Evaluation of feasibility, efficiency and safety of a pure NOTES gastrojejunal bypass with gastric outlet obstruction, in an in vivo porcine model

Introduction: Natural orifice transluminal endoscopic surgery (NOTES) gastrojejunal anastomosis (GJA) is a less invasive surgery for bariatric procedures and gastric outlet obstruction. The aim of this study was to evaluate the feasibility, efficacy, and safety of a pure NOTES gastrojejunal bypass using an in vivo porcine model.

Material and methods: A prospective study was performed on nine swine. A double-channel scope was used. The intervention steps were: (i) gastric incision; (ii) peritoneal access; (iii) jejunal incision; (iv) stoma creation within the gastric wall and incision; (v) anastomosis suture and pylorus closure using a T-tag prototype. The animals were assessed clinically for 3 weeks including the weight gain. The patency of the GJA was assessed at necropsy and a histological analysis was performed.

Results: We successfully performed all the procedures with a mean (standard deviation [SD]) operative time of 108 (26) minutes. We used a mean of 5.55 (1.30) stitches. There were no intra-procedural adverse events. Five animals survived up till euthanasia at 3 weeks (65%). These showed a significant difference in weight curves of a loss of 3.2 kg compared with gain of 5.2 kg in a control group. Four pigs died from anastomotic dehiscence complicated by peritonitis.

Conclusion: Gastrojejunal bypass with a pure NOTES approach is feasible. This procedure is effective, resulting in a patent anastomosis and a significant weight loss. However, the anastomotic dehiscence is a major concern because of its mortality rate, and further studies including improvement of the suturing device and the technique are needed.

License terms

Authors
J.-M. Gonzalez1,2, E. A. Bonin1, G. Vanbiervliet1, E. Garnier1, S. Berdah3, K. Matthes2, M. Barthet1

Institutions
Institutions are listed at the end of article.

Materials and methods

Study design

This was a prospective experimental survival animal study conducted at the Center for Surgical Education and Research (CERC) of the Faculty of Medicine North, Mediterranean Aix-Marseille University. Institutional review board approval was obtained prior to conducting the study.

The experimental protocol consisted of performing a purely endoscopic procedure with general anesthesia on nine consecutive healthy young domestic Yorkshire “minipigs” of either sex, aged 3–4 months and weighing between 25 and 30 kg. All animals were allowed to recover and were then clinically observed under normal feeding and housing conditions. Euthanasia and necropsy were performed following a 3-week survival period.

Animal preparation, anesthetic and analgesic protocols

All animals were fasted for 24 hours prior to intervention. Anesthesia was induced by an intramuscular injection of 120 mg of azaperone (Stresnil) coupled with 70 mg of ketamine, followed by endotracheal intubation. Anesthesia was maintained by continuous intravenous infusion of propofol at a rate of 100 mg per hour (Diprivan 2%), and fentanyl was given at a dose of 100 micrograms per hour for analgesia, with monitoring of heart rate and oxygen saturation via pulse oximetry. The animals also received 1 g of cefotaxime as antimicrobial prophylaxis preoperatively as well as intraoperatively. All animals were placed in a supine position for the procedure.

Following recovery from anesthesia, pain was assessed twice a day by observing animal behavior, and 1 g of cefotaxime was administered intramuscularly daily for a period of 7 days.

Endoscopic equipment and intervention stages

All procedures were carried out using a double-channel video esophagogastrroduodenoscopy endoscope (3.8– and 2.8-mm channel diameters; Karl Storz GmbH & Co. KG, Tuttingen, Germany). The electrosurgical unit used was the Olympus ESG-100 (Olympus Corporation, Tokyo, Japan). Three interventional endoscopists performed all the procedures.

The NOTES GJA was performed using a standardized method. All the stomachs were decontaminated before each intervention. To access the peritoneum, a longitudinal, plane-by-plane gastric incision of 3–5 cm was made using the needle-knife (Olympus Europe Corporation) at the anterior wall of the stomach in the pre-antral region (Fig. 1). A pneumoperitoneum was created using room air insufflation. A jejunal loop was selected and grasped on its border with a twin-grasping forceps (Twin Grasper; OVESCO AG, Tuebingen, Germany). The optimal loop was selected after peritoneal examination, based only on its proximity to the access site to avoid further tension on the anastomosis. The selected loop was mobilized (Fig. 2) toward the gastric incision with a Twin-Grasper forceps.

To create the stoma, the mesentery under the raised loop was punctured and the rigid end of a 0.035” guidewire (Jagwire Stiff; Boston Scientific Corporation, Natick, USA) was advanced within a sphincterotome (Tritome; Cook Medical, Limerick, Ireland) and through the mesentery (Fig. 3). The sphincterotome was then exchanged for placement of a fully covered self-expandable metallic (SEMS) biliary stent (10 cm long, CLBS; Cook Medical, Limerick, Ireland) with its free ends being within the mesentery on
both sides of the loop (Fig. 4). This provided the same function as a loop ileostomy rod, preventing the intestinal loop from falling into the peritoneal cavity when the stoma was created. The jejunum was opened with a longitudinal 2-cm incision at the antimesenteric border, using a Dual Knife, and then extended with a Hook Knife (Olympus Corporation).

Full-thickness suturing of the jejunal loop into the gastric stoma was accomplished using a Brace Bar prototype suturing system (Fig. 5) (Brace Bar; Olympus, Japan). This device consists of a needle with suture thread within the sheath and two T-tags, one on each end of the thread. For creating the anastomosis, two sutures were dropped successively through the jejunal and gastric walls. The two suture sides were then secured with a crimping device that tightens the two stitches against one another. A complete anastomosis was achieved using four to seven stitches equally distributed along the anastomotic perimeter (Fig. 6). The biliary SEMS was removed using the Twin Grasper followed by placement of two extra T-tag sutures to close the gaps left by the stent. The anastomotic integrity was finally carefully inspected, visually and using the grasper, to detect any gaps between sutures. We could not fill the stomach with contrast because fluoroscopy was not available.

To simulate a gastric outlet obstruction, two T-tags were placed at the level of the pylorus in an “X” fashion. Following a final inspection, the stomach was decompressed and the endoscope withdrawn. In the case of bleeding, coagulation was attempted using a coagulation forceps (Coagrasper, Olympus Corporation, Japan) set at 60W in the soft-coagulation mode (Olympus ESG-100 (Olympus Corporation, Tokyo, Japan). In the case of signs of tension pneumoperitoneum, decompression of insufflation was accomplished using a percutaneously placed 20G needle.

Follow-up and postoperative protocol
All animals were clinically observed for a period of 3 weeks. After recovery from anesthesia, animals were kept fasted with access to water until the third postoperative day (POD). Institution of nutrition was performed gradually: a quarter of the usual feeding was given for 48 hours with progression to half portions for 48 hours before normal feeding from POD 3 until POD 21. Clinical follow-up was performed daily, with twice-daily monitoring of overall behavior, food intake, fever, pain, and bowel and urinary function. The animals’ weights were measured at baseline and at the end of the 3-week study period.

The weight curve of a control group of the same number of animals with the same characteristics (3–4 months old) was also followed for 3 weeks. These animals were enrolled in a study.
associated with bladder pressure measurement. It was considered that the urological procedure would not have any effect on the physiologic growth of this control group.

Euthanasia and histological assessment

Euthanasia was performed after 21 survival days by lethal injection of potassium chloride with animals under general anesthesia. In the case of death during the 3-week period, necropsies were performed to determine whether signs of anastomotic leakage or peritonitis were present. Before euthanasia, the peritoneal cavity was inspected after laparotomy for signs of peritonitis, and all organs were macroscopically examined for signs of infection, scar formation, and necrosis. Anastomotic patency was assessed by catheterizing the afferent and efferent loops with surgical clamps and a finger respectively. Then the entire anastomosis was removed for histopathological examination, and the diameter of the stoma on the gastric side was directly measured to confirm patency.

The anastomotic healing pattern was assessed by histological analysis showing a fusion of the small-intestinal mucosal and muscular layer against the gastric mucosa and muscular layer, respectively. To assess its integrity, the anastomotic site was also histologically observed for the presence of scar formation, necrosis, inflammation, and fistula.

Statistical analysis

Descriptive, statistical analysis of normally distributed variables is expressed as means with standard deviations (SDs) and ranges. Qualitative variables are expressed as percentages. The small size of the study did not allow for comparative tests in univariate analysis by Fisher’s exact test or the use of a chi-squared distribution to search for predictive factors of death. Unpaired Student’s t tests were used to determine the significance of differences between means. A P value < 0.05 was considered statistically significant. Statistical analysis was performed using the SAS software (Enterprise Guide 4.1 for Windows, SAS Institute Inc., Cary, NC, USA).

Results

The data related to technical and clinical outcome from NOTES gastrojejunal anastomosis are summarized in Table 1.

Endoscopic procedure

A gastrojejunal anastomosis with a pure NOTES approach was successfully performed in nine animals with an excellent reproducibility. The mean (±SD) operative time was 108 ± 26 minutes (range 65 – 142) and most procedures (7/9) lasted less than 120 minutes. The average duration of each step of the procedure was as follows: (i) gastric incision, 9.1 ± 5.4 minutes (4 – 20); (ii) transgastric peritoneal cavity access and jejunal loop selection and transfer, 9.7 ± 6.3 minutes (5 – 25); (iii) Biliary SEMS placement for bridging, 22 ± 17 minutes (5 – 55); (iv) jejunal loop incision, 8 ± 3.5 minutes (5 – 15); (v) anastomotic suture, 38.3 ± 12.2 minutes (30 – 65). Four to seven sutures were required for the completion of the GJA (mean 5.55 ± 1.30). Two additional stitches were required for closing the residual gap between the approximated tissue following removal of the biliary SEMS. The pyloric closure procedure required one or two T-tag sutures.

Intraoperative adverse events

For the duration of anesthesia, none of the animals developed hypoxemia (Sao2 < 90%). Regarding hemodynamic stability, one animal developed an episode of supraventricular tachycardia (> 120/min) that resolved within minutes without intervention. Needle decompression of the pneumoperitoneum was not required in any of the animals.

Table 1 | Summary of technical and clinical outcomes from natural orifice transluminal endoscopic surgery (NOTES) gastrojejunal bypass in nine pigs

<table>
<thead>
<tr>
<th>Animal no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Anesthesia

<table>
<thead>
<tr>
<th>Oxygen rate < 90 %</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia > 120/min</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Endoscopic procedure

<table>
<thead>
<tr>
<th>Total time, minutes</th>
<th>142</th>
<th>145</th>
<th>110</th>
<th>115</th>
<th>115</th>
<th>95</th>
<th>80</th>
<th>105</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastomosis suture time, minutes</td>
<td>40</td>
<td>65</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Number of stitches, n

| 4 | 1 | 7 | 1 | 5 | 1 | 6 | 2 | 5 | 1 | 7 | 2 | 6 | 1 | 6 | 1 | 4 | 2 |

Follow-up

<table>
<thead>
<tr>
<th>Transit</th>
<th>Yes</th>
<th>Yes (DS)</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stool consistency</td>
<td>Normal</td>
<td>Diarrhea</td>
<td>Diarrhea</td>
<td>Diarrhea</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Weight before procedure, kg

| 28 | 30 | 30 | 31 | 35 | 25 | 29 | 30 | 28 |

Weight after procedure, kg

| 28 | 29 | 22 | N | 32 | N | 27 | N | N |

Occulsion

| No |

Sepsis, postoperative day (POD)

| No | No | No | Yes (POD 12) | No | Yes (POD 9) | No | Yes (POD 5) | Yes (POD 5) |

Death (POD)

| No | No | No | Yes (POD 13) | No | Yes (POD 9) | No | Yes (POD5) | Yes (POD5) |

Autopsy

<table>
<thead>
<tr>
<th>Peritonitis signs</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No data</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesions</td>
<td>No</td>
<td>Some</td>
<td>No</td>
<td>""</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Anastomotic leakage</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>""</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Local inflammation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>""</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
There were no intraoperative adverse events such as bleeding, perforation or organ damage. At necropsy, we did not find any evidence of bleeding or clot formation.

Postoperative outcome and follow-up

Clinical course
In total, five animals had a favorable postoperative course without sequelae. The animals resumed feeding and three animals developed diarrhea. Four animals died due to anastomotic leakage, which was confirmed by the presence of clinical sepsis associated with anastomotic dehiscence and peritonitis confirmed at necropsy. Two of these animals died before POD 5 and the other two before POD 13. The deceased pigs had 5, 7, 9, and 6 stitches in their anastomosis and the average endoscopic duration time was 95 minutes versus 118 minutes for the rest of the animals (not significant [n.s.]). Upon endoscopic inspection, all four animals with anastomotic leaks postoperatively appeared to have shown a satisfactory anastomotic pattern intraoperatively.

Postoperative weight curve
The weight curve in the five animals that survived in our study was compared with that of the control group. The baseline weight of the current study group was 29.5 kg whereas it was 29.7 kg in the control group (n.s.) and all the survival pigs were in perfect clinical condition without signs of sepsis and had a normal feeding process. It was also assumed that the average weight gain of a 4-month-old pig is ~1 kg per week. In our series, we observed an average weight loss of 3.2±3.1 kg (range 0–8 kg), whereas in the control group, we noted an average weight gain of 5.2±1.6 kg [3–7 kg]. This difference was statistically significant (P<0.0005) demonstrating the effectiveness of the intervention with regard to accomplishing weight loss.

Necropsy findings
At necropsy, none of the animals that had survived over the 3-week postoperative period showed any signs of peritonitis, but some adhesions were observed in one animal. All anastomoses were macroscopically healed with easy identification of both the afferent and efferent loops. Additionally, the gastric opening's macroscopic diameter was measured at ~2 cm so we could easily separately catheterize the two loops during digital examination (Fig. 8), whereas this was impossible in the dehiscence group because of a complete leakage.

Histological analysis
In all the survival animals the GJA sites were available for histological examination. The anastomotic opening at the level of the gastric mucosa had a mean diameter of 20±4.2 mm. At the level of the anastomotic gastroenteric junction, we observed a complete fusion of mucosal and muscular layers with mild to moderately acute and chronic inflammatory changes. These included highly polymorphic granulomatous tissue with infiltration of lymphocytes, rare plasma cells, macrophages, and neutrophils. The submucosa was infiltrated with collagen, fibroblasts and new blood vessels. A foreign-body reaction at the level of the suture was observed in some of the animals (Fig. 9).

Discussion
This experimental study confirms the feasibility of performing a GJA using an exclusively NOTES approach with avoidance of laparoscopic assistance. Potential advantages of a pure NOTES gastric bypass without laparoscopic assistance relate to the avoidance of skin incisions with a decreased risk of ventral hernia and wound infections. The first population of patients that may benefit from NOTES gastrojejunostomy are moribund patients with gastric outlet obstruction. Frequently, because of advanced age or significant co-morbidities, including coronary artery disease or chronic heart failure, these patients may not be candidates for general anesthesia. Because of the less invasive character of NOTES, with the potential for performing NOTES GJA with monitored anesthesia care, endoscopic treatment might be appropriate in these patients by avoiding the general anesthesia that laparoscopy would require. The possibility of performing NOTES under monitored anesthesia care has been demonstrated recently [26, 27]. However, NOTES GJA may prove to be of benefit also in bariatric surgery. Especially obese patients are more prone to wound infection because the decreased perfusion of fat tissue makes this population more prone to infections. Frequently, obese patients have type II diabetes mellitus, which further increases the risk of wound infection. Often, laparoscopic access proves difficult in severely obese patients because of the increased abdominal wall thickness. It is not uncommon that in patients undergoing laparoscopic Roux-en-Y gastric bypass, a conversion to laparotomy is required. Because of the increased intra-abdominal pressure in obese patients, this population is significantly more prone to ventral hernias. We would agree that for now this endoscopic technique of GJA seems more suitable for the treat-
E36

Gonzalez J-M et al. Pure NOTES Gastrojejunal Bypass success rate may reach acceptable values. We believe that further but that with further refinement of the suturing technique the technique is still a long way from human application, the animals. We think that a clinical success rate of 56% shows incidence leading to abdominal infection and sepsis in 44% (4/9) of verse events, but we observed postoperative anastomotic dehis- stric component as seen in bariatric bypass procedures. The benign or malignant gastric outlet obstruction and to create a re-

ment of gastric outlet obstruction in a palliative setting. However, in this study, we did not plan a gastric volume-reducing proce-
dure as in sleeve gastrectomies but we did achieve a digestive by-
pass by associating a GJA and a pyloris closure. We created a pyloric closure to mimic the conditions seen in be-
duodenum has been recently proposed, with reported efficacy accumulation time [17]. An alternative technique of endoscopic gas-
troenteric anastomosis using a magnet inserted into the distal
we first sutured the jejunal loop to the gastric wall before opening
the gastrostomy site. In the literature, many techniques for ad-
ressing this challenge have been reported, often describing a “hybrid” technique coupled with laparoscopy. Chiu et al. [15]
demonstrated a simple grasping technique using forceps prior to suturing with a surgical stapler via both percutaneous and trans-
gastric access. Bergström et al. [11] and Kantsevoy et al. [12] pro-
posed an exposure with a polypectomy loop. The latter group
first sutured the jejunal loop to the gastric wall before opening
it. The use of a PEG technique has also been demonstrated but
this appeared to complicate the procedure and lengthen the ex-
amination time [17]. An alternative technique of endoscopic gas-
troenteric anastomosis using a magnet inserted into the distal duodenum has been recently proposed, with reported efficacy
[30]. However, this technique requires several endoscopies and
has complication rates that are currently not acceptable. In the
present study, we decided to expose the jejunal loop using a “bridge support” technique by inserting a metal stent. This tech-
nique is comparable to the creation of a surgical ileostomy using a bridging rod across the mesentery [31]. The suture remains
the major challenge in all studies proposing the creation of an anas-
tomosis. We made the GJA using the innovative Brace Bar proto-
type system, which uses the principle of “sewing” with T-tags
using a single needle. This device provided a classic full-thickness suture, with approximation of gastric mucosa to jejunal serosa as
confirmed by histological analysis. The limitation of this tech-
nique was the prolonged procedure length resulting from the
time required to reload the T-tags into the needle after each stitch. Most importantly, we observed incomplete anastomosis as
described above.

The clinical follow-up permitted confirmation of the integrity,
functionality, and effectiveness of the gastric bypass in the five surviving animals, including the two animals that had a partial
gastric closure (pigs #1 and #2). Transit was modified in three of

Fig. 8 Macroscopic examination of the gastrojejunal anastomosis during necropsy at 3 weeks post-surgery. Catheterization of each loop with surgical clamps.

Fig. 9 Histological assessment of the gastrojejunal anastomosis at 3 weeks post-surgery. 1) Apparent scar formation is seen at the level of the mucosa (GM, JM) and beginning of the collagenization of the entire gut wall with presence of discrete inflammatory infiltrate (HES, × 1 magnification). 2) Continuity of muscular mucosa layer is seen at the level of the gut wall presenting with highly polymorphic granulomatous tissue (HES, × 10 magnification).
these animals, suggesting a functional anastomosis. In all these animals, the GJA was perfectly healed at laparoscopic examination, without peritonitis or leakage signs. Most important, for the first time in a GJA animal study we measured and compared the weight curve of the intervention group with that of a control group. We noted an average weight loss of about 3 kg with a normal feeding pattern, whereas the control group showed an average weight gain of 5 kg within the 3-week study period. Pyloric closure was surely one of the explanations for such a weight difference. The size of the gastrojejunal orifice ranged between 12 to 25 mm suggesting good functionality. We think that the use of the metallic stent helped to accomplish this adequate opening size. The stent allowed better exposure, enabling a larger gastric incision and wider stitch placement around the jejunal loop. Using a hybrid technique with a stapler, Chiu et al. [15] achieved an average orifice size of 30 mm in 11 animals undergoing gastrojejunostomy, but the group did not assess weight gain or loss postoperatively. Histological analysis revealed scarring often accompanied by local acute and chronic inflammatory infiltrates at the anastomotic site. Additionally, we also observed an increase in the collagen matrix of junctional zones, especially in the submucosa, and the restoration of the continuity between the mucosal muscle layers. The restoration of the muscular layer occurred more irregularly. In one study, anastomotic healing after a NOTES gastrostomy procedure [32] on 12 pigs showed similar results at 2 weeks post-surgery. Corroborating the findings of other studies [5,33], survival at 3 weeks post-surgery in the present study was primarily related to the strength of the anastomosis.

In conclusion, the results of our study demonstrate the feasibility and efficacy of performing gastrojejunal bypass using an exclusively endoscopic transgastric approach. However, the safety of the procedure was not satisfactory: the high mortality encountered remains a problem of great concern especially as the mortality resulted exclusively from anastomotic leaks. Because of the limited number of animals in this study, we could not establish predictive factors for death from anastomotic leakage. However, some factors known to promote anastomotic adverse events such as anastomotic tension and trauma induced during the procedure are probably not yet fully controlled [30,34]. Moreover, in the present study we speculated that leakage was due to the pressure exerted on the healing anastomosis after the pylorus had been closed; such a pressure was higher than the sutures could withstand. We think that in effect the anastomosis may require sufficient time for healing and consolidation before the gastric outlet obstruction is instituted. Based on this assumption, we propose that a subsequent study should investigate the bypass procedure in two steps, with performance of a GJA first and then later the pyloric closure. Obviously, in patients, all the procedures should be performed with CO2 insufflation to improve the outcomes in terms of tolerance of the pneumoperitoneum and abdominal pain, in the absence of contraindication. Further refinement of the suturing technique or modifications of the creation of the anastomosis (by using stents) may help to improve the morbidity and mortality associated with this approach, in addition to using the two-steps approach. Finally, we need to compare our technique with the laparoscopic technique, which is the gold standard, and to evaluate the consequences on metabolic markers following such a NOTES approach.

Competing interests: None.

Institutions
1. Department of Gastroenterology, Public Assistance Hospitals of Marseille, North Hospital, Marseille, France
2. Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
3. Department of Endoscopy, University Hospital of Nice, Nice, France
4. Aix-Marseille University, CERC, Faculty of Medicine, Marseille, France
5. Department of Digestive Surgery, Public Assistance Hospitals of Marseille, Marseille, France

References
15. Chiu PW, Wai Ng EK, Teoh AV et al. Transgastric endoluminal gastrojejunostomy: technical development from bench to animal study (with video). Gastrointest Endosc 2010; 71: 390–393
22 Romanelli JR, Desilets DJ, Earle DB. Natural orifice transluminal endoscopic surgery gastrotomy closure in porcine explants with the Padlock-G clip using the Lock-It system. Endoscopy 2010; 42: 306 – 310
31 Sheridan CB, Zyromski N, Mattar S. How to always do a safe anastomosis. Contemp Surg 2008; 64: 68 – 74