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Abstract Lattices abound in nature—from the crystal structure of minerals to the honey-comb

organization of ommatidia in the compound eye of insects. These arrangements provide solutions for

optimal packings, efficient resource distribution, and cryptographic protocols. Do lattices also play

a role in how the brain represents information? We focus on higher-dimensional stimulus domains,

with particular emphasis on neural representations of physical space, and derive which neuronal

lattice codes maximize spatial resolution. For mammals navigating on a surface, we show that the

hexagonal activity patterns of grid cells are optimal. For species that move freely in three

dimensions, a face-centered cubic lattice is best. This prediction could be tested experimentally in

flying bats, arboreal monkeys, or marine mammals. More generally, our theory suggests that the

brain encodes higher-dimensional sensory or cognitive variables with populations of grid-cell-like

neurons whose activity patterns exhibit lattice structures at multiple, nested scales.

DOI: 10.7554/eLife.05979.001

Introduction
In mammals, the neural representation of space rests on at least two classes of neurons. ‘Place cells’

discharge when an animal is near one particular location in its environment (O’Keefe and Dostrovsky,

1971). ‘Grid cells’ are active at multiple locations that span an imaginary hexagonal lattice covering

the environment (Hafting et al., 2005) and have been found in rats, mice, crawling bats, and human

beings (Hafting et al., 2005; Fyhn et al., 2008; Yartsev et al., 2011; Jacobs et al., 2013). These cells

are believed to build a metric for space.

In these experiments, locomotion occurs on a horizontal plane. Theoretical and numerical studies

suggest that the hexagonal lattice structure is best suited for representing such a two-dimensional

(2D) space (Guanella and Verschure, 2007; Mathis, 2012; Wei et al., 2013). In general, however,

animals move in three dimensions (3D); this is particularly true for birds, tree dwellers, and fish. Their

neuronal representation of 3D space may consist of a mosaic of lower-dimensional patches (Jeffery

et al., 2013), as evidenced by recordings from climbing rats (Hayman et al., 2011). Place cells in flying

bats, on the other hand, represent 3D space in a uniform and nearly isotropic manner (Yartsev and

Ulanovsky, 2013).

As mammalian grid cells might represent space differently in 3D than in 2D, we study grid-cell

representations in arbitrarily high-dimensional spaces and measure the accuracy of such representa-

tions in a population of neurons with periodic tuning curves. We measure the accuracy by the Fisher

information (FI). Even though the firing fields between cells overlap, so as to ensure uniform coverage

of space, we show how resolving the population’s FI can be mapped onto the problem of packing

non-overlapping spheres, which also plays an important role in other coding problems and
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cryptography (Shannon, 1948; Conway and Sloane, 1992; Gray and Neuhoff, 1998). The optimal

lattices are thus the ones with the highest packing ratio—the densest lattices represent space most

accurately. This remarkably simple and straightforward answer implies that hexagonal lattices are

optimal for representing 2D space. In 3D, our theory makes the experimentally testable prediction

that grid cells will have firing fields positioned on a face-centered-cubic lattice or its equally dense

non-lattice variant—a hexagonal close packing structure.

Unimodal tuning curves with a single preferred stimulus, which are characteristic for place cells or

orientation-selective neurons in visual cortex, have been extensively studied (Paradiso, 1988; Seung

and Sompolinsky, 1993; Pouget et al., 1999; Zhang and Sejnowski, 1999; Bethge et al., 2002;

Eurich and Wilke, 2000; Brown and Bäcker, 2006). This is also true for multimodal tuning curves that

are periodic along orthogonal stimulus axes and generate repeating hypercubic (or hyper-rectangular)

activation patterns (Montemurro and Panzeri, 2006; Fiete et al., 2008; Mathis et al., 2012).

Our results extend these studies by taking more general stimulus symmetries into account and lead us

to hypothesize that optimal lattices not only underlie the neural representation of physical space, but

will also be found in the representation of other high-dimensional sensory or cognitive spaces.

Model

Population coding model for space
We consider the D-dimensional space ℝD in which spatial location is denoted by coordinates

x = ðx1;…; xDÞ∈ℝD . The animal’s position in this space is encoded by N neurons. The dependence of

the mean firing rate of each neuron i on x is called the neuron’s tuning curve and will be denoted by

Ωi(x). To account for the trial-to-trial variability in neuronal firing, spikes are generated stochastically

according to a probability Piðki jτ ΩiðxÞÞ for neuron i to fire ki spikes within a fixed time window τ. While

two neurons can have correlated tuning curves Ωi(x), we assume that the trial-to-trial variability of any

two neurons is independent of each other. Thus, the conditional probability of the N statistically

independent neurons to fire (k1,…,kN) spikes at position x summarizes the encoding model:

P
�ðk1;…; kNÞ

��x�= ∏
N

i =1

Pi

�
ki
��τ ΩiðxÞ

�
: (1)

Decoding relies on inverting this conditional probability by asking: given a spike count vector

K = (k1,…,kN), where is the animal? Such a position estimate will be written as x̂ðKÞ. How precisely

the decoding can be done is assessed by calculating the average mean square error of the decoder.

The average distance between the real position of the animal x and the estimate x̂ðKÞ is

eLife digest The brain of a mammal has to store vast amounts of information. The ability of

animals to navigate through their environment, for example, depends on a map of the space around

them being encoded in the electrical activity of a finite number of neurons. In 2014 the Nobel Prize in

Physiology or Medicine was awarded to neuroscientists who had provided insights into this process.

Two of the winners had shown that, in experiments on rats, the neurons in a specific region of the

brain ‘fired’ whenever the rat was at any one of a number of points in space. When these points were

plotted in two dimensions, they made a grid of interlocking hexagons, thereby providing the rat with

a map of its environment.

However, many animals, such as bats and monkeys, navigate in three dimensions rather than two,

and it is not clear whether these same hexagonal patterns are also used to represent three-

dimensional space. Mathis et al. have now used mathematical analysis to search for the most efficient

way for the brain to represent a three-dimensional region of space. This work suggests that the

neurons need to fire at points that roughly correspond to the positions that individual oranges take

up when they are stacked as tight as possible in a pile. Physicists call this arrangement a face-

centered cubic lattice.

At least one group of experimental neuroscientists is currently making measurements on the firing

of neurons in freely flying bats, so it should soon be possible to compare the predictions of Mathis

et al. with data from experiments.

DOI: 10.7554/eLife.05979.002
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εðx̂jxÞ=EPðK jxÞðjjx − x̂ðKÞjjÞ; (2)

given the population coding model PðK jxÞ. This error is called the resolution (Seung and Sompolinsky,

1993; Lehmann, 1998), whereby the term jj:jj denotes Euclidean distance, jjxjj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑α   x

2
α

q
. More

generally, the covariance matrix ∑ðx̂jxÞ with coefficients ∑ðx̂jxÞα;β =EPðK jxÞððxα − xbαðKÞÞ · ðxβ − xbβðKÞÞÞ
for spatial dimensions α; β∈ f1;…;Dg, measures the covariance of the different error components, so

that the sum of the diagonal elements of ∑ is just the resolution εðx̂jxÞ. In principle, the resolution

depends on both the specific decoder and the population coding model. However, for unbiased

estimators, that is, estimators that on average decode the location x as this location EPðK jxÞðx̂ðKÞÞ= x,

the FI provides an analytical measure to assess the highest possible resolution of any such decoder

(Lehmann, 1998).

Resolution and Fisher Information
Given a response of K = (k1,…,kN) spikes across the population, we ask how accurately an ideal

observer can decode the stimulus x. The FI measures how well one can discriminate nearby stimuli and

depends on how P(x, K) changes with x. The greater the FI, the higher the resolution, and the lower

the error εðx̂jxÞ, as these two quantities are inversely related. More precisely, the inverse of the FI

matrix J(x),

JαβðxÞ=
Z  �∂  ln  PðK ; xÞ

∂xα

��
∂  ln  PðK ; xÞ

∂xβ

�
PðK ; xÞ  dK ; (3)

bounds the covariance matrix ∑ðx̂jxÞ of the estimated coordinates x = (x1,…,xD)

∑ðx̂jxÞ≥ JðxÞ−1: (4)

The resolution of any unbiased estimator of the encoded stimulus can achieve cannot be greater

than J(x)−1. This is known as the Cramér-Rao bound (Lehmann, 1998). Based on this bound, we will

consider the FI as a measure for the resolution of the population code. In particular, we are interested

in isotropic and homogeneous representations of space. These two conditions assure that the

population has the same resolution at any location and along any spatial axis. Isotropy does not entail

that the (global) spatial tuning of an individual neuron, Ωi(x), has to be radially symmetric, but merely

that the errors are (locally) distributed according to a radially symmetric distribution. For instance, the

tuning curve of a grid cell with hexagonal tuning is not radially symmetric around the center of a field

(it has three axes), but the posterior is radially symmetric around any given location for a module of

such grid cells. Homogeneity requires that the FI J(x) be asymptotically independent of x (as the

number of neurons N becomes large); spatial isotropy implies that all diagonal entries in the FI matrix

J(x) are equal.

Periodic tuning curves
Grid cells have periodic tuning curves—they are active at multiple locations, called firing fields, and

these firing fields are hexagonally arranged in the environment (Hafting et al., 2005). Their periodic

structure is given by a hexagonal lattice. The periodic structure of the tuning curve Ωi(x) reflects its

symmetries, that is, the set of vectors that map the tuning curve onto itself. Since we want to

understand how the periodic structure affects the resolution of the population code, we generalize

the notion of a grid cell to allow different periodic structures other than just hexagonal.

Mathematically, the symmetries of a periodic structure can be described by a lattice L, which is

constructed as follows: take a set of independent vectors (vα)1≤α≤D in D-dimensional space ℝD, and

consider all possible combinations of these vectors and their integer multiples—each such vector

combination points to a node of the lattice, such that the union of these represents the lattice itself.

For instance, the square lattice (Figure 1A, bottom) is given by basis vectors v1 = (1, 0) and v2 = (0, 1).

Mathematically, the lattice L⊂ℝD is

L= ∑
D

α=1

kαvα for kα ∈ℤ;   vα ∈ℝD ; (5)
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for which (vα)1≤α≤D is a basis of ℝD. We will not consider degenerate lattices. In this work, we follow the

nomenclature from Conway and Sloane (1992). Applied fields might differ slightly in their

terminology, especially regarding naming conventions for packings, which are generalizations of

lattices (Whittaker, 1981; Nelson, 2002). We will address these generalizations of lattices below.

Based on such a lattice L, we construct periodic tuning curves as illustrated in Figure 1A. We start

with a lattice L and a tuning shape Ω : ℝ+ → ½0; 1� that decays from unity to zero; Ω(r) describes the

firing rate of the periodified tuning curve at distance r from any lattice point and should be at least

twice continuously differentiable. Each lattice point p∈L has a domain Vp ⊂ℝD called the Voronoi

region, which is defined as

Vp =
�
x ∈ℝD  

��  jjx −pjj< jjx −qjj  ∀q∈L  ∧  p≠q
	
; (6)

that contains all points x that are closer to p than to any other lattice point q. Note that Vp ∩ Vq = ϕ if

p ≠ q and that for all p;q∈L there exists a unique vector v ∈L with Vp = Vq + v.

The domain that contains the null (0) vector is called the fundamental domain and is denoted

by L:= V0. For each x ∈ℝD there is a unique lattice point p∈L that maps x into the fundamental

domain: x −p∈ L. Let us call this mapping πL. With this notation one can periodify Ω onto L by

defining a grid cell’s tuning curve as ΩL:

ΩLðxÞ : ℝD →ℝ+;   x↦fmax ·Ω


jjπLðxÞjj2

�
; (7)

where fmax is the peak firing rate of the neuron. Note that throughout the paper we set fmax = τ = 1, for

simplicity. As illustrated in Figure 1A, within the fundamental domain L, the tuning curve ΩL defined

above is radially symmetric. This pattern is repeated along the nodes of L, akin to ceramic tiling.

A grid module is defined as an ensemble of M grid cells ΩL
i , i ∈ f1;…;Mg with identical, but

spatially shifted tuning curves, that is, ΩL
i ðxÞ=ΩL+ci ðxÞ and spatial phases ci ∈ L (see Figure 1B). The

various phases within a module can be summarized by their phase density ρðcÞ=∑ M
i=1   δðc − ciÞ. This

definition is motivated by the observation of spatially shifted hexagonally tuned grid cells in the

entorhinal cortex of rats (Hafting et al., 2005; Stensola et al., 2012).

ν2

ν1

c1 c2
c3

ϕ

L

Figure 1. Grid cells and modules. (A) Construction of a grid cell: Given a tuning shape Ω and a lattice L, here a square lattice generated by v1 and v2 with

φ = π/2, one periodifies Ω with respect to L. One defines the value of ΩLðxÞ in the fundamental domain L as the value of Ω(r) applied to the distance from

zero and then repeats this map over ℝ2 like L tiles the space. This construction can be used for lattices L of arbitrary dimensions (Equation 7). (B) Grid

module: The firing rates of three grid cells (orange, green, and blue) are indicated by color intensity. The cells’ tuning is identical (Ω and L are the same),

yet they differ in their spatial phases ci. Together, such identically tuned cells with different spatial phases define a grid module.

DOI: 10.7554/eLife.05979.003
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Any grid module is uniquely characterized by its signature ðΩ; ρ;LÞ. To investigate the role of

different periodic structures, we can fix the tuning shape Ω and density ρ and solely vary the lattice L
to find the lattice that yields the highest FI.

Results
To determine how the resolution of a grid module depends on the periodic structure L, we compute

the population FI Jς(x) for a module of grid cells with signature ς= ðΩ; ρ;LÞ, which describes the tuning

shape, the density of firing fields, and the lattice. By fixing the tuning shape Ω and the number jρj=M

of spatial phases, we can compare the resolution for different periodic structures. (Table 1 contains

a glossary of the variables.)

Scaling of lattices and nested grid codes
Our grid-cell construction has one obvious degree of freedom, the length scale or grid size of the

lattice L, that is, the width of the fundamental domain L. For a module with signature ς= ðΩ; ρ;LÞ and
for arbitrary scaling factor λ > 0, the rescaled construction λς := ðΩðλrÞ; ρðλxÞ; λ ·LÞ is a grid module

too. The corresponding tuning curve satisfies ðΩ∘λÞλLðxÞ=ΩLðλxÞ and is thus merely a scaled version

of the former. Indeed, as we show in the ‘Material and methods’ section, the FI of the rescaled module

is λ−2 Jς(0). The Cramér-Rao bound (Equation 4) implies that the local resolution of an unbiased

estimator could thus rapidly improve with a finer grid size, that is, decreasing λ.

However, for any grid module ς= ðΩ; ρ;LÞ the posterior probability, that is, the likelihood of

possible positions given a particular spike count vector K = (k1,…,kN), is also periodic. This follows

from Bayes rule:

Pðx��KÞ=PðK ��xÞ ·PðxÞ
PðKÞ ∝PðxÞ ∏

N

i =1

Pi

�
ki
��τ ΩL

i ðxÞ
�
: (8)

Table 1. List of acronyms, variables, and terms
D Dimension of the stimulus space ℝD

FI Fisher information, usually denoted by J (Equation 3)

L Non-degenerate point lattice describing periodic structure (Equation 5)

L Fundamental domain of L, which is the Voronoi cell containing 0 (Equation 6)

Ω Tuning shape

supp(Ω) Support of Ω, that is, the subset where Ω does not vanish

ΩL Periodified tuning curve on ℝD , where L is a D-dimensional lattice and Ω a tuning
curve. Simply referred to as a ‘grid cell’ (Equation 7)

ρ Phase density of grid cells’ phases ci within a module ρðcÞ=∑ M
i=1δðc − ciÞ

M Number of phases in grid module
R
Lρ=M

ς= ðΩ; ρ;LÞ Signature defining a grid module, which is an ensemble of grid cells differing in
spatial phases ci, defined by ρ and tuning curves given by ΩL

detðLÞ Determinant of lattice L (equal to volume of L)

BR(0) Subset of ℝD containing all points with distance less than R from 0

ΔðLÞ Packing ratio of a lattice, that is, the volume of the largest BRð0Þ that fits inside L
divided by det ðLÞ (Equation 15)

H, Q Hexagonal and square planar lattice of unit node-to-node distance (Figure 2)

FCC, BCC, C Face-centered, body-centered, and cubic lattice of unit node-to-node distance,
respectively (Figure 4).

trJ Trace of the FI, that is, the sum of diagonal elements

Jς Population FI of grid module with signature ς

trJL, trJQ, trJH Trace of FI per neuron for lattice L (Q and H, respectively) with fixed bump-like Ω
defined in Equation 26

trJML Trace of FI for lattice L for M randomly distributed phases in L for the same bump
function

DOI: 10.7554/eLife.05979.004

Mathis et al. eLife 2015;4:e05979. DOI: 10.7554/eLife.05979 5 of 19

Research article Computational and systems biology | Neuroscience

http://dx.doi.org/10.7554/eLife.05979.004
http://dx.doi.org/10.7554/eLife.05979


Since the right hand side is invariant under operations of L on x, so is the left hand side of this

equation. Thus, the multiple firing fields of a grid cell cannot be distinguished by a decoder, so that for

λ → 0 the global resolution approaches the a priori uncertainty (Mathis et al., 2012a, 2012b). By

combining multiple grid modules with different spatial periods one can overcome this fundamental

limitation, counteracting the ambiguity caused by periodicity and still preserving the highest

resolution at the smallest scale. Thus, one arrives at nested populations of grid modules, whose spatial

periods range from coarse to fine. The FI for an individual module at one scale determines the optimal

length scale of the next module (Mathis et al., 2012a, 2012b). The larger the FI per module, the

greater the refinement at subsequent scales can be (Mathis et al., 2012a, 2012b). This result

emphasizes the importance of finding the lattice that endows a grid module with maximal FI, but also

highlights that the specific scale of the lattices can be fixed for this study.

FI of a grid module with lattice L
We now calculate the FI for a grid module with signature ς= ðΩ; ρ;LÞ. For cells whose firing is

statistically independent (Equation 1), the joint probability factorizes; therefore, the population FI is

just the sum over the individual FI contributions by each neuron, JςðxÞ=∑ M
i=1   JΩL

i
ðxÞ. The individual

neurons only differ by their spatial phase ci, thus JΩL
i
ðxÞ= JΩLðx − ciÞ. Consequently,

JςðxÞ=∑ M
i=1   JΩL ðx − ciÞ, depends only on the function JΩLðrÞ and the deviations x − ci, where ci is

the closest lattice point of ci +L to x. If the grid-cell density ρ is uniform across L, then for all x ∈ℝD:

Jς(x) ≈ Jς(0). It therefore suffices to only consider the FI at the origin, which can be written as:

Jςð0Þ= ∑
M

i =1

JΩLðciÞ=
Z
L
  JΩLðcÞρðcÞdc: (9)

For uniformly distributed spatial phases ci and increasing number of neurons M, the law of large

numbers implies

lim
M→∞

�����detðLÞ
M

Jςð0Þ−
Z
L
  JΩLðcÞ  dc

�����=0: (10)

Here, detðLÞ denotes the volume of the fundamental domain. Thus, for large numbers of neurons

M=
R
L   ρðcÞdc we obtain

Jςð0Þ≈ M

detðLÞ
Z
L
  JΩL ðcÞdc: (11)

This means that the population FI at 0 is approximately given by the average FI within the

fundamental domain L times the number of neurons M. Let us now assume that supp(Ω) = [0, R] for

some positive radius R. Outside of this radius, the tuning shape is zero and the firing rate vanishes. So

the spatial phases of grid cells that contribute to the FI at x = 0 lie within the ball BR(0). If we now also

assume that this ball is contained in the fundamental domain, BRð0Þ⊂ L, we getZ
L

  JΩLðcÞdc =
Z
BRð0Þ

JΩL ðcÞdc: (12)

This result implies that any grid code ς= ðΩ; ρ;LÞ, with large M, supp(Ω) = [0, R], and BRð0Þ⊂ L,

satisfies

Jςð0Þ≈ M

detðLÞ
Z
BRð0Þ

  JΩLðcÞdc: (13)

The FI at the origin is therefore approximately equal to the product of the mean FI contribution of

cells within a R-ball around 0 and the number of neuronsM, weighted by the ratio of the volume of the

R-ball to the area of the fundamental domain L. Due to the radial symmetry of ΩL, the FI matrix JΩLðcÞ
is diagonal with identical entries, guaranteeing the spatial resolution’s isotropy. The error for each

coordinate axis is bounded by the same value, that is, the inverse of the diagonal element 1/Jς(0)ii, for

such a population. Instead of considering the FI matrix Jς(0), we can therefore consider the trace of

Jς(0), which is the sum over the diagonal of Jς(0). According to Equation 4, 1/trJς(0) bounds the mean

square error summed across all dimensions εðx̂jxÞ.
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For two lattices L1,L2, with BR(0) ⊂ L1∩L2 we consequently obtain

trJΩL1

trJΩL2

=
detðL2Þ
detðL1Þ; (14)

which signifies that the resolution of the grid module is inversely proportional to the volumes of their

fundamental domains. The periodic structure L thus has a direct impact on the resolution of the grid

module. This result implies that finding the maximum FI translates directly into finding the lattice with

the highest packing ratio.

Packing ratio of lattices
The sphere packing problem is of general interest in mathematics (Conway and Sloane, 1992) and

has wide-ranging applications from crystallography to information theory (Barlow, 1883; Shannon,

1948; Whittaker, 1981; Gray and Neuhoff, 1998; Gruber, 2004). When packing R-balls BR in ℝD in

a non-overlapping fashion, the density of the packing is defined as the fraction of the space covered

by balls. For a lattice L, it is given by

volðBRð0ÞÞ
detðLÞ ; (15)

which is known as the packing ratio ΔðLÞ of the lattice. For a given lattice, this ratio is maximized by

choosing the largest possible R, known as the packing radius, which is defined as the in-radius of

a Voronoi region containing the origin (Conway and Sloane, 1992). Figure 2 depicts the disks with

the largest in-radius for the hexagonal and the square lattice in blue and illustrates the packing ratio.

FI and packing ratio
We now come to the main finding of this study: among grid modules with different lattices, the lattice

with the highest packing ratio leads to the highest spatial resolution.

To derive this result, let us fix a tuning shape Ω with supp(Ω) = [0, R], lattices Lj such that BR(0) ⊂ Lj
for 1 ≤ j ≤ K, and uniform densities ρ for each fundamental domain of equal cardinality M. Any linear

order on the packing ratios,

ΔðL1Þ≤…≤Δ
�Lj

�
≤…≤ΔðLK Þ  ; (16)

is translated by Equation 14 into the same order for the traces of the FI

trJΩL1 ≤…≤ trJΩLj ≤…≤ trJΩLK ; (17)

and thus the resolution of these modules: the higher the packing ratio, the higher the FI of a grid

module.

The condition supp(Ω) = [0, R] with BR(0) ⊂ L, although restrictive, is consistent with experimental

observations that grid cells tend to stop firing between grid fields and that the typical ratio between

field radius and spatial period is well below 1/2 (Hafting et al., 2005; Brun et al., 2008; Giocomo

et al., 2011). Generally, the tuning width that maximizes the FI does not necessarily satisfy this

condition; see Figures 3, 4, in which the optimal support radius of the tuning curve θ2 is greater than

the in-radius R = 1/2 of L. The same observation will hold in higher dimensions (D > 2), consistent with

the finding that the optimal tuning width for Gaussian tuning curves increases with the number of

spatial dimensions, whether space is infinite (Zhang and Sejnowski, 1999) or finite (Brown and

Bäcker, 2006). When the radius R of the support of the tuning curve exceeds the in-radius, the

optimal lattice can be different from the densest one as we will show numerically for specific tuning

curves and Poisson noise. However, with well separated fields, like those observed experimentally, the

densest lattice provides the highest resolution for any tuning shape Ω, as we just demonstrated.

The optimal packing ratio of lattices for low-dimensional space is well known. Having established

our main result, we can now draw on a rich body of literature, in particular Conway and Sloane

(1992), to discuss the expected firing-field structure of grid cells in 2D and 3D environments.

Optimal 2D grid cells
With a packing ratio of π=

ffiffiffiffiffiffi
12

p
, the hexagonal lattice is the densest lattice in the plane (Lagrange,

1773). According to Equation 14, the hexagonal lattice is the optimal arrangement for grid-cell firing
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fields on the plane. For example, it outperforms the quadratic lattice, which has a density of π/4, by

about 15.5% (see Figure 2). Consequently, the FI of a grid module periodified along a hexagonal

lattice outperforms one periodified along a square lattice by the same factor.

To provide a tangible example, we calculated the trace of the average FI per neuron trJς=
R
L   ρ for

signature ς= ðΩ; ρ;LÞ and chose the lattice L to either be the hexagonal lattice H or the quadratic

lattice Q. We denote the trace of the average FI per neuron as: trJL = trJς=
R
L   ρ; trJH and trJQ are

similarly defined. We considered Poisson spike statistics and used a bump-like tuning shape Ω
(Equation 26, ‘Materials and methods’ section). The tuning shape Ω depends on two parameters θ1
and θ2, where θ1 controls the slope of the flank in Ω and θ2 defines the support radius. The periodified

tuning curve ΩQ is illustrated for different parameters in the top of Figure 3A and in Figure 3—figure

supplement 1.

Figure 3A depicts trJH and trJQ for various values of θ1 and θ2. Quite generally, the FI is larger for

grid modules with broad tuning (large θ2) and steep tuning slopes (small θ1). Figure 3A also

demonstrates that as long as θ2 ≤ 1/2, trJH consistently outperforms trJQ. But how large is this effect?

As predicted by our theory, the grid module with the hexagonal lattice outperforms the square lattice

by the relation of packing ratios
ffiffiffi
3

p
=2, as long as the support radius θ2 is within the fundamental

domain of the hexagonal and the square lattice of unit length, that is, θ2 ≤ 1/2 (bottom of Figure 3A).

As the support radius becomes larger, the FI of the hexagonal lattice is no longer necessarily greater

than that of the square lattice; the specific interplay of tuning curve and boundary shape determines

which lattice is better: for θ1 = 1/4, trJH=trJQ drops quickly beyond θ2 = 0.5, even though, for θ1 = 1,

the ratio stays constant up to θ2 = 0.6.

Next we calculated the FI per neuron for a larger family of planar lattices generated by two unitary

basis vectors with angle φ. Figure 3B displays trJL for φ ∈ [π/3, π/2], slope parameter θ1 = 1/4, and

different support radii θ2. For the lattice to have unitary length, the value φ cannot go below π/3. The

trJL decays with increasing angle φ. Indeed, according to Equation 13, the FI falls like

1=det L=1=sinðφÞ so that the maximum is achieved for the hexagonal lattice with π/3.

Figure 2. Periodified grid-cell tuning curve ΩL for two planar lattices, (A) the hexagonal (equilateral triangle) lattice

H and (B) the square lattice Q, together with the basis vectors v1 and v2. These are π/3 apart for the hexagonal

lattice and π/2 for the square lattice. The fundamental domain, that is, the Voronoi cell around 0, is shown in gray.

A few other domains that have been generated according to the lattice symmetries are marked by dashed lines.

The blue disk shows the disk with maximal radius R that can be inscribed in the two fundamental domains. For equal

and unitary node-to-node distances, that is, jv1j= jv2j=1, the maximal radius equals 1/2 for both lattices. The

packing ratio Δ is ΔðHÞ= π=
ffiffiffiffiffiffi
12

p
for the hexagonal and ΔðQÞ= π=4 for the square lattice; the hexagonal lattice is

approximately 15.5% denser than the square lattice.

DOI: 10.7554/eLife.05979.005
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The FIs trJL are averages over all phases, under the assumption that the density of phases tends to

a constant; but are these values also indicative for small neural populations? To answer this question,

we calculated the FI for populations with 200 neurons, as some putative grid cells are found in patches

of this size (Ray et al., 2014). For M = 200 randomly chosen phases (Figure 3C), the mean of the

normalized FI trJML=M over 5000 realizations is well captured by the FI per neuron calculated in

Figure 3A. Because of fluctuations in the FI, however, the square lattice is better than the hexagonal

lattice in about 20% of the cases.

Our theory implies that for radially symmetric tuning curves the hexagonal lattice provides the best

resolution among all planar lattices. This conclusion agrees with earlier findings: Wei et al. considered

a notion of resolution defined as the range of the population code per smallest distinguishable scale

Figure 3. Fisher information for modules of two-dimensional grid cells. (A) Top: Periodified bump-function Ω and

square lattice L, for various parameter combinations θ1 and θ2. Here, θ1 modulates the decay and θ2 the support.

Middle: Average trace trJL of the Fisher information (FI) for uniformly distributed grid cells ΩL. Hexagonal (H) and

square (Q) lattices are considered for different θ1 and θ2 values. The FI of the hexagonal grid cells outperforms the

quadratic grid when support is fully within the fundamental domain (θ2 < 0.5, see main text). Bottom: Ratio trJH=trJQ
as a function of the tuning parameter θ2. For θ2 < 0.5, the hexagonal population offers 3/2 times the resolution of the

square population, as predicted by the respective packing ratios. (B) Average trJL for grid cells distributed uniformly

in lattices generated by basis vectors separated by an angle φ (basis depicted above graph). trJL behaves like 1/sin(φ)

and has its maximum at π/3. (C) Distribution of 5000 realizations of trJML =M at 0 for a population of M = 200 randomly

distributed neurons. For both the hexagonal and square lattice, parameters are θ1 = 1/4 and θ2 = 0.4. The means

closely match the average values in (A). However, due to the finite neuron number the FI varies strongly for different

realizations, and in about 20% of the cases a square lattice module outperforms a hexagonal lattice.

DOI: 10.7554/eLife.05979.006

The following figure supplement is available for figure 3:

Figure supplement 1. The firing rate and Fisher information of the bump tuning shape.

DOI: 10.7554/eLife.05979.007
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and then demonstrated that a population of nested grid cells with hexagonal tuning is optimal for

a winner-take-all and Bayesian maximum likelihood decoders (Wei et al., 2013). Guanella and

Verschure numerically compared hexagonal to other regular lattices based on maximum likelihood

decoding (Guanella and Verschure, 2007).

Optimal lattices for 3D grid cells
Gauss proved that the packing ratio of any cubic lattice is bounded by π=ð3

ffiffiffi
2

p
Þ and that this value is

attained for the face-centered cubic (FCC) lattice (Gauss, 1831) illustrated in Figure 4A. This implies

that the optimal 3D grid-cell tuning is given by the FCC lattice. For comparison, we also calculated

the average population FI for two other important 3D lattices: the cubic lattice (C) and the body-

centered cubic lattice (BCC), both shown in Figure 4A.

Figure 4. Fisher information for modules of 3D grid cells. (A) The three lattices considered: face-centered cubic

(FCC), body-centered cubic (BCC), and cubic (C). (B) trJL for the periodified bump-function Ω for the three lattices

and various parameter combinations θ1 and θ2. The Fisher information (FI) of the FCC grid cells outperforms the

other lattices when the support is fully within the fundamental domain (θ2 < 0.5, see main text). For larger θ2 the best

lattice depends on the relation between the Voronoi cell’s boundary and the tuning curve. (C) Ratio trJL=trJC as

a function of θ2 for L∈ fFCC;BCC;Cg. For θ2 < 0.5, the hexagonal population has 3/2 times the resolution of the

square population, as predicted by the packing ratios. (D) Average trJLφ;ψ for uniformly distributed grid cells within

a lattice Lφ;ψ generated by basis vectors separated by angles φ and ψ (as shown above; θ1 = θ2 = 1/4). trJLφ;ψ

behaves like 1/(sinφ·sinψ ) and has its maximum for the lattice with the smallest volume. (E) Distribution of 5000

realizations of trJML =M at 0 for a population of M = 200 randomly distributed neurons. Parameters: θ1 = 1/4, θ2 = 0.4.

The means closely match the averages in (B). Due to the finite neuron number, the FI varies strongly for different

realizations.

DOI: 10.7554/eLife.05979.008
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Keeping the bump-like tuning shape Ω and independent Poisson noise, we compared the

resolution of grid modules with such lattices (Figure 4B). Their averaged trace of FI is denoted

by trJFCC, trJBCC, and trJC, respectively. As long as the support θ2 of Ω is smaller than 1/2, the

support is a subset of the fundamental domain of all three lattices. Hence, the trace of the

population FI of the FCC outperforms both the BCC and C lattices. As the ratios of the trace of

the population FI scales with the packing ratio (Figure 4C), FCC-grid cells provide roughly 41%

more resolution for the same number of neurons than do C-grid cells. Similarly, FCC-grid cells

provide 8.8% more FI than BCC-grid cells.

Next we calculated the FI per neuron for a large family of cubic lattices Lφ;ψ generated by three

unitary basis vectors with spanning angles φ and ψ . Figure 4D displays trJLφ;ψ for θ1 = θ2 = 1/4 and

various φ and ψ . The resolution trJL decays with increasing angles and has its maximum for the lattice

with the smallest volume as predicted by Equation 13.

To study finite-size effects, we simulated 5000 populations of 200 grid cells with random spatial

phases. Qualitatively, the results (Figure 4E) match those in 2D (Figure 3C). Despite the small module

size, FCC outperformed the cubic lattice C in all simulated realizations.

Equally optimal non-lattice solutions for grid-cell tuning
Fruit is often arranged in an FCC formation (Figure 5A). One arrives at this lattice by starting from

a layer of hexagonally placed spheres. This requires two basis vectors to be specified and is the

densest packing in 2D. To maximize the packing ratio in 3D, the next layer of hexagonally arranged

spheres has to be stacked as tightly as possible. There are two choices for the third and final basis

vector achieve this packing, denoted as γ1 and γ2 in Figure 5B (modulo hexagonal symmetry). If one

chooses γ1, then two layers below there is no sphere with its center at location γ1, but instead there is

one at γ2 (and vice versa). This stacking of layers is shown in Figure 5C and generates the FCC lattice.

One could achieve the same density by choosing γ1 for both the top layer and the layer below the

basis layer. Yet as this arrangement, called hexagonal close packing (HCP), cannot be described by

Figure 5. Lattice and non-lattice solutions in 3D. (A) Stacking of spheres as in an FCC lattice. In this densest lattice in 3D, each sphere touches 12 other

spheres and there are four different planar hexagonal lattices through each node. (B) Over a layer of hexagonally arranged spheres centered at γ0 (in

black) one can put another hexagonal layer by starting from one of six locations, two of which are highlighted, γ1 and γ2. (C) If one arranges the hexagonal

layers according to the sequence (…,γ1, γ0, γ2,…) one obtains the FCC. Note that spheres in layer I are not aligned with those in layer III. (D) Arranging the

hexagonal layers following the sequence (…,γ0, γ1, γ0,…) leads to the hexagonal close packing HCP. Again, each sphere touches 12 other spheres.

However, there is only one plane through each node for which the arrangement of the centers of the spheres is a regular hexagonal lattice. This packing

has the same packing ratio as the FCC, but is not a lattice. (E) trJL for bump-function Ω with L=FCC and HCP for various parameter combinations θ1
and θ2; θ1 modulates the decay and θ2 the support. The two packings have the same packing ratio and for this tuning curve also provide identical spatial

resolution. FI: Fisher information.

DOI: 10.7554/eLife.05979.009
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three vectors, it does not define a lattice (see Figure 5D), even though it is as tightly packed as the

FCC. Such packings, defined as an arrangement of equal non-overlapping balls (Conway and Sloane,

1992; Hales, 2012), generalize lattices.

While one can define a grid module for any lattice, as we showed above, one cannot define

a grid module in a meaningful way for an arbitrary packing, due to the lack of symmetry. But for

any given packing P of ℝD by balls B1 of radius 1, one can define a ‘grid cell’ by generalizing the

definition given for lattices (Equation 7). To this end, consider the Voronoi partition of ℝD by P.

For each location x∈ℝD there is a unique Voronoi cell Vp with node p∈P. One defines the grid

cell’s tuning curve ΩPðxÞ by assigning the firing rate according to Ωðjjp− xjj2Þ for tuning shape Ω
and distance jjp− xjj. Depending on the specific packing, this tuning curve ΩP may or may not be

periodic. Because a packing P often has fewer symmetries than a lattice L, the ‘grid cells’ in an

arbitrary P cannot generally be used to define a ‘grid module’. To explain why, consider an

arbitrary packing and the unique Voronoi cell V0 that contains the point 0. Choose M uniformly

distributed phases c1,…,cM within V0. Locations within V0 will then be uniformly covered by

shifted tuning curves ΩiðxÞ : =ΩPðx− ciÞ. However, typically the different Voronoi cells will neither

be congruent, nor have similar volumes. Thus, the Ωi will typically not cover each Voronoi cell

with the same density and will therefore fail to define a proper grid module. This problem does

not exist for lattices. Here, the equivalence classes ci +L cover each cell with the same density.

Highly symmetric packings, on the other hand, do permit the definition of grid modules.

For example, the hexagonal close packing HCP can be used to define a grid cell ΩHCPðxÞ. Using the

same symmetry argument from Equations 9–11, implies for the FI:

JðΩ;ρ;HCPÞðxÞ≈ JðΩ;ρ;HCPÞð0Þ≈ M

volðV0Þ
Z
V0

  JΩHCP ðcÞdc: (18)

The maximal in-radius R for theHCP with grid size λ = 1 is equal to 1/2. Like for lattices, we assume

that supp(Ω) = [0, R] and BR(0) ⊂ V0. Then the integrand vanishes for distances larger than 1/2 from 0.

Hence, we obtain:

JðΩ;ρ;HCPÞð0Þ≈ M

volðV0Þ
Z
B1=2ð0Þ

  JΩHCP ðcÞdc: (19)

Considering the same tuning shape Ω and number of phases M for an FCC lattice, which also has

maximal in-radius 1/2, Equation 13 gives us the following expression for the FCC lattice:

JðΩ;ρ;FCCÞð0Þ≈ M

detðFCCÞ
Z
B1=2ð0Þ

  JΩFCCðcÞdc: (20)

Since both fundamental domains have the same volumes, that is, detðFCCÞ= volðV0Þ, and the

integrands restricted to these balls are identical, that is, JΩFCC
��
B1=2ð0Þ

= JΩHCP
��
B1=2ð0Þ

, we can conclude

that grid modules comprising FCC or HCP-like symmetries have the same FI. We also numerically

calculate the trace of the average FI for a module of HCP grid cells and compare it to the FCC case.

For bump-like tuning curves Ω, both FIs are identical (Figure 5E) as expected from the radial

symmetry of Ω. As a consequence, grid cells defined by either HCP or FCC symmetries provide

optimal resolution.

Figure 5D,E shows that the cyclic sequences (γ0, γ1) and (γ1, γ0, γ2) lead to HCP and FCC,
respectively. The centers γ0, γ1, and γ2 can also be used to make a final point on packings: there

are infinitely many distinct packings with the same density π=ð3 ffiffiffi
2

p Þ. They can be constructed by

inequivalent words, generated by finitewalks through the triangle with letters γ0, γ1, and γ2 (Hales,

2012), with each letter representing one of three orientations for the layers. For instance, (γ0, γ1,

γ0, γ2) describes another packing with the same density. All packings share one feature: around

each sphere there are exactly 12 spheres, arranged in either HCP or FCC lattice fashion (Hales,

2012). These packings can also be used to define a grid module, because the density of phases

will be uniform in all cells. Furthermore, as in the calculation of the FI for the HCP and FCC
(Equation 18–20) only local integration was necessary, such mixed packings will have equally

large, uniform FI as the pure HCP or FCC packings.

Only in recent years has it been proven that no other arrangement has a higher packing ratio than

the FCC, a problem known as Kepler’s conjecture (Hales, 2005, 2012). Based on these results and
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our comparison of trJHCP and trJFCC (Figure 5E), we predict that 3D grid cells will correspond to one

of these packings. While there are equally dense packings as the densest lattice in 3D, this is not the

case in 2D. Thue proved that the hexagonal lattice is unique in being the densest amongst all planar

packings (Thue, 1910); grid cells in 2D should possess a hexagonal lattice structure.

Discussion
Grid cells are active when an animal is near one of any number of multiple locations that correspond to

the vertices of a planar hexagonal lattice (Hafting et al., 2005). We generalize the notion of a grid cell

to arbitrary dimensions, such that a grid cell’s stochastic activity is modulated in a spatially periodic

manner within ℝD . The periodicity is captured by the symmetry group of the underlying lattice L.

A grid module consists of multiple cells with equal spatial period but different spatial phases. Using

information theory, we then asked which lattice offers the highest spatial resolution.

We find that the resolution of a grid module is related to the packing ratio of L—the lattice with

highest packing ratio corresponds to the grid module with highest resolution. Well-known results from

mathematics (Lagrange, 1773; Gauss, 1831; Conway and Sloane, 1992) then show that the

hexagonal lattice is optimal for representing 2D, whereas the FCC lattice is optimal for 3D. In 3D, but

not in 2D, there are also non-lattice packings with the same resolution as the densest lattice (Thue,

1910; Hales, 2012). A common feature of these highly symmetric optimal solutions in 3D is that each

grid field is surrounded by 12 other grid fields, arranged in either FCC lattice or hexagonal close

packing fashion. These solutions emerge from the set of all possible packings simply by maximizing

the resolution, as we showed. However, resolution alone, as measured by the FI, does not distinguish

between optimal packing solutions with different symmetries. Whether a realistic neuronal decoder,

such as one based on population vector averages, favors one particular solution is an interesting open

question.

As we have demonstrated, using the FI makes finding the optimal L analytically tractable for all

dimensions D and singles out densest lattices as optimal tuning shapes under assumptions that are

restrictive, but are consistent with experimental measurements (Hafting et al., 2005; Brun et al.,

2008; Giocomo et al., 2011). The assumption that the tuning curves must have finite support within

the fundamental domain of the lattice corresponds to grid cells being silent outside of the firing field.

Indeed, our numerical simulations also showed that for broader tuning curves, grid modules with

quadratic lattices can provide more FI than the hexagonal lattice (Figure 3A, θ2 ≈ 0.6 and θ1 = 1/4)

and that grid cells with a C or BCC lattice can provide more FI than the FCC (Figure 4B, θ2 > 0.65 and

θ1 = 1/4). For the planar case, Guanella and Verschure (2007) show numerically that triangular

tessellations yield lower reconstruction errors under maximum-likelihood decoding than equivalently

scaled square grids. Complementing this numerical analysis,Wei et al. (2013) provide a mathematical

argument that hexagonal grids are optimal. To do so, they define the spatial resolution of a single

module representing 2D space as the ratio R = (λ/l)2, where λ is the grid scale and l is the diameter of

the circle in which one can determine the animal’s location with certainty. For a fixed resolution R, the

number of neurons required is N = d sin(φ) R in their analysis, where d is the number of tuning curves

covering each point in space. As φ ∈ [π/3, π/2] for the lattice to have unitary length (Figure 3B),

minimizing N for a fixed resolution R yields φ = π/3; thus, hexagonal lattices should be optimal.

Furthermore, Wei et al. show that this result also holds when considering a Bayesian decoder (Wei

et al., 2013). While Wei et al. minimize N for fixed l, we minimize l (in their notation). Like Wei et al.,

we assume that the tuning curve Ω is isotropic (notwithstanding the fact that the lattice has preferred

directions); unlike these authors, we show that there are conditions under which the firing fields should

be arranged in a square lattice, and not hexagonally.

Using the FI gives a theoretical bound for the local resolution of any unbiased estimator (Lehmann,

1998). In particular, this local resolution does not take into account the ambiguity introduced by the

periodic nature of the lattice. Our analysis is restricted to resolving the animal’s position within the

fundamental domain. For large neuron numbers N and expected peak spike counts fmaxτ the

resolution of asymptotically efficient decoders, like the maximum likelihood decoder, or the minimum

mean square estimator, can indeed attain the resolution bound given by the FI (Seung and

Sompolinsky, 1993; Bethge et al., 2002; Mathis et al., 2013). Thus, for these decoders and

conditions the results hold. In contrast, for small neuron numbers and peak spike counts, the optimal

codes could be different, just as it has been shown in the past that the optimal tuning width in these
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cases cannot be predicted by the FI (Bethge et al., 2002; Yaeli et al., 2010; Berens et al., 2011;

Mathis et al., 2012).

Maximizing the resolution explains the observed hexagonal patterns of grid cells in 2D, and

predicts an FCC lattice (or equivalent packing) for grid-cell tuning curves of mammals that can freely

explore the 3D nature of their environment. Quantitatively, we demonstrated that these optimal

populations provide 15.5% (2D) and about 41% (3D) more resolution than grid codes with quadratic

or cubic grid cells for the same number of neurons. Although better, this might not seem substantial,

at least not at the level of a single grid module. However, as medial entorhinal cortex harbors a nested

grid code with at least 5 and potentially 10 or more modules (Stensola et al., 2012), this translates

into a much larger gain of 1:1555  …  10 ≈ 2:1  …  4:2 and
ffiffiffi
2

p 5  …  10
≈ 5:7  …  32, respectively (Mathis et al.,

2012a, 2012b). Because aligned grid-cell lattices with perfectly periodic tuning curves imply that the

posterior is periodic too (compare Equation 8), information from different scales would have to be

combined to yield an unambiguous read-out. Whether the nested scales are indeed read out in this

way in the brain remains to be seen (Mathis et al., 2012a, 2012b; Wei et al., 2013). An alternative

hypothesis, as first suggested by Hafting et al., is that the slight, but apparently persistent

irregularities in the firing fields across space (Hafting et al., 2005; Krupic et al., 2015; Stensola et al.,

2015) are being used. Future experiments should tackle this key question.

We considered perfectly periodic structures (lattices) and asked which ones provide most

resolution. However, the first recordings of grid cells already showed that the fields are not exactly

hexagonally arranged and that different fields might have different peak firing rates (Hafting et al.,

2005). More recently, deviations from hexagonal symmetry have gained considerable attention

(Derdikman et al., 2009; Krupic et al., 2013, 2015; Stensola et al., 2015). Such ‘defects’ modulate

the periodicity of the tuning and consequently affect the symmetry of the likelihood function. This

might imply that a potential decoder might be able to distinguish different unit cells even given

a single module, which is not possible for perfectly periodic tuning curves (compare Equation 8). The

local resolution, on the other hand, is robust to small, incoherent variations as the FI is a statistical

average over many tuning curves with different spatial phases. At a given location, Equation 9

becomes

JςðxÞ= ∑
M

i =1

JΩL
i
ðx − ciÞ≈

Z
x−L

J
ΩLðcÞρðcÞdc;

where ΩL is the average of the variable tuning curves ΩL
i . Small variations in the peak rate and grid

fields will therefore average out, unless these variations are coherent across grid cells. Thus, resolution

bounded by the FI is robust with respect to minor differences in peak firing rates and hexagonality.

Similar arguments hold in higher dimensions.

In this study, we focused on optimizing grid modules for an isotropic and homogeneous space,

which means that the resolution should be equal everywhere and in each direction of space. From

a mathematical point of view, this is the most general setting, but it is certainly not the only imaginable

scenario; future studies should shed light on other geometries. Indeed, the topology of natural

habitats, such as burrows or caves, can be highly complicated. Higher resolution might be required at

spatial locations of behavioral relevance. Neural representations of 3D space may also be composed

of multiple 1D and 2D patches (Jeffery et al., 2013). However, the mere fact that these habitats

involve complicated low-dimensional geometries does not imply that an animal cannot acquire

a general map for the environment. Poincaré already suggested that an isotropic and homogeneous

representation for space can emerge out of non-Euclidean perceptual spaces, as one can move

through physical space by learning the motion group (Poincaré, 1913). An isotropic and

homogeneous representation of 3D space facilitates (mental) rotations in 3D and yields local

coordinates that are independent of the environment’s topology. On the other hand, the efficient-

coding hypothesis (Barlow, 1959; Atick, 1992; Simoncelli and Olshausen, 2001) would argue that

surface-bound animals might not need to dedicate their limited neuronal resources to acquiring a full

representation of space, as flying animals might have to do, so that representations of 3D space will

be species-specific (Las and Ulanovsky, 2014). Desert ants represent space only as a projection to flat

space (Wohlgemuth et al., 2001; Grah et al., 2007). Likewise, experimental evidence suggests that

rats do not encode 3D space in an isotropic manner (Hayman et al., 2011), but this might be

a consequence of the specific anisotropic spatial navigation tasks these rats had to perform. Data from
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flying bats, on the other hand, demonstrate that, at least in this species, place cells represent 3D

space in a uniform and nearly isotropic manner (Yartsev and Ulanovsky, 2013). The 3D, toroidal

head-direction system in bats also suggests that they have access to the full motion group

(Finkelstein et al., 2014). Our theoretical analysis assumes that the same is true for bat grid cells and

that they have radially symmetric firing fields. From these assumptions, we showed the grid cells’

firing fields should be arranged on an FCC lattice or packed as HCP. Interestingly, such solutions

also evolve dynamically in a self-organizing network model for 3D (Stella et al., 2013; Stella and

Treves, 2015) that extends a previous 2D system which exhibits hexagonal grid patterns (Kropff and

Treves, 2008). Experimentally, the effect of the arena’s geometry on grid cells’ tuning and anchoring

has also been a question of great interest (Derdikman et al., 2009; Krupic et al., 2013, 2015;

Stensola et al., 2015). First, let us note that even though the environment might be finite, the grid-

cell representation need not be constrained by it. In particular, the firing fields are not required to be

contained within the confines of the four walls of a box—experimental observations show that walls

can intersect the firing fields (so that one measures only a part of the firing field). On the other hand,

the borders clearly distort the hexagonal arrangement of nearby firing fields in 2D environments

(Stensola et al., 2015), whereas central fields are more perfectly arranged. Deviations are also

observed when only a few fields are present in the arena (Krupic et al., 2015). One might expect

similar deviations in 3D, such as for bats flying in a confined space. Our mathematical results rely on

symmetry arguments that do not cover non-periodic tuning curves. Given that the resolution is

related to the packing ratio of a lattice, extensions of the theory to general packings might allow one

to draw on the rich field of optimal finite packings (Böröczky, 2004; Toth et al., 2004), thereby

providing new hypotheses to test.

Many spatially modulated cells in rat medial entorhinal cortex have hexagonal tuning curves, but

some have firing fields that are spatially periodic bands (Krupic et al., 2012). The orientation of these

bands tends to coincide with one of the lattice vectors of the grid cells (as the lattices for different grid

cells share a common orientation), so band cells might be a layout ‘defect’. In this context, we should

point out that the lattice solutions are not globally optimal. For instance, in 2D, a higher resolution can

result from two systems of nested 1D grid codes, which are aligned to the x and y axis, respectively,

than from a lattice solution with the same number of neurons. The 1D cells would behave like band

cells (Krupic et al., 2012). Similar counterexamples can be given in higher dimensions too. The

anisotropy of the spatial tuning in grid cells of climbing rats when encoding 3D space (Hayman et al.,

2011) might capitalize on this gain (Jeffery et al., 2013). Radial symmetry of the tuning curve may

also be non-optimal. For example, two sets of elliptically tuned 2D unimodal cells, with orthogonal

short axes, typically outperform unimodal cells with radially symmetric tuning curves (Wilke and

Eurich, 2002). Why experimentally observed place fields and other tuning curves seem to be

isotropically tuned is an open question (O’Keefe and Dostrovsky, 1971; Yartsev and Ulanovsky,

2013).

Grid cells which represent the position of an animal (Hafting et al., 2005) have been discovered

only recently. By comparison, in technical systems, it has been known since the 1950s that the

optimal quantizers for 2D signals rely on hexagonal lattices (Gray and Neuhoff, 1998). In this

context, we note that lattice codes are also ideally suited to cover spaces that involve sensory or

cognitive variables other than location. In higher-dimensional feature spaces, the potential gain

could be enormous. For instance, the optimal eight-dimensional (8D) lattice is about 16 times denser

than the orthogonal 8D lattice (Conway and Sloane, 1992) and would, therefore, dramatically

increase the resolution of the corresponding population code. Advances in experimental

techniques, which allow one to simultaneously record from large numbers of neurons (Ahrens

et al., 2013; Deisseroth and Schnitzer, 2013) and to automate stimulus delivery for dense

parametric mapping (Brincat and Connor, 2004), now pave the way to search for such

representations in cortex. For instance, by parameterizing 19 metric features of cartoon faces,

such as hair length, iris size, or eye size, Freiwald et al. showed that face-selective cells are broadly

tuned to multiple feature dimensions (Freiwald et al., 2009). Especially in higher cortical areas, such

joint feature spaces should be the norm rather than the exception (Rigotti et al., 2013). While no

evidence for lattice codes was found in the specific case of face-selective cells, data sets like this one

will be the test-bed for checking the hypothesis that other nested grid-like neural representations

exist in cortex.
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Materials and methods
We study population codes of neurons encoding the D-dimensional space by considering the FI J as

a measure for their resolution. The population coding model, the construction to periodify a tuning

shape Ω onto a lattice L with center density ρ, as well as the definition of the FI, are given in the main

text. In this section we give further background on the methods.

Scaling of grid cells and the effect on Jς
How is the resolution of a grid module affected by dilations? Let us assume we have a grid module

with signature ς= ðΩ; ρ;LÞ, as defined in the main text, and that λ > 0 is a scaling factor. Then

λς := ðΩðλrÞ; ρðλxÞ; λ ·LÞ is a grid module too, and the corresponding tuning curve ðΩ∘λÞλL satisfies:

ðΩ∘λÞλLðxÞ=ΩLðλxÞ: (21)

Thus, the tuning curve ðΩ∘λÞλL is a scaled version of ΩL. What is the relation between the FI of the

initial grid module and the rescaled version? Let us fix the notation: ρðcÞ=∑ N
i δðc − ciÞ. From the

definition of the population information (Equation 9), we calculate

Jλςð0Þ= ∑
M

i =1

JðΩ∘λÞλLðλciÞ= ∑
M

i =1

JΩLðciÞ ·
1

λ2
=

1

λ2
Jςð0Þ; (22)

where in the second step we used the re-parameterization formula of the FI (Lehmann, 1998). This

shows that the FI of a grid module scaled by a factor λ is the same as the FI of the initial grid module

times 1/λ2.

Population FI for Poisson noise with radially symmetric tuning
In the ‘Results’ section, we give a concrete example for Poisson noise and the bump function. Here we

give the necessary background. Equation 13 states that

Jςð0Þ≈ M

detðLÞ
Z
BRð0Þ

JΩLðcÞdc:

One would like to know
R
BRð0Þ   JΩLðcÞdc for various tuning shapes Ω with supp(Ω) ≤ R.

Consider x ∈ L and α ∈ {1,…,D}. Then:

∂lnPðK ��xÞ
∂xα

=
∂lnPðK ; sÞ

∂s

����
s=ΩLðxÞ

·Ω′


jjxjj2

�
  fmaxτ  2xα: (23)

Together with the definition of the FI Equation 13, this yields

JΩLðxÞαβ =4xαxβf
2
maxτ

2Ω′


jjxjj2

�2
:  ∑

K

�
∂
∂s

lnPðK ; sÞjs=ΩLðxÞ

�2

·P
�
K ;ΩLðxÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

=:N ðjjxjj2Þ

: (24)

Note that for α ≠ β this function is odd in x. Thus, when averaging these individual contributions

over a symmetric fundamental domain L:
R
L   JΩL ðcÞαβdc =0 for α ≠ β. Thus, the diagonal entries are all

identical. This also holds for any fundamental domain L when BR(0) ⊂ L, because BR(0) is symmetric.

For Poisson spiking N ðjjcjj2Þ has a particularly simple form, namely N ðjjcjj2Þ=1=ðfmaxτ Ωðjjcjj2ÞÞ.
The trace of the FI matrix becomes

trJςð0Þ= 4fmaxτ

Z
BRð0Þ

jjcjj2
Ω′


jjcjj2

�2
Ω


jjcjj2

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

=:F ðcÞ

dc: (25)

Thus, the trace only depends on the tuning shape Ω and its first derivative. In the main text, we use

the following specific tuning shape:
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ΩðrÞ=

8>><>>:
exp

 
θ1

θ22
−

θ1

θ22 − r2

!
if   jrj  < θ2

0 otherwise

: (26)

This type of function is often called ‘bump function’ in topology, as it has a compact support but is

everywhere smooth (i.e., infinitely times continuously differentiable). In particular, the support of this

function is [0, θ2), and is therefore controlled by the parameter θ2. The other parameter θ1 controls the

slope of the bump’s flanks (see upper panels of Figure 3—figure supplement 1).

For the bump-function Ω and radius r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ D

α x
2
α

q
the integrand for the FI is given by

F ðrÞ=

8>><>>:
4θ21r

2�
θ22 − r2

�4     exp   
 
θ1

θ22
−

θ1

θ22 − r2

!
if   jrj  < θ2

0 otherwise

: (27)

The lower panels of Figure 3—figure supplement 1 depict the integrand of Equation 25, defined

as F ðrÞ. This function shows how much FI a cell at a particular distance contribute to the location 0. By

integrating the FI over the fundamental domain L for a lattice L one gets Jς(0), that is, the average FI

contributions from all neurons (as shown in Figures 3, 4, 5E).
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Böröczky K. 2004. Finite packing and covering. Cambridge University Press. 2nd edition.
Brincat SL, Connor CE. 2004. Underlying principles of visual shape selectivity in posterior inferotemporal cortex.
Nature Neuroscience 7:880–886. doi: 10.1038/nn1278.
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