidence” divide between teachers with a math v. computer science 

background discussed earlier, with Ernest and Libby switching places. Given the 

math teachers’ focus on content, what could explain Ernest’s lowered expectations 

for transfer? Why would Libby have had higher expectations, despite a 

background as a technology teacher?  

This may point to the role of course title as a covariate for teacher 

background. Ernest, Fatima and Aaron were certified as math teachers and placed 

a strong emphasis on content. However, Ernest was the only member of that group 

not explicitly teaching the class as a math intervention. Libby made no explicit 

connections between Bootstrap and algebra in her technology class, but changed 

her behavior in her math class. If a teacher’s background influences their priorities 

for student outcomes, the course description may also influence the strategies they 

employ to achieve those outcomes. 



  

 

 

Pre- and Post-Tests 

The pre- and post-tests measured three algebraic tasks that map to the 

constructs selected as part of my Conceptual Framework: 

1.! Reification – students are given the definitions for four functions, 
and are asked to answer eight questions that compose these functions 
on various inputs 

2.! Translation – students are shown the graphs of four functions, and 
must match them to input-output tables 

3.! Modeling – students must answer nine word problems 
 

All questions used on these tests were based on tasks found in the 

Massachusetts Comprehensive Assessment System (MCAS) tests. The original 

form of the word problems asked students to select or write down only the 

solutions, which provides limited granularity for determining where a student went 

wrong. These word problems were modified slightly to allow students to show 

their work at each of three stages, with the final one being the solution itself. This 

was necessary to assess whether the multi-step process introduced in Bootstrap is 

actually transferred into math. The pre- and post-tests were piloted in the 2011-

2012 academic year, and the composition, matching and word problem sections 

were found to have moderate-to-high reliability (α=0.71, α=0.87, and 0.96, 

respectively).  

All six participating teachers gave their students the pre- and post-tests, 

paired them for each student, and removed any identifying information. Libby 



  

 

used the pre- and post-tests with two classes in the fall of 2013, one of which was 

enrolled in Bootstrap while the other took a different elective. She also 

administered them to a second class in the spring of 2014. Aaron used the tests 

with one section of Bootstrap in the fall and another in the spring. Due to the 

extremely high rate of absenteeism at her school (not unusual for credit recovery 

schools), Fatimah was able to collect only six matched pairs. Her small sample 

size lacked the statistical power to demonstrate an effect, so these results were 

removed from the analysis. While Ernest was able to grade the tests himself, he 

was unable get permission from his district’s IRB to share them with me. 

The remaining four participants had enough matched samples for me to 

perform a matched, two-tailed t-test to determine the effect of Bootstrap on task 

performance for each of the three tasks (the two-tailed test was appropriate due to 

the possibility of negative transfer). All of these students took their normal math 

class alongside their technology class.  

Reification 

The results in Figure 27 describe the mean scores on function composition 

tasks for five Bootstrap classes and one comparison class. All eight tasks were 

framed as a 4-item multiple-choice question, with a correct answer yielding one 

point and an incorrect or blank answer yielding no points. 



  

 

Teacher Sample Size Composition 
(Pre) 

Composition 
(Post) Change 

Aaron (fall) 26 2.31 6.85 196.54%* 

Aaron (spring) 32 2.56 5.53 116.02%* 

Libby (fall) 25 2.00 3.12 56.00%* 

Libby (spring) 25 1.80 3.72 106.67%* 

Hadiyah 15 4.33 6.53 50.81% 

Mallory 14 3.64 3.14 -13.74% 

Libby (comp) 26 2.62 3.12 19.08% 
Figure 27 - Pre/Post scores for function composition tasks (* denotes p<0.05). Comparison group is shaded. 

 

With the exception of Mallory’s students, each Bootstrap class showed 

gains on function composition tasks. All of these gains were statistically 

significant (p<0.05) except for Hadiyah’s class (due to sample size). There are two 

data points here that allow us to decouple the potential effect of the intervention 

from the effect of the math class. First, Libby’s comparison group showed no 

statistically significant improvement on composition, despite receiving the same 

instruction in their math class as the experimental group. Second, we see that 

Aaron’s fall semester post-tests were significantly (p<0.01) better than the spring 

semester pre-tests, and there was no significant difference between the pre-test 

scores for both classes. None of these would be the case if the students’ math class 

had a significant effect on composition tasks, suggesting the increased 

performance was the direct result of students’ experience in Bootstrap.  



  

 

Translation 

In keeping with more conventional cross-representation tasks, the pre- and 

post-tests included a 4-item matching exercise. Students were asked to match the 

graphs of four functions to the corresponding input-output tables, for a maximum 

of four points. The Design Recipe asks students to create multiple representations 

of a single function in the process of solving a word problem, but does not ask 

them to match these representations. The matching task is the farthest-removed 

from tasks in the Bootstrap curriculum and utilizes function definitions 

(syntactically different from Definitions in Racket) and tables (syntactically and 

structurally different from Examples in Racket). The use of a novel task and less-

familiar representations make this more of a far-transfer measurement. The results 

from each course are shown in Figure 28.  

Teacher Sample Size Matching (Pre) Matching (Post) Change 

Aaron (fall) 26 n/a  2.69 n/a 

Aaron (spring) 32 2.06 3.13 51.94%* 

Libby (fall) 25 1.12 1.56 39.29%* 

Libby (spring) 25 1.20 2.16 80.00%* 

Hadiyah 15 1.13 3.07 171.68%* 

Mallory 14 1.21 1.00 -17.36% 

Libby (comp) 26 1.19 1.27 6.72% 
Figure 28 - Pre/post scores on matching tasks. Comparison group is shaded (* denotes p<0.005) 

 

Hadiyah’s class, as well as Aaron and Libby’s spring classes showed 

statistically significant improvement (p<0.005). Libby’s fall and comparison 



  

 

classes both improved, but their gains were not significant. Mallory’s class again 

showed a decline in scores, though the decline was not significant.  

Modeling 

The instruments included nine word problems, each of which was derived 

from problems found on the MCAS. These word problems are typically graded in 

binary fashion, with the correct function definition yielding a point and an 

incorrect definition yielding none. Due to the importance of multiple 

representations and the explicit format of the Design Recipe, two additional steps 

were added to each word problem, asking students to describe the function in 

terms of its Domain and Range, and as a series of input-output pairs. This allows 

for a maximum of 3 points for each problem. The comparison group may also 

have learned about these representations, but did not use them in the context of the 

Design Recipe. There was no explicit mention of the Design Recipe whatsoever 

on the pre or post-test. 

If Bootstrap students were able to transfer the steps of the Design Recipe 

into algebra, one would expect to see their scores increase more than they do for a 

comparison group. The remaining question, however, is whether this transfer 

actually results in a greater number of final, correct answers on the algebra test. To 

answer this question, I created an adjusted score that ignores the additional steps, 

focusing instead only on the correctness of the final function definition. Figure 29 

includes columns for both the raw and adjusted scores. 



  

 

 

 
Teacher 

 
Sample Size 

Word 
Problem 

(Raw, Pre) 

Word 
Problem 

(Raw, Post) 

Word 
Problem 

(Adj, Pre) 

Word 
Problem 

(Adj, Post) 

Change 
(Adj) 

Aaron (fall) 26 1.04 12.65 0.62 4.00 545.16%* 

Aaron (spring) 32 3.13 8.09 1.28 3.00 134.38%* 

Libby (fall) 25 0.96 5.96 0.80 1.72 115.00%* 

Libby (spring) 25 0.92 6.00 0.92 1.96 113.04%* 

Hadiyah 15 3.93 18.40 2.00 5.53 176.50%* 

Mallory 14 2.36 1.79 1.07 1.07 0.00% 

Libby (comp) 26 2.85 1.00 1.54 0.81 -47.40% 
Figure 29 - Pre/post scores on word problem tasks (* denotes p<0.05) 

 

Every Bootstrap class except Mallory’s showed significant (p<0.05) 

improvement on word problem tasks, and this improvement was present for both 

raw and adjusted scores. The effect size was large enough that even Hadiyah’s 

small sample showed significant gains. Mallory’s class saw a decrease in the raw 

word problem measure, but this gain was not significant and there was no change 

in the number of word problems they were able to answer correctly. The 

difference between Aaron’s fall and spring semester gains suggests that students in 

the school’s traditional math class may have received additional instruction on 

word problems during the fall semester. 

As expected, the raw scores show far more variation than the adjusted 

scores, demonstrating the effect of my modifications to the format of the tasks. 

Not only were students able to transfer the multi-representation process into 

algebra (as shown by the higher raw scores), they were also able to use this 



  

 

process to arrive at a larger number of solutions (as shown on the adjusted scores). 

These gains are even more favorable when held against the comparison group, 

which saw a decrease in performance on word problem tasks. This decrease, while 

not statistically significant, stands in sharp contrast to the scores of the 

experimental groups. In keeping with the function composition results, both Aaron 

and Libby’s fall semester post-tests dramatically outscored their spring semester 

pre-tests, despite being administered at roughly the same point in the school year.  

Summary 

For the most part, the pre- and post-test results show statistically significant 

improvement to each of the three tasks used in the study. With the exception of 

Mallory’s class, every Bootstrap class saw evidence of transfer on the modeling 

instrument, with large and significant gains on their raw scores. Even more notable 

is that this process, while requiring extra steps and more time from the students, 

actually resulted in a greater number of correct answers on a time-constrained test. 

Using a different syntax and a different set of problems, these students were able 

to transfer a problem solving technique inherited from college CS classes to 

outperform their peers on traditional algebra problems – without the use of any 

computer or programming at all. 

Since many of the students were also enrolled in a traditional math class at 

the same time, it is natural to question whether these gains were merely the result 

of what was learned there, instead of Bootstrap. We can reject the null hypothesis 



  

 

for two reasons. First, Libby’s control group showed no significant gains on any of 

the three instruments, despite the fact that each of these tasks was introduced in 

their normal math class (with the exception of the raw scores for the modeling 

instrument). Second, both Aaron and Libby taught two semesters of Bootstrap. We 

do see a small impact of the math class on pretest scores for the fall and spring 

semester, in that the spring pretest scores were generally higher than the fall 

pretests. However, all of the fall post-test scores were higher than the spring 

pretests, suggesting that fall students scored higher on these tasks after a semester 

of Bootstrap-and-math than the spring students had after a semester of math. If 

there no transfer had occurred, we would expect to see no significant differences 

between these scores. 

These results highlight the large number of factors at work in education 

research, including teachers’ prior training and experience, the course title itself, 

and the personal values and belief at work in teacher practice. The teachers who 

saw themselves as imparting skills valued different things about the curriculum 

than the teachers who saw themselves as building student confidence, and these 

differences were evident in both classroom observations and teacher interviews. 

Aaron (the math teacher) generally saw the largest gains in his students, while 

Mallory, a veteran technology teacher, had no significant results. It may be that the 

ways math and technology classes are taught create different expectations and skill 

sets in their teachers, or that they attract different types of teachers altogether. The 



  

 

role of pedagogical content knowledge as a mediating factor should not be 

surprising, and will be an important theme in the following chapter. 

 

  



  

 

Chapter 7 

Discussion 

When viewed strictly as a computer-programming curriculum, Bootstrap 

may be weighed purely on its merits as an engaging way to learn certain 

programming constructs. As a transfer-focused intervention, it must also be 

evaluated by the degree to which students were able to apply what they learned in 

the programming domain to traditional algebra tasks. Finally, as a module 

designed for algebra teachers, it must demonstrate a positive impact on student 

performance of those tasks. 

We can evaluate the first benchmark by looking at evidence of student 

work. Nearly every student in the study successfully completed the mini projects 

embedded within the curriculum. With the exception of Ernest’s spring semester 

class (which did not use the video game), the overwhelming majority of Bootstrap 

students successfully completed the video game project. None of the students had 

ever programmed in Racket before, very few of them had ever used a text-based 

language at all. This suggests that Bootstrap students learned enough of the Racket 

programming language to complete the programming tasks necessary to build the 

games. These tasks range from simple usage of the graphics API (knowing how to 

import and manipulate game images) to composing Boolean expressions, 

programming various linear and piecewise functions, and working with multiple 



  

 

data types. We may conclude that students acquired some degree of programming 

in the Racket language, and were exposed to various programming concepts.  

The fact that students learned some programming is not surprising, nor is it 

significant when compared to similar efforts in the field. Where things get 

interesting, however, is when Bootstrap is examined as a transfer intervention that 

is designed to teach algebraic content. I will first review these results in the 

context of the four research questions from Chapter 4, and then discuss broader 

implications and directions for future research. 

Research Questions 

How do implementations of Bootstrap vary across different teachers?  

Most classes were implemented with fidelity in terms of student artifacts, 

use of materials, and teaching technique. Every teacher in the study had his or her 

students complete each Bootstrap lesson in the same order. All but one had their 

students complete the same product outcomes from each lesson, and a portfolio of 

student artifacts from one classroom would look nearly identical to a portfolio 

from another. Every teacher used the student workbooks and WeScheme editing 

environment. Every teacher in the study used the Circles of Evaluation and the 

Design Recipe appropriately and consistently when introducing or reviewing 

material.  



  

 

There were differences, however, in the level to which these teachers 

adopted these techniques. Several participants used the Design Recipe to introduce 

a word problem, only to abandon it when assisting a struggling student. This was 

due more to variations in teachers’ comfort with the material than a decision to 

change the implementation, which each participant felt would have less of an 

impact when teaching the curriculum a second time. As teachers become more 

familiar with the Bootstrap material, I expect this fidelity measure to improve. 

Working(in(pairs(v.(working(alone(

Pair programming is an integral part of Bootstrap. It is designed to foster 

student conversations about the material, combat the “lone programmer” 

stereotype, and to expose students to a practice that has become a standard in 

much of the industry. Pair programming is used throughout the professional 

development workshops, where teachers are directed to share a computer and 

design their projects in pairs, exactly as their students will do. It is also embedded 

in the Design Recipe “Battles,” which provide a scaffold for students to talk to one 

another about their solutions to word problems. Given the degree to which pair 

programming is emphasized throughout Bootstrap, it was surprising that two of 

the six participants decided to have their students work individually. In both cases, 

the teachers believed that students would be more engaged if they did not have to 

share their project, and that this would outweigh any potential cost to student 



  

 

learning. I think it is important to note both of these teachers are Technology or IT 

teachers, who may be more likely to view their role in terms of student 

engagement above all else, or may have been influenced by stereotypes of 

computer scientists as “loners.” 

Use(of(the(video(game(as(a(unifying(project(

Bootstrap uses the video game to scaffold the course (building the game in 

concrete pieces), align with algebra content (each chunk is connected to a specific 

concept), and as a creative, team-based activity. Each concept in the curriculum is 

first tied to a small project, which presents a singular problem that can be solved 

only by using the concept at hand. The video game project represents a collection 

of problems to be solved, allowing students to assemble each algebraic concept 

into a completed game. This allows for forms of summative and formative 

evaluation, and gives students a concrete and engaging domain in which to apply 

the math they have learned. For many teachers, the summative video game project 

is the highlight of the curriculum. One teacher, however, sought to remove the 

video game project from Bootstrap altogether. Ernest chose this variation in order 

to make more time for activities that he felt would drive home the high-level 

concepts in the curriculum. The end result was a steep drop in student 

engagement, and Ernest says he would restore the game in future iterations of the 

course. 



  

 

What are the major challenges for implementing Bootstrap? 

High(Startup(Cost(

Like any novel curriculum, Bootstrap’s startup cost was the biggest 

challenge for the six teachers in this study. Bootstrap’s alignment between the 

software, the curriculum and the pedagogy may be viewed as a strength in some 

contexts, but the tight connections between these three make for a steep learning 

curve for new teachers. This suggests a number of potential improvements that can 

be made to the training itself, such as leaving more time for teachers to practice 

assisting students, or differentiating the training for technology teachers who may 

need a refresher on the math content to properly make the transfer connection for 

their students. Fortunately, all six participants agreed that the implementation 

challenge is a one-time cost: once a teacher had taught the course once, subsequent 

implementations did not incur these costs. 

MathZheavy(content(for(technology(teachers(

I initially expected both math and technology teachers to be challenged by 

course content that was foreign to each. While, neither group described the foreign 

material as challenging, the fidelity scores tell a different story. Math teachers had 

little trouble adapting to the programming component, using the programming 

projects and programming-oriented techniques with high fidelity, while the 



  

 

technology teachers struggled to use the math terminology in place of the terms 

and explanations to which they were accustomed. 

The tasks used in Bootstrap may also have been skewed in favor of the 

math teachers. When any of the teachers failed to use Bootstrap techniques to help 

students with various word problems, they would fall back on their own methods. 

Based on the transfer outcomes, however, it is possible that the math teachers were 

falling back on techniques that were better suited to the problems used in 

Bootstrap. The technology teachers, by comparison, may have found their 

traditional problem solving methods poorly suited to learning goals of the 

problems used in Bootstrap. 

Being designed as something of a chimera, it is no surprise that both groups 

saw Bootstrap as familiar. Indeed, this was by design. However, this goal may 

have created an undesirable impact, in which both groups approach the curriculum 

as little more than a “language-change” from prior classes. It is not a stretch to 

imagine an algebra teacher who sees Bootstrap as a math class in which the math 

looks slightly different, or technology teacher who views it as a programming 

class with a different language. If this is the case, then Bootstrap’s transfer 

outcomes will always be biased in favor of math teachers, who are already primed 

to make the connection to algebra. 



  

 

Viewing(problem(solving(as(a(teachable(skill(

Being able to describe a skill is a prerequisite for teaching a student to 

master it. I believe that each of the teachers in this study understands the 

importance of problem solving, but lacked the means to articulate the process 

itself as being separate from a student being “able to get the right answer.” When 

their students needed help, teachers fell back on unstructured approaches 

(repeating the method that had already been unsuccessful, asking the student 

where they were stuck, telling them to ask a friend for help, etc.). Ultimately, it 

appeared that teachers began the study with an unstated expectation that problem 

solving skills would form if students could only solve enough problems. It is worth 

noting that this observation is similar to one of the critiques leveled at the SICP 

curriculum, in the computer science domain (Felleisen, Findler et al., 2004). 

Teachers’ response to the Design Recipe was extremely positive. All six 

praised the power of the Recipe for introducing a problem, and spoke to the 

potential of the tool for assisting students who needed help. Many teachers, 

however, felt that they only began to realize this potential after working with the 

pedagogy for some time. This divide was confirmed by the fidelity scores, which 

showed teachers correctly and consistently using the Design Recipe to introduce 

problems, but struggling to use it when students ran into trouble. All of the 

teachers felt that they understood it far better after teaching with it, and reflected 



  

 

on habits they wanted to change or develop for their second time through the 

curriculum. 

Making(transfer(explicit(

Based on the established best practices for facilitating transfer, each teacher 

was given information about how important it is to make the connection between 

programming and math. This was communicated to teachers in the Bootstrap 

materials themselves, and in the PD workshops where such connections were 

modeled, discussed and dissected. In practice, however, it was far easier for math 

teachers to make this connection for their students than it was for the technology 

teachers. There are two factors that could account for this discrepancy, dealing 

with teacher expectations and teacher ability. Math teachers may have made these 

connections simply because they had higher expectations of transfer than their 

counterparts. In the interviews, the technology teachers spoke proudly of affective 

changes in their students, which they believed would make their students more 

confident or comfortable in the future. By contrast, the math teachers were 

satisfied when they saw students apply the concepts they learned in Bootstrap to 

conventional math tasks during the course. Both groups of teachers felt they had 

met their goals, but they clearly started with different goals. The other possible 

factor is the ability of teachers to make these connections in the first place. Given 

that technology teachers may be less familiar with the target domain (e.g., 



  

 

Mallory’s fidelity scores for using math terms), they may have felt less 

comfortable making these connections. 

How are students’ attitudes toward mathematics related to how they experience the 

Bootstrap curriculum?   

Due to the absence of student-level outcomes for this measure, I can only report 

on teachers’ perception of student attitudes. Each of the six participants listed confidence, 

relevance and enjoyment as affective challenges they faced when working with students 

on math content. All six teachers described their students as being afraid of algebra tasks, 

viewing them as being disconnected from their own interests and/or being dry and boring 

to complete. 

Confidence(comes(from(Transfer(

Teachers spoke highly of the Design Recipe’s influence on student 

confidence. One immediate takeaway was the Recipe’s role as a road map, giving 

every student a consistent first step. Instead of staring at a blank page not knowing 

where to start, students could always begin by asking themselves for the Name, 

Domain and Range of the function. After working through more of the material, 

however, teachers also saw an impact in the way students related to problem 

solving itself. As they began to trust that each step would get them to the next one, 

students became more confident that they would arrive at the answer even when it 

was not immediately apparent.  



  

 

There was a notable difference between the language teachers used to 

describe changes in their students’ confidence levels, depending on whether or not 

they explicitly asked their students to apply what they had learned to a 

conventional paper-and-pencil algebra task. The math teachers who made this 

connection with their students spoke about their students’ confidence levels 

entirely in the present tense. In contrast, the other teachers spoke in terms of future 

changes, believing that the intervention “will be helpful down the road,” or that 

students would be “more open to [a math concept] in the future.” In the absence of 

student-level measures, however, this distinction is purely speculative. 

“Relevant”(doesn’t(mean(“Real”(

Teachers spoke about the challenge of creating math problems that are 

relevant to students. One avenue to relevance is to come up with “real world” 

problems, demonstrating a concept’s connection to the physical world around us. 

Traditional math books are full of problems like these, involving trains leaving 

Chicago, ladders leaning against brick walls, or pennies falling from towers. 

Unfortunately, having a “real” problem is no guarantee of relevance. Fatimah 

described a problem involving food-aid for Africans, a real world application of 

linear functions that her students nevertheless found completely irrelevant.  

By tying each concept to a portion of their video game, Bootstrap 

immediately makes them relevant to students. Trapping a butterfly or responding 



  

 

to key-presses may not be “real” in the physical sense, but they are problems that 

the students readily tackle in service to a creative goal. This relevance improved 

recall as well, as students were able to link a concept to a tangible experience. In 

the previous chapter, Aaron described how students who couldn’t remember the 

difference between the x- and y-axes had no trouble at all in the context of a video 

game, and how excited they were to learn about the Pythagorean theorem in order 

to make their characters collide. 

The Pythagorean theorem did not change just because it was programmed 

into a computer, and the method used to introduce it in Bootstrap is found in many 

conventional algebra textbooks. The change Aaron describes is due to the context 

into which the theorem is placed, in which the distance formula becomes the 

solution to a problem that matters to his student. Programming allows for the 

creation of authentic, mathematical programs that are completely disconnected 

from the physical world, but feel relevant and important to students. 

The(game(is(key(for(engagement(

Several teachers commented on how much their students enjoyed the 

smaller projects, which are used at each level of course. Whether it was making a 

rocket fly, trapping a butterfly or drawing flags, teachers reported high levels of 

enjoyment from their students. However, the video game project stood out above 

all others as a central theme for students’ enjoyment of the program. At the end of 



  

 

the course, teachers who had implemented the video game project reported very 

high engagement from their students, as they showed off their finished products to 

one another or to an audience of parents and teachers. The game itself seems to 

play a pivotal role in student enjoyment: as mentioned above, Ernest saw a steep 

drop in his students’ enjoyment of the program when he removed the game 

component, despite keeping the smaller projects. 

How is student performance on specific algebraic tasks related to how they experience 

the Bootstrap curriculum?   

High(fidelity(implementations(showed(gains(

Pre/post data was obtained from five classes. When presented with a 

conventional, paper-and-pencil algebra assessment, four of the five showed gains 

on reification (50+%), translation (40+%), and modeling tasks (113+%). With the 

exception of Hadiyah’s class scores on tests of function composition (due to 

sample size), every one of these gains was statistically significant. Given 

Bootstrap’s focus on word problems, the gains on modeling tasks are particularly 

important, and deserve further discussion. 

The Design Recipe is the three-step process with which all programming 

problems are solved in Bootstrap. The modeling instrument asks students to solve 

traditional algebra word problems, and prompts them for three representations that 

correspond to the three steps in the Design Recipe. The third step is the answer 



  

 

that students would be asked to provide on a standardized test, and scores on this 

instrument were compared in raw (all three steps) and adjusted (just the answer) 

form. The first two steps are not commonly used in algebra 1, so one would expect 

gains on these steps only for students who received the intervention. The raw 

measurement is purely for the purposes of determining how well Bootstrap 

students were able to transfer the Design Recipe itself into the algebra domain, not 

to compare how well they performed relative to a control group. With the 

exception of Mallory’s class, all Bootstrap classes showed large and statistically 

significant gains in their raw scores. This suggests that students learned to execute 

the steps of the Recipe and were able to transfer that understanding into the target 

domain of algebra. These results were obtained using a different syntax (standard 

algebra notation instead of Racket) and without the use of a computer, using a 

series of conventional algebra tasks drawn from state standardized tests, and 

without any explicit reference to the Design Recipe. These gains were consistent 

across income levels, urban and rural schools and public and private schools.  

Transfer(requires(domain(knowledge(

Both Mallory’s class and the control class had slightly negative 

performance changes across the three measures, though none of these changes 

were statistically significant. Mallory scored much lower than other teachers on 

fidelity measures, specifically those that deal with math vocabulary and deep use 



  

 

of the pedagogy to solve math problems. All of Mallory’s students completed the 

programming projects used in the curriculum, and proudly presented them to their 

peers. Clearly they learned the programming content, but failed to transfer this into 

the math domain. Based on the transfer literature in chapter 2, the lack of transfer 

outcomes is likely the result of Mallory’s long history as a technology teacher, 

which may have made it more difficult to draw explicit and accurate math 

connections using proper terminology.  

Limitations 

The narrow scope of this study leaves many stones unturned. Since my 

hypothesis regarding transfer is focused on only a small selection of rich tasks, the 

instrument represents only a small fraction of those on a comprehensive algebra 

exam (though there may be unexpected impact on other tasks). Given the limited 

scope of the experiment, it is not possible to explore the differences between 

radically different delivery models (e.g., implementations as an afterschool 

program vs. a conventional classroom). Constraints on gathering data have forced 

me to exclude the race and SES status as a dimension in the data, and the limited 

fidelity data may be masking unknown variations in implementation and test 

conditions. Finally, while the small sample size allows us to explore potential 

effects on the students chosen for the study, it does not allow us to make claims 

about the program’s effect on a wider population. A larger study with thousands of 



  

 

students would enable a more rigorous analysis, using hierarchical models to 

account for teacher- and school-level effects. 

Due to tight constraints on the length of the assessments used, this study 

was also limited in the type of effects that could be analyzed. I had originally 

hoped to use the 40-question Attitudes Towards Mathematics Inventory to gauge 

affective outcomes, rather than relying on secondhand teacher reports. Future 

work could include an affective study using this or related measures. Given the 

current interest in the field of programming education, it would also be valuable to 

repeat the study using a summative assessment of specific programming 

outcomes.  

Implications 

Even with the caveats discussed in the prior section, the findings in Chapter 

6 provide encouraging evidence that transfer from programming into algebra is 

possible. As a feasibility study, the emphasis here has been entirely focused on the 

intervention. The variation in transfer outcomes across teachers, however, 

highlights the importance of the person delivering the intervention. This variation 

also appears in teacher interviews and fidelity measures, which found significant 

differences in the ways that teachers conceptualize student learning, the 

expectations they hold for their students, and the degree to which they were able to 

internalize the problem solving process used in Bootstrap. It should come as no 

surprise that teachers’ knowledge plays a role in student outcomes, but this data 



  

 

implies three specific things about what teachers should know, in order to teach 

algebra through computer programming. 

Prior work has addressed questions about “what teachers should know” 

separately with respect to the use of technology and the teaching of mathematics. 

Shulman (1986) describes pedagogical content knowledge (PCK) as “the most 

useful forms of representation…the most powerful analogies, illustrations, 

examples, explanations and demonstrations – in a word, the ways of 

representing…the subject that make it comprehensible to others” (p. 9). This is 

distinct from mere content knowledge, which is the ability to carry out the tasks in 

a particular discipline. Simply put, the knowledge required to teach something is 

not the same as the knowledge required to do that thing. 

In what is essentially “PCK for technology,” Mishra and Koehler (2014) 

identify the knowledge necessary to use software programs, devices, and 

programming in the service of teaching. They call this construct technological 

pedagogical content knowledge (T-PCK), and describe the ways in which this skill 

differs from simply being adept with various technologies. A math teacher might 

know how to use a calculator, but be unable to use that calculator to explore 

student conjectures or address a misconception. The latter use case is a clear 

example of T-PCK. Related work has extended this definition to include the use of 

specific programming constructs (Ioannou & Angeli, 2013). 



  

 

In the domain of mathematics, PCK is described as the mathematical 

understanding that teachers must 

have in order to best explain 

concepts to students, and to dissect 

and correct student misconceptions 

of those concepts (Ball & Bass, 

2000, Thompson & Thompson, 

1996). Recent work in the math 

education field has attempted to map PCK alongside a number of other constructs 

(e.g., content knowledge, knowledge of the curriculum, etc.). This knowledge, as 

shown in Figure 30, is summarized as mathematical knowledge for teaching 

(MKT). In a quantitative analysis of MKT’s effect on student outcomes, Hill, 

Rowan and Ball (2008) established a measure for MKT, which was then 

successfully used as a predictor of student achievement outcomes for first and 

third grade students.  

While the scope of this study was designed to answer questions about a 

specific intervention, the results from the previous chapter hold implications for T-

PCK, PCK and MKT: for educators or policymakers who seek to improve algebra 

achievement by way of computer programming, these three skillsets must be 

considered together.  

Figure 30 - Domain map for mathematical knowledge for 
teaching (Hill et al., 2008) 



  

 

A programming intervention must be designed with T-PCK in mind 

For Bootstrap, the engineering effort required to make the WeScheme 

programming environment suitable for algebra tasks was significant, but the tool 

itself did little to make the math relevant for students. Ernest’s removal of the 

game from his spring semester class serves as an comparison case: all the 

technological bells and whistles were there, but student engagement suffered 

without a carefully selected project to tie it all together. 

Teachers have always known that a fun, creative project is a powerful tool 

for engagement. Devising a rich task that can be carefully broken down into math-

aligned components is the result of careful curricular design and software support 

for that design. Keeping the algebra tasks authentic throughout the process was a 

necessity so that students would maintain their confidence when the computer was 

taken away, and that requires a programming language and a vocabulary that 

closely mirrors that of traditional algebra. Algebra tasks do not necessarily become 

more engaging because they are presented on a computer. What a computer does 

is allow for abstract, algebraic tasks to become the means to an end that students 

care about. The effective use of the computer, in this case, was accomplished 

through a curriculum developed with T-PCK in mind. 

It is tempting to believe that moving a task from paper to the screen is 

enough to make that task engaging, and increase learning outcomes. I believe this 

notion places emphasis on the wrong part of any technology-based intervention. 



  

 

Simply put, it is not about the technology. Digital flashcards are just as engaging 

as regular flashcards, and graphing a line on a computer is no more exciting than 

doing so on paper. The value proposition of a technology-based intervention is not 

the technology’s ability to represent existing activities. Rather, it is the 

technology’s ability to make new activities possible that can make content more 

relevant or engaging, and to support a pedagogy that builds confidence in students. 

Future work in this field should consider not just the benefits of engaging 

technology, but the T-PCK necessary to use that technology to produce positive 

achievement outcomes. Policymakers who invest in programming classes for 

schools should be sure to consider the resources and time necessary to develop 

teachers’ T-PCK for programming.  

Tools and curricula must support mathematical PCK  

Having students teach a computer to carry out a series of computational 

steps has been shown to help them internalize those steps, and studies have 

demonstrated transfer from programming into some of these tasks (e.g., computing 

with fractions, constructing geometric figures). Unfortunately, transfer from 

programming into algebra has largely eluded researchers. If functions represent a 

shift from computing answers to solving problems, it is possible that an 

intervention aimed at algebra must focus less on the sequence of steps involved in 

running a program, and more on the problem solving aspect of writing that 

program in the first place. 



  

 

In recent years, computer science has been linked to a set of skills known as 

Computational Thinking (CT) (Wing, 2006). The notion that writing programs 

teaches transferable problem solving skills is popular, with Wing’s claim that 

“computational thinking is a fundamental skill for everyone, not just for computer 

scientists” (pg. 33) finding ample agreement within the field. In Chapter 1, I 

described the long-held belief that algebra is a natural domain for this sort of 

transfer (Feurzeig, W., Papert, S. et al. 1970), and the more general idea that 

programming teaches math has been around for decades (Khan, 1996; Papert, 

1972; Resnick, 2009). If computational thinking teaches transferable problem 

solving skills that are a natural fit for algebra, then one would expect to see 

significant transfer between programming and algebra. However, the lack of 

transfer evidence calls this claim into question. 

In Chapter 2, I described a number of specific transfer barriers between the 

two domains. Imperative programming presents a notional machine that is 

conceptually incompatible with mathematics. Imperative languages are extremely 

popular among K-12 teachers, but their reliance on state makes them a poor choice 

for learning algebra. Meanwhile, the current trend in graphical, block-based 

programming makes it easier for students to write code without syntax errors, but 

syntactic precision is a necessary component of an algebra class. Avoiding syntax 

errors altogether may not be the right tradeoff if the goal is transfer into a domain 

where symbolic precision is important. Finally, few (if any) of the most popular 



  

 

tools and languages offer built-in support for writing and testing examples, which 

are crucial components of mathematical problem solving. Debuggers that allow 

programmers to inspect the values stored in memory may be valuable parts of T-

PCK, but have no proper mapping to mathematics (which lacks any notion of 

assignment). It is important to note that many programming tools and 

interventions have demonstrated positive outcomes in terms of student 

engagement and have powerful learning outcomes on various programming 

constructs. I would expect, for example, that students who build a video game in 

Python or Scratch would learn a great deal about any number of computational 

thinking constructs. But even excellent, thoughtfully designed programming 

interventions may be completely unsuitable for math instruction, if they embody 

constructs that are foreign to (or actively work against) mathematical PCK.  

Bootstrap’s transfer outcomes are the result of more than the incorporation 

of T-PCK. The WeScheme environment was constructed to support a functional 

programming language with deep support for common pedagogical techniques 

drawn from mathematics. The curriculum was designed from the ground up to 

facilitate transfer into algebra, using mathematical terminology, best practices 

from the field of math education, and projects designed around specific algebraic 

concepts. While the previous section’s implication is that tools and curricula must 

be developed alongside T-PCK if they are to be successful in teaching 

computational thinking, the second implication is that they must also explicitly 



  

 

support mathematical PCK to be successful at transferring that thinking into 

mathematics. I believe that Bootstrap’s support for algebraic PCK is what makes 

the transfer outcomes possible for teachers in this study. The differences between 

those outcomes across teachers, however, make an even stronger claim about what 

teachers should know to facilitate that transfer. 

Teachers should possess MKT 

PCK for mathematics is just one component of Mathematical Knowledge 

for Teaching, standing alongside knowledge of the curriculum, content, and 

others. Recent studies have conceptualized measures for MKT, and identified the 

construct as a strong predictor of student outcomes (Hill et al., 2005). If MKT is 

shown to be a meaningful factor in math instruction, it should come as no surprise 

that it is a meaningful factor in math transfer as well.  

The Design Recipe, which conceptualizes problem solving in the 

programming domain, is a sophisticated pedagogical tool for expressing ideas and 

challenging student assumptions. As such, we may use teachers’ adoption of the 

Design Recipe as a proxy for their T-PCK of the programming domain. Bootstrap 

adapts the Design Recipe to the constraints of an algebra class, effectively placing 

it inside the intersection of T-PCK for programming and PCK for mathematics. I 

assumed that Math and Technology teachers would have similar challenges and 

successes when using the Recipe, situated as it was equally between their two 

domains. However, I was surprised to find significant differences in the way each 



  

 

group approached the Design Recipe – differences which played out in the ways 

they implemented the course, and saw their own role as educators. These 

coincided with differences in the degree to which their students were able to 

transfer what they learned into the domain of algebra.  

Two of the programming teachers eliminated the pair programming aspect 

of the curriculum, convinced that working in teams would reduce student 

engagement and dilute the affective outcomes they sought. All of the 

programming teachers made far fewer explicit connections to mathematics, 

struggled to deeply apply the problem solving pedagogy, and reported feeling 

hopeful and optimistic that the class would help students in the future. The math 

teachers made many more explicit connections to mathematics, had higher fidelity 

when using the Design Recipe, and reported seeing student understanding of one 

or more mathematical concepts improve. This by no means implies that the 

programming teachers did a poor job, or that they failed to achieve a valuable set 

of learning outcomes. The programming teachers in this study are talented, 

accomplished, successful teachers. It is worth noting that all of the teachers in this 

study reported that their students learned to program, and reported high levels of 

engagement when using the video game project.  

The results of this study suggest that algebraic transfer demands more than 

the use of mathematical PCK: successful transfer from programming into algebra 

may also demand some amount of MKT. While this study did not evaluate the 



  

 

MKT of participating teachers, it is reasonable to believe that those with years of 

experience teaching mathematics are likely to possess greater MKT than those 

who did not. It would be valuable to explore the impact of MKT on Bootstrap 

teachers’ performance in future work. 

Conclusion 

When implemented with fidelity, the Bootstrap classes in this study were 

able to demonstrate significant gains in traditional algebra tasks after a 

programming intervention based on a different syntax, a unique set of 

programming problems, and a problem solving approach adapted from a college-

level computer science course. The demonstration of positive transfer from 

programming into algebra is exciting, but the findings should not be generalized to 

suggest that merely “learning to program” would result in mathematical gains for 

students. Bootstrap’s success rests on a conscious selection of programming 

language, software tools, curriculum and pedagogical practice that are drawn from 

the algebraic domain. This selection likely assumes a certain degree of MKT on 

the part of the teacher, which puts additional constraints on how and where the 

program can be implemented.  

The notion that programming can be used in the context of an algebra class 

- by an algebra teacher – suggests that math teachers have a valuable role to play 

in current efforts to bring computer science to schools. Algebra’s position as a 

required class for all students makes it particularly appealing from an equity 



  

 

standpoint, compared to self-selecting classes like electives and after-school 

programs. Schools that are struggling to find room in the schedule and staff to 

teach a programming class may be able to solve both of these problems by 

integrating programming into their regular math classes, and improve their math 

outcomes in the process.  

Finally, this study may be thought of as a useful footnote to the assertion that 

Computational Thinking teaches transferable skills. Transfer between computer 

programming classes and other subjects is possible, but the language, tools, curriculum 

and pedagogy of those programming classes must be carefully aligned to those subjects 

and the skills required to teach them. While most researchers and practitioners would 

agree that this alignment is important, the history of programming and transfer suggests 

that the degree of alignment required is extraordinarily high. The implications of the 

study raise this bar even higher, pointing to the impact of mathematical knowledge on 

transfer outcomes. 

 
  



  

 

Appendices 

Appendix A: Observation Protocol 

Teacher:  Rater:  Date: Lesson #: 
 

Indicator Fidelity 
Room setup: Teacher has students writing in 
Bootstrap workbooks, working in pairs, and has a 
Language Table posted someplace visible. 

 Workbooks Used       Pair Programming 
 Language Table Displayed 

Teacher uses algebraic vocabulary correctly when 
discussing relevant concepts  Minimal          Sufficient            Exemplary  

Teacher uses algebraic vocabulary consistently 
when discussing relevant concepts  Minimal          Sufficient            Exemplary  

Teacher refers students back to the Circle of 
Evaluation or Contracts when assisting in syntax 
errors  Minimal          Sufficient            Exemplary  
Teacher makes explicit use of the Design Recipe 
when introducing or reviewing Word Problems 

 Minimal          Sufficient            Exemplary  
Students are given time to work on their own 

 Minimal          Sufficient            Exemplary  

(Only applicable in Units 4-9) Teacher refers to 
the Design Recipe when assisting students who ask 
for help   Minimal          Sufficient            Exemplary  
(Only applicable in Units 4-9) Step 1: Students are 
directed to complete the Contract for a function, 
before giving examples or defining it  Minimal          Sufficient            Exemplary  
(Only applicable in Units 4-9) Step 2a: Students 
are directed to give Examples for a function, 
before defining a it  Minimal          Sufficient            Exemplary  
(Only applicable in Units 4-9) Step 2b: Students 
are directed to identify variables for a function, 
before defining a it  Minimal          Sufficient            Exemplary  

(Only applicable in Units 4-9) Step 3: Students 
define a function by explicitly referring back to 
their examples and/or contract  Minimal          Sufficient            Exemplary  

 

 

  



  

 

Appendix B: Examples of formative programming assessments 

f(x) = x + 3 

 
What!is!the!name!of!the!function? 

a.!f! ! b.!x! ! c.!3 

What!is!the!name!of!the!variable? 

a.!f! ! b.!x! ! c.!3 

What!is!f(2)? 

a.!6! ! b.!5! ! c.!x 

(define (f x) (* x 17)) 

 
What!is!the!name!of!the!function? 

a.!x! ! b.!17! ! c.!f 

What!is!the!name!of!the!variable? 

a.!x! ! b.!17! ! c.!f 

What!is!(f 1)? 

a.!17! ! b.!117!! c.!x 

 

 

(+   1   4)  will be _____________   

(/   4   2)  will be _____________   

(-   0   9)  will be _____________   

(string-length “bat”)  will be ______ 

(>   0   5)  will be _____________   

(=   1   9)  will be _____________   

(<=   2   2)  will be _____________   

(string=?   "dog"   "cat")  will be _______ 

 

  



  

 

Appendix C: Transfer outcomes (pretest) 

All the questions on this page refer to the following four functions: 

f(x) = x +1 

g(y)=2y-5 

x(f) = f2 

p(u, v) = 2u+3v 

1.! What is the value of f(2)? (circle one) 
 0  1   2 3 

2.! What is the value of x(5)? (circle one) 
 10  25   36 Can’t be evaluated 

3.! What is the value of g(0)? (circle one) 
 0  -5   15 25 

4.! What is the value of p(1, 2)? (circle one) 
 21+32 8   3 22+31 

5.! What is the value of f(2+3)? (circle one) 
 3  4   5 6 

6.! What is the value of g(f(3))? (circle one) 
 3 9   11 Can’t be evaluated 

7.! What is the value of x(f(2))? (circle one) 
 9 16 25 Can’t be evaluated 

8.! What is the value of p(1, f(3))? (circle one) 
 10 12   14 16 



  

 

9.!  Match each of the formulas below with the corresponding table. (One of the matches 
has been done for you.)  

m(n) = n2 -10 

 
 

n m(n) 
10 56 
11 60 
12 64 

m(n) = n2 -2n 

 

 

n m(n) 
-4 16 
-6 36 
-8 64 

m(n) = 8-3n 

 

n m(n) 
0 -10 
1 -9 
2 -6 

m(n) = n2 

 

n m(n) 
5 15 
6 24 
7 35 

m(n) = 4n +16 

 

 

n m(n) 
2 2 
4 -4 
6 -10 

 

  



  

 

10.! The label on the can of paint that Chang bought stated that 1 gallon of paint will cover 300 
square feet. The function feet(g) represents the number of square feet that g gallons will cover.  

a.! What are the domain and range of feet? 

domain : _______________________________  range:  _____________________________ 

b.! Fill in the output column for the function feet(g), completing the two examples provided to show 
how the number of square feet that can be painted relates to the number of gallons provided. 

 

 

c.! Write the function feet(g), that represents the number of feet that g gallons will cover. 

 feet(g) =  

11.! The total for a phone bill, t(m), starts at $19, plus an additional $0.25 per minute m of use.  

a.! What are the domain and range of t? 

domain : _______________________________  range:  _____________________________ 

b.! Make a table for the function t(m), that shows how the total bill is related to the number of minutes 
of use. 

 

 

c.! Which of the following equations can be used to determine the total monthly bill, t, for m minutes 
of use? (circle one) 

t(m) = 0.25m + 19 t(m)=0.25m – 19 t(m) = 19m + 0.25 t(m) = 19m - 0.25 

12.! The table below shows a relationship between values of x and f(x): 

x 1 2 3 4 5 … 
f(x) 3 6 11 18 27 … 

a.! What are the domain and range of f? 

domain : _______________________________  range:  _____________________________ 

b.! Fill in the output column for the function f(x), completing the two examples provided. 

 

 

c.! Which of the following equations describes the relationship between x and f(x) in the table? (circle 
one) 

f(x) = 3x f(x) = 5x-2 f(x) = x2+2 f(x) = x3 

f(2)  
f(3)  

  
  

f(4)  
f(6)  



  

 

13.! Ashley studied for one hour less than twice as many hours as Melissa studied. Let m stand 
for the number of hours Melissa studied. The function a(m) represents the number of hours Ashley 
studied. 

a.! What are the domain and range of a? 

domain : _______________________________  range:  ________________________________ 

b.! Make a table for the function a(m), that shows how the number of hours Ashley studied is related 
to the number of hours that Melissa studied. 

 

 

c.! Which of the following equations describes the relationship between m and a(m)? (circle one) 

a(m) = ½m - 1 a(m) = 1 – ½m a(m) = 1 – 2m a(m) = 2m-1 

14.! A university has 6 times as many students as professors. Write a function p(s) that describes 
the number of professors in relation to the number of students s. 

a.! What are the domain and range of p? 

domain : _______________________________  range:  ________________________________ 

b.! Fill in the output column for the function p(s), completing the two examples provided to show how 
the number of professors is related to the number of students at the university. 

 

c.! Writ
e the function p(s), which represents the number of professors at a university with s students. 

 p(s) =  

15.! Laila is having shirts made with a logo printed on them to promote her band. The total cost 
is a one-time fee of $75 to have the logo designed, plus $8 per shirt to print the logo. Write an 
equation that Laila can use to determine the total cost C(x), in dollars, to make x shirts. 

a.! What are the domain and range of C? 

domain : _______________________________  range:  ________________________________ 

b.! Make a table for the function C(x), that shows how the cost is related to the number of shirts 
printed. 

 

 

c.! Write the function C(x), that represents the cost to make x shirts. 

 C(x) =  

  
  

p(60)  
p(180)  

  
  



  

 

16.! Ms. Gleason is opening a new restaurant. She has enough booths to seat up to 40 people, and 
is ordering tables to fill the rest of the seating space. Each of these tables can seat up to 6 people. If t 
represents the number of tables Ms. Gleason orders, write a function p(t), which shows the number 
of people p that can be seated at booths and tables. 

a.!What are the domain and range of p? 
domain : ________________________________  range:  ________________________________ 

b.!Make a table for the function p(t), that shows how the number of tables is related to the number of people 
that can be seated at the restaurant. 

 

 

c.!Write the function p(t), that represents the number of people that can be seated at tables and booths. 

 p(t) =  

17.! Jeff completed a hiking trail in t hours. Michelle completed the trail in half the time it took 
Jeff to complete it. A function m(t) represents the time it took Michelle to complete the trail 
compared to Jeff. 

a.!What are the domain and range of m? 
domain : _______________________________  range:  ________________________________ 

b.!Fill in the output column for the function m(t), completing the two examples provided to show how the 
number of hours it took Michelle  compared to Jeff. 

 

 

c.!Which of the following equations describes the relationship between t and m(t)? (circle one) 

m(t) = 2�× t m(t) = 2�÷ t m(t) = t - 2 m(t) = t�÷�2 

18.! There are twice as many cats at a pet store as there are dogs. Write a function d(c), which 
describes the number of dogs based on how many cats c there are. 

a.!What are the domain and range of d? 
domain : _______________________________  range:  ________________________________ 

b.!Make a table for the function d(c), that shows how the number of dogs is related to the number of cats at 
the pet store. 

 

 

c.!Write the function d(c), which represents the number of dogs at a pet store with c cats. 

 d(c) =  

  

  
  

m(10)  
m(20)  

  
  



  

 

Appendix D: Interview Protocol 

Introduction (~1min) 
Hello! Thanks for taking the time today to talk about your classroom experience with 

Bootstrap. We’re trying to learn how teachers use the curriculum, what brought them to it in the first 
place, and how it can be improved in the future.  

I’ll be asking a little about your own experiences with teaching and programming before 
Bootstrap, as well as your experience using Bootstrap with your students. You can ask me questions at 
any time, and you don’t need to talk about anything that makes you uncomfortable. This interview will 
last up to an hour, but you can stop the interview at any time. 

There are no “right” or “wrong” answers to any of the questions here – I’m hoping to get the 
most accurate sense for how things went in your classroom, from your perspective. This is meant to be 
more of a conversation than anything else, so that I can learn from your experiences and improve the 
program for other teachers. 

Before we get started, do you have any questions? 
 

Teacher Background (~5min) 

1.! Tell me a little about your background. How 
did you come to be a [math/CS/science/etc] 
teacher?  

Teachers’ prior experiences with math and 
programming may influence their perception of 
Bootstrap, and their choices when implementing it. 
(RQ1-2) 

2.! How long have you been teaching [that 
subject]? 

(see above) 

3.! (Time permitting) Have you used programming 
in your classroom before?  

a.! If so, what did you use? What did you 
like/dislike about using programming with 
your students? 

b.! How did your students respond to 
programming? 

c.! Did you find the programming to be a 
useful learning activity? Why or why not? 

(see above) 

4.! Tell me about your students. Who are they?  

a.! How confident or excited do they feel about 
math? How do they feel about using 
computers? 

b.! What do your students struggle with the 
most? 

c.! How much programming experience have 
your students done before they come to 
you? 

Prompt teachers for their own perception of their 
students. This will help address RQ3-4, in which 
teachers report changes in student attitudes and 
performance. 

 
Planning and Preparation (~5-10min) 

1.! Before the start of the school year, how much 
time did you spend on Bootstrap-related 

Primarily addresses RQ2 (challenges for 
implementation), but informs RQ1 as well (different 
strategies). 



  

 

planning?  

2.! (Time permitting) Before the start of the 
school year, how did you intend to integrate 
Bootstrap? (Self-contained module? Integrated 
throughout the class?) 

While not directly connected to a specific RQ, this 
attempts to get at a possible disconnect between 
teachers’ expectations prior to the start of the class. 

3.! What was the hardest thing about integrating 
Bootstrap into your curriculum? 

RQ2 (challenges for implementation) 

4.! Did you receive any in-person professional 
development prior to the start of the school 
year? If so, what was your experience there?  

While not directly connected to a specific RQ, this 
may allow for some depth of analysis when talking 
about challenges. If it turns out that teachers who 
received little or no PD struggled more than those 
who were trained, we can draw some conclusions 
about the types of challenges faced by teachers. 

5.! During the school year, how did you wind up 
integrating Bootstrap? 

RQ1 (variations in implementation) 

6.! During the school year, how much time did 
you spend on Bootstrap-related planning?  

RQ2 (challenges for implementation) 

 
Teaching Practice (~10-15min) 

1.! Was it difficult to gain access to computers for 
the programming portions of the class? 

RQ2 (challenges for implementation) 

2.! Which, if any, of the following resources did 
you make use of this year: lesson plans, 
student workbooks, homework assignments, 
warm-up activities, exit slips, YouTube 
videos, or teacher discussion board? 

This question gets at a few related issues: (1) did the 
teachers know about these resources? and (2) were 
these resources helpful in overcoming the 
challenges they faced during implementation?  

3.! Tell me about your experience introducing the 
Circles of Evaluation. How did students react? 
Did you find this to be a useful teaching tool?  

RQ3-4 (student performance and attitude) 

4.! Tell me about your experience teaching the 
Design Recipe. How did students react? Did 
you find this to be a useful teaching tool?  

RQ3-4 (student performance and attitude) 

5.! Did you have your students work in pairs? 
Why or why not? 

RQ1 (variations in implementation) 

6.! If a student got stuck on a problem, how often 
did you use the Circles of Evaluation or the 
Design Recipe to help them? If you used 
them, can you tell me a little about how you 
used them? 

RQ1-2 (variations and challenges for 
implementation). This also speaks to how much 
teachers were able to internalize the pedagogical 
techniques used in the curriculum. 

7.! Did you find yourself using the Circles of 
Evaluation or the Design Recipe during 
periods where you were not expressly 

While not directly connected to a RQ, this allows us 
to get at how well teachers were able to blend the 
Bootstrap material into their traditional instruction. I 



  

 

teaching a Bootstrap lesson? (If so, ask for 
examples…) 

expect answers to this question to be deeply 
connected to answers about RQ2 (challenges). 

8.! What did you like about teaching Bootstrap? Not directly connected to a RQ, but valuable for the 
purposes of describing teacher experiences. 

9.! How (if at all) do you think that teaching 
Bootstrap a few times might change the 
amount of effort required from a teacher? 

Addresses RQ2 (challenges in implementation), and 
may help to tease apart challenges that are inherent 
to the curriculum from those that are a function of a 
standard learning curve. 

 
Student Impact (~5-10min) 

1.! How did your students respond to the use of 
a video game as a class-wide project? 
(Going deeper: Did you see an impact on 
student engagement? Student learning?) 

Loosely addresses RQ3-4 (changes in attitude and 
performance). The goal here is to attempt to 
separate the role of video game project from the 
various pedagogical techniques used in the 
curriculum. 

2.! Did you see your students using any of the 
Bootstrap material when working on things 
that were not expressly part of Bootstrap? (If 
so, ask for examples…) 

Hints at how well students are able to transfer 
what they’ve learned between Bootstrap and 
traditional algebra tasks. 

3.! How would you describe Bootstrap’s impact 
on your students’… 

a.! Interest in programming? 
b.! Confidence in programming? 
c.! Interest in mathematics? 
d.! Confidence in mathematics? 

 

RQ3-4 (changes in attitude and performance) 

4.! (Time permitting) Can you speak to the role 
of the various mini-projects (the flying 
rocket, sam-the-butterfly or luigi’s pizza) on 
student engagement? (Going deeper: Did 
you find yourself referring back to those 
when discussing related concepts during 
traditional instruction?) 

This gets at two of the issues raised above – (1) the 
role of projects, the ability for the teacher to 
internalize the curriculum and (2) use it to 
facilitate transfer into their traditional classroom 
practice. 

Goals (~3min) 

1.! What, if anything, do your students get 
from Bootstrap?  

RQ3-4 (changes in attitude and performance) 

2.! How, if at all, has Bootstrap changed your 
teaching practice? 

RQ1-2 (variations and challenges for 
implementation) 
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