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Abstract

We put forward a new model of congestion games where agents have
uncertainty over the routes used by other agents. We take a non-probabilistic
approach, assuming that each agent knows that the number of agents using
an edge is within a certain range. Given this uncertainty, we model agents
who either minimize their worst-case cost (WCC) or their worst-case re-
gret (WCR), and study implications on equilibrium existence, convergence
through adaptive play, and efficiency. Under the WCC behavior the game
reduces to a modified congestion game, and welfare improves when agents
have moderate uncertainty. Under WCR behavior the game is not, in gen-
eral, a congestion game, but we show convergence and efficiency bounds
for a simple class of games.

1 Introduction

Congestion games [18] provide a good abstraction for a wide spectrum of scenar-
ios where self-interested agents contest for resources, and can be conveniently
analyzed using game-theoretic tools.

Recently, more complex models of congestion games have been suggested,
taking into account the incomplete information agents may have when making
a decision (e.g. Ashlagi et al. [4] and Piliouras et al. [16]; see Related Work).
Uncertainty may stem from multiple sources, including uncertainty about the
state of nature– and thus the cost of resources –or about other agents’ actions.
We can imagine commuters choosing routes home from work and facing uncer-
tainty about road conditions (e.g., weather, roadworks) as well as about the
routes selected by others.

Rather than model uncertainty through a distributional model, we adopt a
non-probabilistic approach of strict uncertainty. Indeed, extensive experimental
and empirical studies have demonstrated that people have difficulties in repre-
senting probabilities, and often adopt other heuristics in place of probabilistic
reasoning [28, 27]. With strict uncertainty, each player faces a set of possible
states, where the cost of each action depends on the (unknown) actual state,
and decisions take into account risk attitudes and other biases, often applying
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heuristics rather than optimization. Such alternative approaches to decision
making in general, and to uncertainty in particular, have deep roots in the AI
literature, largely due to the works of Herbert Simon on bounded rationality and
procedural rationality [25, 26].

Having adopted a non-probabilistic approach, we must make two crucial
modeling decisions. First, we must decide how each agent acts in the face of
strict uncertainty. The simplest behavior follows a minimax approach [29, 25],
and assumes that the decision maker is trying to minimize her worst-case cost
(WCC). Another approach seeks to minimize the worst-case regret (WCR) of
the decision maker, which goes back to Savage [23], and has been also applied
to games [9]. Both cost measures are worst-case approaches, and suitable as an
abstraction for the behavior of a rational but risk-averse agent.

Second, we need to determine which states are considered possible by the
agents. To construct the set of possible states, we adopt the recent model
of distance-based uncertainty [11]. All agents share the same belief about the
current “reference state” of the network (i.e., the load on every edge in a routing
game), which may be available for example from an external source such as
traffic reports, or from an agent’s previous experience. However agents vary
in the accuracy they attribute to the reference state. Each agent i has an
uncertainty parameter, ri, which reflects a belief that the actual load is within
some distance ri of the reference load. A higher ri may reflect either that an
agent is less informed about the true congestion, or, alternatively, that she is
more risk-averse.

From each heuristic (WCC or WCR) we can derive a natural equilibrium
concept. Intuitively, every action profile induces a reference state s, and we
consider the heuristic best response of every agent to the set of possible states
around s. State s is an equilibrium if every agent minimizes her worst case cost
(or worst case regret) by keeping her current action.

As a simple example, if in some profile 100 players are using a resource,
then agent i believes the actual load to be anywhere between 100/ri and 100ri.
If ri = 1 for all agents, we get the standard complete information model as
a special case: both minimax cost and minimax regret collapse to simple cost
minimization, and our equilibrium notion coincides with Nash equilibrium.

Our contribution. We study equilibrium behavior in nonatomic congestion
games, under our strict, distance-based model of uncertainty. For simplicity
and concreteness, we focus our presentation on routing games, where resources
are edges in a graph, and valid strategies are paths from source to target.1With
worst-case cost players, we show that the game reduces to a modified, complete-
information routing game with player-specific costs. Further, if all agents have
the same uncertainty level we get a potential game.

We are interested in how equilibrium quality (measured by the price of an-
archy [22]) is affected by introducing uncertainty. For routing games with affine
cost functions, we show that the price of anarchy (PoA) under uncertainty de-

1Any congestion game is equivalent to a routing game.
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creases gradually from 4
3 (without uncertainty) to 1, and then climbs back up,

proportionally to the amount of uncertainty. We also show that in a population
of agents with different uncertainty levels, the PoA is bounded by the PoA of
the worst possible uncertainty type.

With worst-case regret players the induced game is no longer a congestion
game. Yet, we show that for a simple class of games a weak potential function
exists, and thus equilibrium existence and convergence results are available. We
give some preliminary results on PoA bounds with worst-case regret players.
Due to space constraints most of our proofs are omitted, and can be found in a
separate Appendix.

2 Preliminaries

Nonatomic routing games. Following Roughgarden [20] and Roughgarden
and Tardos [22], a nonatomic routing game (NRG) is a tuple G = 〈G, c,m,u,v,n〉,
where

• G = (V,E) is a directed graph;

• c = (ce)e∈E , ce(t) ≥ 0 is the cost incurred when t agents use edge e;

• m ∈ N is the number of agent types;

• u,v ∈ V m, where (ui, vi) are the source and target nodes of type i agents;

• n ∈ R
m
+ , where ni ∈ R+ is the total mass of type i agents. n =

∑

i≤m ni is
the total mass of agents.

We denote by Ai ⊆ 2E the set of all directed paths between the pair of nodes
(ui, vi) in the graph. Thus Ai is the the set of actions available to agents of
type i. We denote by A = ∪iAi the set of all directed source-target paths. We
assume that the costs ce are non-decreasing, continuous and differentiable.

A NRG is symmetric if all agents have the same source and target, i.e.,
Ai = A for all i. A symmetric NRG is a resource selection game (RSG) if G is
a graph of parallel links. That is, if A = E and the action of every agent is to
select a single resource (edge).

Game states. A state (or action profile) is a vector s ∈ R
|A|×m
+ , where sf,i

is the amount of agents of type i that use path f ∈ Ai. In a valid state,
∑

f∈Ai
sf,i = ni. The total traffic on path f ∈ A is denoted by sf =

∑m
i=1 sf,i.

The load state s ∈ R
|E|
+ is a vector of aggregated edge loads derived from state

s, where se =
∑

f :e∈f sf . This is the total traffic on edge e ∈ E via all paths
going through e. We also allow load states that cannot be derived from a valid
state.

Note that all the information relevant to the costs in state s is specified in the
load state s: all agents using a particular edge e suffer a cost of ce(se) in state
s, and the cost of using a path f ∈ Ai is c(f, s) =

∑

e∈f ce(se). Thus except in
settings where agents’ types or exact strategies matter, we may use s and s inter-
changeably. The social cost in a profile s is SC(s) =

∑m
i=1

∑

f∈Ai
sf,ic(f, s) =

∑

e∈E sece(se).
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Equilibrium and potential. Without uncertainty, a state s for an NRG is
an equilibrium if for every agent type i and actions f1, f2 ∈ Ai with si,f1 > 0,
c(f1, s) ≤ c(f2, s). That is, if no agent can switch to a path with a lower cost.
This is the analogy of a Nash equilibrium in nonatomic games.

In nonatomic games, φ(s) is a potential function, if any (infinitesimally small)
rational move, i.e., a move that decreases the cost of the moving agents, also
lowers the potential. φ(s) is a weak potential function if at any state there is
at least one such move (although some rational moves may increase φ). Any
game with a potential function is acyclic, in the sense that such “infinitesimal
best responses” of self interested agents are guaranteed to converge to a local
minimum of the potential function (and an equilibrium). A game with a weak
potential may have cycles, but from any state there is some path of rational
moves that leads to an equilibrium.

It is well known that NRGs have a potential function, which is defined as
(we omit the argument G when it is clear from the context): φ(s) = φ(G, s) =
∑

e∈E

∫ se
t=0

ce(t)dt. Furthermore, in a NRG every local minimum of the potential
is also a global minimum; all equilibria have the same social cost; and in every
equilibrium all agents of type i experience the same cost [1, 14, 22].

Affine routing games. In an affine NRG, all cost functions take the form of
a linear function. That is, ce(t) = aet+ be for some constants ae, be ≥ 0. In an
affine game G, the social cost can be written as SC(G, s) = ∑

e∈E ae(se)
2+bese;

and the potential as φ(G, s) =
∑

e∈E
1
2ae(se)

2 + bese. Pigou’s example is the
special case of an affine RSG with two resources, where c1(t) = 1 and c2(t) is
defined with b2 = 0. We will use variations of this example throughout the
paper, and denote by GP (a2, n) the instance where c2(t) = a2t, and there is a
mass of n agents.

Potential and social cost. The social cost of every NRG can be written as
the potential of a suitably modified game. For this, let Ĝ be a modification of G,
where we replace every ce(t) with ĉe(t) = ce(t)+tc′e(t). Then, φ(Ĝ, s) = SC(G, s)
for all s [21]. For an affine game, the modified cost function is ĉe(t) = 2aet+ be;
and φ(Ĝ, s) =

∑

e∈E ae(se)
2 + bese = SC(G, s).

The price of anarchy. Let EQ(G) be the set of equilibria in game G. The
price of anarchy (PoA) of a game is the ratio between the social cost in the
worst equilibrium in EQ(G) and the optimal social cost. Since all equilibria

have the same cost, we can write PoA(G) = SC(s∗)
SC(OPT ) , where s∗ is an arbitrary

equilibrium of G. In affine NRGs, it‘ is known that PoA(G) ≤ 4
3 , and this bound

is attained by GP (1, 1) [22].

3 Introducing uncertainty

In our strict uncertainty model, there is an underlying base game G, which
is a NRG. However given an action profile (state) s, each agent believes that
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there is some set of possible states, and selects her action based on worst-case
assumptions.

To define this set of possible states, we augment the description of every
agent type with an uncertainty parameter ri ≥ 1, and denote r = (ri)i≤m. The
special case where all ri = r is called homogeneous uncertainty. Sometimes it
is also convenient to refer to ri as the uncertainty type. We adopt distance-
based uncertainty, so that in a given state s (where the actual load on edge e is
se), a type i agent believes that the load is anywhere in the range [se/ri, se · ri].
Consequently, the agent believes that the cost she will suffer from using resource
e is between ce(se/ri) and ce(se · ri). Agents apply this reasoning separately to
each resource, thus the load state s′ is considered possible in load state s by a
type i agent, if s′e ∈ [se/ri, se · ri] for all e ∈ E.2

In other words, consider the distance metric d(s, s′) = min{x ≥ 0 : ∀e ∈
E, se ≥ s′e

1+x∧s′e ≥
se
1+x}. Then S(s, ri) = S(s, ri) = {s′ ∈ R

|E|
+ : d(s, s′) ≤ ri−1}

is the set of load states that a type i agent believes possible given s. Note that
s′ may not correspond to any actual state s′, e.g. the total load on all paths
may not sum up to total mass n, as an agent may not know exactly how many
other agents participate.

3.1 Behavior and equilibria

Worst-case cost. Under the WCC model, each agent cares about the worst
possible cost of each action. Thus for an agent of type i, the effective cost of
choosing path (action) f ∈ Ai in state s is c∗i (f, s) = max{c(f, s′) : s′ ∈ S(s, ri)}.

Every NRG G and uncertainty vector r induce a new nonatomic game G∗(r),
where the cost functions are c∗i . That is, a type i agent playing so as to min-
imize her worst-case cost in G, behaves exactly like a “rational” type i agent
(minimizing exact cost) in G∗(r). A priori, G∗(r) is not a NRG, but it has a
very similar structure. For every action f ∈ Ai, according to the WCC model,

c∗i (f, s) =
∑

e∈f

max{ce(s′e) : s′ ∈ S(s, ri)} =
∑

e∈f

ce(rise).

Since ce(rit) can be written as a player-specific cost function, c∗i,e(t), we have
that G∗(r) is a NRG with player-specific costs [15], where each player type can
adopt a different cost function; e.g., for affine games c∗i,e(t) = riaet+ be.

Worst-case regret. We get a different modified game, G∗∗(r), under the
WCR model. The regret (for a type i agent) of playing action f in state s′

is defined as REGi(f, s
′) = c(f, s′) − minf ′∈Ai

c(f ′, s′). Given this, the cost
c∗∗i (f, s) in the modified game, which is the worst-case regret a type i agent
may suffer for playing f , is defined as:

c∗∗i (f, s) = max{REGi(f, s
′) : s′ ∈ S(s, ri)}.

This cost function c∗∗i (f, s) does not have a natural decomposition to edge-
wise costs, since regret depends also on the load on unused edges. An example

2In the language of modal logic, we say that the s
′ is accessible from s if the above holds.

Our accessibility relation is symmetric, but non-transitive.
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of WCC and WCR costs in a simple 2-resource RSG appear in Figure 2 in the
Appendix.

Equilibrium. A WCC equilibrium is a state where no agent can improve her
worst-case cost w.r.t. her uncertainty level. By definition of the cost function
c∗, the WCC equilibria of G for uncertainty values r are exactly the Nash equi-
libria of G∗(r). Similarly , a WCR equilibrium is a Nash equilibrium of G∗∗(r).
Since both of G∗(r) and G∗∗(r) are special cases of nonatomic games, existence
of equilibria follows from general existence theorems [24]. However the other
properties of NRG, such as the existence of a potential function, and bounds on
the PoA, are not guaranteed.

4 Routing Games with WCC players

Equilibrium and convergence. For the special case of ri = r for all i ≤ m, it
is not hard to see that G∗(r) is a non player-specific NRG. This is since c∗e,i(s) =
ce(r ·se) is only a function of se. We denote this modified cost function by cre(t).

It follows that G∗(r) is a potential game, where φ(G∗(r), s) =
∑

e

∫ se
t=0 c

r
e(t)dt.

Thus G∗(r) is acyclic, the equilibria of G∗(r) are the minima of φ(G∗(r), s), and
all equilibria have the same social cost.

The more interesting question is what properties of NRG are maintained
when agents have different uncertainty parameters. We have already noted
that in G∗(r) there is at least one equilibrium. Player-specific RSGs are known
to have a weak potential [13], but this does not preclude cycles. Indeed, we
show that a cycle may occur even in an RSG where agents only differ in their
uncertainty level.

Proposition 1. There is an RSG G with 3 resources, and a vector r s.t. G∗(r)
contains a cycle.

Our construction is an adaptation of an example from Milchtaich [13] of an
atomic congestion games with cycles (see Appendix).

4.1 Equilibrium quality for affine games

Recall that under the WCC model, agents play as if they take part of the game
G∗(r), while their actual, realized costs are those in underlying game G. We
thus define the Price of Anarchy for WCC players with uncertainty vector r as:

C-PoA(G, r) = max
s∈EQ(G∗(r))

SC(G, s)
SC(G, OPT (G)) .

We focus our analysis on games with affine costs, and look for bounds on
C-PoA(G, r). In particular, we explore whether players with uncertainty reach
better or worse social outcomes under WCC behavior than under standard,
complete information equilibria.

6



Homogeneous uncertainty. We start with the simplifying assumption that
ri = r for all types. Recall that in this case G∗(r) is a non player specific NRG,
where the cost of each edge is modified to cre(t) = raet + be. These modified
costs can be attained in other contexts that do not involve uncertainty. For
example, this can be achieved through taxation [7]. Following the discussion in
Potential and Social Cost, an optimal taxation scheme would perturb the cost
functions so that the realized cost is ĉe(t) = ce(t)+ tc′e(t), as this will guarantee
that φ(Ĝ, s) = SC(G, s) for all s. In this way, minimizing the potential of Ĝ, as
happens in equilibrium, also minimizes the social cost in G (see Section 18.3.1
in Roughgarden [21] for a detailed explanation).

For the special case of affine games, it is easy to see that the effect of un-
certainty level r = 2 is equivalent to that of an optimal taxation scheme. That
is, φ(G∗(2), s) = SC(G, s) for all s. This means that if all agents adopt the
WCC viewpoint for an uncertainty type of r = 2, then they would play the
social optimum. Unfortunately, the value of r is not a design parameter—we
cannot decide for the agents how uncertain they should be, since this reflects
their beliefs. We would therefore like to have guarantees on equilibrium quality
for any value of r. The next lemma provides our first result in this direction.

We denote φr(s) = φ(G∗(r), s). It will be convenient to treat the cases r ≥ 2
and r ≤ 2 separately. Most proof arguments are deferred to the Appendix.

Lemma 2. Let G be an affine NRG, and suppose that r ≥ 2. Then for all s,
φr(s) ∈ [SC(G, s), r

2SC(G, s)].
Proposition 3. For r ≥ 2, and any affine NRG G, C-PoA(G, r) ≤ r

2 .

Proof. Let s∗ be a global optimum of φr, sO = OPT (G). By Lemma 2 SC(G, s∗) ≤
φr(s∗) ≤ φr(sO) ≤ r

2SC(G, sO).

We can similarly derive a bound of 2/r for the range r ∈ [1, 2), but we can
do better. We next show that as we increase the uncertainty level r from 1
towards 2, we get a smooth improvement in social cost.

Theorem 4. For r ∈ [1, 2], and for any affine NRG G, C-PoA(G, r) ≤ 2− 2
r +

(2r − 1)PoA(G) ≤ 2+2r
3r .

Let q∗(r) = maxG C-PoA(G, r); and q∗P (r) = maxGP
C-PoA(GP , r). The

results above give us an upper bound on q∗(r). By a careful analysis of the
Pigou-type instances, we can compute q∗P (r) exactly, which also provides us
with a lower bound on q∗(r) (see Props. 11 and 12 in the Appendix).

Corollary 5. For r ∈ [1, 2], q∗(r) ∈ [ 4
4r−r2 ,

2+2r
3r ]. For r > 2, we have q∗(r) ∈

[ r2

4(r−1) , r/2] = [r/4 + o(1), r/2]. Also, q∗P (r) is equal to our lower bound on

q∗(r).3

3Roughgarden [20] showed that for any class of cost functions, a worst-case example for
the PoA can be constructed on an RSG with two resources. It is not clear if this is also true
for the C-PoA, as in our case the optimum and the equilibrium are computed for two different
games. However if a similar result can be proved, then our upper bounds would collapse to
the lower bounds.
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Figure 1: The solid red lines are upper- and lower-bounds on q∗(r), i.e. the
maximum PoA, across all games, for WCC players with uncertainty parameter
r (the lower bound is also exactly q∗P (r), the maximum PoA across Pigou ex-
amples). The blue dashed line is exactly q∗∗P (r). The dotted lines mark 4/3 and
1.

Note that for r = 1 and r = 2, we have q∗(r) = q∗P (r), and both are equal
to the familiar values of 4/3 and 1, respectively. See Figure 1 for a graphical
comparison of the bounds.

Diverse population. We would like to show that if we have a population of
agents with different uncertainty levels, the social cost does not exceed that of
the upper bound we have on the worst type; i.e., that q∗(r) ≤ q∗(ri) for some
type i in the mixture. We show something very close (our bound is slightly
worse when there are types both below and above r = 2).

Let j = argmini ri, k = argmaxi ri; let αj = C-PoA(G, rj) if rj < 2 and 1
otherwise; let αk = rk

2 if rk > 2 and 1 otherwise. Some proofs are deferred to
the Appendix.

Lemma 6. Let s, s′ be any two states in affine NRG G, and consider r3 ≥ r2 ≥
r1. If φr3(s) ≥ φr3(s′) and φr2(s) ≤ φr2(s′), then φr1(s) ≤ φr1(s′) as well.

Theorem 7. Let G be an affine NRG, r be an uncertainty vector. Then
C-PoA(G, r) ≤ αj · αk.

Proof of Theorem 7 for rj ≥ 2. Let s∗ be an equilibrium of G∗(r). Let s∗i be a

state minimizing φri(s). Note that φr(s) < φr′(s) for all r < r′ and any s. By
Lemma 2, φ2(s) = SC(G, s) for any s. We next bound SC(G, s∗), dividing into
cases: rj ≥ 2; rk ≤ 2; rj < 2 < rk. We prove for rj ≥ 2.

Consider the state s∗k, which is an equilibrium of the game G∗(rk). If
φrk(s∗) = φrk(s∗k), then s∗ is also an equilibrium of G∗(rk). Since G∗(rk) is
an NRG, all equilibria have the same social cost, thus

φ2rk(s∗) = SC(G∗(rk), s
∗) = SC(G∗(rk), s

∗
k) = φ2rk(s∗k).

As 2rk > rk ≥ 2, by Lemma 6 φ2(s∗k) ≥ φ2(s∗) (in fact equal). ThusSC(s∗) = φ2(s∗) ≤ φ2(s∗k) = SC(s∗k). (1)

Thus suppose that φrk(s∗k), φ
rk(s∗) differ. By definition, φrk(s∗k) < φrk(s∗).

There must be some (non zero measure of) agents with different actions in both
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states. It cannot be that all of these agents have uncertainty rk, since the states
s∗, s∗k have a different φk potential.

Consider any such agent of type i, ri < rk, whose action under s∗ differs
from the one in s∗k. If φri(s∗k) < φri(s∗) then s∗ is not an equilibrium of G∗(r),
as some agents of type i would deviate. We conclude that there is at least one
type i s.t. ri < rk, and φri(s∗k) ≥ φri(s∗).

Since rk > ri ≥ 2, and φ2(s∗k) ≥ φ2(s∗) by Lemma 6, we get Eq. (1) again.
Thus SC(s∗) ≤ SC(s∗k).

By Lemma 2, we have that C-PoA(G, r) ≤ C-PoA(G, rk) ≤ αk (note that
αj = 1).

Finally, in a RSG a small amount of agents with high uncertainty cannot
inflict too much damage.

Theorem 8. Let G be an affine RSG. Suppose that r is composed of two types,
rk > rj. Then C-PoA(G, r) ≤ rj

2 + nk

n O(rk).

5 Worst-Case Regret

For what follows, we assume that ri = r for all i. In addition, we focus on
RSGs, as the analysis is non-trivial even for such simple games.

Equilibrium and convergence. In a RSG, the set of edges E is also the set
of actions. For every resource e in state s, we have

c∗∗({e}, s) = WCR(e, s) = ce(rse)−min
d 6=e

cd(sd/r).

As G is an RSG, s ∈ EQ(G∗∗(r)) if and only if WCR(e, s) is the same for
all occupied edges, and at least as high in unoccupied edges. Denote MR(s) =
maxe∈E:se>0 WCR(e, s).

Recall that every RSG with player-specific costs has a weak potential [13].
We show a similar result for an RSG played by WCR players. Our result
requires an additional technical property, but allows an explicit construction of
the potential. We say that a function z(t) is r-convex if z′(t/r)/r ≤ r ·z′(r ·t) for
all t, where c′ is the derivative of c. We note that r-convexity holds for convex
and other commonly used functions (see Appendix VIII).

Proposition 9. Consider an RSG G, and suppose that all cost functions are
r-convex. Then MR(s) is a weak potential function of G∗∗(r). Then if there are
WCR moves, there is a WCR move that reduces MR(s).

Equilibrium quality for Pigou instances. In the special case of the family
of Pigou instances, we have:

Proposition 10. Let q∗∗P (r) = maxGP
R-PoA(GP , r).

(1) For any r∈ [1, 2+
√
3], we have q∗∗P (r) = 16

8(r+1

r
)−(1+1

r
)2
.
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(2) For any r ≥ 2 +
√
3, we have q∗∗P (r) =

(r+ 1

r
)2

8(r+ 1

r
)−16)

.

Thus R-PoA(GP , r) for r ≥ 2+
√
3 is an increasing function in r, and asymp-

toting to r/8 + o(r) (see Figure 1). It remains an open question to derive an
upper bound for games over more complex networks.

6 Discussion

Related work. We focus on previous work on uncertainty (especially strict
uncertainty) in congestion games (CG). Strict uncertainty been considered by
Ashlagi et al. [3, 4]. They analyze “safety-level” strategies (similar to WCC) for
agents who do not know the total number of players k, but only an upper bound
on k, and focus on proving the existence of a symmetric mixed equilibrium. For
atomic RSGs, they show that (as in our case) uncertainty improves the social
welfare. Both the the analysis techniques and the reasoning required from agents
in their setting are quite complex, despite the focus on a simple class of games,
whereas in our case the game with WCC behavior reduces to a modified (player-
specific) congestion game.

The next two papers are closer to our approach, where agents react to some
noisy variation of the current state. Meir et al. [12] study the effect of Bayesian
uncertainty due to agents who may fail to play with some probability (in the
spirit of trembling-hand perfection). They focus mainly on RSGs and show that
the PoA generally improves if failure probabilities are negligible, but not if they
are bounded from 0. Angelidakis et al. [2] study a related model of RSGs with
agents who react based on a quantile of the cost distribution. We further discuss
these two papers below.

Piliouras et al. [16] also study CGs with strict uncertainty. Their motivation
is similar to ours, and they study a wide range of decision-making approaches
including WCC and WCR. However, agents in their model know the actions
of others exactly, and uncertainty over costs stems from the unknown order in
which players arrive. Our model is more direct, and closer to the traditional
view of congestion games.

Babaioff et al. [5] study the effect of introducing a small fraction v of mali-
cious agents. This is related to our WCC model, where agents behave as if the
load on each edge is increased by v = (r − 1)se additional (malicious) agents.
However, in our model this added load only affects the behavior of real agents,
and does not affect the outcome directly. Babaioff et al. [5] observe that adding
some amount of malicious agents may decrease the social cost in equilibrium;
see also followup work [6, 19].

Lastly, Halpern and Pass [8] suggested iterated regret minimization as an
explanation to human behavior in many games. We emphasize that in con-
trast to our model, such behavior requires agents to explicitly reason about the
incentives of other agents.

Distance-based uncertainty. Our epistemic model adapts the multiplica-
tive distance-based uncertainty model, introduced by Meir et al. [11] for Plu-
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rality voting. There, the state was the number of votes for each candidate,
analogous to the measure of agents on each resource in the present setting.
While the epistemic model in both papers is derived from a similar approach,
both the behavioral heuristics and the techniques for analysis are quite differ-
ent. For example in voting games payoffs are highly discontinuous, so it is not
a priori clear whether pure equilibria exist.

There may appear to be a contradiction between our notion of uncertainty
and equilibrium play: if agents converge to a particular state and play it repeat-
edly, then after a while we might expect them to be certain about this state.
However even in “standard” congestion game the state (action profile) is only
an abstraction of reality, where there is noise from various sources– from play-
ers’ actions and failures, to varying costs. Thus an equilibrium is a fixed point
in the abstract model, although in reality there remain fluctuations around the
equilibrium point. Thus even in equilibrium there may be some uncertainty
about the exact loads.

Some papers model the underlying distribution explicitly (e.g.,[12, 2]), and
assume a belief structure that is derived from this distribution. Such an ap-
proach does not necessarily provide a better description of the way human play-
ers perceive the game. In our model we avoid such an explicit description, and
instead use s (as an abstraction of the current state) and derive agents’ beliefs
directly from this state using the distance metric. These beliefs may or may
not be consistent with the “real” underlying distribution, which may be highly
complex. This simple belief structure allows us to derive PoA bounds on a much
wider class of games.

Distance-based uncertainty can also be derived from a statistical viewpoint.
Suppose that an agent believes that the actual load is distributed around the
reference load se. A simple heuristic considers a confidence interval around se,
with the size of the interval modeled through ri. Under this interpretation, ri
is higher for agent types that are either more risk-averse or less-informed.4 A
crucial point is that if agents act independently the actual congestion would
be highly concentrated around its expectation (that is, ri should approach 1 as
the size of the population grows), and for nonatomic agents there should be no
uncertainty at all. However, experimental work in behavioral decision making
suggests people perceive uncertainty over quantities as if the standard deviation
is proportional to the expectation, even when this is false [10, 28].5

Conclusions. Game-theoretic models should explain and predict the behavior
of players in games. Merely adding to such models uncertainty about the envi-
ronment is insufficient, since as Simon [25] wrote: “...the state of information

4For example, if the noise on edge e is a normal distribution with standard deviation σ and
mean 0, and an agent of type i requires confidence of 95% (roughly two standard deviations),
then this translates to a strict uncertainty interval of [se−2σ, se+2σ] (see also Appendix IX).

5The most famous example is an experiment where subjects are told the average number
of girls born daily in a hospital is s. People believe that the probability that on a given day
the number is within [(1− r′)s, (1 + r′)s] is fixed and does not depend on s. Kahneman and
Tversky [10] highlight the contrast with standard, statistical analysis, where the range r′ is
proportional to 1/

√

s.
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2

c1(s1)

c2(s2)

c∗1(s1)

c∗2(s2)

c
∗
∗(e

1 ,s)

c
∗
∗(e

2 ,s)

Figure 2: Two resources with base costs c1(t) = 5+ t, c2(t) = 2+ t. The figure
shows the true costs for s1 = 3, s2 = 5. The dotted brackets show the range of
possible costs for r = 2, where the upper bracket is the WCC cost. The dashed
lines are the WCR costs. We can see that the better resource under WCC is e1,
but e2 is better under WCR, as c∗∗(e2, s) = 12− 6.5 = 11− 4.5 = c∗∗(e1, s).

may as well be regarded as a characteristic of the decision-maker as a character-
istic of his environment.” Indeed, psychological studies suggest that people are
both risk-averse and avoid probabilistic calculations [28, 27], and raise concerns
with standard models of rationality. We believe that our model captures these
behavioral assumptions, and that it is simpler than other approaches for un-
certainty representation. In addition, we show that the model still permits the
use of standard game-theoretic tools such as equilibrium analysis. The model is
flexible, and variations of the belief structure (the distance metric) can be easily
made. Finally, we believe that our model might be able to explain discrepancies
between human behavior and Nash equilibrium in congestion games,6 but more
thorough analysis is required.

Online appendices for paper #21

6Lab experiments with routing games show that human subjects converge to states that
are close to, but do not coincide with the Nash equilibria [17].
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VII Proofs

Proposition 1. There is an RSG G with 3 resources, and a vector r s.t. G∗(r)
contains a cycle of (infinitesimal) best responses.

Proof. We first present the example constructed by Milchtaich [13]. There are
three resources, x, y, z, and three atomic agents. We denote by a = (e1, e2, e3) ∈
{x, y, z}3 the actions of the three agents at a given state. Milchtaich constructs
three cost functions for every resource such that

c∗1,z(1) < c∗1,y(1); c
∗
1,y(2) < c∗1,z(2)

c∗2,z(2) < c∗2,x(2); c
∗
2,x(1) < c∗2,z(1)

c∗3,y(1) < c∗3,x(1); c
∗
3,x(2) < c∗3,y(2),

and shows that this leads to a cycle of best-responses through the profiles
(y, x, x) → (z, x, x) → (z, z, x) → (z, z, y) → (y, z, y) → (y, x, y) and back
to (y, x, x).

Our (nonatomic) RSG G has 3 types of agents, each with a mass of one unit.
Let r1 = 1, r2 = r3 = 10. Set cost functions on the three edges E = {x, y, z} so
that

cz(1) < cx(1) < cy(1) < cy(2) < cz(2) < cy(10) < cx(10) < cz(10) < cz(20) < cx(20) < cy(20).

Since the only constraint is that each ce is monotone, this is always possible.
We observe that

c∗1,z(1) = cz(1) < cy(1) = c∗1,y(1); c
∗
1,y(2) = cy(2) < cz(2) = c∗1,z(2)

c∗2,z(2) = cz(20) < cx(20) = c∗2,x(2); c
∗
2,x(1) = cx(10) < cz(10) = c∗2,z(1)

c∗3,y(1) = cy(10) < cx(10) = c∗3,x(1); c
∗
3,x(2) = cx(20) < cy(20) = c∗3,y(2).

Denote by (e1, e2, e3) the state where all type i agents use resource ei ∈ {x, y, z}.
We get a similar cycle when we start from the state a0 = (y, x, x). First, all
type 1 agents move to z, since c∗1,z(t) < c∗1,y(1 − t) for all t ≤ 1, so we get state
a1 = (z, x, x). Then all type 2 agents move from x to y, and so on.

We need not assume that all agents of the same type move as one, that is,
we can get from a0 to a1 is a sequence of steps, as long as only type 1 agents
move.

Lemma 2. Let G be an affine NRG, and suppose that r ≥ 2. Then for all s,
φr(s) ∈ [SC(G, s), r

2SC(G, s)].

13



Proof.

φr(s) = φ(G∗(r), s) =
∑

e

∫ se

t=0

c∗e(t)dt =
∑

e

∫ se

t=0

ce(r · t)dt

=
∑

e

∫ se

t=0

(ae · r · t+ be)dt =
∑

e

[
r

2
ae · t2 + bet]

se
t=0

=
∑

e

se(
r

2
ae · se + be).

Now, if r ≥ 2, then φr(s) =
∑

e se(
r
2ae ·se+be) ≥

∑

e(seae ·se+be) = SC(G, s);
and

φr(s) =
∑

e

se(
r

2
ae · se + be) ≤

r

2

∑

e

se(ae · se + be) =
r

2
SC(G, s).

Theorem 4. For r ∈ [1, 2], and for any affine NRG G, C-PoA(G, r) ≤ 2 −
2
r + (2r − 1)PoA(G). Taking the worst upper bound over all affine games, we get
C-PoA(G, r) ≤ 2+2r

3r .

Proof. Let s′ and s′′ be equilibrium points of G and G∗(2), respectively. Recall
that s′ = argmin

s
φ(G, s), i.e., it minimizes the potential function of G over all

real vectors s, subject to some feasibility constraints.
Taking the derivative of the potential function φ(G, s) w.r.t. se, we get

ge(s) =
∂φ(G, s)

∂se
= aese + be.

Similarly, for a game G∗(r), we get that

hr
e(s) =

∂φr(G, s)
∂se

= r · aese + be,

and in particular h2
e(s) = 2aese + be.

We define s∗ = βs′′+(1−β)s′, where β = 2r−2
r (in particular s∗e = βs′′e+(1−

β)s′e for all e). Thus for r = 1, r = 2 we get s∗ = s′ and s∗ = s′′, respectively.
We claim that s∗ is an equilibrium of G∗(r). As for feasibility, since s∗ is the
convex combination of two valid states, and all feasibility constraints are linear,
s∗ is also a feasible state.

We next show that for r ∈ [1, 2], hr
e(s

∗
e) = 0 for all e. That is, that s∗ is the
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minimum of φr(s) (and thus an equilibrium of G∗(r).

hr
e(s

∗) = r · aes∗e + be

= r · ae(βs′′e + (1− β)s′e) + be

= r · ae(βs′′e + (1− β)s′e) + (be)(r − 1) + (be)(2 − r)

= βr · aes′′e + (be + de)(r − 1) + (1− β)r · aes′e + (be)(2 − r)

=
2r − 2

r
r · aes′′e + (be)(r − 1) +

2− r

r
r · aes′e + (be)(2 − r)

= 2(r − 1)aes
′′
e + (be)(r − 1) + (2− r) · aes′e + (be)(2 − r)

= (r − 1)(2aes
′′
e + be) + (2 − r)(aes

′
e + be)

= (r − 1)h2
e(s

′′
e ) + (2− r)ge(s

′
e) = 0 + 0 = 0.

We next bound the social cost at s∗:

SC(G, s∗) = SC(G, βs′′ + (1− β)s′)

≤ βSC(G, s′′) + (1− β)SC(G, s′) (convexity of SC)

= βOPT (G) + (1− β)SC(G, s′) (s′′ is optimal in G)

=
2r − 2

r
OPT (G) + 2− r

r
OPT (G)PoA(G)

=

(

2r − 2

r
+

2− r

r
PoA(G)

)

OPT (G),

thus C-PoA(G, r) ≤ 2r−2
r + 2−r

r PoA(G).
Finally, since PoA(G) ≤ 4

3 for any affine game,

C-PoA(G, r) ≤ 2r − 2

r
+

2− r

r

4

3
=

3(2r − 2) + (2− r)4

3r
=

2 + 2r

3r
,

which concludes the proof.

Proposition 11. For any Pigou instance GP (a2, n), and any r ≥ 2, we have

C-PoA(G, r) ≤ r2

4(r−1) , and this bound is tight.

Proof. We denote a = a2, and a′ = ar. We denote the optimal state by s′

(which is the equilibrium for r′ = 2). For r > 2 we always have s∗1 ≥ s′1 as the
cost of e2 has more effect on agents with higher uncertainty.

The game G∗(r) has a unique equilibrium, where either one of the resources
has no agents, or a2rs2 = c2(rs2) = c1(rs1) = 1. Also, it is easy to check
that s∗2 > 0, and that if s∗1 = 0, then s∗ = a′ and is thus optimal. Thus
s∗2 = 1

ar , s
∗
1 = n− 1

ar The social welfare in s∗ can be written as

SC(s∗) = (n− 1

ar
)1 +

1

ar
a
1

ar
= n− 1

ar
+

1

ar2
.
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Suppose first that s′1 = 0. Thus s′2 = n, and SC(s′) = n2a. Thus

C-PoA(G, r) = SC(s∗)

SC(s′)
=

n− 1
ar + 1

ar2

n2a
= r

n− 1
a′

+ 1
a′r

n2a′

= r(
1

na′
− 1

(na′)2
+

1

(na′)2r
) (denote x = 1

na′
)

= r(x − x2 + x2/r) = r(x − x2β), (for β = 1− 1
r )

The last expression is maximized for x = 1
2β , thus

C-PoA(G, r) ≤ r(
1

2β
− 1

4β
) =

r

4β
=

r

4(1− 1
r )

Next, suppose that s′1 > 0. Then s′2 = 1
2a , s

′
1 = n − 1

2a , and SC(s′) =
n− 1

2a + 1
4a . Note that this entails n > s′2 = 1

2a . In this case

C-PoA(G, r) = SC(s∗)

SC(s′)
=

n− 1
ar + 1

ar2

n− 1
2a + 1

4a

≤
1
2a − 1

ar + 1
ar2

1
2a − 1

2a + 1
4a

(by our bound on n)

= 4a(
1

2a
− 1

ar
+

1

ar2
) = 2− 4

r
+

4

r2
< 2.

Thus in the second case we only get a constant price of anarchy.
For tightness, it is sufficient to look at GP (a, n) for any a, n s.t. an = 1

r−1 .
Then the inequality we had in the first case becomes an equality.

Proposition 12. For any Pigou instance GP (a2, n), and any r ∈ [1, 2], we have
C-PoA(G, r) ≤ 4

4r−r2 , and this bound is tight.

Proof. We denote the equilibrium and the optimum by s∗, s′, respectively. For
r ≤ 2 we always have s∗1 ≤ s′1, by a symmetric argument to the one above. We
consider three cases.

Case I: If s′1 = 0 then s∗1 = 0 as well. Then s∗ = s′ and C-PoA(G, r) = 1.
Case II: Suppose that s∗1 > 0 and s′1 > 0. This is similar to the same case in

the previous proof, except we use the fact that n > s∗2 = 1
ar . Thus

C-PoA(G, r) = SC(s∗)

SC(s′)
=

n− 1
ar + 1

ar2

n− 1
4a

<
1
ar − 1

ar + 1
ar2

1
ar − 1

4a

(by our bound on n)

=
1

ar2( 1
ar − 1

4a )
=

1

r − r2

4

=
4

4r − r2
.
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Case III: Suppose that s∗1 = 0, s′1 > 0. Then SC(s∗) = n2a and SC(s′) =
n− 1

4a as above. Thus n = s∗2 ≤ 1
ar . Also

C-PoA(G, r) = n2a

n− 1
4a

= 4a
n2a

4an− 1
= 4

(an)2

4an− 1

= 4
x2

4x− 1
(for x = an)

≤ 4
1
r2

4/r − 1
=

4

4r − r2

To see why the inequality holds, note the following: Note that x = an ≥ 1
2 ,

and the function is increasing in x in this range (attains a minimum at x = 1
2 ).

Thus we can replace x by its upper bound 1
r

For tightness we can take any GP (a, n), as long as an = 1
r . Then the in-

equality in Case III becomes an equality.

Lemma 6. Let s, s′ be any two states in affine NRG G with three uncertainty
types, and consider r3 ≥ r2 ≥ r1. If φr3(s) ≥ φr3(s′) and φr2(s) ≤ φr2(s′), then
φr1(s) ≤ φr1(s′) as well.

Proof. Intuitively, we show that every from one state to another induces a cutoff
point r∗ over types, such that either all agents with ri > r∗ gain and the others
lose, or vice versa.

Given the two states s, s′, define the function z(r) = φr(s)−φr(s′). Observe
that

z(r) = φr(s)− φr(s′) =
r

2

∑

e

ae((se)
2 − (s′e)

2) +
∑

e

be(se − s′e) = rZ1 + Z2

for some constants Z1, Z2. Thus z(r) is monotone in r (either non-increasing or
non-decreasing).

By the premise of the lemma, z(r3) > 0, z(r2) ≤ 0, thus z(r) is strictly
decreasing. We conclude that z(r1) ≤ 0, which completes the proof.

Theorem 7. Let G be an affine NRG, r be an uncertainty vector. Then
C-PoA(G, r) ≤ αj · αk.

Completion of the proof. Case II: rk ≤ 2. By a symmetric proof, we get that
C-PoA(G, r) ≤ C-PoA(G, rj) = αj .

Case III: rj < 2 < rk. We repeat a similar argument to Case II, only using
rk instead of 2, to get that φrk(s∗) ≤ φrk(s∗j ). Thus by Lemma 2,

SC(s∗) ≤ φrk(s∗) ≤ φrk(s∗j ) ≤
rk
2
SC(s∗j ) ≤

rk
2
αjSC(OPT ),

which completes the proof. Also note that αj ≤ 2 so in any case s∗ is at
most as bad as rk · SC(OPT ).
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Theorem 8. Let G be an affine RSG. Suppose that r is composed of two types,
rk > rj. Then C-PoA(G, r) ≤ rj

2 + nk

n O(rk).

Proof. Let s∗ be an equilibrium of G∗(r). Note that in the load state s∗, every
edge load is composed of two parts s∗e = s∗j,e + s∗k,e. Let Ei = {e ∈ E :
s∗i,e > 0}.Denote by Nj, Nk the actual sets of all type j and type k agents. We
can sum the costs of the two agent types independently, so that SC(G, s∗) =
∑

e∈Ek
s∗k,ece(s

∗
e) +

∑

e∈Ej
s∗j,ece(s

∗
e). Let OPT be an optimal state for G.

Suppose we turn all the type k agents to type j agents, and check if there are
any moves from the state s∗. Note that there can be no moves from Ej to other
edges (since then there are type j agents in s∗ with an improvement move).
Thus the “new” type j agent can only hurt the existing ones. Formally, if we
continue until convergence to s∗j (the equilibrium of G∗(rj)) then all agents in
Nj have a cost in s∗j that is at least as high as in s∗:

∑

e∈Ej

s∗j,ece(s
∗
e) ≤

∑

e∈Ej

s∗je ce(s
∗j
e ) ≤ SC(G, s∗j) ≤ rj

2
SC(OPT ).

Similarly,
∑

e∈Ek

s∗k,ece(s
∗
e) ≤

∑

e∈Ek

s∗k,ece(s
∗k
e ).

In s∗k, all agents have the same experienced cost cf (rks
∗k) = F . Thus SC(G, s∗k) ≤

SC(G∗(rk), s
∗k) = nF .

In particular, the total experienced cost of Nk in s∗k is nkF (and this is
higher than the actual cost). We have that

nF = SC(G∗(rk), s
∗k) ≤ 4

3
SC(G∗(rk), OPT ) ≤ 4rk

3
SC(G, OPT ),

thus

∑

e∈Ek

s∗k,ece(s
∗
e) ≤

∑

e∈Ek

s∗k,ece(s
∗k
e ) ≤ nkF =

nk

n
nF ≤ nk

n

4rk
3

SC(OPT ) ⇒

SC(s∗) ≤ rj
2
SC(OPT ) +

nk

n

4rk
3

SC(OPT ) = (
rj
2

+
nk

n
O(rk))SC(OPT ).

This shows that C-PoA(GG, r) ≤ rj
2 + nk

n O(rk).

VIII Regret minimization

Lemma 13. Any convex function z(t) is r-convex for any r ≥ 1.

Proof. For any convex function, z′(t) is a non-decreasing function. Thus z′(t/r)/r ≤
z′(t/r) ≤ z′(tr) ≤ rz′(tr).

Lemma 14. Any polynomial function z(t) is r-convex for any r ≥ 1.
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Proof. We write z(t) =
∑J

j=1 ajt
bj , where bj ≥ 0 for all j. Then z′(t) =

∑J
j=1 jajt

bj−1.

z′(t/r)/r =
1

r

J
∑

j=1

jaj(t/r)
bj−1 = r−1

J
∑

j=1

jajt
bj−1r1−bj

=

J
∑

j=1

jajt
bj−1r−bj ≤

J
∑

j=1

jajt
bj−1rbj = r

J
∑

j=1

jajt
bj−1rbj−1 = z′(rt)r

Proposition 9. Consider an RSG G, and suppose that all cost functions are
r-convex. Then MR(s) is a weak potential function of G∗∗(r). That is with
WCR moves the game is weakly acyclic- there is always some WCR move that
reduces MR(s).

Proof. Let y ∈ argmine∈M WCR(e, s), i.e. a resource where the WCR is mini-
mum. Let X = {e ∈ M : WCR(e, s) = MR(s), se > 0}, i.e., the set of resources
in the support of s of which WCR is maximum.

If y ∈ X then we are done, as no agent can improve her WCR utility.
Otherwise, we have that MR(s) > WCR(y, s). We will show that there is a
rational move to a state s+ (that is, the utility of all involved agents strictly
improves in s+), that reduces MR(s+) < MR(s).

Let w be the resource with the lowest minimal cost cw(sw/r), and let w′ be
the resource with the second lowest minimal cost (ordered arbitrarily if there
is a tie). Note that for any e 6= w, WCR(e, s) = ce(rse) − cw(sw/r), and
WCR(w, s) = cw(rsw)− cw′(sw′/r).

Intuitively, moving some agents from e ∈ X to y reduces WCR(e, s), but
may increase WCR(e′, s) for some other e′ ∈ X , and thus increase MR(s).
Hence we divide into three cases: (a) w /∈ X ; (b) w ∈ X but w′ /∈ X ; and (c)
w,w′ ∈ X .

In case (a), take a mass of ǫ of all e ∈ X and move it to y /∈ X . This decreases
ce(rse) for all e 6= y (strictly decreases for all e ∈ X), and does not decrease
cw(sw/r), since sw either increases or remains unchanged. Thus WCR(e, s+) ≤
WCR(e, s) for all e ∈ M \ {y}, with a strict inequality for e ∈ X . The only
resource where WCR possibly increases is y. Since WCR(y, s) < MR(s), then
by continuity there is a sufficiently small ǫ s.t. WCR(y, s+) ≤ MR(s+) <
MR(s).

In case (b), take a mass of ǫ from every e ∈ X \ {w}, and move it to w′. As
in case (a), the WCR of all resources e ∈ X \ {w} strictly decreases. As for w,
we have

WCR(w, s+) = cw(rs
+
w)− cw′(s+w′/r) = cw(rsw)− cw′((sw′ + ǫ(|X | − 1))/r)

< cw(rsw)− cw′(sw′/r) = WCR(w, s).

So once again for a sufficiently small ǫ, MR(s+) < MR(s).
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Case (c) is the most complicated case. We denote the derivative of the cost
function ce(t) at point t by c′e(t). Since t may itself be a function of se, we define

ĉe(t(se)) =
∂ce(t(se))

∂se
. Note that for a constant α, ĉe(αse) = αc′e(αse).

Since cost functions have a bounded derivative in the relevant range, then
for some small ǫ we have

ce(α(se + ǫ)) ∼= ce(αse) + ǫĉe(αse) = ce(αse) + ǫαc′e(αse).

By convexity, c′e(se/r) ≤ c′e(rse), and since r ≥ 1, we have

ĉe(rse) = rc′e(rse) ≥
1

r
c′(se/r) = ĉe(se/r)

for all e (with strict inequality for r > 1), and in particular for w and w′.
Case (c.1): Suppose that ĉw′(sw′/r) < ĉw(rsw) and ĉw(sw/r) < ĉe(rse) for

all e ∈ X \ {w}, then we can still take ǫ of all resources in X and move it to
y /∈ X (as in case (a)). We get that in the new state s+, for some sufficiently
small ǫ:

WCR(w, s+) = cw(rs
+
w)− cw′(s+w′/r) ∼= (cw(rsw)− ǫrc′w(rsw))− (cw′(sw′/r)− ǫ

1

r
c′w′(sw′/r))

= WCR(w, s) + ǫ(ĉw′(sw′/r)− ĉw(rsw)) < WCR(w, s).

For any e ∈ X \ {w},

WCR(e, s+) = ce(rs
+
e )− cw(s

+
w/r)

∼= (ce(rse)− ǫrc′e(rse))− (cw(sw/r)− ǫ
1

r
c′w(sw/r))

= WCR(e, s) + ǫ(ĉw(sw/r)− ĉe(rse)) < WCR(e, s).

So as in case (a) we have MR(s+) < MR(s).
Case (c.2): Suppose that some of the inequalities for X are violated. For

Every e ∈ X s.t. ĉw(sw/r) ≥ ĉe(rse) define δe strictly between ĉw(sw/r)
ĉe(rse)

and
ĉw(swr)
ĉe(se/r)

For e ∈ X where the inequality was not violated, set δe = 1.

We move a mass of ǫ from w to y, and a mass of δeǫ > ǫ from all e ∈ X \{w}
(including w′) also to y. Thus we get:

WCR(w, s+) = cw(rs
+
w)− cw′(s+w′/r) ∼= (cw(rsw)− ǫtĉw(rsw))− (cw′(sw′/r)− δw′ǫ

1

r
ĉw′(sw′/r))

= WCR(w, s) + ǫ(
1

r
δw′ ĉw′(sw′/r)− rĉw(swr))

< WCR(w, s) + ǫ(
1

r
ĉw(swr) − rĉw(swr)) < WCR(w, s),
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whereas for all e ∈ X \ {w} for which δe > 1 (possibly including w′),

WCR(e, s+) = ce(rs
+
e )− cw(s

+
w/r)

∼= (ce(rse)− δeǫrĉe(rse))− (cw(sw/r)− ǫ
1

r
ĉw(sw/r))

= WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rδe ĉe(rse))

= WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rδe ĉe(rse))

≤ WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rĉw(rsw)) < WCR(e, s).

For e ∈ X where δe = 1,

WCR(e, s+) = ce(rs
+
e )− cw(s

+
w/r)

∼= (ce(rse)− δeǫrĉe(rse))− (cw(sw/r)− ǫ
1

r
ĉw(sw/r))

= WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rĉe(rse)) < WCR(e, s).

Thus as in the previous cases, the WCR cost goes down for all X , which
means MR(s+) < MR(s).

Proposition 10. Consider any Pigou instance GP (a2, n).

1. For any r ∈ [1, 2 +
√
3], we have R-PoA(GP , r) ≤ 16

8(r+1/r)−(1+1/r)2 , and

this bound is tight.

2. For any r ≥ 2 +
√
3, we have R-PoA(GP , r) ≤ (r+1/r)2

8(r+1/r)−16) = 1
8r + o(r),

and this bound is tight.

Proof. We denote a = a2. We denote the optimal state by s′.
The game G∗(r) has a unique equilibrium, If all agents use e2, then SC(s∗) =

n2a. This occurs if and only if ran − 1 = c∗∗2 (0, n) ≤ c∗∗1 (0, n) = an/r − 1, i.e.
iff n ≤ 2

a(r+1/r) .

Otherwise, we have c∗∗2 (s∗) = c∗∗1 (s∗).

ras∗2 − 1 = 1− as∗2/r ⇐⇒
(r + 1/r)as∗2 = 2 ⇐⇒

s∗2 =
2

a(r + 1/r)
, s∗1 = n− 2

a(r + 1/r)
.

Thus the social cost in equilibrium is

SC(s∗) = (n− 2

a(r + 1/r)
) + (

2

a(r + 1/r)
)2a = n− 2

a(r + 1/r)
+

4

a(r + 1/r)2
.

For the optimal outcome we already know that s′2 = 1
2a , SC(s′) = 1 − 1

4a if
n ≥ 1

2a and s′2 = n, SC(s′) = n2a otherwise.
Note that the cutoff value of r is when 1

2a = 2
a(r+1/r) . If r is lower than

the threshold value, then s∗1 ≤ s′1, and otherwise s∗1 ≥ s′1. By solving we find
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that the threshold value is 2 +
√
3 (recall that the threshold for WCC was 2,

and that for this value we got the optimal allocation in equilibrium). Clearly,
if r = 2 +

√
3 then s∗ = s′ and thus R-PoA(GP , r) = 1.

Now, suppose that r ≥ 2+
√
3, and thus s∗1 ≥ s′1. Suppose first that s′1 = 0,

i.e. 2
a(r+1/r) ≤ n ≤ 1

2a . Denote x = 1
na , then

r+1/r
2 ≥ x ≥ 2.

R-PoA(GP , r) =
n− 2

a(r+1/r) +
4

a(r+1/r)2

n2a
=

1

an
− 2

a2n2(r + 1/r)
+

4

a2n2(r + 1/r)2

= x+ (
4

(r + 1/r)2
− 2

r + 1/r
)x2 = x+

4− 2(r + 1/r)

(r + 1/r)2
x2 = x+Ax2

for A = 4−2(r+1/r)
(r+1/r)2 (note that A is negative). The expression above is maximized

for x = − 1
2A , which gives us

R-PoA(GP , r) ≤ − 1

4A
=

(r + 1/r)2

8(r + 1/r)− 16
.

The other case is when s′1 > 0, and thus n ≥ 1
2a . Note that − 2

(r+1/r) +
4

(r+1/r)2 ≥ −1/4. Thus

R-PoA(GP , r) =
n− 2

a(r+1/r) +
4

a(r+1/r)2

n− 1
4a

≤
1
2a − 2

a(r+1/r) +
4

a(r+1/r)2

1
2a − 1

4a

(use lower bound on n)

= 4a(
1

2a
− 2

a(r + 1/r)
+

4

a(r + 1/r)2
) = 2− 8

r + 1/r)
+

16

(r + 1/r)2
.

It can be verified that this bound is never larger than our previous bound
(r+1/r)2

8(r+1/r)−16 (and it is also bounded by a constant).

Thus R-PoA(GP , r) is an increasing function in r (for r ≥ 2 +
√
3), that is

equal to r/8 + o(r). For comparison recall that under WCC costs we had an
increase at approximate rate r/4.

For tightness, it is sufficient to look at GP (a, n) for any a, n s.t. an =
(r+1/r)2

2−(r+1/r) . Then the inequality we had in the first case becomes an equality.

Next, suppose that r ≤ 2 +
√
3, and thus s∗1 ≤ s′1. The first case is when

s∗1 = 0, s′1 = 1
2a . Then n ≤ 2

a(r+1/r) , and

R-PoA(GP , r) =
n2a

n− 1
4a

=
4a2n2

4na− 1
=

4x2

4x− 1
.

The above expression is increasing in x = na in the range x ≤ 2
r+1/r . Thus

R-PoA(GP , r) ≤
4( 2

r+1/r )
2

4 2
r+1/r − 1

=
16

8(r + 1/r)− (r + 1/r)2
.
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If s∗1 > 0, then s∗2 = 2
a(r+1/r) and na ≥ 2

r+1/r . Thus

R-PoA(GP , r) =
n− 2

a(r+1/r) +
4

a(r+1/r)2

n− 1
4a

≤
2

a(r+1/r) − 2
a(r+1/r) +

4
a(r+1/r)2

2
a(r+1/r) − 1

4a

=
4

a(r + 1/r)2( 2
a(r+1/r) − 1

4a )
=

16

8(r + 1/r)− (r + 1/r)2
.

That is, we get the same bound in either case. For tightness, it is sufficient to
set a, n s.t. an = 2

r+1/r .

IX Confidence intervals of the Poisson distribu-

tion

Suppose that t is a sample from a Poisson distribution with an unknown mean
s′e (the true load). Then for a required confidence level α, it holds that s′e
is within the confidence interval [x1, x2], where x1, x2 are the solutions to the
equation (t− x)2/t = z (z is a constant that depends on α).

Thus x = t+ c/2±√
c
√

t+ c/4. We argue that there is an r s.t. x1
∼= t/r

and x2
∼= t · r.

We have
x1x2 = t2 + tc− c(t+ c/4) = t2 − c2/4 ∼= t2,

That is, approximation gets better as t becomes larger. Thus if we set r =
√

x2/x1,

(tr)2 = t2
x2

x1

∼= x1x2
x2

x1
= (x2)

2,

and
(t/r)2 = t2

x1

x2

∼= x1x2
x1

x2
= (x1)

2.

So we get that x1
∼= t/r, x2

∼= tr.
To see that this is indeed a good approximation, here are the 95% confidence

intervals for various values of t:

t r x1 t/r x2 tr
1 5.6653111 0.1765 0.1765128 5.6649 5.6653111
2 3.6464040 0.5485 0.5484855 7.293 7.2928081
3 2.9403558 1.0203 1.0202846 8.8212 8.8210675
4 2.5714977 1.5555 1.5555137 10.2859 10.285990
5 2.3411563 2.1357 2.1356967 11.7058 11.705781
6 2.1819154 2.7499 2.7498774 13.0916 13.091492

From the table we see that the “correct” value of r for a given confidence
level depends on the load t. However recall that people ignore this and consider
the standard deviation (and thus r) as a fixed fraction from t, see Footnote 5.
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