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Abstract

Background

Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral

blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels

in response to mold and mycotoxin exposures and to link these levels with respiratory

symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate

mold-exposed patients and unexposed controls. While circulating plasma chemokine and

cytokine levels from these two groups might be similar, we hypothesized that by challenging

their isolated white blood cells with mold or mold extracts, we would see a differential che-

mokine and cytokine release.

Methods and Findings

Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients

with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated

with the most prominent Stachybotrys chartarummycotoxin, satratoxin G, or with aqueous

mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were ex-

posed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chryso-
genum. After 18 hours, cytokines and chemokines released into the culture medium were

measured by multiplex assay. Clinical histories, physical examinations and pulmonary func-

tion tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the

chemokine and cytokine profiles from patients with a history of mold exposure were signifi-

cantly different from those of unexposed controls. In contrast, biomarker profiles from cells

exposed to media alone showed no difference between the patients and controls.
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Conclusions

These findings demonstrate that chronic mold exposures induced changes in inflammatory

and immune system responses to specific mold and mycotoxin challenges. These re-

sponses can differentiate mold-exposed patients from unexposed controls. This strategy

may be a powerful approach to document immune system responsiveness to molds and

other inflammation-inducing environmental agents.

Introduction
Indoor environments contaminated by molds cause adverse human health effects [1]. Cellu-
lose, when combined with moisture and warm temperatures, promotes mold growth. Chronic
mold exposures at home, work or school are associated with increased upper and lower respira-
tory symptoms [2]. This is commonly attributed to an allergen-dependent pathway, but there
is evidence that mold may also trigger asthma in an allergen-independent manner [3, 4]. Mold
and mold-related odors are an important cause of atopic symptoms, allergic sensitization and
asthma [5]. Mold exposures have been shown to cause a nine-fold increase in emergency room
visits for asthma symptoms among asthmatics [6]. Mold exposures may increase sensitivity to
commonly inhaled microorganisms and inert substances and increase risks of secondary infec-
tions [7].

Both mold hyphae and conidia induce immune responses in humans [8]; however, no reli-
able tests linking clinical symptoms with exposures have been reported. Most clinical studies
have used self-reported symptoms and were based on subjective complaints prone to bias and
confounders [9, 10]. Existing clinical tests also fail to establish a definitive link between chronic
mold exposures and adverse health effects. More reliable mold-related tests are needed [11].
Common immunological tests, such as IgE measurements (RAST analysis) or skin prick tests,
are poor indicators of mold exposure [12, 13].

We looked for immune system modulators that might link molds and mold-related sub-
stances with respiratory illness in humans. The mold Stachybotrys chartarum (S. chartarum)
can be found in both indoor and outdoor environments [14]. Modern building materials, such
as cellulose-based wallboard and ceiling tiles, have made S. chartarummore common in indoor
environments [15]. Severe weather such as Hurricane Katrina can cause water intrusions in
homes, offices and schools; the resulting wet substrates foster the growth of S. chartarum [16,
17]. Nevertheless, there are limited studies of humans focusing on inflammatory responses
[18] or biomarkers of exposures [19] to S. chartarum [20].

S. chartarum causes symptoms such as runny nose, cough, headache, and asthma exacerba-
tions [21]. Several studies correlated infant idiopathic pulmonary hemorrhage with S. char-
tarum exposures in homes [22–25], though a subsequent CDC report [26] noted some flaws in
the initial reports. There exists strong evidence that S. chartarum causes acute inflammatory re-
sponses, macrophage cytotoxicity [27], pulmonary hemorrhage [28], lung inflammation [29,
30] and asthma-like responses [31] in mice. S. chartarum has also been correlated with asthma
in children exposed at school [32]. Acute responses to S. chartarum are usually associated with
mycotoxins, including the trichothecene satratoxin G (SG), which interferes with RNA synthe-
sis and leads to apoptosis [33–35]. We have shown that Stachybotrys spore toxin (SST), a mix-
ture of mycotoxins, causes pulmonary hemorrhage as well as cytokine and chemokine
production in a murine model [27].
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To better understand the human health risks associated with mold exposures and to identify
strategies to document health consequences from indoor mold exposures, we studied responses
of peripheral blood mononuclear cells (PBMCs) from individuals who were exposed to molds
in their workplaces. We hypothesized that chronic exposures to molds may induce tolerance
and/or sensitization to these allergens, thereby decreasing some allergen-specific immune re-
sponses while increasing others. Mouse models show that chronic allergen exposure sometimes
creates both tolerance, marked by suppression of some inflammatory responses such as eosino-
philia, and sensitization, marked by GM-CSF expression and dendritic and CD4+ T-cell activa-
tion [36].

Cytokines and chemokines are mediators of inflammatory and immune system responses.
Many macrophage and epithelial cell lines produce cytokines and chemokines after challenges
to mold spores or hyphae [28, 37–39]. These facts provided additional rationale for this study.
Since tolerance and sensitization are induced at the cellular level [40], we hypothesized that re-
peated mold exposures might cause specific persistent alterations in the expression of cytokines
and chemokines when isolated PBMCs respond to subsequent exposures to specific molds,
their mycotoxins, or other immune challenges. The pattern of altered expression of these cyto-
kines and chemokines might then represent a signature of the mold exposure. To test this hy-
pothesis, we isolated PBMCs from mold-exposed patients and unexposed controls. We then
exposed those PBMCs to mold or mycotoxins ex vivo and compared their immunologic and in-
flammatory responses. We also subdivided the mold-exposed patients into asthmatics and
nonasthmatics to explore whether any subset of cytokines and chemokines might
distinguish them.

Materials and Methods
We investigated (1) if PBMCs respond to mold and/or mycotoxin challenges by altering cyto-
kine and chemokine production, and (2) if the magnitude of any response was affected by pre-
vious chronic exposures to mold.

Ethics Statement
Informed signed written consent for blood collection and testing was obtained from all partici-
pants using a form and procedures approved by the Institutional Review Board Services, Auro-
ra, Ontario, Canada (FDA/OHRP IORG Registration # IORG0000456). The Harvard T.H.
Chan School of Public Health Office of Human Research Administration approved the ex vivo
mycotoxin exposures and associated data collection.

Human Mold Exposures
Industrial hygiene consultants (Public Health and Safety, Irvine, CA) tested two office build-
ings with water intrusions in the Los Angeles metro area. They reported detectable levels of cul-
turable molds. The industrial hygiene testing was approved by and performed according to the
guidelines of the State of California Department of Workers’ Compensation. Air, surface and
material samples collected from 37 sites throughout the two affected buildings, including mul-
tiple portions of their ventilation systems, were tested for viable mold. The fungal colonies
were cultured and identified by microscopic and macroscopic morphology.

Patient and Control Selection
All 33 patients in this study worked in one of the affected office settings. The primary jobsites
of mold-exposed patients were spread throughout different parts of these two buildings. All of
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the mold-exposed patients had occupational exposures from 1–5 years in length to S. char-
tarum, A. niger, C. herbarum, and P. chrysogenum. None reported experiencing water intru-
sions and/or mold contamination in any other personal environments, such as their
residences. The mold-exposed patients did not complain of chronic respiratory symptoms
until working in the contaminated buildings and had subsequently sought medical evaluations.
The onset of symptoms varied from 1–3 months to over a year after starting in these job envi-
ronments. Twenty-nine mold-exposed patients had blood samples collected while they were
working in a contaminated building. Four mold-exposed patients had blood samples collected
between 6 months and 2 years after transferring to a different work environment. We collected
additional blood samples from 15 of the mold-exposed patients 18 months after the initial col-
lection to assess the stability of responses. We do not know how often or how intensely the pa-
tients were exposed to the molds, spores, glucans, and mycotoxins detailed in the industrial
hygiene reports.

The control groups were healthy adults from the Los Angeles metro area who did not work
in the same buildings. The control subjects had no known history of exposures to molds at
work or home and they lacked any related symptoms. None of the control subjects complained
of chronic respiratory symptoms nor did they possess any medical history of chronic respirato-
ry ailments. The controls for the mycotoxin experiments were on average slightly younger and
had a different ethnic composition than the mold-exposed patients. The gender distribution
was similar between the mold-exposed patients and controls.

These experiments included a total of 33 mold-exposed patients. Cells from 27 mold-ex-
posed patients and 17 unexposed control subjects were challenged with S. chartarummycotox-
ins ex vivo. Cells from five of these mold-exposed patients, together with six additional mold-
exposed patients and eleven additional unexposed controls, comprising a “mold spore group,”
were also challenged with spores from three additional molds. Demographic information, in-
cluding age, gender, ethnicity, smoking status, pulmonary function and BMI, was collected
from the mold-exposed patients.

Mold Spores and Mycotoxins
For immunologic challenges of cultured PBMCs with molds, the following mold strains were
purchased from the American Tissue Culture Collection (Manassas, VA): S. chartarum,
ATCC201212; A. niger, ATCC16888; C. herbarum, ATCC11281; and P. chrysogenum,
ATCC10106.

The S. chartarum strain used was an ATCC clone originally isolated from an affected home
during a Cleveland outbreak of infant idiopathic pulmonary hemorrhage [41]. This strain was
chosen because it is well characterized and expresses a range of mycotoxins: satratoxin G (SG),
satratoxin H, stachylysin, trichoverrol B, and roridin L-2 [41].

S. chartarum spores were grown on potato dextrose agar (PDA) plates at 15°C. After ap-
proximately 35 days of growth, spores were dried for 21 days and vacuumed using a modified
filter cassette with a 37-mm, 0.4-μm polycarbonate membrane filter (Poretics Corp., Liver-
more, CA). These methods are modified from Rao et al. [42]. Dried spores were stored in glass
at room temperature. We prepared Stachybotrys Spore Toxin (SST) from the S. chartarum
spores, as previously described [27]. SST is a mixture of mycotoxins and other water-soluble
extracts [27]. SG was obtained from Dr. James Pestka (Michigan State University, East Lansing,
MI) [43]. Both toxin preparations were suspended in D-PBS and sterile filtered at 0.1 μm
(Acrodisc syringe filters, Pall Life Sciences, Port Washington, NY). SG was diluted 1:1000 in
media to a final concentration of 14.3 ng/ml. SST concentrations were standardized among
batches based on SG content to a final SG concentration of 26.4 ng/ml in media. These toxin
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concentrations were determined in a small dose-response pilot study to cause
<1% cytotoxicity.

Spore samples of A. niger, C. herbarum, and P. chrysogenum were suspended to a total volume
of 1.4 ml in phosphate buffered saline (PBS) to final concentrations of 800 and 4,000 spores/ml
(A. niger), 2,000 and 10,000 spores/ml (C. herbarum), and 4,000 and 20,000 spores/ml (P. chryso-
genum). Spore concentrations were determined by counting spores in a counting chamber
(Hausser Scientific, Horsham, PA).

Collection of Human Blood Samples
Twenty-eight ml of blood were obtained by venipuncture from mold-exposed patients and un-
exposed controls after obtaining their consent for research. Blood was withdrawn in four 7 ml
tubes containing 0.081 ml of 15% K3 EDTA solution (BD Vacutainer, BD, Franklin Lakes, NJ).
The samples were coded and shipped to the processing lab in insulated containers at
room temperature.

Pulmonary Function Testing
All mold-exposed patients were requested to undergo methacholine challenges according to a
protocol adapted from American Thoracic Society recommendations [44]. All but four of the
33 mold-exposed patients agreed to methacholine challenges. Briefly, prior to administration
of methacholine, each patient was first challenged with NaCl. If this dropped their FEV1 by
10% from their baseline, the patient response was deemed positive. Mold-exposed patients
without a positive response to NaCl were given methacholine at increasing doses and a positive
response was defined as an FEV1 decrease of 20% or more from baseline following any dose of
methacholine up to 16 mg/ml.

Isolation and Culture of PBMCs
PBMCs were isolated by Ficoll gradient centrifugation, as previously described [45, 46]. Cells
were suspended at 106 cells/ml in RPMI 1640 medium supplemented with 1% penicillin-strep-
tomycin, 1% L-glutamine and 10% fetal bovine serum (Invitrogen, Carlsbad, CA).

Ex VivoMold and Mycotoxin Exposures of PBMCs
We isolated PBMCs, challenged them ex vivo, and measured the cytokines and chemokines
that were produced by the cells [46, 47].

We conducted two studies: a “mycotoxin study” where the challenges were either a myco-
toxin (SG), an aqueous S. chartarum extract with a mix of mycotoxins and other antigens
(SST), a non-specific toxin (ionomycin [positive control, VWR, Radnor, PA]), or media alone
(negative control), each with or without the adjuvant phorbol 12-myristate 13-acetate (PMA,
VWR, Radnor, PA); and a “mold spore study” where the challenges were with intact mold
spores, a non-specific toxin (phytohemagglutinin [PHA]), or media alone.

S. chartarummycotoxins and aqueous extracts. Isolated PBMCs were suspended in
RPMI at a concentration of 106 cells/ml and mixed with the designated treatment in a micro-
centrifuge tube, then plated in 96-well plates at a density of 200,000 PBMCs per well. Isolated
PBMCs from each patient and control were exposed to SST, SG, ionomycin (1μg/ml), or
media, in the presence or absence of PMA (1:1000). The mixture was plated in triplicate 200 μl
aliquots in 96-well plates, and then incubated at 37°C with 5% CO2. We collected cell culture
supernatants 18 hours after the exposures began by centrifuging the 96-well plates and trans-
ferring supernatants to new 96-well plates, which were then frozen at -80°C.
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A niger, C. herbarum, and P. chrysogenummold spores. PBMCs were cultured in 6-well
plates at 106 cells/ml, 3 ml/well. Mold spores were added at two concentrations each: A. niger,
800 and 4,000 spores/ml; C. herbarum, 2,000 and 10,000 spores/ml; and P. chrysogenum, 4,000
and 20,000 spores/ml. These concentrations were five and twenty-five times higher, respective-
ly, than the lowest observed effect level (LOEL): mold spore concentrations that activated ex-
tracellular expression of cytokines and chemokines by a statistically significant value (not
shown). We added 10 μg/ml phytohemagglutinin (PHA-P, Sigma-Aldrich, St. Louis, MO) to
separate plates as a positive control. PHA has high mitogenic activity and induces PBMC pro-
liferation and cytokine secretion [48, 49]. Three replicate plates were used for each condition.
Negative control samples contained media only and were used for determining the basal levels
of cytokine and chemokine expression.

Cytokine and Chemokine Assays
At two points during the study, cell culture supernatants were sent as a batch to Eve Technolo-
gies (Calgary, Alberta, Canada) for the measurement of 41 cytokines and chemokines (EGF,
eotaxin-1, FGF-2, Flt-3L, fractalkine, G-CSF, GM-CSF, GRO(pan), IFNα2, IFN-γ, IL-1α, IL-
1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-12 p40, IL-12 p70,
IL-13, IL-15, IL-17A, IP-10 (CXCL10), MCP-1, MCP-3, MDC, MIP-1α (CCL3), MIP-1β
(CCL4), PDGF-AA, PDGF-AB/BB, RANTES, sCD40L, TGF-α, TNF-α, TNF-β, and VEGF-A).
The first batch used Milliplex polystyrene beads (Millipore, Billerica, MA) on a Luminex plat-
form. The second batch used a Milliplex magnetic bead panel, also manufactured by Millipore,
on a Luminex platform. The change in platform was necessitated by a change in technology
and kit availability. Since some of the magnetic beads were more likely to aggregate in the pres-
ence of cellular debris, the cell culture supernatants were filtered before analysis. In our statisti-
cal analyses, we excluded cytokines and chemokines that were not consistent between
polystyrene and magnetic beads in reference samples (p-values< 0.01). We also excluded from
the analyses cytokines and chemokines that were not stable over time based on the subset of
the nine mold-exposed patients whose repeat blood samples were collected 18 months apart.

Cytokine and chemokine concentrations from cell-culture supernatants from PBMCs ex-
posed to A. niger, C. herbarum, and P. chrysogenum were measured by Luminex xMAP bead
array immunoassays using a Bio-Plex 200 fluorescence bead reader (BioRad Laboratories, Her-
cules, CA). Three panels of antibody-conjugated beads for measuring human inflammatory cy-
tokines (GM-CSF, IL-1β, IL-6, IL-8, TNF-α), Th1/Th2 cytokines (IFN-γ, IL-2, IL-4, IL-5, IL-
10) and chemokines (MIP-1α, MIP-1β, MCP-1, eotaxin, RANTES) (BioSource, Camarillo,
CA) were used in the assay according to the manufacturers’ instructions.

Statistical Methods
We performed both single and multiple-marker analyses to identify cytokine and chemokine
response signatures for each mold and mycotoxin exposure.

Single-marker analysis. For each mold challenge, to examine associations of cytokine and
chemokine response levels with case-control status, we performed single-marker analyses
using multiple logistic regressions. We log-transformed cytokine response levels in the model.
We adjusted for age, gender, ethnicity and smoking status in the models for mycotoxin chal-
lenges. We did not adjust for any covariates in the models for whole mold spore challenges due
to missing demographic information for some of the subjects. To correct for multiple testing,
we estimated false discovery rates (FDR) and defined statistical significance as FDR q-values
<0.05, which indicated that no more than 5% of the significant results by p-value<0.05 were
considered to be false positive findings [50, 51]. FDR is a common approach to correct for
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multiple testing in high-throughput screening data, such as microarrays, proteomics and large-
scale genotyping studies. In mold-exposed patients, we also explored associations between lung
function (methacholine responses) and biomarker (cytokine and chemokine) response levels
stratified by mold challenges, as well as associations between clinical symptoms and biomark-
ers (cytokine and chemokine response levels) by multiple logistic regression models adjusting
for age, gender, ethnicity, smoking status and BMI. All of the above analyses were done using R
statistical software.

Multiple-marker analysis to identify cytokine and chemokine signatures. Multiple-
marker analyses were conducted using the support vector machine (SVM) algorithm. Analyz-
ing multiple biomarkers together generally increases the accuracy of disease risk prediction
[52]. The SVM approach is a widely used machine learning algorithm for disease prediction
and classification with high dimension data [53]. The SVM approach has been used to identify
gene expression patterns [54] and biomarker signatures [55] of cancers[56], diabetes [57], and
major adverse cardiac events [58], as well as a recent application to classify liver cirrhosis pa-
tients from healthy controls by gut microbiota metagenomics [59]. One of the major advan-
tages of applying SVM is that it is an effective classifier without local minima issues that only
depends on parsimonious parameters. In addition to linear classification (such as the common-
ly used logistic regression model), SVM can efficiently perform non-linear statistical classifica-
tion, which is an important feature when the relationship between predictors and outcomes are
not linear.

To identify the cytokine and chemokine response signatures of mold-exposed patients, we
used the heuristic search-SVM [60–63] approach. The model building for the heuristic search-
SVM involves four major steps: (1) imputation of missing data, (2) feature (biomarker) selec-
tion, (3) classification and (4) cross-validation. The Area Under the Receiver Operating Char-
acteristic (ROC) Curve (AUC) [64] was estimated in the SVM analysis and used to quantify
the overall ability of the selected biomarkers to discriminate disease patients from controls. In
our study, the AUC was used as the classification performance index to find the best signature
(biomarker set) of cytokine and chemokine response levels to differentiate mold-exposed pa-
tients from unexposed controls. The SVM analysis was performed using the R svmpath (ver-
sion 0.953) [65] and the LibSVM (version 3.18) packages [66].

Step 1: Imputation of missing data. To minimize the influence of missing biomarkers
data in a few samples, we applied a k-Nearest Neighbor (kNN) approach [67] to estimate the
missing values for these cytokine response measurements. The selection of the k-nearest cyto-
kines was based on the comparison of cytokine response levels with those of the cytokines of
interest available in other samples [67]. In addition, case-control status and mold toxicity chal-
lenge information were included in the imputation model to avoid any attenuation of the esti-
mated effects in later analyses [68].

Step 2 and Step 3: Feature selection and classification. The feature selection and classifi-
cation steps were used to identify the optimal combination of cytokine and chemokine re-
sponses that can best distinguish cases from controls. This combination of biomarkers can be
considered a unique signature of cytokine and chemokine responses in mold-exposed cases.
The input features in the SVMmodel included cytokine responses, chemokine responses, age,
gender, ethnicity, and cigarette smoking. Body weight and pulmonary function were not avail-
able for unexposed controls and so were not included in the analyses. The feature selection was
done by heuristic search [60–63] and performed with a simulated annealing algorithm [69].
This heuristic search algorithm was embedded within the optimization procedure of classifica-
tion and cross-validation (described below), which increases prediction accuracy [61, 70]. For
classification, we used a non-linear SVM classifier with the Gaussian radial basis function
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kernel. The non-linear SVM classifier mapped all data points into a higher dimensional feature
space with non-linear transformation.

Step 4: Cross-validation. To reduce the risk of over-fitting and to estimate AUC accuracy,
we performed a 10-fold cross-validation [70] 100 times. Each 10-fold cross-validation had a
different random seed in order to randomly partition the overall sample into 10 subsets. Since
cross-validation produced a potentially different model for each subset of the data, the classifi-
cation using all observations (i.e., without cross-validation) was displayed for purposes of de-
scribing the optimal model.

Results

Patient and Control Demographics
The demographics of the mold-exposed patients and unexposed controls for our study are
shown in Table 1. The patients were 49.9 ± 8.4 years old (mean ± standard deviation) and the
controls were 40.9 ± 15.9 years old. Fifty-two percent of the patients were female and 48% were
male, while 29% of the unexposed controls were female and 71% were male. Two patients and
four controls were current smokers. Of the patients, 70.4% were Caucasian, 14.8% were His-
panic, 11.1% were Asian, and 3.7% were African-American. Of the controls, 52.9% were Cau-
casian and 47.1% were African-American.

The patients in the mold spore study ranged from 37–64 years old. Sixty-four percent of the
patients were female and 36% were male. One patient was a current smoker and another was a
former smoker. Of the patients, 27% were Caucasian, 36% were Hispanic, and 36% were Afri-
can American.

Industrial hygiene. The industrial hygiene consultants tested multiple places within the
workplaces including individual offices and commonly used spaces, such as the lobby, front
desk area and lounge. They reported measurable levels of Cladosporium, Stachybotrys, A. niger,
and P. chrysogenum in multiple places in the building. The full industrial hygiene report is
available in S1 Table.

Table 1. Characteristics of subjects who provided blood for ex vivomycotoxin exposures.

Mold-Exposed Patients (n = 27) Unexposed Controls (n = 17)

Age range, years (mean ± SD) 27–64 (50 ± 8) 18–63 (41 ± 16)

Gender

Female 14 (52%) 5 (29%)

Male 13 (48%) 12 (71%)

Ethnicity

Hispanic 4 (15%) 0 (0%)

African-American 1 (4%) 8 (47%)

Asian 3 (11%) 0 (0%)

Caucasian 19 (70%) 9 (53%)

Smokers 2 (7%) 4 (24%)

Non-smokers 25 (93%) 13 (76%)

Methacholine challenge Not done

Normal 16 (66%)

Abnormal 8 (33%)

Refused 3

We defined a positive methacholine response as a response to NaCl or any dose of methacholine up to 16 mg/ml leading to an FEV1 decrease of 20% or

more from baseline.

doi:10.1371/journal.pone.0126926.t001
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Mycotoxins Alter Expression of Cytokines and Chemokines by PBMCs
Single-marker analysis. After we challenged PBMCs from mold-exposed patients and

controls with media (negative control), SST, SG, or ionomycin, with or without PMA, we iden-
tified the differences in cytokine and chemokine responses between these groups by running a
single-marker analysis that controlled for age, gender, ethnicity, and smoking status. The ma-
jority of the cytokine and chemokine responses with q<0.05 (false discovery rate q-value cor-
recting for multiple testing, q<0.05 corresponding to p<0.021) were observed in response to
SG or SST alone. When PMA was used as an adjuvant with SST, SG or ionomycin, it blunted
the differences between mold-exposed patients and controls, and PMA alone caused marked
cytokine and chemokine responses. The following cytokines and chemokines were significantly
higher in response to both SG and SST in mold-exposed patients compared to controls:
eotaxin, INF-α, IL-1α, IL-12 p40, IL-12 p70, IP-10, PDGF-AA, TNF-β, and VEGF (q<0.05 in
Table 2). Notably, none of these cytokines or chemokines were significantly higher in cases
when PBMCs were exposed to media alone.

Multiple-marker analysis. To identify the cytokine and chemokine response signature in
PBMCs of mold-exposed patients after different mycotoxin challenges, we applied the support
vector machine (SVM) approach. We found significant response signatures in patient cells
challenged with SG, SST and ionomycin (without PMA) (Fig 1).

The area under a receiver operating characteristic (ROC) curve (AUC) ranges between 0.5
and 1.0. A truly insignificant biomarker (one no better at identifying true positives than flip-
ping a coin) has an AUC of 0.5. A perfect set of biomarkers (zero false positives and zero false
negatives) has an AUC of 1.00. The higher the AUC, the more accurately the biomarkers have
identified (classified) subjects as disease patients versus non-disease controls. These cytokine
and chemokine response signatures accurately classified mold-exposed patients from unex-
posed controls with AUC> 0.97 after controlling for age, gender, ethnicity and smoking status.
The cytokine and chemokine response signature of mold-exposed patients was different be-
tween SG-exposed PBMCs and SST-exposed PBMCs. The cytokine and chemokine response
signature of SG-exposed PBMCs separating mold-exposed patients from unexposed controls
comprised six cytokines and chemokines: IL-12 p40, RANTES, IL-1α, MCP-3, TNF-α, and
PDGF-AA. The cytokine and chemokine response signature of SST-exposed PBMCs from the
mold-exposed group comprised four cytokines and chemokines: IL-12 p40, MIP-1β, G-CSF,
and MCP-1. The full cytokine and chemokine data set is available in S2 Table.

Mold Spores Alter Expression of Cytokines and Chemokines by PBMCs
To evaluate cellular responses to whole mold spores, we challenged PBMCs from mold-ex-
posed patients and unexposed controls with mold spores ex vivo and measured the expression
of 15 cytokines and chemokines (GM-CSF, IFN-γ, IL1-β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10,
TNF-α, MIP-1β, MCP-1, eotaxin, MIP-1α and RANTES) in cell culture supernatants. Different
mold species evoked distinct cytokine and chemokine responses. Seven cytokines and chemo-
kines had significantly different expression profiles between mold-exposed patients and con-
trols in at least one mold challenge (eotaxin, IL1-β, IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β).
For ex vivo challenges with P. chrysogenum and C. herbarum, we observed a significant de-
crease in multiple cytokine and chemokine responses in mold-exposed patients compared to
controls that were not evident with media alone (Table 3). For example, a decrease in the pro-
duction of eotaxin, IL-8, MCP-1, MIP-1α, and MIP-1β was observed in patient samples chal-
lenged with P. chrysogenum (q<0.05). Lower production of IL-1β, IL-6, MCP-1, and MIP-1α
was observed in patient samples challenged with C. herbarum (q<0.05). In patient samples
challenged with A. niger, there were no significant changes in cytokines or chemokines that
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Table 2. Cytokine and chemokine concentrations in PBMC cultures exposed to Satratoxin G (SG), Stachybotrys Spore Toxin (SST), or Ionomycin
ex vivo.

Mold-Exposed
Patients

Unexposed Controls Patients/
Controls

PBMCs
Exposure

Cytokine or
Chemokine

Adjusted
mean ± SEM

Adjusted
mean ± SEM

p-value Fold change

Mold specific
challenge

SG EGF (pg/ml) 23 ± 2 13 ± 3 0.0058 1.8

Eotaxin (pg/ml) 6.2 ± 0.8 0.9 ± 0.9 5.38E-
05

6.7

INF-α (pg/ml) 28.0 ± 4.4 2.3 ± 5.2 0.00036 12.2

IL-1α (pg/ml) 3.0 ± 0.6 0.2 ± 0.7 0.0023 18.8

IL-8 (ng/ml) 5.4 ± 0.9 1.7 ± 1.1 0.014 3.2

IL-12 p40 (pg/ml) 22.8 ± 3.0 0.02 ± 3.5 5.24E-
06

1137

IL-12 p70 (pg/ml) 1.61 ± 0.23 0.40 ± 0.27 0.0013 4.0

IP-10 (pg/ml) 7.4 ± 0.7 1.6 ± 0.8 4.95E-
07

4.7

MDC (pg/ml) 27.9 ± 2.8 2.9 ± 3.3 1.71E-
07

9.6

PDGF-AA (pg/ml) 222 ± 51 34 ± 60. 0.020 6.6

TNF-β (pg/ml) 2.76 ± 0.26 0.67 ± 0.31 2.27E-
06

4.1

VEGF (pg/ml) 20.3 ± 2.1 4.2 ± 2.5 5.88E-
06

4.8

SST Eotaxin (pg/ml) 6.3 ± 0.8 1.8 ± 0.9 0.00029 3.6

IFN-α (pg/ml) 41.0 ± 4.6 4.7 ± 5.5 3.70E-
06

8.8

IL-1α (pg/ml) 2.64 ± 0.45 0.37 ± 0.53 0.0017 7.2

IL-12 p40 (pg/ml) 22.5 ± 2.8 0.08 ± 3.3 1.43E-
06

269

IL-12-p70 (pg/ml) 1.77 ± 0.20 0.44 ± 0.24 9.02E-
05

4.0

IP-10 (pg/ml) 5.39 ± 1.03 0.22 ± 1.22 0.0020 24

PDGF-AA (pg/ml) 84 ± 13 29 ±15 0.011 2.8

TNF-β (pg/ml) 2.91 ± 0.27 0.51 ± 0.32 3.11E-
07

5.6

VEGF (pg/ml) 16.1 ± 2.8 4.7 ± 3.3 0.011 3.5

Non-specific
challenge

Ionomycin IL-1rα (pg/ml) 133 ± 19 22 ± 22 0.00034 6.0

IL-6 (pg/ml) 90 ± 17 12 ± 19 0.0029 7.5

IL-8 (ng/ml) 6.9 ± 1.1 1.7 ± 1.3 0.0042 4.0

IL-10 (pg/ml) 42 ± 8 2 ± 10 0.0026 21

IL-17 (pg/ml) 9 ± 2 4 ± 3 0.0062 2.3

MCP-1 (ng/ml) 1.58 ± 0.33 0.30 ± 0.38 0.015 5.3

MIP-1α (ng/ml) 4.48 ± 0.78 0.54 ± 0.90 0.0017 8.3

MIP-1β (ng/ml) 0.90 ± 0.16 0.19 ± 0.19 0.0070 4.7

TNF-α (pg/ml) 510 ± 84 124 ± 96 0.0039 4.1

Negative Control Media IL-8 (ng/ml) 4.14 ± 0.61 1.37 ± 0.85 0.019 3.0

MIP-1α (ng/ml) 0.30 ± 0.05 0.12 ± 0.06 0.036 2.6

MIP-1β (ng/ml) 0.12 ± 0.017 0.034 ± 0.023 0.011 3.4

Cytokines and chemokines are listed alphabetically for each exposure. Only cytokines or chemokines whose concentrations were significantly different

between mold-exposed patients and controls with an FDR q<0.05 in the single marker analysis are shown. Many cytokines and chemokines that did not

reach the q<0.05 threshold are not included in the table. Complete data are in S2 Table. Log-transformed case-control correlation adjusted for age,

gender, race, and smoking status was used to calculate p-values. Fold changes were calculated from adjusted case and control means.

doi:10.1371/journal.pone.0126926.t002
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were not evident in cells incubated in media alone (q<0.05). Expression levels varied for differ-
ent cytokines and chemokines but concentrations of most cytokines and chemokines were in-
creased at higher mold doses.

To determine if differing responses to mold spores in mold-exposed patients and unexposed
controls were mold-specific or reflected a change in responsiveness of patient cells, we com-
pared responses to PHA and media alone from mold-exposed patients and controls. There
were no significant differences between mold-exposed patients and controls in cytokine or che-
mokine responses to the PHA challenge (FDR q<0.05, not shown). PBMCs from mold-ex-
posed patients and unexposed controls produced different amounts of eotaxin, MIP-1α, and
RANTES in media alone. The magnitude of these differences was more pronounced after ex
vivo challenges with C. herbarum and P. chrysogenum, but not with A. niger (Table 3). The full
cytokine and chemokine data set for the mold spore exposures is available in S3 Table.

Stratification of Cases
In addition to comparing cases to controls, we took advantage of additional data and stratified
cytokine and chemokine responses by methacholine responsiveness and associated symptoms
among the mold cases.

Fig 1. Cytokine and chemokine response signatures and cumulative AUCs frommultiple-marker analysis. The estimated cumulative AUCs from
SVM analysis are shown to demonstrate the prediction probability of separating mold-exposed patients from controls for combinations of cytokine and
chemokine measurements after challenges. The first cytokine or chemokine shown in each graph is the best cytokine or chemokine (among the tested
cytokines and chemokines) to differentiate mold-exposed patients from controls after challenge with the listed cellular exposure. Each subsequent cytokine
or chemokine adds additional separation (AUC), as depicted on the graph. Each graph shows the top 10 cytokines and chemokines and the resulting AUC
when each additional cytokine or chemokine is added to the model. Note that specific cytokines and chemokines on the x-axis generate a toxin-specific
signature. A. Satratoxin G (SG), B. SG + phorbol 12-myristate 13-acetate (PMA), C. S. chartarum spore [mixed] toxins (SST), D. SST + PMA, E. Ionomycin,
F. Ionomycin + PMA, G. media (negative control), H. media + PMA.

doi:10.1371/journal.pone.0126926.g001

Table 3. Cytokine and chemokine concentrations in PBMC cultures exposed to P. chrysogenum, C. herbarum, or media alone ex vivo.

PBMCs + Exposure Mold-Exposed Patients Unexposed Controls Controls/ Patients
Cytokine or Chemokine Mean ± SEM Mean ± SEM p-value Fold Change

P. chrysogenum (4,000 spores/ml) Eotaxin (pg/ml) 23 ± 5 84 ± 14 0.00001 3.61

IL-8 (ng/ml) 16.6 ± 4.7 63.7 ± 20.6 0.0026 3.84

MCP-1 (ng/ml) 4.8 ± 1.1 11.8 ± 2.0 0.005 2.42

MIP-1α (ng/ml) 1.4 ± 0.3 13.0 ± 5.5 0.0019 9.45

MIP-1β (ng/ml) 1.7 ± 0.4 7.8 ± 2.6 0.0017 4.57

C. herbarum (10,000 spores/ml) IL-1β (pg/ml) 349 ± 83 2585 ± 678 0.008 7.41

IL-6 (pg/ml) 486 ± 127 9596 ± 5304 0.0037 19.7

MCP-1 (ng/ml) 7.8 ± 2.2 2.6 ± 0.6 0.011 0.33

MIP-1α (ng/ml) 6.9 ± 1.5 17.6 ± 3.3 0.006 2.55

Media Eotaxin (pg/ml) 16 ± 3 55 ± 7 0.00001 3.36

MIP-1α (ng/ml) 0.11 ± 0.01 0.17 ± 0.01 0.0005 1.60

RANTES (ng/ml) 2.1 ± 0.4 5.2 ± 0.9 0.004 2.45

Cytokines and chemokines are listed alphabetically for each exposure. Only cytokines and chemokines whose concentrations were significantly different

between mold-exposed patients and controls with an FDR q<0.05, and whose fold-changes were greater than in media alone are shown. Lower doses of

P. chrysogenum and C. herbarum and all doses of A. niger did not cause significant changes (q<0.05) in cytokine and chemokine expression beyond that

of the changes in eotaxin, MIP-1α, and RANTES that are visible in media alone. Log-transformed unadjusted case-control correlation was used to

calculate p-values. Fold changes were calculated from case and control means.

doi:10.1371/journal.pone.0126926.t003
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Asthmatics had a mold-independent cytokine and chemokine response signature. We
evaluated the correlation between cytokine and chemokine responses and methacholine test re-
sults. In the regression model we used, we adjusted for BMI, age, gender, ethnicity, and smok-
ing status. This adjustment is important because BMI (p = 0.004) and age (p = 0.003) were
strongly associated with methacholine results and may directly affect sensitivity to methacho-
line in a cytokine- and chemokine-independent manner. Though SG and SST alone were the
best separators of mold-exposed patients and controls in the single-marker analysis and were
excellent separators of mold-exposed patients and controls in the multiple-marker analysis,
ionomycin was a better separator of mold-exposed patients with asthma (positive methacho-
line) from mold-exposed patients without asthma (negative methacholine). We found that
MIP-1β, IL-17, TGF-α, and IL-10 were all significantly higher in mold-exposed asthmatics
than mold-exposed nonasthmatics (p = 0.007, p = 0.0026, p = 0.0056, and p = 0.0065, respec-
tively; FDR q<0.05) in ionomycin-exposed PBMCs. These four cytokines were likewise signifi-
cantly higher in mold-exposed nonasthmatics compared to unexposed control subjects
(p = 4x10-5, p = 6x10-4, p = 8x10-8, and p = 1x10-5, respectively; FDR q<0.05). There were no
significant differences in cytokine or chemokine production between mold-exposed nonasth-
matics and asthmatics when their PBMCs were exposed to media, SG, SST, A. niger, C. her-
barum or P. chrysogenum. This asthma cytokine and chemokine signature was mold-species
independent since these differences only became apparent when their cells were exposed to
ionomycin ex vivo.

Cytokine and chemokine responses correlate with clinical symptoms in mold-exposed
patients. The mold-exposed patients reported many symptoms consistent with respiratory
allergies and asthma. Every patient reported at least one respiratory symptom. More than⅔ of
the mold-exposed patients complained of shortness of breath, coughing, sneezing, runny nose,
or nasal congestion. Approximately½ reported eye itching, burning or tearing and½ reported
wheezing. About⅓ reported headaches, throat irritation, chronic phlegm production or
sinus congestion.

Several cytokine and chemokine responses in SG- and SST-exposed PBMCs were associated
with self-reported patient symptoms. Lower levels of CD40L, PDGF-AA, and RANTES after
SG challenge were associated with a self-report of head, eye, ear, nose and throat symptoms in-
cluding itchy, burning or watery eyes; stuffy or runny nose; sneezing; and headaches
(p = 0.0003, p = 0.0009, and p = 0.004, respectively; FDR q<0.05). A higher level of human
macrophage-derived cytokine (MDC) after SST challenge was also associated with a self-report
of these symptoms (p = 0.002, FDR q<0.05). Similarly, a self-report of weight gain is highly
correlated with several cytokines and chemokines in response to SST, including INF-α, MDC,
and RANTES (p = 0.0002, p = 0.003, and p = 0.01, respectively; FDR q<0.05).

Because 100% of mold-exposed patients reported respiratory symptoms, no correlation
with any specific cytokine or chemokine levels in the patient group can be made.

Discussion
To identify abnormalities associated with indoor environmental mold exposures, we chal-
lenged PBMCs from 33 patients who were chronically exposed to molds at their jobsites. When
their PBMCs were exposed to mycotoxins, mold extracts, and/or molds ex vivo, we found sig-
nificant differences in the chemokines and cytokines produced. Expression of these proteins
differed between the mold-exposed patients and unexposed controls. All the mold-exposed pa-
tients reported respiratory symptoms. A third of the mold-exposed patients had abnormal
methacholine responsiveness indicative of asthma.
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Cytokine and Chemokine Responses to Mold and Mycotoxin Exposures
of PBMCs
From our single-marker analysis, we identified unique cytokine and chemokine response sig-
natures for a history of mold exposure and asthma status. In addition, we used an SVMmulti-
ple-marker analysis to identify several mold-specific cytokine and chemokine response
signatures in mold-exposed patients. SVM is a popular machine learning algorithm that relies
on multiple artificial intelligence algorithms to recognize the patterns/trends in experimental
data. It uses recognized patterns to classify and predict in a wide range of scientific applications
[53], such as gene expression profiling [54] and biomarker signatures [55] of patients with can-
cers [71, 72], diabetes [57], or major adverse cardiac events (MACE) [58]. It is an effective clas-
sifier without local minima issues and depends only on parsimonious parameters. In addition
to linear classification (such as the commonly used logistic regression model), SVM can effi-
ciently perform non-linear statistical classifications, an important feature where the relations
between predictors and outcomes are not linear.

The multiple-marker SVM analysis gives an AUC of 0.98 for SG and 0.97 for SST for a par-
ticular group of cytokines and chemokines. We identified somewhat different sets of cytokines
and chemokines using multiple-marker and the single-marker analyses. Two cytokines or che-
mokines with significant p-values in the single-marker analysis might be highly correlated. In
the multiple-marker analysis, adding a second highly correlated cytokine or chemokine might
not add additional separation between the groups versus one of those cytokines or chemokines
alone. In the online supplement (S1 Text), we highlight the functions and underlying pathways
of the cytokines and chemokines that were identified as potential mediators of inflammatory
responses to both SG and SST.

Although each cytokine or chemokine may influence the phenotypes observed, we point out
that cytokines and chemokines work together in an orchestrated fashion. It is unlikely that a
single cytokine or chemokine will be a perfect biomarker for separating mold-exposed patients
and controls. Instead, a pattern of cytokine and chemokine expression must be identified.
Quantifying multiple biomarkers increases the accuracy of disease correlations [52]. Most com-
mon diseases are caused by the deregulation of complex processes in multiple pathways. Aggre-
gating biomarkers reduces noise and provides more power to detect deregulation of complete
functional units, and hence it produces a clearer picture of the underlying
pathophysiological process.

Molds may induce persistent changes in inflammatory and immune responses. Epigenetic
mechanisms can mediate changes in cytokine and chemokine gene expression and sensitiza-
tion after chronic mold exposure. Regulatory regions of DNA could be methylated or histones
acetylated or deacetylated in response to mold or mycotoxin exposures [73]. This could alter
the expression of cytokines and chemokines in response to subsequent stimulation. In addition,
memory T cells might activate signaling pathways that trigger cytokine or chemokine release in
the presence of mold or mycotoxin challenges.

Mold and Asthma
We stratified mold-exposed patients by self-reported symptoms as well as by a more objective
measure of asthma, methacholine responsiveness. Cytokines and chemokines identified in the
initial case-control analysis and the subsequent stratification analysis are more likely to be im-
portant mediators of long-term sensitivity to molds. Higher BMI was also correlated with
methacholine responsiveness. This is consistent with previously reported correlations between
obesity and asthma [74].
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Among the mold-exposed patients, only ionomycin challenge differentiated asthmatics
from nonasthmatics. Ionomycin challenges of PBMCs may reveal cytokine and chemokine re-
sponse signatures that differentiate asthmatics from nonasthmatics among mold-exposed pa-
tients who have respiratory symptoms. The asthma cytokine and chemokine response
signature from ionomycin is distinct from the cytokine and chemokine response signatures
from the molds and mycotoxins we tested. Since ionomycin challenges are not specific to mold
exposures, ionomycin is a strong candidate for objectively separating asthmatics from nonasth-
matics even in a population with other respiratory symptoms. These results should be validated
in a larger clinical study.

Our data are novel in that they suggest alterations in immune and inflammatory system
pathways in response to molds. The ex vivo ionomycin challenges identified four cytokines, IL-
17, IL-10, TGF-α, and MIP-1β, that are elevated in mold-exposed asthmatics compared to
mold-exposed nonasthmatics and unexposed controls. IL-17 is a lymphokine classically associ-
ated with asthma. Th17 cells secrete both it and IL-10 to balance protective and pathologic T-
cell responses to multiple pathogens, including molds [75]. Increased levels of IL-10 limit the
inflammatory response to pathogens. IL-10 may play a role in down-regulating some proin-
flammatory cytokines in asthmatic patients with chronic mold exposure [76]. TGF-α is a mem-
ber of the epidermal growth factor family. It plays a critical role in airway remodeling and
mucus production in asthma [77]. TGF-αmay exacerbate the respiratory symptoms in asth-
matics with chronic mold exposure. MIP-1β (CCL4) is a neutrophil chemoattractant that con-
tributes to both early and late phase asthma responses [78].

The asthmatic response to ionomycin could be the result of differences in sub-populations
of PBMCs in asthmatics and nonasthmatics or might be the result of epigenetic changes during
asthma development in genes regulating cytokine responses. This result should be validated in
a larger population and further mechanistic studies would be required to clarify why the asth-
matic patients are more responsive to ionomycin.

Moldy environments may contribute to upper respiratory symptoms even in the absence of
IgE-mediated allergic sensitivity [79]. Our results support a link between respiratory illness
and human cellular immune and inflammatory responses that have been previously reported
[80, 81]. When PBMCs were challenged with mycotoxins or molds, the different patterns of cy-
tokine and chemokine expression observed in mold-exposed patients versus controls was con-
sistent with an activation of inflammatory cells and an increase in cytokine and chemokine
production both in vivo [28, 82–85] and in cell cultures [37–39, 86–88].

We observed different cytokine and chemokine response signatures after challenges with
different mycotoxins or mold species. This specificity may explain differences in cytokine and
chemokine expression patterns in other studies [89]. These different signatures support our
view that chronic exposures to mold induce altered immune system responses to subsequent
mold challenges in a mycotoxin- and mold-specific manner. Because similar cytokine and che-
mokine responses could be caused by other inflammatory or immune responsive agents such
as other allergens or bacteria [90] and we don’t have industrial hygiene reports from the build-
ings where unexposed control subjects work, a larger clinical study that better characterizes the
environment where control subjects work will be required to fully validate a cellular ex vivo test
that can be used to characterize human health effects from exposures to individual molds. In
addition, a future clinical study should include other common respiratory exposures that can
lead to cytokine and chemokine release to establish whether these cytokine and chemokine sig-
natures are unique to specific molds.

We demonstrated for the first time that chronic exposures to molds alter cytokine and che-
mokine responses of PBMCs to specific mold or mycotoxin challenges. Inhibited or enhanced
production of cytokines in mold-exposed patients may reflect elements of both sensitization

Environmental Mold Exposures Elicit Cytokine and Chemokine Responses

PLOS ONE | DOI:10.1371/journal.pone.0126926 May 26, 2015 15 / 22



and tolerance. Inhibition of production of some cytokines and chemokines in mold-exposed
patients may be analogous to the suppression of inflammatory responses observed in PBMCs
from allergen-sensitized subjects [91]. Mold toxins may suppress the immune system through
a balance of cytotoxicity and altered Th1/Th2 balance. The alteration of immune responses
due to chronic mold exposures may also adversely affect the ability of the immune system to
fight infections and other environmental challenges. This may explain patient complaints of
concurrent susceptibility to infectious organisms and enhanced responses to chemical irritants.
Some changes we observed with ex vivo exposure to S. chartarummycotoxins were consistent
with sensitization. Prior exposures can lead to increases in subsequent inflammatory responses
[92].

Future Studies
Our data are consistent with studies that emphasize the prevention of mold exposures as one
way to reduce the incidence and severity of asthma [93]. Since many molds have an adverse im-
pact on respiratory health, it is vital to reduce mold contamination in indoor environments. Es-
pecially when there is water intrusion-related mold growth, we should aggressively remediate
these contaminated environments as soon as possible to minimize associated health risks.
Given the ubiquitous nature of mold spores and their ability to remain dormant and survive in
isolated spaces, remediation and renovation of some contaminated buildings may be inade-
quate and total replacement may be required. Studies of the effectiveness of various remedia-
tion strategies are needed.

Mold-induced changes in chemokine and cytokine release may suggest a review of best
practices for the diagnosis and treatment of asthma and other respiratory illnesses. For exam-
ple, current management of patients with mold-related illnesses often involves oral, parenteral
or inhalation administration of corticosteroid-based medications that act by suppressing the
immune system. However, the underlying illness of asthma, when induced or aggravated by
molds, is accompanied by both increases and decreases in immune and inflammatory path-
ways, as shown by our findings. Perhaps a goal of treatment should include the restoration of
normal immune system functioning, in which case steroid-based therapies should
be reassessed.

Four of the mold-exposed patients in this study transferred to uncontaminated worksites
six months or more before their blood samples were collected. It is important to document to
what extent mold-related immune system responses persist after mold exposures cease. This
phenomenon may serve as a basic etiologic mechanism in the development of chronic respira-
tory illnesses such as asthma. Future studies should include a larger number of subjects who
have histories of mold exposures but who are no longer being actively exposed.

The results of this study provide guidance for an expanded clinical study to examine these
findings in larger population groups. Such a study should measure mold-specific IgE and pul-
monary function in all mold-exposed patients and healthy controls. In parallel, a full industrial
hygiene assessment is necessary for all patient and control workplaces and homes since we
know that mold exposures are not all or nothing, but rather a continuum. A future study might
also be designed to assess the contribution of mold exposures to the initiation and aggravation
of pediatric and adult asthma.

Conclusions
We demonstrate for the first time that chronic exposures to environmental molds are associat-
ed with changes in cytokine and chemokine production by isolated PBMCs in response to spe-
cific mold or mycotoxin challenges. Ex vivo exposures of PBMCs to molds or mycotoxins can

Environmental Mold Exposures Elicit Cytokine and Chemokine Responses

PLOS ONE | DOI:10.1371/journal.pone.0126926 May 26, 2015 16 / 22



differentiate mold-exposed patients from unexposed controls. This strategy may be applicable
to other inflammation-related environmental toxins.
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