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ABSTRACT34

Objective To develop predictive models for early triage of burn patients based on hyper-susceptibility to35

repeated infections.36

Background Infection remains a major cause of mortality and morbidity after severe trauma, demanding37

new strategies to combat infections. Models for infection prediction are lacking.38

Methods Secondary analysis of 459 burn patients (≥16 years old) with ≥20% total body surface area39

burns recruited from six US burn centers. We compared blood transcriptomes with a 180-h cut-off on the40

injury-to-transcriptome interval of 47 patients (≤1 infection episode) to those of 66 hyper-susceptible41

patients (multiple [≥2] infection episodes [MIE]). We used LASSO regression to select biomarkers and42

multivariate logistic regression to built models, accuracy of which were assessed by area under receiver43

operating characteristic curve (AUROC) and cross-validation.44

Results Three predictive models were developed covariates of: (1) clinical characteristics; (2) expression45

profiles of 14 genomic probes; (3) combining (1) and (2). The genomic and clinical models were highly46

predictive of MIE status (AUROCGenomic = 0.946 [95% CI, 0.906–0.986]); AUROCClinical = 0.864 [CI,47

0.794–0.933]; AUROCGenomic/AUROCClinical P = 0.044). Combined model has an increased48

AUROCCombined of 0.967 (CI, 0.940–0.993) compared to the individual models49

(AUROCCombined/AUROCClinicalP = 0.0069). Hyper-susceptible patients show early alterations in immune-50

related signaling pathways, epigenetic modulation and chromatin remodeling.51

Conclusions Early triage of burn patients more susceptible to infections can be made using clinical52

characteristics and/or genomic signatures. Genomic signature suggests new insights into the53

pathophysiology of hyper-susceptibility to infection may lead to novel potential therapeutic or54

prophylactic targets.55



Mini-Abstract56

Early genomic signature and clinical characteristics of 113 burn patients were used57

paradigmatically to build three novel predictive models of multiple, repeated infections in burn58

trauma, which could facilitate early triage of traumatically injured burn patients to prevent or59

treat sepsis. Genomic signature suggests new mechanistic aspects of hyper-susceptibility to60

infections.61



INTRODUCTION62

Although several studies have found association between specific risk factors or clinical characteristics63

with mortality after trauma,1-4 studies attempting to apply those clinical characteristics or genomic64

biomarkers to appreciate susceptibility to infection and build predictive models are currently lacking.65

Improvements in early care and trauma centers have reduced early mortality considerably.3,5 However,66

severe trauma, such as burn trauma, cause immunosuppression which predispose patients to infections.67

Despite all medical improvements, infections remain a major cause of critical injury-related morbidity68

and mortality, and recurrent sepsis predisposes patients to multiple organ failure, lengthens hospital stays,69

and increases costs.6 Therefore, improvements in prevention and treatment of infections are increasingly70

important.7,8 Moreover, the rapid emergence of multi-(MDR) or pan-drug resistant (PDR) pathogens that71

cause highly problematic acute, persistent or relapsing infections pose a dire threat to healthcare,72

especially among trauma and surgical patients.9,10 The increased use of antibiotics has further accelerated73

their emergence,11-13 and also increased the challenge of treating polymicrobial wound infections.14,15 Due74

to the paucity of novel anti-infectives in development, further improvement in patient care and treatment75

efficacy may rely heavily on optimizing existing strategies and promoting patients-tailored therapies.16-1876

Successful personalized approach requires rigorous triaging: early and accurate identification of77

patients more susceptible to infections could help tailor the anti-infective treatments,19,20 and especially to78

elaborate long-term treatment plan. Future successful clinical trials aiming to improve sepsis outcome79

may also rely on biomarkers to identify the right patients for the right treatment.21,22 Several studies have80

reported risk factors associated with increased probability of infection and sepsis in trauma patients,23-2681

but no specific predictive model has been developed. Existing plasma biomarkers such as C-reactive82

protein (CRP) and procalcitonin (PCT) are mainly used to diagnose sepsis27,28 rather than reflective of83

susceptibility or health status. The clinical characteristics measurable rapidly upon admission are the84

current gold standard for prognosis of general patient’s outcome.85



As trauma promotes susceptibility to infection and genomic signatures appear to play an86

increasingly promising role in prognosis,26,29 we analyzed the blood transcriptome and clinical87

characteristics data of 113 patients from the 573 thermally injured patients enrolled in the Inflammation88

and the Host Response to Injury study. Using clinical characteristics available upon admission and early89

genomic signatures, we developed novel predictive models that would permit early identification of burn90

patients at high risk of developing repeated infection indicative of an early hyper-susceptible state. The91

genomic signature suggests new mechanistic aspects for susceptibility to infection after burn trauma.92

93

METHODS94

Subject Recruitment and Sample Selection95

This study was conducted via secondary use of the clinical and genomic data of the Inflammation and the96

Host Response to Injury Study (“Glue Grant”). Briefly, 573 burn patients with minimum 20% total burn97

surface area (TBSA) were enrolled from six institutions between 2003 and 2009 in a prospective,98

longitudinal study. RNA of leucocytes isolated from whole blood samples were extracted for99

transcriptome analysis using Affymetrix GeneChip Human Genome U133 Plus 2.0 microarrays at100

University of Florida–Gainesville, as described previously.30 The complete inclusion/exclusion criteria101

are described elsewhere.31 Permission for this secondary use of the de-identified data was obtained from102

the Massachusetts General Hospital Institutional Review Board (MGH IRB protocol 2008-P-000629/1).103

Our patient inclusion process is summarized in Figure 1. From 573 potential patients in the data104

pool, we selected for patients that were at least 16 years old with early transcriptome data. We set a 180-h105

cut-off limit on the injury-to-transcriptome interval to include only samples that were obtained early106

relative to the recovery process, while still allowing enough samples to remain eligible for biomarker107

discovery. If multiple blood samples were collected from a patient, only the earliest eligible sample was108

included. We excluded patients who died within 9 days of blood collection and had fewer than two109



infection episodes during this time window (Figure 1; Figure 1A). Our method for collection of data110

related to clinical characteristics is described elsewhere.31 To enable direct comparisons, as well as111

combination of clinical and genomic prediction, we used the same set of patients for both our clinical112

characteristic and our genomic signature prediction models.113

114

Definition of Outcomes115

We defined infections according to the information collected in the Glue Grant database based on116

previously described standards.32 Infection episodes were quantified for each patient for up to 60 days117

after blood sample collection. We developed a decision tree (Figure 1B; Supplemental Digital118

Content[SDC] Table 1) for evaluating each record based on: (1) time of infection; (2) type of infection;119

and (3) the pathogen(s) isolated. Since no genotyping data of the isolated pathogen species were120

available, we were unable to classify whether a later episode was caused by the same strain isolated121

earlier. However, once a record was counted, the infection type and isolated pathogen combination (e.g.122

Pseudomonas aeruginosa + lung) was put on a “waiting list” for the next 6 days, which likely reduced the123

likelihood of an infection episode caused by the same isolate from being counted. Subsequent records that124

were part of the same infection episode were thereby omitted. The patients were separated into two125

groups based on susceptibility to infection, measured by the number of independent infection episodes126

recorded. We defined patients with ≤1 infection episodes as the less susceptible control group (N = 47),127

and patients with ≥2 (multiple) infection episodes (MIE) as the hyper-susceptible case group (N = 66).128

129

Microarray Processing and Filtering130

Raw microarray data (.CEL files) were downloaded from the Glue Grant website131

(http://www.gluegrant.org/trdb/) and filtered using the steps outlined in Figure 1, SDC Table 1 and Figure132

1B. We used the gcrma33 package on the R/Bioconductor platform34 to normalize 124 blood samples from133



124 eligible patients collected within 180 h post-injury. Samples identified as outliers by134

arrayQualityMetrics35 were excluded from subsequent analysis. One patient was removed due to135

incompleteness of clinical data. Two patients’ datasets were discarded due to mortality within 9 days after136

sample collection. After these filtration steps, 113 blood samples were deemed suitable high-quality137

microarray data sets for subsequent functional analyses, biomarker discovery, and modeling.138

We used the EMA package36 in R software to filter outlying or information-poor probe sets. We139

eliminated probe sets with a maximum log2 expression value below 3.5, reducing the number of probe140

sets from 54,675 to 26,107. Using limma package,37 we selected 1142 probe sets with an at least 1.5-fold141

difference between less susceptible patients and hyper-susceptible patients and with an average142

expression level of at least 3 for functional analyses and biomarker panel selection process.143

144

Statistical Analysis145

Clinical data set. Continuous variables are reported as means (standard deviations), or as medians146

with inter-quartile ranges (IQRs) as indicated. Categorical variables are reported as frequencies and147

percentages. Demographic variables between less susceptible and hyper-susceptible patients were tested148

for statistical difference with a Wilcoxon rank sums test, a Chi-square test, or a Fisher’s exact test as149

appropriate. Statistical significance was accepted at P < 0.05 (two-tailed when appropriate).150

Body mass index (BMI) was calculated as weight/height2 (kg/m2). For patients ≥20 years old,151

BMI categories of underweight, healthy, overweight and obese were define according to BMI numbers:152

<18.5, 18.5–24.9, 25–29.9, and ≥30, respectively; whereas for patients <20 years old, the same BMI153

categories were defined using percentile ranking based on Centers for Disease Control and Prevention154

BMI-for-age growth charts: <5th percentile, 5th to <85th percentile, 85th to <95th percentile, and ≥95th155

percentile, respectively.156

Genomic data set. In our evaluation of significant expression differences between less susceptible157



and hyper-susceptible patients, Benjamini-Hochberg multiple-comparison adjustments were applied to158

control for false discovery rate.159

Development of the clinical predictive models. We implemented stepwise logistic regression160

with an entry level of 0.3 and a stay level of 0.25 to identify significant predictor variables among clinical161

covariates relevant to the outcome variable of MIE: TBSA, age, BMI, and the presence of inhalation162

injury. We determined predictive power by calculating area under receiver operating characteristic curve163

(AUROC), reported with 95% confidence intervals (CIs).164

Development of the genomic predictive models. We used the LASSO regularized regression165

method38 implemented in the glmnet package39 in R software to identify probe sets that collectively166

predicted the likelihood of MIE. We used 10-fold cross-validation (CV) to select the optimal value of167

LASSO penalty weighting, λ. The value of λ that gave the minimum average binomial deviance plus 1168

standard error on the test set, λ1se, was used to select probe sets (Figure 3A). λ1se is a stronger penalty169

parameter to guard against over-fitting than λmin, which minimizes the average binomial deviance of CV170

(Figure 3B). This 10-fold CV process was repeated 100 times to generate 100 λ1se values. The median λ1se,171

0.0940, yielded selection of a 14-probe-set biomarker panel (Figure 3C; Table 2). Logistic regression was172

performed to model the MIE outcome with the log2 expression values of the 14 probe sets as explanatory173

variables. Furthermore, we conducted multivariate logistic regression with the clinical covariates TBSA,174

age, and inhalation injury together with the 14 probe sets for the outcome variable of MIE. Leave-one-out175

cross-validation was used to assess the degree of over-fitting and model performance.176

177

Functional Analysis178

Functional and pathway analyses were conducted using Ingenuity IPA (Ingenuity® Systems,179

www.ingenuity.com) and DAVID.40180

181



Software Platform and Package Versions182

R (version 2.15.*); EMA package for R (version 1.3.2); pROC package for R (version 1.5.4); limma183

package for R (version 3.14.4); glmnet package for R (version 1.9-3); arrayQualityMetrics package for R184

(version 3.14.0); gcrma package for R (version 2.30.0); JMP Pro 10 and SAS 9.3 (SAS Institute Inc.,185

North Carolina, USA).186
187

RESULTS188

Clinical Characteristics189

From a pool of 573 patients, 124 met our inclusion criteria, of which 11 were unsuitable for modeling,190

leaving a cohort of 113 patients (Figure 1), including 47 patients less susceptible to infection (control191

group with ≤1 infection episodes) and 66 hyper-susceptible patients (case group with multiple [≥2]192

infection episodes [MIE]). The demographics, injury characteristics, and outcomes of these 113 patients193

are summarized in Table 1.194

From 612 microbiological records for the 113 patients in the final cohort, we identified 325195

independent infection episodes, 107 (32.9%) of which are polymicrobial at the species level. Twenty-four196

patients had no infection episodes, 23 had one episode, and 66 had MIE. The less susceptible and hyper-197

susceptible patients show significantly different clinical characteristics (Table 1). Relative to the control198

group, hyper-susceptible patients were slightly older (mean, 38.2, SD 16.4 vs 37.0, SD 14.6), had higher199

TBSA (46%, IQR 35–71 vs 32%, IQR 23–41, P < 0.0001), had more inhalation injuries (41/66 [62.1%]200

vs 8/47 [17.0%], P < 0.0001) and were more severely ill (according to their APACHE II score 24, IQR201

18–29 vs 13, IQR 9–20, P < 0.0001). They also had longer hospital stays (median, 60, IQR 33–71 vs 20,202

IQR 15–30, P < 0.0001), more days on mechanical ventilation (median, 28, IQR13–40 vs 2, IQR 0–5, P <203

0.0001), and had a higher mortality (18/66 [27.3%] vs 3/47 [6.4%], P = 0.0029) (Table 1). The median204

post-injury interval for the second episode in the case group was 15 days (IQR, 10–20; range, 3–43), a205



time window that provides opportunity for prophylactic intervention.206

Inhalation injury significantly increased the risk of developing MIE and may be related to207

pneumonia risk in particular: 78.8% of hyper-susceptible patients had pneumonia vs 10.6% of controls;208

among cases, 84.7% had both MIE and inhalation injuries, 67.4% had both pneumonia and inhalation209

injuries. Interestingly, 4/5 of underweight patients had MIE (Table 1), supporting the notion that being210

overweight and mild obesity may be protective against post-injury infection whereas being underweight211

increases risk.32,41212

Burn wound infection and nosocomial pneumonia were the most frequent types of infection213

observed (Table 1; Figure 2A). Pseudomonas aeruginosa and Staphylococci (both Staphylococcus aureus214

and coagulase negative Staphylococci) were the most commonly isolated micro-organisms (Table 1;215

Figure 2B). P. aeruginosa and Acinetobacter infections were more common among patients with MIE216

than controls, suggesting that hyper-susceptible patients were even more susceptible to nosocomial Gram-217

negative pathogens.218

219

MIE Prediction from Clinical Characteristics220

We used stepwise logistic regression to select covariates for modeling from TBSA, age, BMI, and the221

presence of inhalation injury. The final multivariate logistic regression model included three covariates:222

TBSA, age, and inhalation injury, which were significant independent predictors of MIE. The AUROC,223

CV AUROC, sensitivity, and specificity values for the clinical characteristics model are 0.845 (95% CI,224

0.773–0.916), 0.838 (95% CI, 0.762–0.914), 0.803 (95% CI, 0.683–0.887), and 0.745 (95% CI, 0.594–225

0.856), respectively (Figure 3). The model’s positive and negative predictive values were 0.815 (95% CI,226

0.696–0.843) and 0.729 (95% CI, 0.579–0.843), respectively. Inhalation injury significantly increased227

MIE incidence (odds ratio [OR], 6.942; 95% CI, 2.482–19.417). Patients who had inhalation injuries were228

twice as likely to get pneumonia compared to those without them (risk ratio [RR], 2.05; 95% CI, 1.37–229



3.07). Among those who had inhalation injuries, 67.4% had pneumonia, and 83.67% had MIE. TBSA230

(OR, 1.078; 95% CI, 1.040–1.118) and age (OR, 1.040; 95% CI, 1.006–1.075) were also associated with231

increased infection susceptibility.232

233

MIE Prediction from Genomic Biomarkers in Blood234

Ten-fold CV using LASSO regularized regression38 of the 1142 probe sets that presented a minimum of235

1.5-fold change between the two patient groups yielded a minimal set of 14 predictors (probe sets) that236

together optimized the fit of the model (Figure 4A and 4B). Of these 14 probe sets—which mapped to 12237

genes—4 were upregulated and 10 were down-regulated (Table 2, all P < 0.01; see Figure 4C for heat238

map and clustering of patients and biomarkers; see Figure 2 for expression profiles of each probe set).239

The biological processes associated with each probe set are presented in Table 3 together with the240

coefficients of the biomarker panel logistic regression model (model intercept = 0.7449; SDC Table 6).241

The AUROC, CV AUROC, sensitivity, and specificity values for the resulting genomic signature model242

are 0.946 (95% CI, 0.906–0.986), 0.872 (95% CI, 0.804 - 0.940), 0.924 (95% CI, 0.825–0.972), and 0.830243

(95% CI, 0.687–0.919), respectively (Figure 3), confirming the model to be highly sensitive and specific.244

The positive and negative predictive values of the model were 0.884 (95% CI, 0.779–0.945) and 0.886245

(95% CI, 0.746–0.957), respectively. We compared each patient’s probability of developing MIE246

estimated from our clinical or genomic biomarker logistic regression models with each of the observed247

outcomes, using cut-off points of 30% to 70% as being uncertain. We found that the clinical model248

correctly predicted outcomes of 73 (65%) patients with certainty. Comparatively, the genomic biomarker249

model correctly predicted 90 (80%) patients with certainty, showing a 15% improvement over the clinical250

model. Both models misclassified 9 patients (8%). Collectively, these data suggest that genomic251

biomarkers may complement triage by clinical characteristics and enhance early prediction of a patient’s252

likelihood to develop MIE.253



254

MIE Prediction from a Combined Model255

A multivariate logistic model that included the aforementioned clinical covariates (TBSA, age, presence256

of inhalation injury) and genomic biomarkers resulted in an AUROC (0.967; 95% CI, 0.940–0.993) that257

was significantly greater than that for the clinical model (P = 0.0069), but not significantly different from258

that of the genomic biomarker panel model (Figure 3). The positive and negative predictive values of the259

combined model were 0.881 (95% CI, 0.773–0.943) and 0.848 (95% CI, 0.705–0.932), respectively. The260

estimates of the above models are listed in SDC Table 6.261

262

Functional and Canonical Pathway Changes in Patients with MIE Revealed by263

Transcriptome Data Analysis264

The 1142 probe sets showing a minimum of 1.5-fold change in hyper-susceptible patients versus less265

susceptible patients were mapped to 844 annotated genes. We identified functionally related genes among266

these 884 genes using Gene Ontology (GO). Subsequent analysis of the changes in canonical pathways267

and functions linked to these 844 genes indicated that hyper-susceptible patients’ transcriptomes268

demonstrated the following early functional changes relative to control transcriptomes: (1) early269

activation of immune cells, increased chemotaxis and trafficking; (2) decreased expansion of leukocytes,270

thymocytes, and number of phagocytes, and increased cell death and apoptosis; and (3) suppression of271

immune cell activation and lymphoid organ development (Table 2). The 1142 probe sets showed272

enrichment in four main gene ontology biological process categories: (1) immune response; (2) epigenetic273

modulation of gene expression; (3) transcription; and (4) metabolism (SDC Tables 2). Functional274

enrichment clustering is also in agreement with the enrichment of the 4 functional groups (SDC Table 3).275

The top 30 affected pathways were mainly involved in immune cell signaling and cytokine signaling276

(Figure 5). Canonical pathway analysis using IPA software (Figure 5) largely agrees with KEGG pathway277



enrichment analysis using DAVID (SDC Table 5), providing additional confidence. Overall, many of the278

predicted functional changes (Table 2) are downstream of the affected canonical pathways (Figure 5;279

SDC Table 5).280

281

Canonical Pathways and T-cell Signaling282

Significant changes in IL-8 signaling (17 upregulated and 12 down-regulated genes [17 up/12 down]),283

Gαq signaling (16 up/9 down), Rho family GTPase signaling (20 up/10 down) and integrin signaling (21284

up/9 down) suggest that the adhesion and migration of leukocytes are affected (Table 2; SDC Table 3;285

and Figure 5). The changes in chemotaxis may be partially caused by the presence of bacteria at wound286

site, as fMLP signaling pathway (12 up/8 down) suggests. Genes involved in phospholipase C signaling, a287

regulator of chemotactic response are differentially expressed (20 up/16 down). The increased cell288

movement, adhesion, and chemotaxis are related to phagocytosis process (e.g. FcγR-mediated289

phagocytosis, SDC Table 6), clearance of the pathogen from the site of infection, and induced by host290

damage associated molecular patterns (DAMP).291

We found strong evidence that T-cells were also differentially regulated in case patients. Several292

pathways, including T-cell receptors (TCR) (7 up/16 down), JAK-STAT signaling (9 up/7 down), PKCθ293

signaling (8 up/15 down), and IL-6 signaling pathway (13 up/6 down) are known to regulate T-cell294

differentiation, activation, and cytokine production. Changes in iCOS-iCOSL signaling (10 up/14 down),295

CD28 signaling (11 up/16 down), and IL-2 signaling (7 up/7 down), indicate that T helper cell maturation296

and proliferation were likely affected. In summary, patient transcriptome data is consistent with297

compromised cellular immune responses mediated by impaired T-cells signaling.298

299

Functional Enrichment in Histone Modification and Chromatin Remodeling300

We found evidence for dramatic epigenetic changes in leukocytes that long precede patient outcome of301



MIE. Functions related to epigenetic modulation were commonly enriched in our functional enrichment302

analyses (SDC Tables 2, 3, and 4). Notably, 42 probe sets (39 genes) have functional annotation303

associated with chromatin remodeling and histone modifications (SDC Table 4). Two genes from the304

biomarker panel involved in epigenetic modulation were found to be down-regulated in the case group305

with MIE: WHSC1L1, which encodes a histone lysine methyltransferase; and SMARCA4, which encodes306

an ATP-dependent helicase related to the SWI/SNF chromatin remodeling factor. A multitude of307

differentially expressed genes encoding histone post-translational modifiers as well as key components of308

the nucleosome remodeling complex mediating ATP-dependent nucleosome sliding, including309

SMARCC1, SMARCA4, CHD2 and CHD9, were down-regulated (SDC Table 4). Other notable histone310

methyltransferases/demethylases differentially expressed include KDM4, KDM5C, KDM6, PRDM5,311

SETD2, SETDB2, and SUZ12. Genes coding for histone deacetylases/acetyltransferases and associated312

factors including HDAC9, KAT6A and EP400 were down-regulated and histone acetylation recognizing313

bromodomain containing protein, BRD2, was upregulated in the case group. Furthermore, critical non-314

histone heterochromatin proteins HP1-α and –γ were down-regulated, as well as core histone cluster.315

Taken together, our data may suggest a global loss of heterochromatin and genome instability, as well as316

probable gene-specific transcriptional deregulation in hyper-susceptible patients compared to controls.317

318

DISCUSSION319

The work presented reports novel predictive models for hyper-susceptibility to infection among320

traumatically injured patients, using genomic biomarkers and/or clinical characteristics that have not been321

used to build statistical prognostic models for the purpose of predicting infection outcomes. We provide322

evidence that our models can identify burn patients at high risk of developing repeated infections323

indicative of their hyper-susceptible state. To our knowledge, this work is the first to describe such324

models in trauma patients, and the first to describe functional transcriptome data of burn patients in325



relation to infections. The prediction accuracy of hyper-susceptibility to MIE is significantly increased326

over clinical markers when the genomic signature is used, providing strong evidence of the promising role327

of genomic biomarkers in prognosis even when used alone. By combining the biomarker panel with328

clinical characteristics, we demonstrated even better prediction accuracy, supporting the tremendous329

potential of using genomic signature to increase confidence in data used for treatment decision-making.330

331

Clinical Implications.332

We identified two distinct patient groups with different genomic signatures and clinical characteristics,333

essentially allowing the rapid identification of patients with a high risk of developing MIE following burn334

trauma. Although burn patients generally suffer from immunosuppression, clinical experience and our335

data suggest that the severity of immunosuppression and infection outcome vary. These data suggest that336

patients could potentially receive personalized therapy depending on their susceptibility to infection,337

triaged by physical exam and a blood test on admission. This information could facilitate the338

determination of appropriate treatment courses, particularly in regards to antibiotic use, allowing for339

selective use of prophylactic antibiotics and more objective justification of length of treatment courses.340

For the patient, this could limit complications related to unneeded antibiotics, reduce the burden of lines341

needed to deliver the antibiotics, and streamline hospital care. For the population, this could promote342

antibiotic stewardship, help stem the emergence of resistant organisms, and reduce the cost of care.343

344

Mechanistic Aspects.345

Genomic signatures provide insight into the molecular mechanisms of the more susceptible health status,346

and may aid in the discovery of novel therapeutic targets. Our findings point to novel potential targets for347

the prevention and/or early treatment of infections. Functional analyses of the 1142 biomarker candidates348

suggest new aspects into the pathophysiology of susceptibility to MIE after trauma. Susceptibility to MIE349



was associated with early alterations in numerous signaling pathways related to innate and adaptive350

immune responses, and changes in epigenetic modulation and metabolism.351

Some of our findings are consistent with previous literature. For instance, upregulation of THBS1352

(thrombospondin 1), to which 3/14 of the biomarker probe sets were mapped, has been associated with353

complicated recovery in blunt trauma patients,29 supporting the broad applicability of our approach and354

findings. The discovery of THBS1 also supports the potential biological relevance of our biomarkers.355

Indeed, increased expression of mouse homologue Thbs1 has been reported to be associated with356

infection,42 thrombosis, and increased lipopolysaccharide-induced mortality. Interestingly, Thbs1 -/-357

knockout mice show reduced susceptibility to peritoneal sepsis,43 whereas Thbs1 over-expressing358

transgenic mice show impaired wound healing associated with wound angiogenesis inhibition.44 THBS1359

in human wounds could be functioning to provide adhesion target for pathogens through promotion of360

thrombosis,45 and/or delayed wound healing, which could lead to increased susceptibility to infection.361

Thus, building on convergent findings in humans and mice, our data confirm that processes related to362

coagulation play important roles in sepsis, and suggest that THBS1 could be a novel target for sepsis363

prevention and treatment.364

We showed evidence for increased chemotaxis, cell adhesion, and migration of immune cells, and365

simultaneously, decreased expansion of immune cells and development of lymphatic system components.366

This seeming contradiction may well be the consequences of dysfunctional immune system and cytokine367

signaling, especially in T-cells.368

Our data suggest that epigenetic changes occur early on, rather than mainly as a consequence of369

septic shock. Epigenetic regulation of immune system is a common mechanism for gene expression370

regulation and it plays a role in long-term immunosuppression after sepsis.46 Tightly regulated chromatin371

remodeling is required for transcriptional regulation, which is vital for proper host immune and372

inflammatory responses.47 Among the genes associated with epigenetic regulations, several have373



confirmed roles in immune responses, such as KAT6A and KDM6B (SDC Table 4). 46,48-50 Furthermore,374

our data further supports the notion that genes related to cell-cycle control and DNA repair have roles in375

both immune responses and tumorigenesis. In summary, the dramatic epigenetic changes could376

potentially explain why our biomarker panel could predict MIE that occurred weeks later, and the377

underlying mechanisms that favor infections by Gram-negative opportunistic pathogens.378

Implications for Future Research.379

With the aforementioned clinical implications and mechanistic aspects, our findings lay the380

groundwork for a new pathway of investigation potentially applicable to other forms of trauma and381

possibly even useful in determining patient risk for MIE prior to elective surgical procedures. This study382

provides a much-needed new direction for future clinical trials. In particular, appropriate biomarkers and383

additional information regarding patient health status might be essential for successful clinical trials of384

anti-sepsis drugs.21,22 Identification of the hyper-susceptible patients could enable more focused study385

design when expensive/invasive interventions, such as for the testing of cutting-edge technologies or386

products are involved by directing intervention to those who need it most. Identification of this group387

early after admission could also allow adjunctive treatments such as immunotherapy, extra-corporeal388

lipopolysaccharide removal, and other novel treatments to be tested prior to the decline of the patient’s389

clinical status due to MIE.390

We envision that the development of a comprehensive diagnostic tool set will depend on the391

integration of genomic signatures of both host and pathogen. The blood biomarkers reported could be392

further developed and integrated with other diagnostic tools, such as genomic single nucleotide393

polymorphisms (SNPs) that predispose certain patients to infection,51,52 and produce a more394

comprehensive prognosis of patient susceptibility. Physician decisions rely heavily on blood tests over the395

course of recovery, and a positive culture is still the most accepted and reliable method for diagnosing396

infection. Using biomarkers, these blood samples could also allow us to monitor the changes in397



susceptibility status and adjust treatments accordingly. Modern molecular based microbiological tests,53398

such as detection of P. aeruginosa in wound biopsy using RT-PCR based assays,54 have been developed399

but not yet widely utilized. Several molecular early detection kits have become commercially available400

for diagnosing common bloodstream infections, and have been found to show some promise despite of401

much room left for improvement.55,56 Our biomarkers on the host response may work synergistically with402

these tests to support physician decisions.403

The discovery of these biomarkers and the validation of the methods pave the way for identifying404

biomarkers from other tissues involved in host defense, such as muscle, fat, and skin samples,57 of which405

often become available from surgical procedures or wound debridement. Biomarkers from other tissues406

may further enhance a combined model or perhaps provide even better prognostic value than blood407

biomarkers and clinical characteristics.408

This study is limited by the unavailability of pathogen genotyping information below species409

level. We could not distinguish whether a reoccurring infection was caused by persistent or MDR410

pathogen, and could not identify biomarkers that can potentially differentiate susceptibility to different411

pathogens, such as Gram positive/negative bacteria, and even to species level. Nonetheless, our 6-day412

window (SDC Figure 1B) was designed to minimize infection episodes caused by the same strain(s). Our413

definition of hyper-susceptibility is based on natural definition of having repeated infections. Changing414

this definition, for example, to having at least three infection episodes, did not significantly change the415

biomarkers identified (data not shown). However, the P values for differential gene expression and416

clinical characteristics became less significant, suggesting either the criterion is not the best cut off point417

to separate two different groups, or that the statistical power is reduced due to smaller number of patients418

in the hyper-susceptible group.419

Although this work and our model focused on thermally injured trauma patients, our approach is420

potentially applicable to other types of trauma and surgical patients. In this study, to ensure portability of421



our models, we carried out rigorous internal CV to ensure robustness of our regression models. However,422

due to the novelty of this clinical and transcriptome dataset, independent cohort data was unavailable for423

CV. Although our dataset is the largest of its kind to date, the sample size is still too small to build a424

larger panel without risking over-fitting the model. Our genomics data warrant future trials with a larger425

randomized cohort study, as well as mechanistic interrogations using animal models. Our findings open426

new avenues for the prevention and treatment of repeated infections in critical care, and provide novel427

components for the development of integrated prognosis and diagnosis using biomarkers, SNPs and428

pathogen detection. Future studies should investigate the potential broad applicability, and assess whether429

early triage based on predictive models can improve outcomes of trauma patients.430
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Figure Legends562

563

Figure 1. Sample selection process.564

aDevelopment of predictive models and discovery of biomarkers.565

566

Figure 2. Type of infections and isolated pathogens. A. Types of infection. One case of567

pseudomembranous colitis represents 0.2%. B. The percentage of isolated pathogens among all infection568

records.569

570

Figure 3. Clinical and genomic prediction models. ROC curves of the clinical model, genomic model,571

and combined model, and their respective AUROC, cross-validated (CV) AUROC, sensitivities, and572

specificities; 95% CIs are reported in parentheses. The blue, orange, and black lines are the ROC curves573

for the biomarker panel model, clinical model, and combined model, respectively.   574

575

Figure 4. Biomarker selection by LASSO regularized regression. A. A representative repetition of 10-576

fold CV LASSO that chose 14 probe sets at λ1se. The first vertical dotted line corresponds to the λmin that577

minimized binomial deviance during CV. The second dotted line corresponds to λ1se, used for the578

selection of 14 probe sets as shown in B. B. LASSO coefficient profile plot of the coefficient paths. At579

λ1se, as shown with the dotted line, 14 probe sets have their coefficients significantly different from zero580

and thus were chosen as part of the biomarker panel. C. Heat map showing the expression levels of the 14581

probe sets selected by LASSO as covariates for the genomic model. Each column corresponds to one of582

the 113 patient samples. Each row corresponds to one of the 14 probe sets. Whenever available, gene583

names were provided (see Table 2 for Affymetrix probe identification). The heat map color-coding is584

based on probe-set-specific, re-normalized expression values, with red signifying upregulation, blue585



signifying down-regulation, and white indicating no difference in the hyper-susceptible patients compared586

to the controls. Patients that developed MIE are labeled red and those that had <2 infection episodes are587

labeled green at the bottom of the heat map.588

589

Figure 5. Pathways significantly altered. Top 30 pathways significantly altered in case group with MIE.590

X-axis is the negative log P value calculated from Fisher's exact test right-tailed. Red/Green inside bars591

are the number of upregulated/down-regulated genes. The total number of genes in a pathway is indicated592

in the parenthesis after pathway name. P value is calculated by Fisher’s exact test by IPA software.593

594
595

List of Supplemental Digital Content596

597

SDC Figure 1. A. Timeline of the study. B. Decision tree used to define independent infection episodes598

using available clinical and microbiological records. Overriding rules of the decision tree are as included599

below the table and also described in the methods section.600

601

SDC Figure 2. Expression profile of 12 genes in the biomarker panel. A total of 14 probe sets mapped602

to 12 genes are shown as scatter plot overlaid with notched box plots. P values were calculated using603

limma package in R software using moderated t-statistics and then adjusted for multiple comparisons604

using B-H method. Each data point in the scatter plot corresponds to a sample from a patient, and color-605

coded based on the total infection episodes the patient had from 2 days to 60 days after blood collection.606

607

SDC Table 1. Infection episode decision table. Alternative presentation of the decision tree,608

complementary to SDC Figure 1B.609



610

SDC Table 2. Term centric singular enrichment in gene ontology biological process and molecular611

function of the 1142 probe sets. Abbreviations: BP, biological process; MF, molecular function.612

Adjusted P value is based on Benjamini method. Color shading indicates whether this term is associated613

with one of the four functional categories: immune responses, epigenetic modulation, transcription and614

metabolism. Light green represents “associated”. Dark green represents “highly associated”. The color-615

coding is manually curated.616

617

SDC Table 3. Term centric functional annotation clustering that shows annotation groups that are618

enriched for the 1142 probe sets. Top 50 clusters were included. The rest of the 50 clusters are619

decreasing in statistical significance and not shown. Abbreviations: BP, biological process. MF:620

molecular function. Adjusted P value is based on Benjamini method.621

622

SDC Table 4. Genes involved in epigenetic modulation and chromatin remodeling from the 1142623

probe sets. Adjusted P value is based on B-H method. Gene symbols in bold are the genes that are part of624

the biomarker panel.625

626

SDC Table 5. KEGG pathway enrichment analysis using DAVID. The results are consistent with IPA627

pathway enrichment analysis.628

629

SDC Table 6. Estimates of multivariate logistic regression models.630
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Mini-Abstract

Early genomic signature and clinical characteristics of 113 burn patients were used 

paradigmatically to build three novel predictive models of multiple, repeated infections in burn

trauma, which could facilitate early triage of traumatically injured burn patients to prevent or treat 

sepsis. Genomic signature suggests new mechanistic aspects of hyper-susceptibility to infections. 



ABSTRACT

Objective To develop predictive models for early triage of burn patients based on hyper-

susceptibility to repeated infections.

Background Infection remains a major cause of mortality and morbidity after severe trauma,

demanding new strategies to combat infections. Models for infection prediction are lacking.

Methods Secondary analysis of 459 burn patients (≥16 years old) with ≥20% total body surface

area burns recruited from six US burn centers. We compared blood transcriptomes with a 180-h

cut-off on the injury-to-transcriptome interval of 47 patients (≤1 infection episode) to those of 66

hyper-susceptible patients (multiple [≥2] infection episodes [MIE]). We used LASSO regression

to select biomarkers and multivariate logistic regression to built models, accuracy of which were

assessed by area under receiver operating characteristic curve (AUROC) and cross-validation.

Results Three predictive models were developed covariates of: (1) clinical characteristics; (2)

expression profiles of 14 genomic probes; (3) combining (1) and (2). The genomic and clinical

models were highly predictive of MIE status (AUROCGenomic = 0.946 [95% CI, 0.906–0.986]);

AUROCClinical = 0.864 [CI, 0.794–0.933]; AUROCGenomic/AUROCClinical P = 0.044). Combined

model has an increased AUROCCombined of 0.967 (CI, 0.940–0.993) compared to the individual

models (AUROCCombined/AUROCClinical P = 0.0069). Hyper-susceptible patients show early

alterations in immune-related signaling pathways, epigenetic modulation and chromatin

remodeling.

Conclusions Early triage of burn patients more susceptible to infections can be made using

clinical characteristics and/or genomic signatures. Genomic signature suggests new insights into



the pathophysiology of hyper-susceptibility to infection may lead to novel potential therapeutic or

prophylactic targets.
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Table 1. Demographics and clinical characteristics of participants.

All (n=113)

Controls (≤1
Infectious 
Episodes) 
(n=47)

Cases (≥2 
Infectious 
Episodes 
[MIE]) 
(n=66) P value

Age when injured, mean (SD), y 37.7 (15.6) 37.0 (14.6) 38.2 (16.4) 0.681

Sex, n (%) males 90 (79.6%) 40 (85.1%) 50 (75.8%) 0.218

BMI Category, n (%) 0.888

   Underweight 5 (4.4%) 1 (2.1%) 4 (6.1%)

   Healthy 44 (38.9%) 19 (40.4%) 25 (37.9%)

   Overweight 35 (31.0%) 15 (31.9%) 20 (30.3%)

   Obese 29 (25.7%) 12 (25.6%) 17 (25.8%)

Severity of Injury

   APACHE II Score, median (IQR) 20 (12-26) 13 (8-20) 24 (18-28) <0.001*

   Burns size of TBSA, % (IQR) 40 (28-56) 32 (23-40) 46 (35-70) <0.001*

   Presence of Inhalation Injury, n (%) 49 (43.4%) 8 (17.0%) 41 (62.1%) <0.001*

Outcome

   Hospital Stay, d (IQR) 35 (19-62) 20 (15-27) 60 (33-71) <0.001*

   Hospital Stay of Survived, d (IQR) 36 (19-62) 20.5 (15-27) 61 (44-72) <0.001*

   Days on Ventilation, d (IQR) 13 (2-33) 2 (0-5) 28 (13-40) <0.001*

   Day of Death Since Injury, d (IQR) 34 (18-63) 21 (18-21) 35.5 (18-65) 0.3753

   Mortality, no. (%) 21 (18.6%) 3 (6.38%) 18 (27.3%) 0.0029*
Number of Records by Type of Infection, 
n (%)

   Burn wound 332 (54.2%) 24 (60%) 308 (53.8%)

   Pneumonia 151 (24.7%) 8 (20%) 143 (25.0%)

   Bloodstream 59 (9.6%) 1 (2.5%) 58 (10.1%)

   Urinary tract 45 (7.4%) 7 (17.5%) 38 (6.6%)

   Catheter-related bloodstream 24 (3.9%) 0 (0%) 24 (4.2%)

   Pseudomembranous colitis 1 (0.2%) 0 (0%) 1 (0.2%)
Number of Records by Isolated 
Pathogens, n (%)

   P. aeruginosa 92 (15.0%) 4 (10%) 88 (15.4%)

  S. aureus 81 (13.2%) 7 (17.5%) 74 (13.0%)

   Coagulase negative Staphylococci 77 (12.6%) 6 (15.0%) 71 (12.4%)

   Enterococcus 47 (7.7%) 4 (10.0%) 43 (7.5%)

   Acinetobacter 45 (7.4%) 1 (2.5%) 44 (7.7%)

   Candida species 43 (7.0%) 0 (0%) 43 (7.5%)

   E. coli 34 (5.6%) 1 (2.5%) 33 (5.8%)

   Enterobacter species 28 (4.6%) 1 (2.5%) 27 (4.7%)

   Gram negative NOS 27 (4.4%) 0 (0%) 27 (4.7%)

   K. pneumoniae 22 (3.6%) 0 (0%) 22 (3.8%)



   Others 116 (18.9%) 16 (40%) 100 (17.5%)
*P < 0.05.
Abbreviations: BMI, body mass index; IQR, inter-quartile range; TBSA, total body surface area. 



Table 2. The 14 probe sets in the biomarker panel.

Probe set
Gene 
Symbol Gene Name

Gene Ontology Biological 
Process Annotation

Fold 
Change

Coeffi
cients P value

Upregulated

201109_s_at THBS1 thrombospondin 1

Angiogenesis, regulation of 
cytokine production, regulation of 
endothelial cell proliferation, 
regulation of antigen processing 
and presentation, regulation of 
immune system process

3.37 0.560 <0.001

201110_s_at THBS1 thrombospondin 1 Same as above 2.31 0.100 0.001

201108_s_at THBS1 thrombospondin 1 Same as above 2.02 0.824 0.001

235412_at ARHGEF7

Rho guanine 
nucleotide 
exchange factor 
(GEF) 7

Apoptotic process, signal 
transduction, epidermal growth 
factor receptor signaling pathway, 
small GTPase mediated signal 
transduction, apoptotic signaling 
pathway, lamellipodium assembly

1.86 0.747 0.017

Down-regulated

217599_s_at MDFIC
MyoD family 
inhibitor domain 
containing

Transcription, activation of JUN 
kinase activity, virus-host 
interaction, regulation of Wnt
receptor signaling pathway, 
negative regulation of protein 
import into nucleus, positive 
regulation of viral transcription

-2.34 -0.289 <0.001

200951_s_at CCND2 cyclin D2
Positive regulation of cyclin-
dependent protein kinase activity, 
cell cycle, cell division

-2.21 0.292 <0.001

228986_at OSBPL8 oxysterol binding 
protein-like 8

Lipid transport, negative 
regulation of sequestering of 
triglyceride, fat cell 
differentiation

-1.98 0.111 <0.001

224730_at DCAF7 DDB1 and CUL4 
associated factor 7

Multicellular organismal 
development, protein 
ubiquitination

-1.87 -0.908 <0.001

222907_x_at TMEM50B transmembrane 
protein 50B NA -1.80 -0.335 <0.001

208797_s_at GOLGA8A/
GOLGA8B

golgin A8 family, 
member B NA -1.78 -1.068 <0.001

217656_at SMARCA4

SWI/SNF related, 
matrix associated, 
actin dependent 
regulator of 
chromatin, 
subfamily a, 
member 4

Negative regulation of 
transcription from RNA 
polymerase II promoter, 
chromatin remodeling, negative 
regulation of cell growth, 
negative regulation of androgen 
receptor signaling pathway, etc.

-1.59 0.252 <0.001

221248_s_at WHSC1L1
Wolf-Hirschhorn 
syndrome 
candidate 1-like 1

Transcription, regulation of 
transcription, cell growth, histone 
methylation, cell differentiation, 
histone lysine methylation

-1.51 -0.676 <0.001

1556747_a_
at NA NA NA -1.66 -0.786 0.005

1562957_at NA NA NA -1.64 -0.409 <0.001



P values were adjusted for multiple comparisons based on Benjamini-Hochberg method during the fold-change 
calculation of 26,107 probes after initial filtering (see Methods). 



Table 3. Predicted early functional changes in case group that had MIE.

Functions annotation P value
Activation z-
score # of genes

Increased
Chemotaxis <0.001 3.924 55
Chemotaxis of cells <0.001 3.924 54
Homing of cells <0.001 3.815 59
Chemotaxis of leukocytes <0.001 3.795 37
Chemotaxis of phagocytes <0.001 3.546 30
Chemotaxis of myeloid cells <0.001 3.501 29
Homing of leukocytes <0.001 3.484 41
Replication of Influenza A virus <0.001 3.413 38
Replication of virus <0.001 3.314 64
Leukocyte migration <0.001 3.088 100
Inflammatory response <0.001 3.085 72
Viral infection <0.001 3.046 166
Cytostasis <0.001 2.913 30
Replication of RNA virus <0.001 2.782 56
Cell movement <0.001 2.766 173
Migration of cells <0.001 2.619 161
Tyrosine phosphorylation of protein <0.001 2.456 29
Recruitment of cells <0.001 2.451 34
Recruitment of granulocytes <0.001 2.405 26
Polarization of leukocytes <0.001 2.337 13
Recruitment of leukocytes <0.001 2.333 33
Adhesion of immune cells <0.001 2.271 40
Recruitment of myeloid cells <0.001 2.263 27
Adhesion of blood cells <0.001 2.250 41
Cell viability <0.001 2.240 112
Orientation of macrophages <0.001 2.200 6
Attachment of cells <0.001 2.166 18
Disassembly of focal adhesions <0.001 2.164 7
Formation of membrane ruffles <0.001 2.137 12
Cell survival <0.001 2.101 121
Cell movement of neutrophils <0.001 2.067 37
Invasion of breast cancer cell lines <0.001 2.064 25
Orientation of cells <0.001 2.028 19

Decreased <0.001

Development of lymphoid organ <0.001 -3.241 30
Development of lymphatic system 
component

<0.001
-2.970 41

Bacterial infection <0.001 -2.890 47
Expansion of leukocytes <0.001 -2.753 25
Expansion of lymphocytes <0.001 -2.635 21
Development of lymph node <0.001 -2.608 14
Morphology of germinal center <0.001 -2.415 11



Morphology of lymph follicle <0.001 -2.415 15
Expansion of blood cells <0.001 -2.384 26
Encephalitis <0.001 -2.374 27
Inflammation of organ <0.001 -2.362 97
Quantity of neutrophils 0.0011 -2.208 23
Development of thymocytes <0.001 -2.189 13
Quantity of granulocytes <0.001 -2.133 36
Organismal death <0.001 -2.074 196

An absolute z-score of ≥2 was designated as significant by the IPA software. The numbers of genes used to predict 
functional changes are indicated in the column with the heading “# of genes”. 
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