Contrasting host–pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1038/ncomms8121

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295560

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Contrasting host–pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

Christopher A. Desjardins¹, Neil D. Sanscrainte², Jonathan M. Goldberg¹, David Heiman¹, Sarah Young¹, Qiandong Zeng¹, Hiten D. Madhani³, James J. Becnel² & Christina A. Cuomo¹

Obligate intracellular pathogens depend on their host for growth yet must also evade detection by host defenses. Here we investigate host adaptation in two Microsporidia, the specialist Edhazardia aedis and the generalist Vavraia culicis, pathogens of disease vector mosquitoes. Genomic analysis and deep RNA-Seq across infection time courses reveal fundamental differences between these pathogens. E. aedis retains enhanced cell surface modification and signalling capacity, upregulating protein trafficking and secretion dynamically during infection. V. culicis is less dependent on its host for basic metabolites and retains a subset of spliceosomal components, with a transcriptome broadly focused on growth and replication. Transcriptional profiling of mosquito immune responses reveals that response to infection by E. aedis differs dramatically depending on the mode of infection, and that antimicrobial defensins may play a general role in mosquito defense against Microsporidia. This analysis illuminates fundamentally different evolutionary paths and host interplay of specialist and generalist pathogens.
Obligate intracellular pathogens rely on a complex interplay with their hosts; they must acquire nutrients and other metabolites within the host cell, yet evade its defenses. Microsporidia, recently called “The Master Parasites”\(^1\), are obligate intracellular fungal pathogens that evolved from free-living fungal ancestors and infect a broad range of hosts including humans and most other animals. The infective stage of Microsporidia in the spore includes a highly developed injection apparatus used to penetrate the host cell (Fig. 1a,b). These pathogens then undergo most of their development within the host cytoplasm, which allows direct transport of nutrients and energy from the host to the pathogen. However, intracellular growth may also expose the pathogen to attack by the host cellular immune system.

Microsporidia are noted for having compact genomes with reduced metabolic capacity, highlighting host dependencies of these intracellular pathogens. Genome size is typically small, in the range of 2.3–9 Mb; however, substantially larger genomes have also been described\(^2\). In addition, genes are unusually compacted, with very few introns and small intergenic regions, as shown for *Encephalitizoon cuniculi*\(^2\). Multiple studies have revealed loss of essential metabolic pathways, including *de novo* synthesis pathways for amino acids, nucleotides and even ATP, all of which must in turn be acquired from the host\(^3\–^5\). Microsporidia have evolved many mechanisms to acquire these nutrients, including ATP transporters used to ‘steal’ ATP from host cells\(^6\,^7\). Recent studies have shown that some Microsporidia secrete hexokinase\(^8\,^9\) and trehalase\(^9\), which may drive production of basic metabolites by the host for acquisition by the Microsporidia.

Microsporidian genes involved in other aspects of host–pathogen interactions, such as evasion of the host immune response, are not well characterized. Secreted proteins may include effectors that interact with host cell proteins to favour pathogen growth\(^10\,^11\). Despite widespread gene loss, microsporidian genomes encode many expanded gene families, particularly species-specific proteins with secretion signals, hypothesized to be involved in these host–pathogen interactions\(^7\,^8\,^11\,^12\). In addition, unknown is how nutrient acquisition, immune evasion and other interactions may differ in specialist versus generalist pathogens.

Here we investigate genome reduction and host–pathogen interactions in two Microsporidia, one specializing on a single host and one infecting a wider range of species, that naturally

Figure 1 | Life cycles of *E. aedis* and *V. culicis*. (a) Transmission electron micrograph of a mature microsporidian spore demonstrating the complex injection apparatus. The spore wall is composed of an exospore (EX) and endospore (EN) that contains chitin. The injection apparatus is a three part complex with a polar filament (PF) that is attached at the anterior end by the anchoring disk (AD), the membranous polaroplast (PP) and the posterior vacuole (PV). The nucleus (N) is centrally located and much of the volume of the spore is occupied by polyribosomes (PR). (b) A light micrograph of a germinated spore (GS) with the everted polar filament to become the polar tube (PT), through which the germ cell (sporoplasm) is injected into the host cell. (c) A fourth instar larva of *Ae. aegypti* infected by *E. aedis* via vertical transmission, corresponding to sample 5 in part D. Masses of spores in fat body (white cysts) are released on death to initiate horizontal infection in a new host generation. (d) Life cycle of *E. aedis*, modified from ref. 80. The six time points for RNA-Seq samples are indicated with numbers. *E. aedis* spores in the environment are horizontally transmitted when ingested by larval mosquitoes and then aggregate in the gastric caeca (a specialized region of the midgut), where they develop into the first intracellular spores (1). These spores penetrate the midgut wall and invade host cells called oenocytes (2) and following a blood meal by the adult mosquito they develop into the second intracellular spores and migrate to the ovaries (3). These spores are then vertically transmitted to the next generation of larvae as they develop in fat body (4) and undergo meiosis and sporulation (5) to produce spores to be released into the environment (6). (e) Life cycle of *V. culicis*, modified from ref. 80. The three time points for RNA-Seq samples are indicated with numbers. Spores in the environment are ingested by larvae, penetrate the midgut wall and systemically infect the host as it develops from larva (1) to adult (2), where *V. culicis* produces new spores to be released into the environment (3).
infect major disease vector mosquitoes. Edhazardia aedii is a pathogen of the mosquito Aedes aegypti, a major disease vector that transmits dengue haemorrhagic fever, yellow fever and chikungunya. E. aedii is specific to Ae. aegypti and has exploited virtually every life stage and tissue of its host in a complicated life cycle involving two generations of the host (Fig. 1c,d). Vavraia culicis is another microsporidian pathogen of mosquitoes, although unlike E. aedii it infects a wide range of mosquito species. Species of Culex, the major disease vector of West Nile virus, and species of Anopheles, the major disease vector of malaria, are particularly susceptible. Relative to E. aedii, V. culicis has a simple life cycle (Fig. 1e).

We describe the genome sequence of E. aedii and V. culicis, and identify the key differences in these species that resulted from genome contraction under differing selective pressures. To illuminate changes in both pathogen and host transcriptomes over the course of infection, we deeply sequence RNA from infected and uninfected host tissues throughout both pathogens’ life cycles. This combination of genomic and transcriptomic analyses reveals how both host and pathogen have adapted to these different models of infection.

Results
Genome variation and impact of low GC content. We sequenced, assembled and annotated the genomes of both E. aedii and V. culicis, and found that they exhibit a nearly 10-fold variation in genome size but only a 1.5-fold variation in gene content (Table 1). Genes predicted for each assembly were supported by RNA-Seq of samples representing each of the major life cycle stages of each species (Methods, Fig. 1d,e). While the genome of E. aedii is more fragmented than that of V. culicis, both genomes have similar coverage of a core eukaryotic gene set11,12 as other Microsporidia (Supplementary Fig. 1), suggesting that both assemblies contain nearly complete gene sets. The 51.3-Mb assembly of the E. aedii genome represents the largest sequenced microsporidian genome to date, substantially larger than the 23–24 Mb estimated size of Octosporea bayeri23 and Annalcia algerae24. By comparison, the 6.1-Mb V. culicis genome assembly has a more typical size, GC content and coding capacity for the Microsporidia. Both the E. aedii and V. culicis genomes encode RNA interference (RNAi) machinery and, notably, genomes encoding RNAi were significantly larger than those that did not (P<0.006; Mann–Whitney U-test, Supplementary Fig. 2).

The expanded genome size of E. aedii is not due to a higher fraction of repetitive sequence. Only 5.5% of the assembly is repetitive sequence, and of this only 222 kb could be classified, matching either LINE or Gypsy transposable elements (Methods). Instead, the larger genome size resulted primarily from expanded AT-rich intergenic regions (Supplementary Note 1, Supplementary Fig. 3); overall, the genome is 78% AT and only 9% of sequence is coding, similar to the estimates from a small-scale survey of 233.5 kb of E. aedii17. The extreme AT-bias of the E. aedii genome extends to coding regions, where it has influenced both codon and amino-acid usage (Supplementary Note 1, Supplementary Figs 4 and 5).

The genomes of both V. culicis and E. aedii are heterozygous, although the level of variation is substantially different between these species. The V. culicis genome contains one single-nucleotide polymorphism (SNP) every 700 bases, with an average allele balance of 58% (Methods). A higher number and frequency of SNPs were found in E. aedii, with one SNP every 284 bases and an average allele balance of 59%. The observation of heterozygous positions across the genome, as also observed in some other Microsporidia species18,19, suggests that both V. culicis and E. aedii are also diploid.

Refined phylogeny and differential metabolic pathway loss. To estimate the phylogenetic position of these species, orthologues were identified between E. aedii, V. culicis and 12 additional Microsporidia (Methods, Supplementary Fig. 2). The estimated phylogeny (Fig. 2a, Supplementary Fig. 2) is concordant with previous phylogenies examining a subset of species8,20. V. culicis was found to be more closely related to the human pathogen Trachipleistophora hominis (0.169 changes per site) than species within the genera Nematozoon (0.268 changes per site) and Encephalitozoon (0.205 changes per site). E. aedii was predicted to be the next most basal Microsporidia to Nematozoon (Supplementary Note 2). While E. aedii has the largest predicted number of protein-coding genes in the Microsporidia compared here, this does not reflect higher retention of genes conserved with other species, but rather genes unique to E. aedii (Supplementary Fig. 2), including 897 paralogous genes in 180 expanded gene families. As previously shown in Encephalitozoon cuniculi, Enterocytozoon bieneusi and Octosporea bayeri23, analysis of core eukaryotic genes15 revealed that in Microsporidia these conserved genes have shorter coding sequences than their fungal orthologues (Supplementary Fig. 6, Supplementary Note 3).

Utilizing the phylogenetic tree and orthologues, we identified genes differentially lost or retained in E. aedii and V. culicis (Fig. 2a, Supplementary Note 4). The V. culicis genome encodes a number of basic metabolic genes not encoded by the E. aedii genome involved in folate metabolism (DFR1, SHM and CDC21) and in synthesis and interconversion of pyrimidines (URA6, URA7 and CDC21). This suggests that E. aedii is more heavily reliant on its host for these resources. The E. aedii genome encodes pathways that produce cell membrane components that are either lost or reduced in the V. culicis genome. These include an isoprenoid biosynthesis pathway that terminates at farnesyl diphosphate, a precursor to the production of sterols (including ergosterol, a major component of fungal cell membranes and a target of antifungal drugs), and all genes necessary for glycosylphosphatidylinositol (GPI) anchor biosynthesis, allowing it to tether proteins to the cell membrane. E. aedii has also retained the ability to produce ceramides through a partial sphingolipid biosynthesis pathway. Although the exact function of this pathway in Microsporidia is unknown, many intermediates of the sphingolipid biosynthesis pathway act as signalling molecules21 or immunoregulators (for example, in Talaromyces22). The pathway for isoprenoid synthesis is completely lost in V. culicis, while the GPI anchor and ceramide pathways are heavily reduced (Supplementary Note 4).

Table 1 | Genome statistics of E. aedii and V. culicis.

<table>
<thead>
<tr>
<th></th>
<th>E. aedii</th>
<th>V. culicis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome size (Mb)</td>
<td>51.3</td>
<td>6.1</td>
</tr>
<tr>
<td>Scaffolds</td>
<td>1,429</td>
<td>379</td>
</tr>
<tr>
<td>Scaffold N50 (kb)</td>
<td>434</td>
<td>94</td>
</tr>
<tr>
<td>GC content (%)</td>
<td>22.5</td>
<td>39.7</td>
</tr>
<tr>
<td>GC content coding (%)</td>
<td>29.8</td>
<td>42.7</td>
</tr>
<tr>
<td>Repeats (%)</td>
<td>5.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Low complexity (%)</td>
<td>12.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Coding regions (%)</td>
<td>9</td>
<td>47</td>
</tr>
<tr>
<td>Genes</td>
<td>4,190</td>
<td>2,773</td>
</tr>
<tr>
<td>Paralogues</td>
<td>722</td>
<td>226</td>
</tr>
<tr>
<td>Spliced genes</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>RNA-Seq-supported genes (FPKM≥1)</td>
<td>3,631</td>
<td>2,535</td>
</tr>
<tr>
<td>Predicted surface proteins</td>
<td>517</td>
<td>282</td>
</tr>
<tr>
<td>Candidate effectors</td>
<td>335</td>
<td>169</td>
</tr>
</tbody>
</table>

*Defined as secreted proteins with no known domains that are expressed during infection.
Orthologue profiles were also used to identify genes potentially involved in host–pathogen interactions. Both the E. aedis and V. culicis genomes contain one copy of hexokinase (EDEG_00794, VCUG_00376) and one or two copies of trehalase, respectively (EDEG_03004, VCUG_00959 and VCUG_00974) with a predicted secretion signal; when secreted these factors could drive host metabolism to the advantage of the microsporidia, as suggested for hexokinase8,9. Furthermore, the E. aedis and V. culicis genomes encode secreted ubiquitin hydrolases, which could provide resistance to the ubiquitin system, recently implicated in immune defense against Microsporidia in Caenorhabditis elegans23. We also identified 335 and 169 secreted proteins in the E. aedis and V. culicis genomes, respectively, that are expressed during infection but have no predicted domains; most of the proteins also appear species-specific (Table 1, Methods). These secreted proteins could include candidate effectors that interact with the host.

Phylogenetic profiling of splicing proteins. Variable loss of introns and genes encoding components of the spliceosome has been previously noted in other microsporidian genome analyses4,11. On the basis of motif searches and genomic alignments of RNA-Seq reads (Methods), we identified introns in 27 genes in V. culicis (Supplementary Table 1, Supplementary Note 5). Most were inefficiently spliced (median efficiency, 25.3%), as in En. cuniculi, suggesting that this is a general

Figure 2 | Phylogeny of Microsporidia and conservation of introns. (a) Phylogeny of Microsporidia based on 217 single-copy core genes. The phylogeny was estimated using RAxML10 and a PROTCATLG model of evolution. Bootstrap support (BS) is shown above each node. The presence of complete (+) or partial (+/−) pathways is shown for isoprenoid synthesis (iso), ceramide synthesis (cer) and GPI. Also shown is the phylogenetic profile for the spliceosomal machinery, along with individual profiles for the four spliced genes with known PFAM domains predicted in the V. culicis genome (open circle: present with intron; closed circle: present without intron). (b) Peptide alignment of the region of the cold shock domain-containing gene containing the intron between A. macrogynus and E. aedis, and the basidiomycete fungus Puccinia graminis, showing for V. culicis both the unspliced and spliced forms. The intron in these species clearly represents a region absent from the gene in other Microsporidia, and for V. culicis in 27 genes in V. culicis (open circle: present with intron; closed circle: present without intron).
feature of spliced genes in Microsporidia. No introns were identified in *E. aedis*; splicing motifs were absent from the genome and no spliced alignments were detected with RNA-Seq data. The *V. culicis* genome also includes components of the splicingosome missing in *E. aedis*, described below. Phylogenomic comparisons (Fig. 2a) suggest that canonical splicing was lost or reduced at least three times over the course of microsporidian evolution—in *E. aedis*, *Nematocida* and the ancestor of *Ent. bienessi* and *V. corneae*.

Given these independent losses, we utilized the broader taxon sampling of Microsporidia genomes to identify core components of the microsporidian splicing machinery. Using orthologues of 89 components involved in splicing in *Saccharomyces cerevisiae*, we examined the conservation pattern across Microsporidia (Supplementary Data 1). In the five genomes for which canonical splicing has not been detected, fewer components were conserved; Microsporidia with splicing contain between 17 and 31 (average of 22.5) splicing components, whereas species without splicing contain between 5 and 10 (average of 8.5). Orthologues of four genes were present in most species without splicing, including a Sm protein (SmB), two U5 small nuclear ribonucleoprotein particle (snRNP) components (Prp8 and Brr2) and a RNA-binding component of the U4/U6 snRNP (Snu13). Microsporidia-specific splicing factors may substitute for some components; phylogenetic profiling identified 10 proteins conserved specifically in Microsporidia with splicing, but without a known function (Supplementary Data 2, Supplementary Note 6).

We identified four spliced genes in the *V. culicis* genome with known functions that were not ribosomal proteins. Each was present in Microsporidia species with and without splicing (Fig. 2a); however, introns in these genes were only found in *V. culicis* and close relatives, even for genes present in other Microsporidia capable of splicing. The four genes are functionally diverse based on the protein families (PFAM) domains found in each for cold shock, ThiF, Sedlin N and peptidyl-tRNA hydrolase. Alignment of the cold shock protein sequences highlights that the exact region spliced out by the intron in *V. culicis* and *T. hominis* is missing from that protein in other species (Fig. 2b). Orthologue clustering of Microsporidia with 12 other fungi (Methods) showed that this gene is present in three divergent fungal species, of which two have an intron inserted at a position identical to *V. culicis* (Fig. 2c), suggesting that this intron was present in the ancestor of these species. The simplest explanation for this pattern is widespread intron loss across Microsporidia, leaving a small number of introns in species that have retained substantial splicing machinery.

Dynamic changes in *E. aedis* transcriptome during infection. To identify transcriptional signatures of the life cycles of these Microsporidia, gene expression was quantified from time points representing the major stages of infection, with two independent samples per time point shown in Fig. 1d,e (Supplementary Data 3 and 4). Correlations of expression values between samples revealed that *E. aedis* transcription was grouped into three main clusters: environmental spores, horizontally transmitted intracellular stages and vertically transmitted intracellular stages (Fig. 3a). Similarly, *V. culicis* transcription formed two main clusters: environmental spores and horizontally transmitted intracellular stages (Fig. 3a), with no apparent additional clustering by host life stage.

To investigate the genes driving these patterns, we identified differentially expressed gene clusters in *E. aedis* and *V. culicis*, and then evaluated enrichment of Gene Ontology (GO) terms, metabolic pathways and secreted proteins of unknown function (Fig. 3c–f). Within the environmental spore clusters in both *V. culicis* and *E. aedis*, most enriched GO terms were involved in ribosome assembly (Supplementary Tables 2 and 3, Fig. 3c), consistent with the large number of polyribosomes observed in environmental spores (Fig. 1a). In addition to ribosomal proteins, Hsp70 domain proteins potentially involved in protein folding are among the mostly highly expressed genes in *E. aedis* (EDEG_00132, EDEG_00135), as previously noted in a survey of spore-expressed sequence tags, as well as in *V. culicis* (VCUG_01919). This may be a reflection of environmental spores representing a relatively passive life stage focused on basic conserved cellular processes rather than expending resources to actively affect the host.

Evaluation of genes upregulated in intracellular stages of *E. aedis* and *V. culicis* showed that in contrast to spores, there was little overlap in GO term enrichment between the two species in developmental stages (Fig. 3d, Supplementary Tables 4 and 5). Genes upregulated in *V. culicis* were enriched for GO terms representing growth, carbohydrate metabolism and DNA replication. By contrast, genes upregulated in *E. aedis* were enriched for pathways involved in protein modification, and trafficking, such as isoprenoid synthesis, GPI anchoring and COPI (coat protein) synthesis, which is involved in Golgi–ER transport. Gene-level examination of these pathways supported these findings (Supplementary Note 7). The intracellular stages of *E. aedis* were also significantly enriched for secreted proteins of unknown function, although the intracellular stages of *V. culicis* were not (*P* < 1e–5 and *P* < 0.24, respectively; χ²-test). These patterns suggest that the generalist *V. culicis* intracellular stages are simpler than the specialist *E. aedis* intracellular stages, focused on growth rather than protein modification and trafficking, and with fewer surface decorations and secreted proteins that could interact with the host.

Within the intracellular stages of *E. aedis*, genes specifically upregulated within the horizontal (time points 1–3) or vertical (time points 4 and 5) portion of the life cycle revealed a shift in metabolic potential as well as in secreted proteins that could mediate host interactions (Fig. 3e,f). GO enrichment analysis of genes upregulated during the vertical portion revealed terms related to lipid synthesis (Fig. 3f, Supplementary Tables 6 and 7), including GPI anchor, isoprenoid and ceramide synthesis (Supplementary Fig. 7). A significantly greater number of secreted proteins of unknown function were also upregulated during this period than the horizontal period (*P*< 4e–6; χ²-test; Fig. 3f), including three expanded gene families (Supplementary Fig. 8). These findings are corroborated by the observation that secreted proteins are produced in such abundance during the vertical portion of the life cycle that they are easily visible in micrographs (Fig. 3b), suggesting that protein modification and trafficking are particularly important during this portion of the *E. aedis* life cycle. By contrast, the horizontal portion of the life cycle showed no enrichment of GO terms (Fig. 3e). However, a comparison of time points pre- (2) and post-bloodmeal (3) revealed that the secreted hexokinase and trehalase were both significantly upregulated following a bloodmeal (*q* < 0.0027 and *q* < 0.0038, respectively, Supplementary Data 3).

Expression of meiotic genes during *E. aedis* sexual cycle. Given that *E. aedis* has a well-defined sexual cycle, whereas meiosis has not been observed in *V. culicis*, we evaluated stage-specific expression of fungal meiotic genes in our transcriptome time course. We first identified a candidate mating-type locus in each species that included a high-mobility-group transcription factor gene (EDEG_02959, VCUG_02536) that is highly expressed across all time points. The syntenies of genes flanking the HMG in some Microsporidia species (but notably not in *T. hominis*),
Horizontal transmission portion; (EDEG_03123). By contrast, of MND1 E. aedis and E. aedis the vertically transmitted intracellular stages in (Supplementary Data 3 and 5) to correlate their expression with these genes (Supplementary Data 5).

Figure 3 | Transcriptional signatures of E. aedis and V. culicis life cycles. (a) Pairwise correlation coefficients of transcript abundances between samples of E. aedis and V. culicis. Coefficients were calculated from log2-transformed FPKM values. Numbers correspond to time points in Fig. 1d,e, and the position of the sample in both the microsporidian and mosquito lifecycle is shown on the x axis. Letter codes on the y axis correspond to labels on the x axis: LH: larval horizontal; AH: adult horizontal; LV: larval vertical; Sp: environmental spores. (b) Transmission electron micrograph of a diplokaryotic sporont (Sp) of E. aedis in the vertically transmitted portion of the life cycle. Electron-dense secretions (ES) in the cytoplasm are transported into the episporontal lumen via tubules (T) where they accumulate. G (Golgi bodies); N (Nucleus). (c-f) Venn diagrams of differentially expressed genes (q < 0.05), with enriched functional classes (c) upregulated in environmental spores of E. aedis and V. culicis relative to intracellular stages; (d) upregulated in intracellular stages of E. aedis and V. culicis relative to environmental spores; (e) downregulated in the vertically transmitted portion of the E. aedis life cycle relative to the horizontally transmitted portion; (f) upregulated in the vertically transmitted portion of the E. aedis life cycle relative to the horizontally transmitted portion.

a RNA helicase and a triose phosphate transporter (TPT), is partially observed in these species; each locus has one of the two flanking genes, the RNA helicase in E. aedis or the TPT in V. culicis, while the other gene is found on a different scaffold in each assembly. Of a set of 12 conserved genes important for meiotic recombination, 9 are conserved in E. aedis and 10 in V. culicis; other Microsporidia contain homologues of 5–10 of these genes (Supplementary Data 5).

We next examined expression of these meiotic genes (Supplementary Data 3 and 5) to correlate their expression with the vertically transmitted intracellular stages in E. aedis when meiosis occurs. Genes significantly upregulated (q < 0.05; negative binomial exact test) during these stages included SPO11, HOP1, dimer-forming MSH4 and MSH5, and one of two copies of MND1 (EDEG_03123). By contrast, HOP2, the other copy of MND1 (EDEG_01364), and RAD51 were expressed in all intracellular stages and environmental spores. RAD51 is essential for repair of double-strand breaks in other stages in addition to meiosis. As HOP2 and MND1 are involved in meiotic chromosome synopsis in Saccharomyces cerevisiae, their expression should be specific to the vertical stage of E. aedis, the only stage where meiosis is known to occur. The significant upregulation (q < 0.05) of these genes in spores of both species suggests that they may have an alternate function in this stage of Microsporidia. All nine identified meiotic genes in E. aedis were expressed during at least one life stage, while in V. culicis SPO11 and MSH4 were present but not expressed in any stage.

Host immune response to E. aedis infection. To evaluate the effect of E. aedis infection on Ace. aegypti transcription, Ace. aegypti gene expression was calculated for infected and control samples at each time point shown in Fig. 1d (Supplementary Data 6). Differentially expressed mosquito genes between control and infected samples at each time point were identified (Supplementary Table 8) and GO term and KEGG pathway enrichment were evaluated (Table 2, Supplementary Table 9). Early during infection, when E. aedis invades the midgut (time point 1), alkaline phosphatase activity was downregulated in infected samples (Table 2). The same effect was observed in
Table 2 | GO term enrichment in infected and control mosquitoes*.

<table>
<thead>
<tr>
<th>GO term</th>
<th>Up in</th>
<th>q-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>An. aegypti time point 1 (larval midgut)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline phosphatase activity [GO:0004035]</td>
<td>Control</td>
<td>8.22E – 07</td>
</tr>
<tr>
<td>Structural constituent of cuticle [GO:0042302]</td>
<td>Control</td>
<td>2.09E – 06</td>
</tr>
<tr>
<td>Magnesium ion binding [GO:0000287]</td>
<td>Control</td>
<td>5.33E – 03</td>
</tr>
<tr>
<td>Metabolic process [GO:0008152]</td>
<td>Control</td>
<td>3.56E – 02</td>
</tr>
<tr>
<td>Iron ion transport [GO:0006826]</td>
<td>Infected</td>
<td>2.14E – 02</td>
</tr>
<tr>
<td>Cellular iron homeostasis [GO:0006879]</td>
<td>Infected</td>
<td>2.14E – 02</td>
</tr>
<tr>
<td>Ferric iron binding [GO:0008199]</td>
<td>Infected</td>
<td>2.14E – 02</td>
</tr>
<tr>
<td>Polysaccharide binding [GO:00030247]</td>
<td>Infected</td>
<td>2.69E – 02</td>
</tr>
<tr>
<td>Endopeptidase inhibitor activity [GO:0048666]</td>
<td>Infected</td>
<td>3.78E – 02</td>
</tr>
<tr>
<td>An. aegypti time point 2 (early adult oenocyte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteolysis [GO:0006508]</td>
<td>Control</td>
<td>4.39E – 08</td>
</tr>
<tr>
<td>Serine-type endopeptidase activity [GO:004252]</td>
<td>Control</td>
<td>7.92E – 08</td>
</tr>
<tr>
<td>Digestion [GO:0007586]</td>
<td>Control</td>
<td>1.87E – 07</td>
</tr>
<tr>
<td>Binding [GO:0005488]</td>
<td>Control</td>
<td>4.46E – 03</td>
</tr>
<tr>
<td>Phototransduction [GO:0007602]</td>
<td>Control</td>
<td>1.82E – 02</td>
</tr>
<tr>
<td>Serine-type endopeptidase activity [GO:004252]</td>
<td>Infected</td>
<td>2.10E – 11</td>
</tr>
<tr>
<td>An. aegypti time point 3 (late adult oenocyte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracellular space [GO:0005615]</td>
<td>Control</td>
<td>2.87E – 04</td>
</tr>
<tr>
<td>Serine-type endopeptidase inhibitor activity [GO:004867]</td>
<td>Control</td>
<td>2.87E – 04</td>
</tr>
<tr>
<td>Copper ion binding [GO:0005507]</td>
<td>Control</td>
<td>1.76E – 03</td>
</tr>
<tr>
<td>Laccase activity [GO:0008471]</td>
<td>Control</td>
<td>7.64E – 04</td>
</tr>
<tr>
<td>Oocyte development [GO:00048599]</td>
<td>Control</td>
<td>8.85E – 04</td>
</tr>
<tr>
<td>Serine-type endopeptidase activity [GO:004252]</td>
<td>Infected</td>
<td>5.66E – 02</td>
</tr>
<tr>
<td>An. aegypti time point 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteolysis [GO:0006508]</td>
<td>Infected</td>
<td>3.01E – 23</td>
</tr>
<tr>
<td>Endopeptidase inhibitor activity [GO:0048666]</td>
<td>Infected</td>
<td>7.98E – 03</td>
</tr>
<tr>
<td>Sugar binding [GO:0005529]</td>
<td>Infected</td>
<td>4.52E – 02</td>
</tr>
<tr>
<td>An. aegypti time point 4 (early larval fat body)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An. aegypti time point 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynin complex [GO:0030286]</td>
<td>Control</td>
<td>7.02E – 06</td>
</tr>
<tr>
<td>Nucleosome assembly [GO:0006334]</td>
<td>Control</td>
<td>1.50E – 03</td>
</tr>
<tr>
<td>Microtubule motor activity [GO:0003777]</td>
<td>Control</td>
<td>3.13E – 03</td>
</tr>
<tr>
<td>Axoneme [GO:0005930]</td>
<td>Control</td>
<td>3.35E – 02</td>
</tr>
<tr>
<td>Structural constituent of cuticle [GO:0042302]</td>
<td>Infected</td>
<td>4.25E – 11</td>
</tr>
<tr>
<td>An. quadrimaculatus time point 1 (larval systemic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An. quadrimaculatus time point 2 (adult systemic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryanodine-sensitive calcium-release channel activity [GO:0005219]</td>
<td>Infected</td>
<td>8.56E – 04</td>
</tr>
<tr>
<td>Muscle contraction [GO:0006936]</td>
<td>Infected</td>
<td>2.01E – 03</td>
</tr>
<tr>
<td>Calcium ion binding [GO:0005509]</td>
<td>Infected</td>
<td>5.68E – 03</td>
</tr>
<tr>
<td>Cellular iron homeostasis [GO:0006879]</td>
<td>Infected</td>
<td>1.11E – 02</td>
</tr>
<tr>
<td>Striated muscle thick filament [GO:0005863]</td>
<td>Infected</td>
<td>1.14E – 02</td>
</tr>
</tbody>
</table>

*GO, gene ontology.

* Mosquito developmental stage and site of infection is listed for each time point. The top five significantly enriched terms in control and infected samples at each time point are shown for each species (q < 0.05, Fisher’s exact test). No significantly enriched GO terms were found for An. aegypti time point 4 or An. quadrimaculatus time point 1.

V. culicis infection affects muscle and defensin expression. As described for *An. aegypti*, gene expression was calculated for infected and control samples for *An. quadrimaculatus* at each time point as shown in Fig. 1e (Supplementary Data 7), differentially expressed genes were identified (Supplementary Table 8) and GO term and KEGG pathway enrichment were evaluated (Table 2, Supplementary Table 9). *V. culicis* undergoes a simpler life cycle than *E. aedis* in which environmental spores infect a single generation of host. In infected host larvae, there were no enriched GO terms and very few differentially expressed genes overall (Supplementary Table 8). In adult infected samples, the top five enriched GO terms all related to muscle contraction and assembly, as did all enriched KEGG pathways (Table 2, Supplementary Table 9). *V. culicis* causes systemic infections in adult mosquitoes, with flight muscles a primary site of infection.
mosquito lifecycle is shown on the x-axis. Numbers correspond to time points in days. Grey boxes represent genes downregulated during infection. Red boxes represent genes upregulated during infection, while blue boxes represent genes that were mapped using ImmunoDB 34, the only differentially expressed genes to or driven by the infection.

In contrast to Ae. aegypti, when An. quadrimaculatus genes were mapped using ImmunoDB 34, the only differentially expressed immunity gene at any time point during infection (negative binomial exact test 29, q < 0.05) was an antimicrobial defense (Supplementary Data 7). In the larval stage, defense DEFI was significantly upregulated during infection (q < 0.05), while in the adult stage it was also upregulated during infection, although not significantly (P < 0.002, q < 0.2). This suggests that the generalist V. culicis evades or suppresses the majority of the immune response of its mosquito host.

Figure 4 | Differentially expressed immunity genes in infected Ae. aegypti. Boxes marked with asterisks represent genes that were significantly differentially expressed at q < 0.05; coloured boxes represent genes that were differentially expressed at P < 0.05. Red boxes represent genes upregulated during infection, while blue boxes represent genes downregulated during infection. Numbers correspond to time points in Fig. 1b, and the position of the sample in both the microsporidian and mosquito lifecycle is shown on the x-axis.

Figure 5 | Spores of Vavraia culicis infecting muscle in the thorax of an adult Anopheles quadrimaculatus. Groups of spores are contained within a sporophorous vesicle and localized to fibers limited by the muscle sheath.

Discussion
Here we present genomic analysis of two species of Microsporidia with similar hosts but very different host ranges and genome architecture. The large genome size of E. aedis contrasts not just with V. culicis but with other Microsporidia sequenced to date, and with the paradigm of small genome size being strongly selected for this group of obligate pathogens. The larger genome is due to an expansion of AT-rich intergenic regions and does not include a greater number of ancestrally conserved genes than other Microsporidia. Sequencing additional isolates of E. aedis would enable analysis of the current constraints on genome size, such as the overall and regional bias for insertions or deletions.

Phylogenomic profiling of components of the spliceosome across Microsporidia and identification of spliced transcripts through deep RNA-Seq highlight differences in splicing retention and loss in the Microsporidia. Many spliceosomal components conserved in fungi were not detected in any microsporidian genome, including those with spliced transcripts. Either these components are more highly divergent in Microsporidia or a more minimal spliceosome may have been selected for, perhaps adapted to the smaller number and size of introns in these species or by the relaxation of splicing efficiency. Furthermore, some splicing proteins were identified in all Microsporidia, including those without spliced transcripts. The retention of these proteins is intriguing and suggests they serve a functional role in Microsporidia, either to splice undetected or noncanonical introns or for some other alternative purpose.

Our analysis for the first time characterizes the meiotic gene expression programme in a Microsporidia species with a known sexual cycle. Both E. aedis and V. culicis have conserved a core set of meiotic genes and a candidate mating-type locus; as meiosis has only been observed in E. aedis, the presence of these genes in V. culicis suggests that it may be capable of meiosis under some alternate conditions, or that these genes have lost functionality in V. culicis but have not yet been purged from the genome. A subset of meiotic genes are indeed specifically induced during sexual stages of E. aedis and not detected in the sampled stages of V. culicis. The more ubiquitous expression of MNDI, involved in meiotic recombination, suggests that this may play additional roles in Microsporidia, as suggested for mammals based on expression in nongerm line tissues 12.

This genomic analysis also sheds light on the basis of the complex interaction between the specialist E. aedis and its host. The V. culicis genome encodes a greater capacity for folate
metabolism and pyrimidine interconversion than *E. aedis*, perhaps reflecting a generalist pathogen needing to be less reliant on its host than a specialist. However, numerous metabolic pathways involved in protein modification and trafficking are retained exclusively in the *E. aedis* genome, and these pathways are upregulated during later stages of infection. In addition, during these later stages, secreted protein complexes are so abundant as to be visible in micrographs (Fig. 3b). While the chemical nature of these secretions is poorly understood, a few hypotheses have suggested a role in microsporidian metabolism or generation of a conductive pathway, based on the similarity of some secretions to cytoskeletal components. In contrast, *V. culicis* transcription appears focused on growth and basic metabolic functions. This may reflect the adaptation of *E. aedis* to a specific host, whereas *V. culicis* has maintained a simpler lifecycle, allowing it to grow in a wider range of hosts.

Secreted proteins may not only deal with immune evasion, but also with manipulation of host metabolism. Following a blood meal in *Ae. aegypti*, the *E. aedis* secreted hexokinase and trehalase were both significantly upregulated, suggesting an increased control of host metabolism later in the horizontal portion of the life cycle, which is critical to ensure vertical transmission. Supporting this, while expression of most *Ae. aegypti* glycolytic enzymes was reduced following the blood meal in both control and infected mosquitoes, expression levels dropped significantly less in infected mosquitoes. It is possible that increased secretion of these enzymes by *E. aedis* mitigates a typical reduction in glycolytic activity in *Ae. aegypti* following a bloodmeal.

Both mosquitoes responded to microsporidian infection by inducing antimicrobial peptides. Defensins were upregulated in response to infection by both mosquitoes, suggesting that these antimicrobial peptides may be general elements of the mosquito defensive response against microsporidian pathogens. Cercopin A was induced by *Ae. aegypti* during later stages of infection; *E. aedis* invades the fat body, the site of cercopin production, during these stages. Human intestinal antimicrobial peptides have been shown to inhibit microsporidian spore germination in cell infection assays. Notably, none of the signal cascades known to be involved in mosquito immune responses appeared to be activated during infection by the two microsporidian species in either *Ae. aegypti* or *An. quadrimaculatus*, including the Toll pathway, broadly induced by diverse pathogens including Gram-positive bacteria, fungi, viruses and Plasmodium, the JAK-STAT pathway that mediates response to diengue virus infection in *Ae. aegypti* or the IMD pathway that regulates antimicrobial immune responses in *Drosophila*. This suggests that even when an immune response is mounted against microsporidian invasion, expression changes, including induction of the MD2-like receptors ML33 and ML15B, do not trigger the same immune cascades as many other pathogens.

Contrary to expectations based on their host ranges, infection of the first generation of *Ae. aegypti* by *E. aedis* elicited a notable immune response from the mosquito, while infection of *An. quadrimaculatus* by *V. culicis* did not. Given the broad host range of *V. culicis*, it could have been expected that the generalist would be less able to evade any specific host’s immune response. One possibility is that *V. culicis* infection involves fewer intercellular movements than infection by *E. aedis*, as infection by *V. culicis* in *An. quadrimaculatus* larvae is not progressive and the developing pathogen does not leave the initially infected tissues until the adult stage. *E. aedis*, on the other hand, travels between a wide variety of host cell types, including oenocytes, potentially exposing it to immune responses. Alternatively, some portion of the differences in the immune responses of *Aedes* and *Anopheles* may reflect the large evolutionary distance between the two genera. The evasion of the mosquito immune response by *E. aedis* when vertically transmitted to *Ae. aegypti* may involve lack of when vertically transmitted to *Ae. aegypti* may involve lack of host immune cell induction gene expression. Alternatively, the microsporidian may be shielded from recognition by the immune system during these phases, since the infections originated in the developing eggs and/or because they are entirely intracellular within fat body. Another possibility is that *E. aedis* may actively suppress the host response through its wide array of secreted proteins.

In summary, the combination of genome comparisons and deep transcriptional profiling of the mosquito hosts and microsporidian pathogens described here illustrate differing evolutionary trajectories for specialist and generalist pathogens and interactions with their hosts. Future studies of additional microsporidian–host systems should reveal whether similar strategies evolve convergently in other Microsporida. In a broader context, identification of additional proteins involved in host–pathogen interactions contributes to ongoing efforts in developing strategies to prevent transmission of malaria, and potentially other mosquito-vectored pathogens. Furthermore, such studies in invertebrate models may provide parallels for the innate immune response in humans to microsporidian infections.
the -het option and the -versus option to screen out contaminating sequences using Bowtie 72. Transcript abundance was estimated using RSEM 73, all as implemented in the TMM-normalized FPKM for each transcript were calculated and differentially expressed transcripts were identified using edgeR 74, all as implemented in the Supplementary Fig. 10). To identify GO (http://geneontology.org/) term enrichment of differentially expressed genes, we used YeastMine 76 with yeast orthologues as input. Additional enrichment tests were also taken as controls. The complete infection sequence was replicated twice for all samples. Unipickx E. aedis spores were purified by the same continuous gradient method used to obtain purified spores for genomic DNA extraction. Spores were purified from two separate clutches of infected Ae. aegypti (1 × 10^7 and 7 × 10^6 spores per ml) for 24 h and then transferred in groups of 1,000 into 56 cm × 45 cm × 8 cm plastic rearing trays with 31 of deionized water. Trays were fed 2 g of 3.2 bovine liver powder/brewer’s yeast slurry every other day until pupation and were reared under standard laboratory conditions (25°C, 12/12 light cycle, 80% relative humidity). Adults were given 10% sucrose ad libitum and blood fed as a blood source in sausages until pupation and were reared under standard laboratory conditions (25°C, 12/12 light cycle, 55°C). At adult emergence, one sample of 75 dissected larval gastric ceca from the group exposed to the higher spore dose was collected (Fig. 1d, time point 1). At 2–3 days post emergence, 25 abdomens from female Ae. aegypti exposed to the lower spore dose were dissected (Fig. 1d, time point 2). A bovine blood meal was supplied to the mosquitoes at 2–3 days post emergence, and 24 h post-blood meal 25 abdomens, from blood-fed female Ae. aegypti were collected (Fig. 1d, time point 3). Next, Aedes aegypti eggs collected from infected adults were hatched and reared according to standard procedures. Larvae were sampled at 3 days post hatch (Fig. 1d, time point 4) and again at 6 days post hatch (Fig. 1d, time point 5). At each time point, matched tissue samples of healthy Ae. aegypti were also taken as controls. The complete infection sequence was replicated twice for all samples. Unipickx E. aedis spores were purified by the same 30 and 60% Ludox gradient method used to obtain purified spores for genomic DNA extraction. Spores were purified from two separate clutches of infected Ae. aegypti (1 × 10^7 and 7 × 10^6 spores final yield) for RNA extraction.

To sample V. culicis, healthy neonate An. quadrimaculatus larvae were exposed to V. culicis at a dose of 1 × 10^6 spores per ml for 24 h and then transferred in groups of 1,000 into 56 cm × 45 cm × 8 cm plastic rearing trays with 31 of deionized water. Trays were fed 0.5 g of 1:1 bovine liver powder/brewer’s yeast slurry every other day until pupation and were reared under standard laboratory conditions (25°C, 12/12 light cycle, 80% relative humidity). Adults were given 10% sucrose ad libitum and were fed as a blood source in sausages every other day until pupation. Rearing occurred until pupation and were reared under standard laboratory conditions (25°C, 12/12 light cycle, 55°C). At adult emergence, one sample of 75 dissected larval gastric ceca from the group exposed to the higher spore dose was collected (Fig. 1d, time point 1). At 2–3 days post emergence, 25 abdomens from female Ae. aegypti exposed to the lower spore dose were dissected (Fig. 1d, time point 2). A bovine blood meal was supplied to the mosquitoes at 2–3 days post emergence, and 24 h post-blood meal 25 abdomens, from blood-fed female Ae. aegypti were collected (Fig. 1d, time point 3). Next, Aedes aegypti eggs collected from infected adults were hatched and reared following standard procedures. Larvae were sampled at 3 days post hatch (Fig. 1d, time point 4) and again at 6 days post hatch (Fig. 1d, time point 5). At each time point, matched tissue samples of healthy Ae. aegypti were also taken as controls. The complete infection sequence was replicated twice for all samples. Unipickx E. aedis spores were purified by the same 30 and 60% Ludox gradient method used to obtain purified spores for genomic DNA extraction. Spores were purified from two separate clutches of infected Ae. aegypti (1 × 10^7 and 7 × 10^6 spores final yield) for RNA extraction.

Total RNA was isolated from all tissue samples using the RNeasy Plus-48 Kit (Ambion/Life Technologies) or the Quick-RNA MiniPrep kit (Zymo Research) as per the manufacturer’s instructions. Purified E. aedis and V. culicis spores were pelleted and resuspended in 500 μl of RNA lysis buffer. An equal volume of silica glass beads (425–600 μm) was added, and the suspension was mechanically disrupted using the Mini-Beadbeater-1 (BioSpec) at setting 48 (4,800 r.p.m.) for 30 s. Disruption of spores was confirmed with hemacytometer counts. The lysate was removed from the glass beads and processed through RNA extraction. To confirm that microsporidian RNA was successfully extracted, qPCR was performed on cDNA synthesized from total RNA as described for genomic DNA. Strand-specific libraries were constructed for poly(A)-selected RNA samples using the DUTP second strand-marking method85,86. Libraries were sequenced on an Illumina HiSeq to generate an average of 76 million paired-end reads (101-nt) per sample; all samples had high sequencing quality scores, ranging from an average of 29.2 to 34.6 per sample (Supplementary Table 12).

Prediction of gene structures and repetitive elements. Gene structures were annotated using a combination of ab initio methods and RNA-Seq data. An initial set of protein-coding genes was predicted using Prodigal61 and GeneWise61 run with Uniref90 and available微生物protein data sets, requiring smaller

than 100 amino acids to have good supporting evidence including a PFAM domain27 match, nongeneric gene product name assigned or prediction by both methods. The Predictorg model was chosen for each locus and then a nonoverlapping GeneWise models were added. Genes overlapping other transcripts including tRNA or rRNA features were manually inspected and edited where possible. Gene corresponding to repetitive elements (matching proteins or PFAM domains found in repetitive elements or with a TPSI hit (requiring exact < 1e–10 and > 30% coverage) were removed from the gene set. For A. algerae, we included the assembled and annotated genome of PRA139 (AOMW00000000); the previously described genome of a human isolate16 was not used, as an assembly but not a gene set was available in NCBI.

Gene structures were updated and validated using RNA-Seq. Reads were assembled using the Inchworm component of Trinity; the resulting transcripts were aligned to the genome with PASA63. Cases of candidate merged or novel genes were manually reviewed and corrected where possible, and untranslatable repeat sequence supported by these transcripts was added.

Introns were initially identified using the motif described in ref. 64. Furthermore, all V. culicis and E. aedis RNA-Seq reads were aligned to the genome using TopHat2 (ref. 65) with a minimum and maximum intron size of 10 and 300, respectively. V. culicis genes with spliced read mappings that matched the motif predictions were considered to have introns; no E. aedis genes had spliced read mappings with aligned mates or predicted motifs. A number of V. culicis ribosomal protein genes had motifs but lacked any RNA-Seq read coverage of their 5' end where the motif occurs; these genes were also considered to have introns. Splicing efficiency was then calculated as the depth of coverage of reads in the intron divided by the depth of coverage of reads adjacent to the intron.

The completeness of all new assemblies was evaluated by examining the composition and completeness of the four eukaryotic gene sets (CEGs)43. We compared our gene set by blast to the CEGMA set, and identified hits above and below the recommended 70% coverage threshold. A tool for streamlined analysis and visualization of conservation of CEGs is available on SourceForge (http://sourceforge.net/projects/corealyze/).

Transcription analysis. RNA-Seq reads were aligned to Microsporidian transcript sequences using Bowtie72. Transcript abundance was estimated using RSEM73. TMM-normalized FPKM for each transcript were calculated and differentially expressed transcripts were identified using edger77, all as implemented in the Trinity package version r2013-2-25 (ref. 75). To determine correlations between RNA-Seq and predicted protein sequences, correlation coefficients were calculated; the biological replicates of all samples were highly correlated, ranging from 0.89 to 0.98 in V. culicis and from 0.92 to 0.98 in E. aedis(Fig. 3a, Supplementary Fig. 9). Plotting the coverage of RNA-Seq reads across transcripts of both microsporidia (from 5' to 3') showed that reads are evenly represented across transcript length (Supplementary Fig. 10). To identify GO (http://geneontology.org/) term enrichment of differentially expressed genes, we used YeastMine86 with yeast orthologues as input. Additional enrichment tests for pathways, candidate effectors, surface proteins, gene families and other features were conducted using Fisher’s exact test.

Microsporidian transcripts (version 4.4) were downloaded from VectorBase (www.vectorbase.org)37. A set of 18,724 An. quadrimaculatus Orlando (1952) transcripts was assembled using the Trinity package from the combined RNA-Seq
generated from nine different life stages of the Orlando strain (eggs, 1st instar, 2nd instar, 3rd instar, 4th instar, early pupae, late pupae, adult female and adult male), and was used as a reference gene set for this species. Alignment of RNA-Seq reads and calculation of transcript abundance were conducted as described above. To identify the GO term and KEGG pathway enrichment of differentially expressed genes, we classified transcripts using Blast2GO78 and KAAS79, and then performed comparison with Fisher exact test. We also identified mosquito immune genes using ImmunoDB34; for Ae. aegypti we used the available annotations, while for An. quadrimaculatus we used OrthoMCL36 to map to the An. gambiae transcriptome version 4.1 (downloaded from VectorBase) and then transferred the annotations from An. gambiae.

References

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8121 11

© 2015 Macmillan Publishers Limited. All rights reserved.

Acknowledgements

We acknowledge the Broad Institute Sequencing Platform for generating all DNA and RNA sequences described here. We thank Narmada Shemoy for assistance with gene prediction, Michelle Busby for assistance with RNA-Seq quality metrics and Rhys Farrer and Abigail McGuire for helpful comments on the manuscript. This project was funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN27220090018C. This research was also supported by the USDA-Agricultural Research Service.

Author contributions

Conceived and designed the experiments: J.J.B., N.S. and C.A.C. Performed the experiments: N.S. Analysed the data: C.A.D., N.S., H.D.M., J.J.B. and C.A.C. Performed assembly and annotation: J.M.G., D.H., S.Y. and Q.Z. Wrote the paper: C.A.D., N.S., H.D.M., J.J.B. and C.A.C. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information

Accession codes: The sequence data from this study have been deposited in the NCBI BioProject database under accession code PRJNA210750. Assemblies were submitted under accession codes AEUG01000000 for V. culicis, AFBI01000000 for E. aedis and GBTO10000000 for the An. quadrinaculatus transcriptome.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Desjardins, C.A. et al. Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidians pathogens of mosquitoes. Nat. Commun. 6:7121 doi: 10.1038/ncomms8121 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/