Recent Developments in Novel Antidepressants Targeting α4β2-Nicotinic Acetylcholine Receptors: Miniperspective

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1021/jm401937a</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295788</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Recent Developments in Novel Antidepressants Targeting α4β2-Nicotinic Acetylcholine Receptors

Miniperspective

Li-Fang Yu,†∥ Han-Kun Zhang,†⊥ Barbara J. Caldarone,‡ J. Brek Eaton,§ Ronald J. Lukas,§ and Alan P. Kozikowski*,†

†Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
‡NeuroBehavior Laboratory, Harvard NeuroDiscovery Center and Department of Neurology, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
§Division of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013, United States
∥Institute of Drug Design and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
⊥Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

ABSTRACT: Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients.

INTRODUCTION

Depression is a common and frequently severe psychological condition with a distinct change of mood, characterized by sadness, loss of interest and pleasure, feelings of guilt or low self-worth, disturbed sleep or appetite, and feelings of tiredness and poor concentration, affecting approximately 120 million people worldwide.1 Numerous therapeutic agents exist for the treatment of depression that target monoamine transporters regulating the uptake of the neurotransmitters dopamine, serotonin, and norepinephrine.2 However, a considerable proportion of patients respond poorly to these drugs,3 as demonstrated by the NIMH-funded sequenced treatment alternatives to relieve depression (STAR*D) study conducted between 2001 and 2006, which highlighted the inadequacy of current medications for major depressive disorder (MDD).4 Therefore, there is still an urgent need for potent pharmacotherapies associated with novel biological mechanisms of action. In this Miniperspective, we review the association between depression and nicotinic acetylcholine receptors (nAChRs), especially the α4β2-nAChR subtype, from the perspective of clinical and preclinical findings. We highlight the most recently developed α4β2-nAChR agonists and antagonists that exhibit antidepressant-like effects in vivo.

The cholinergic hypothesis of depression proposes that hyperactivity of the cholinergic system over that of the adrenergic system leads to depression (Figure 1).5 Several lines of evidence from rodent and human studies support this hypothesis. Flinders sensitive rats, a line selectively bred for increased cholinergic sensitivity, were found to exhibit several depression-like behaviors,6,7 and increased acetylcholine (ACh) signaling in the hippocampus was found to promote behaviors in mice related to anxiety and depression.8 In humans, physostigmine, which potentiated cholinergic transmission by inhibiting acetylcholinesterase (AChE), the enzyme that breaks down ACh, produces depressive-like symptoms in individuals with and without a history of depression.9 Administration of the

Received: December 17, 2013
Published: June 5, 2014
nonselective nicotinic antagonist mecamylamine (1) (Scheme 1),9−11 the partial agonist varenicline (2),12 or the muscarinic antagonist scopolamine (3)13,14 demonstrated putative anti-depressant-like effects, especially in treatment-resistant patients receiving their regular psychotropic medications such as the selective serotonin reuptake inhibitor (SSRI) citalopram (4).9 Magnetic resonance imaging studies have shown that the levels of choline, the rate-limiting precursor to endogenous ACh, were elevated in the brains of patients with depression as well as in the frontal cortex of adolescents with depression.15,16 Additionally, a number of key antidepressant SSRIs, SNRIs, and tricyclics possess antagonistic activities.18−20 Although, in most cases, drug concentrations achieved in the human brain would not be adequate to affect nAChR functions.21 Nicotine (10) itself, and some nicotinic agonists or antagonists, can potentiate the antidepressant-like effects of the SSRIs and SNRIs in rodent models,22,23 likely due to the common end point of reduced function due to receptor desensitization by agonists or antagonism. The development of nAChR ligands to attenuate cholinergic activity to treat depression could conceivably help to treat depressive symptoms in refractory patients.

NICOTINIC ACETYLCHOLINE RECEPTORS AND DEPRESSION

The two major types of cholinergic receptors are muscarinic ACh receptors (mAChRs) and nAChRs, both of which are widely distributed in the central and peripheral nervous systems.24 mAChRs are believed to be involved in mood regulation and AChE-induced depressive behavior.5,13,14,25 Neuronal nAChRs belong to the ligand-gated ion channel superfamily of neurotransmitter receptors. Varying combinations of nACHR subunits (α1−α10, β1−β4, γ, δ, and ε; α2−α7 and β2−β4 are expressed in the brain) assemble into pentameric ion channels, allowing for diverse pharmacological properties.26 Each nAChR subunit consists of a large amino-terminal extracellular domain (ECD), a transmembrane domain comprising four α-helices (M1−M4), and a variable cytoplasmic domain between M3 and M4. ACh binding sites are thought to form between the subunit interfaces of the ECD bound by the C-loop containing the face of an α-type subunit and the face of an adjacent subunit. When acutely activated by endogenous ACh or exogenous nicotinic ligands, nAChRs form transient open cationic channels that allow the ions Na+ and Ca2+ to flow across the plasma membrane and induce cellular responses.27 Prolonged exposure to ACh or nicotinic agonist causes a gradual decrease in the rate of this ionic response, leading to a high affinity, longer-lasting functionally inactive state, referred to as desensitization. ACh has its signal terminated primarily by the enzyme AChE, unlike many other monoaminergic neurotransmitters where reuptake mechanisms predominate.

Figure 1. Role of the cholinergic system in depression. The cholinergic hypothesis of depression postulates a hyperactivity of the cholinergic system over that of the adrenergic system in the brain. Choline (the rate-limiting precursor to endogenous ACh) crosses the blood–brain barrier to enter the brain and is actively transported into the cholinergic presynaptic terminals by an active uptake mechanism. The neurotransmitter ACh is synthesized from choline and acetyl coenzyme A, catalyzed by the enzyme choline acetyltransferase. ACh is sequestered into secretory vesicles by vesicular ACh transporters. Once released from the presynaptic terminals, ACh can interact with a variety of presynaptic and postsynaptic receptors. Two classes of the cholinergic ACh receptors are muscarinic (G protein-coupled) and nicotinic (ionotropic). Once activated, nAChRs form transient open cationic channels that allow the ions Na+, K+, and Ca2+ to flow across the plasma membrane and induce cellular responses. Prolonged exposure to ACh or nicotinic agonist causes a gradual decrease in the rate of this ionic response, leading to a high affinity, longer-lasting functionally inactive state, referred to as desensitization. ACh has its signal terminated primarily by the enzyme AChE, unlike many other monoaminergic neurotransmitters where reuptake mechanisms predominate.
control by regulating behavioral reinforcement in the mesolimbic dopamine system, corticotropin releasing factor and function in the hypothalamic–pituitary–adrenal (HPA) axis, circadian rhythms in the suprachiasmatic nucleus, and cytoplasticity in the hippocampus. Given nAChR subtype diversity and their involvement in the modulation of various key neurotransmitter...
systems, including dopamine, serotonin, norepinephrine, glutamate, and γ-aminobutyric acid (GABA), nicotinic ligands have the potential to treat a multitude of neurological and psychiatric disorders, including depression.9,28

The $\alpha 4/\beta 2$ heteropentameric and $\alpha 7$ homopentameric subtypes are the two major nAChR subtypes expressed in the brain (Figure 2).29 Both subtypes are implicated in the mediation of the pharmacological and behavioral effects of compound 10 and in nAChR-mediated modulation of monoamine release,30,31 and are likely involved in the antidepressant effects of nicotinic ligands. Studies investigating the role of nAChRs in depression have focused primarily on the $\alpha 4/\beta 2^*$ (asterisk indicates possible assembly with other subunits) and $\alpha 7$-nAChR subtypes. $\alpha 4/\beta 2^*$-nAChRs are widely distributed in the neuroanatomical regions implicated in depression, including the thalamus, basal ganglia, striatum, hypothalamus, amygdala, ventral tegmental area (VTA), locus coeruleus, and dorsal raphe nucleus,9 and $\alpha 7$-nAChRs are highly expressed in the hypothalamus, hippocampus, and cortex.32,33 $\alpha 4/\beta 2^*$-nAChRs are thought to regulate the release of monoamine neurotransmitters through actions in these areas.34,35 $\beta 2$-knockout mice showed decreased immobility in the forced swim test (FST) compared to that of wild-type mice, indicating that the absence of $\beta 2$-nAChRs-mediated signaling could manifest in an antidepressant-like phenotype in vivo.36 The antidepressant-like effect of the nAChR antagonist compound 1 was diminished when the $\beta 2$- or $\alpha 7$-subunits were knocked out.37 Similarly, the antidepressant-like effects of the nAChR agonist sazetidine-A (11)38 and the tricyclic antidepressant compound 836 were absent in mice lacking the $\beta 2$-subunit. Additionally, the efficacies of compounds 4 and 6 in the mouse FST were enhanced by agonists at either $\alpha 4/\beta 2^*$- or $\alpha 7$-nAChRs.23 These findings suggest the involvement of $\beta 2$- and $\alpha 7$-receptor subtypes in mediating the antidepressant-like effects of nicotinic ligands.

Clinical studies provide additional evidence for a relationship between $\alpha 4/\beta 2^*$-nAChRs and depression. Single photon emission computed tomography (SPECT) using the $\alpha 4/\beta 2^*$-nAChR specific radioligand $^{[123}I]5-I-A-85380$ (Figure 2) revealed that the $\beta 2^*$-nAChR availability across all brain regions in depressed patients was lower than that in healthy subjects.39 Additionally, positron emission tomography using $2-[^{18}F]$(fluoromethyl)[2,3-α-azetidinylmethyl]-pyridine showed reduced levels of ligand binding to $\alpha 4/\beta 2^*$-nAChR in Parkinson’s patients with depressive symptoms.40 It was recently reported that the clinical action of compound 6 may be at least partially due to its inhibitory action on $\alpha 4/\beta 2$-nAChRs.41

Designing a nicotinic ligand to provide maximal therapeutic efficacy and minimal side effects depends on a ligand’s ability to specifically target the desired combination of nAChR subtypes. Observations that nAChR $\alpha 6$ subunits are not widely distributed in the brain but are most prevalent in midbrain dopaminergic regions in the mammalian CNS suggest their potential involvement in mood control. As such, targeting $\alpha 6^*$-nAChR may be indicated.11,42-44 In the basal ganglia, the VTA and substantia nigra, in particular, $\alpha 6$- and possibly nAChR $\beta 3$ subunits, are included in $\alpha 4/\beta 2^*$-nAChRs that appear to have high affinity for nicotinic agonists.34 $\alpha 3/\beta 4^*$-nAChR subtypes are expressed at relatively low levels in the brain except for the interpeduncular nucleus, fasciculus retroflexus, and median habenula.46 However, activation or blockade of $\alpha 3/\beta 4^*$-nAChR, which are also expressed in the peripheral nervous system, may result in side effects in vivo, including dysregulation of the autonomic nervous system.37,48 Selective and potent partial agonists of $\alpha 4/\beta 2^*$-nAChRs, especially those with low affinity for $\alpha 3/\beta 4^*$-nAChRs, are considered to have higher efficacy and likely fewer side effects in rodent behavioral models, although the involvement of $\alpha 3/\beta 4^*$-nAChRs in mood control cannot be completely ruled out.49-51 We also point out that because of their roles as “accessory” subunits that are incapable of forming functional receptors alone or even in combination with nAChR α or β subunits (except, perhaps, as $\alpha 7/\alpha 5$-nAChR), we have not delved deeply into the potential roles played by the $\alpha 5$ subunits. However, $\alpha 5$ subunits can integrate into $\alpha 3/\beta 4^*$- and $\alpha 4/\beta 2^*$-nAChRs and perhaps into $\alpha 6^*$-nAChRs to further extend the diversity in receptor subtypes and isoforms, which may affect pharmacological profiles.52,53 Continuing studies will extend our knowledge of the role of $\alpha 5$ subunits in nAChRs.

The essential pharmacophore presented by nicotinic ligands consists of a cationic center (e.g., a quaternized or protonated nitrogen) and a hydrogen-bond acceptor (e.g., the pyridine nitrogen atom in the case of compound 10). The cationic nitrogen binds to a tryptophan residue of the principal α-subunit,
forming a cation−π interaction.54−56 The hydrogen-bond acceptor has been shown to bind to the complementary β-subunit, likely mediated by a water molecule to the backbone NH of a Leu residue in the α4/β2 receptor.57,58 Additionally, various studies support the idea that agonist interactions with the principal α-subunit are important for binding affinity, while interactions with key amino acids present in the complementary β-subunit affect agonist efficacy.59,60

High-resolution crystal structures of integral membrane protein mammalian nAChRs are not yet available. Invertebrate pentameric acetylcholine binding protein (AChBP) subunits share 20−24% sequence identity with that of the homologous ECDs of nAChR subunits. However, the putative binding site and some aromatic residues found in nAChR subunits are reported to be conserved. Therefore, AChBPs have been characterized and used to provide insights into ligand recognition.
sites and other elements of nAChR subunit ECDs and ligand binding site interfaces. The majority of ligand-bound structures have been obtained with AChBP from Aplysia californica (Ac) or Lymnaea stagnalis (Ls) (Figure 3). The Ls-AChBP was postulated to be a more suitable surrogate of α4/2-nAChR for a series of 1-(pyridin-3-yl)-1,4-diazepane analogues because the Trp S3 in Ls-AChBP subunits is Tyr in Ac-AChBP subunits, which interacts less favorably with the quaternized or protonated nitrogen of nicotinic ligands. Recently, the nonmolluscan acetylcholine binding protein from the marine annelid Capitella teleta (Ct), namely, Ct-AChBP, was identified and reported to more closely mimic α4/2-nAChR than does the Ac-AChBP based on comparisons of the ligand binding affinities. The X-ray crystal structure of Ct-AChBP with lobeline or compound 2 bound along with mutagenic studies highlight the importance of key interactions that are responsible for receptor activation or desensitization and for location of key residues in loops D (WS7) and E (V111, F119, and L121) in the complementary subunit opposed to the α subunit at the ligand binding subunit interface. Because of the higher homology between Ct-AChBP and the human α4 and β2 subunits (as computed by ClustalX: α4/Ct-AChBP = 64.6% and β2/Ct-AChBP = 62.1%), especially for key residues involved in ligand recognition (Figure 4), a homology model was generated and refined based on a Ct-AChBP for the ligand binding domain of the human α4/2-nAChR. A ribbon structure for the ECD modeled α4/2-nAChR shows a 10-stranded β-sandwich capped by an N-terminal α-helix for each subunit (Figure 5A), for which the modeled β-sandwich can be nicely superimposed on that of Ct-AChBP (Figure 5B). This homology model may provide useful information for designing other selective α4/2-nAChR ligands.

nAChR ANTAGONISTS AND ANTAGONISTS EXHIBITING ANTIDEPRESSANT-LIKE EFFECTS

The diversity of nAChR subtypes provides an opportunity to generate subtype-specific ligands that could treat a variety of conditions, although the high sequence homology across individual subtypes of brain nAChRs poses a substantial challenge for the development of subtype-selective nicotinic drugs. Both academia and industry have contributed to a growing body of literature concerning the rational design of potential antidepressant ligands that more selectively target β2*-nAChR than does compound 10.

Rodent behavioral models have been used to assess antidepressant-like effects of these new chemical entities. The most widely used behavioral assay for antidepressant-like efficacy is the FST, in which a mouse or rat is placed in a beaker of water and the amount of time the animal spends passively floating is measured. Clinically therapeutic antidepressants typically reduce the time an animal will spend immobile. Similarly, the tail suspension test (TST) measures immobility time when the rodent is suspended by its tail. This test is relatively short in duration, and in the case where an antidepressant agent is given, the animal will struggle for longer periods of time compared to vehicle treated animals. The novelty-suppressed feeding (NSF) test is a behavioral paradigm originally utilized to measure anxiolytic-like effects of drugs, but more recently the NSF assay has been proposed as a behavioral platform sensitive to the chronic but not acute administration of antidepressants. In NSF, food-deprived mice experience a conflict between feeding and the fear of exploring the novel environment of a brightly lit open area or an unfamiliar cage containing food. Chronic treatment with antidepressants reduces latency to eat in the novel environment. Additionally, an alternative version of the NSF test has been advanced that is called the novelty-induced hypophagia (NIH) test, but it utilizes a palatable food to eliminate the need for food restriction. In general, these models predict the onset of action of antidepressants consistent with the therapeutic time course found in humans and therefore validate the NSF/NIH tests as useful behavioral paradigms to gauge the antidepressant efficacy of compounds.

nAChR ANTAGONISTS

\[(1R,2S,4S)-N,2,3,3-Tetramethylbicyclo[2.2.1]heptan-2-amine, 13\]

The nicotinic ligand that has received the most attention as a potential antidepressant is compound 1, a racemic noncompetitive and nonselective antagonist of nAChRs (IC₅₀ = 91–610 nM, IC₅₀ = 0.6–2.5 μM, and IC₅₀ = 1.6–6.9 μM). Originally developed as an antihypertensive agent, anecdotal reports of mood modulation and a hypothesis that traditional antidepressants might be acting in part through noncompetitive antagonism of nAChRs led to a preliminary controlled study that demonstrated therapeutic effects of compound 1 for mood disorders, including MDD, that were comorbid with Tourette’s disorder. However, the subgroup sizes were very small, and the comorbidity with Tourette’s disorder precluded any conclusions from being drawn about the antidepressant efficacy of compound 1 monotherapy in patients who do not have Tourette’s disorder.

In studies using receptor expression in Xenopus oocytes, the 2S-(+)-enantiomer of compound 1, TC-5214 (13), was found to dissociate more slowly than 2R-(−)-mecamylamine (14) from α4/2- and α3/4-nAChRs, as well as more slowly from α4/2- than α3/4-nAChRs. IC₅₀ values for compound 13 at α3β4/2-, α4β2-α7-, or α1β2γδ-nAChRs are similar to those of compound 14 (IC₅₀ = 0.2–0.6 and 0.05–0.4 μM, IC₅₀ = 0.5–3.2 and 0.5–1.7 μM, IC₅₀ = 1.2–4.6 and 2.2–5.8 μM, and IC₅₀ = 0.6–2.2 and 0.3–1.1 μM). Further pharmacological studies suggested that compound 13 is a more efficacious antagonist of LS α4/2-nAChRs than compound 1 and can act as a positive allosteric modulator at HS α4/2-nAChRs. This was hypothesized to be mechanistically important; however, the positive allosteric modulation at α4/2-nAChRs was inferred from a slight potentiation of the HS α4/2-selective agonist TC-2559 (15) in a mixed population of HS and LS α4/2-nAChRs. Potentiation of ACh was not demonstrated, and because the effect was not reproduced in a pure population of HS α4/2-nAChRs, activation of LS α4/2-nAChRs by the coapplication of compounds 15 and 13 was not excluded.

Compound 13 exhibited higher anxiolytic- and antidepressant-like effects in several animal models than racemic mecamylamine (forced swim and social interaction tests, light/dark assay). These behavioral activities were attributed to antagonist effects at α4/2*-nAChRs. Moreover, compound 13 showed a superior preclinical safety profile compared to that of either the racemic compound or the 2R-(−)-enantiomer. Compound 13

dx.doi.org/10.1021/jm401937a J. Med. Chem. 2014, 57, 8204–8223
was found to be well-tolerated in acute and chronic toxicity studies in different animal models (mice, rats, and dogs) and showed acceptable pharmacologic, pharmacokinetic, and metabolic profiles for therapeutic development.

Targacept advanced compound 13 to a phase 2 study as an augmentation in patients who were inadequate responders to the SSRI compound 4. Initial results were very promising, with patients showing an average 6 point improvement on the primary end point, the Hamilton depression rating scale (HAM-D), as well as improvement on other secondary measures. A collaboration with AstraZeneca (Targacept and AstraZeneca’s RENAISSANCE program) followed, advancing compound 13 to phase 3 development as an adjunctive therapy in MDD patients who were inadequate responders to SSRI or SNRI monotherapy. Unfortunately, four phase 3 trials (two fixed and two flexible dose trials) failed to meet the primary end point of achieving a greater change in the Montgomery–Asberg depression rating scale total score for the experimental group receiving an adjunctive therapy of compound 13 combined with an SSRI or SNRI than for the placebo group receiving monotherapy with an SSRI or SNRI alone.

There are several possible explanations for the failure of compound 13 in the phase 3 trials. One explanation is that the studies that utilized compound 13 as an adjunct therapy had an unusually high placebo response. Every dose group (compound 13 and placebo) showed at least a 40% improvement in the MADRS total score after 8 weeks of adjunct treatment. A contemporaneous phase 2b monotherapy study of compound 13, which had a lower placebo response, provided some indications of a dose-related antidepressant response, but the study was terminated early. It has been suggested that pursuing compound 13 as a monotherapy may have led to a better outcome than as a combination therapy with an SSRI or SNRI. Subjects in placebo groups in the combination study received SSRI or SNRI treatment, and manipulation of the serotonergic or noradrenergic system may have interfered with the antidepressant response of compound 13. Additionally, other authors have suggested that a combination study with a tricyclic antidepressant, which would have antimuscarinic effects, rather than an SSRI or SNRI devoid of antimuscarinic activity, may have been more effective. An antidepressant with antimuscarinic effects could have pro-nicotinic effects through a neuro-adaptive upregulation of cholinergic tone, which could be normalized by compound 1. Alternatively, combining an antinicotinic with an antimuscarinic may have produced a complementary effect in reducing a hypercholinergic state than either treatment alone. Papke and Picciotto suggest that compound 1, in particular, the 2S-(+)-enantiomer 13, may not have been the best choice for the clinical trials. The rationale for using compound 13 was based on a study that suggested that compound 13 had both activating and inhibitory effects at α4β2-nAChRs, a better in vivo profile in animal studies, and a better safety profile than the 2R-(−)-enantiomer. However, more recent studies found little in vitro evidence to differentiate the pharmacological properties of compound 1 and the 2R- and 2S-enantiomers and only a modest difference in potency in vivo in the tail flick test between the stereoisomers. Furthermore, compound 1 is an antagonist that is more potent at inhibiting ganglionic α3/4-nAChRs than α4β2-nAChRs in the brain that are thought to be the primary target of hypercholinergic activity associated with depression. A recent estimate of the free compound 1 concentration in the brain indicates that it is likely insufficient to be pharmacologically relevant, blocking approximately 20% of α4β2-nAChR function. Further evidence that compound 13 did not provide sufficient inhibition on nAChRs comes from the failure of CP-601927 (16), an α4β2 partial agonist that was tested in a phase 2 clinical trial as an augmentation in treatment resistant subjects with major depression,

Although it is possible that compound 13 could be an effective monotherapy, given its poor nAChR subtype selectivity and the failure in the phase 3 clinical trial, it seems unlikely that this ligand will have a future in the treatment of depressive disorders. The disappointing failure of compound 13 illustrates the need for a better understanding of the optimal pharmacological properties to maximize clinical antidepressant efficacy. More potent nAChR inhibitors that block >25% α4β2 nAChRs would likely be more effective than compound 1 or compound 13. Inhibition may be achieved with more potent antagonists, partial agonists with very low intrinsic activity, or desensitizing agents.

2-(tert-Butylamino)-1-(3-chlorophenyl)propan-1-one, 7.

Compound 7 is an α-aminoketone believed to elicit antidepressant effects by acting as a dopamine and norepinephrine reuptake inhibitor. It was first reported to show efficacy as a smoking-cessation aid in nondepressed patients in 1994 and has subsequently proven to be a noncompetitive antagonist at a variety of nAChR subtypes. Compound 7 is most potent as a dopamine reuptake inhibitor, with an IC50 of 550 nM, while potencies at norepinephrine transporters and a number of nAChR subtypes fall in the low micromolar range. However, it has long been appreciated that clinical outcomes correlate poorly with plasma concentrations of compound 7 and that active metabolites reaching higher and longer-lasting concentrations in plasma likely play the leading role. The principal metabolite, 2,5,3'-hydroxybupropion (17), has reduced potency at dopamine transporters and most nAChR subtypes, whereas its potency at norepinephrine transporters and α4β2-nAChRs is enhanced. It appears that a determining factor of compound 7’s efficacy is its metabolism to sufficiently high concentrations of compound 17, as differences in its plasma concentrations between responders and nonresponders was the most statistically significant difference in a 2006 study. Plasma concentrations reported for compound 17 were in the low micromolar range. Although compound 7 and another active metabolite, threo-hydrobupropion, were present at lower concentrations, they may have additive effects in combination with the principal metabolite that provide a significant contribution to a complex pharmacology mediated by norepinephrine transporters, dopamine transporters, and α4β2-nAChRs. Evaluation of compound 7 and its hydroxyl metabolites in the mouse FST showed that compound 17 was equally potent to that of compound 7, whereas the 2S,3R-isomer showed no effect on immobility. The 2S,3S-isomer was also a more potent inhibitor of [3H]-norepinephrine uptake and [3H]dopamine update as well as a more potent antagonist of α4β2-nAChR function than that of the
2S,3R-isomer, suggesting that the 2S,3S-isomer may be a better candidate than compound 7 for antidepressant treatment. (2S,13bS)-2-Methoxy-2,3,5,6,8,9,10,13-octahydro-1H,12H-pyran-4,3′,3,4′-pyrido[2,1-j]indol-12-one, 18.

Dihydro-β-erythroidine (DHβE, 18) is an alkaloid that is isolated from the seeds of Erythrina L., a genus of trees and shrubs that is found in the tropics and subtropics around the globe. In Central America, Erythrina had an important role in folk medicine during precolonial times. Compound 18 acts as a competitive antagonist at α4β2-nAChRs (IC50 = 30 nM and IC50 = 23 μM) that blocks compound 10-induced dopamine release from rat striatal slices (IC50 = 30 nM). Compound 18 shows antidepressant-like effects in the mouse FST (3.0 mg/kg) and TST (1.0 and 3.0 mg/kg) without affecting locomotor activity. Additionally, compound 18 is able to potentiate the antidepressant-like effects of compound 9 (4 and 20 mg/kg) in the TST.22

((3S,6S,6aS,7R,7αR,8S,9R,10S,11aR,12S,12aS,13S)-1-Ethyl-11a,12-dihydroxy-6,8,10,13-tetramethoxydodecahydro-2H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-3(4H)-y)methyl-2-((S)-3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate, 19.

Methyllycaconitine (MLA, 19), a complex diterpenoid alkaloid isolated from the seeds of Delphinium brownii, is a competitive and selective α7-nAChR antagonist with an IC50 value in the subnanomolar range, as tested in Xenopus oocytes and α7-transfected SH-SY5Y cells. Compound 19 was found to partially inhibit anatoxin-evoked dopamine release from rat striatal slices and decrease the time spent immobile in NMRI female mice in the mouse FST (10 mg/kg) and TST (10 mg/kg) without affecting locomotor activity. Another study, however, found no effect of compound 19 (10 mg/kg) in the FST in BALB/c male mice. The discrepancies between these studies, which may be related to mouse strain, gender, or procedural differences, warrant further investigation into the role of α7 nAChR inhibition and antidepressant function.

7-(Pyridin-3-yl)-1,7-diazaspiro[4.4]nonane, 20.

Another α4β2-nAChR antagonist is the Targacept compound TC-2216 (20). This compound was reported to show beneficial effects in preclinical studies, thereby promoting its further development for the treatment of depression and anxiety disorders. A phase 1 clinical trial of racemic compound 20 was initiated in 2008, but no further trials were conducted.

nAChR AGONISTS

Modulation of nAChRs with partial agonists is pharmacologically complex, as it involves potentially simultaneous and interacting effects. Under acute conditions, partial agonists elevate baseline cholinergic tone while simultaneously lowering the ceiling of nAChR-mediated signaling. Depending on potency, dose, and exposure, partial agonists could have an additive effect with endogenous ACh, thereby lowering the threshold for ACh signaling while simultaneously lowering the efficacy of that signal. Under conditions of chronic administration, partial agonists desensitize nAChR, and it is believed that the resulting attenuation of cholinergic signaling is the principal pharmacotherapeutic end point.

CYTISINE AND DERIVATIVES

(18,55)-1,2,3,4,5,6-Hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one, 21.

(-)-Cytisine (21), a tricyclic quinolizidine alkaloid isolated from the seeds of Cytisus Laburnum L., has been used to treat tobacco dependence in Eastern Europe since the 1960s. Compound 21 is an α4β2-nAChR partial agonist (Kα = 2 nM) and an α3β4 (Kα = 480 nM) and α7 (Kα = 5890 nM) full agonist that shows antidepressant-like activities in several rodent models, presumably mediated by a reduction of neuronal activity in the basolateral amygdala. Compound 21 (10 μM) was reported to exhibit 56% of the response relative to that of compound 10 and to inhibit 30% of the current evoked by compound 10 (10 μM) in Xenopus oocytes expressing human α4β2-nAChRs. However, it was reported to have unfavorable side effects, which include nausea, vertigo, abdominal pain, respiratory stimulation, and muscle weakness. Mineur et al. observed that compound 21 was not tolerated by mice at a dose of >1.5 mg/kg. Additionally, the poor absorption and brain penetration of compound 21 may also limit its application as a clinical antidepressant.

(18,55)-9-(Pyridin-2-yl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one, 22.
SAR studies of cytisine analogues revealed that phenyl ring replacements of the pyridone ring of compound 21 reduced the binding affinities and functional efficacies. Substitution of 21 at the C-3 (−CH3102, −NO2103) or pyridine25) C-4 (−CH3102, or C-5 (Br)78 position could lead to the same or improved α4β2-nAChR binding affinity, whereas substitution at the piperidine nitrogen,79,103,104 the C-3 position (aromatic rings),103 or at the C-12 position (−CO2CH3 or −COCH2CH3)102 reduced affinity. Introduction of substituents on the piperidine ring nitrogen,79 C-4 (−CH3 or −CH2OH)102 or the C-5 (−NO2)103 position increases the selectivity for α4β2 receptor. Among these substituted cytisine analogues, 3-(2-pyridyl)cytisine (22)103 and 5-bromocytisine (23)103 were further tested in mouse antidepressant efficacy models. Both compounds displayed high affinity at α4β2*-nAChRs (Kᵢ,α4β2* = 0.9 nM for 22 and 0.3 nM for 23), whereas compound 22 was found to show lower affinities at α3β4*-nAChRs and α7*-nAChRs (Kᵢ,α3β4* = 119 nM and Kᵢ,α7* = 1100 nM for 22 vs Kᵢ,α3β4* = 3.8 nM and Kᵢ,α7* = 28 nM for 23). In electrophysiology assays, compound 22 activates both HS and LS α4β2*-nAChRs (EC50,HS = 12 nM and EC50,LS = 31 nM) expressed in oocytes with low efficacies (less than 10% relative to the efficacy of ACh at both HS and LS receptors) while exhibiting little agonism at α3β4*/4.95 In the same assays, compound 23 activated both HS and LS α4β2*-nAChRs with similar potencies (EC50,HS = 13 nM and EC50,LS = 15 nM) and efficacies (17% relative to ACh). A comparison of binding and functional data for compound 21 and its selected analogues are presented in Table 1. The antidepressant-like effects of compound 22 were demonstrated in the TST (0.6 mg/kg, but not at 0.3 or 0.9 mg/kg), FST (0.3–0.9 mg/kg), and chronic NSF tests (15 days at 0.3 mg/kg, but not at 0.6 mg/kg) in C57BL/6 mice. On the other hand, compound 23 (0.3–1.2 mg/kg) failed to show any significant effects in the same tests 30 min postintraperitoneal injection. It has been suggested that the lack of efficacy of compound 23 was likely due to the low brain penetration, as 50% of the compound in 1 μL of artificial cerebrospinal fluid showed a significant antidepressant-like effect in the TST when administered centrally.

Table 1. Binding Affinities and Maximal Responses and Potencies of Compounds 2 and 21–23 with Respect to Activation of nAChRs Expressed in Oocytes95,103

<table>
<thead>
<tr>
<th>ID</th>
<th>ref</th>
<th>LS EC50 (nM)</th>
<th>LS IC50 (nM)</th>
<th>HS EC50 (nM)</th>
<th>HS IC50 (nM)</th>
<th>α4β2 activation</th>
<th>α4β2 inactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>95</td>
<td>100%</td>
<td>100%</td>
<td>73</td>
<td>1.7</td>
<td>50 000</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>22%</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>101</td>
<td>6.5%</td>
<td>2000</td>
<td></td>
<td></td>
<td>28 000</td>
<td>50</td>
</tr>
<tr>
<td>22</td>
<td>95</td>
<td>3%</td>
<td>31</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>95</td>
<td>17%</td>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8212
dx.doi.org/10.1021/jm0401937a J. Med. Chem. 2014, 57, 8204–8223
Figure 6. Selected nicotinic benzazepine analogues.

The pyridine ether-based ligands, in which a CH₂O linker is inserted between the pyrrolidine ring (or in case of its analogues, an azetidine ring) of compound 10 and its pyridine ring have attracted considerable interest as α4β2-nAChR agonists due to their high potency. A-85380 (27) is a 3-pyridyl ether that exhibits both high potency and selectivity for β2-containing nAChRs, primarily α4β2 in brain ($K_{i,\alpha4\beta2} = 0.02-0.05$ nM for rat brain receptors and 0.04 nM for human brain receptors) relative to that of human α7-nAChRs ($K_{i,\alpha7} = 148$ nM) or muscle-type α1β1γδα4-nAChRs ($K_{i,\alpha1\beta1\gamma\delta} = 314$ nM). Functionally, compound 27 acts as a potent activator of both human α4β2-nAChRs ($EC_{50} = 0.7$ μM) and ganglionic α3β4*-nAChRs ($EC_{50} = 0.8$ μM), the effects of which are blocked by pretreatment with compound 1. In the FST, compound 27 was found to have antidepressant-like effects that could be blocked by pretreatment with the nAChR antagonists compounds 1 and 18, as well as by the nonselective serotonin receptor antagonist methiothepin, suggesting that compound 27 exerts its effects via neuronal nicotinic receptor activation of serotonergic pathways. As exemplified by compound 12 ($K_{i,\alpha4\beta2} = 0.01$ nM), introduction of a halogen substituent at the C-2 (fluoro only), C-5, or C-6 position of compound 27 leads to ligands that retain subnanomolar affinity for the α4β2*-nAChRs, as measured by radioligand binding assays utilizing rat brain membrane preparations. Similar to compound 27, 12 was also found to decrease immobility in the mouse FST. Recently, β2*-nAChR availability was found to be decreased across brain regions in depressed patients compared to that of healthy subjects using SPECT with the β2*-selective radioligand tracer $[^{123}I]$. A unifying explanation of these effects stems from the idea that desensitization and antagonism provide similar end points for agonists and antagonists. However, because agonists have an acute activation phase, behavioral assays may measure effects due to activation and/or inactivation of nAChRs. In this context, one would expect coadministration of an antagonist to reduce the behavioral signature of an agonist administered alone. More complicated explanations involving multiple nAChR subtypes also can be made, but they are highly speculative.

(5)-3-(Azetidin-2-ylmethoxy)-5-iodopyridine, 12.

5-I-A-85380, 12

$K_{i,\alpha4\beta2} = 0.01$ nM

Replacement of the pyridine core of these ether-based ligands with a methylisoxazole group led to compound 28, which binds to α4β2-nAChRs with higher affinity than to the α3β4-nAChRs ($K_{i,\alpha3\beta4} = 4.6$ nM vs $K_{i,\alpha3\beta4} = 692$ nM). The functional potency of compound 28 (1.2 μM) at the α4β2-nAChR is similar to that of compound 2 (1.4 μM), whereas the efficacy of compound 28 is higher (110% vs 53%) in cells heterologously expressing a mixture of HS and LS α4β2-nAChRs (Table 2). Broad screening showed that this compound was highly selective for nAChRs and did not have significant binding affinity to the other 45 neurotransmitter receptors and transporters tested. In the mouse FST, compound 28 was found to decrease immobility at 1-5 mg/kg i.p. and 5 mg/kg po. This compound showed no significant hERG or CYP (1A2, 2B6, 2C9, 2C19, 2D6, and 3A4) inhibition at 10 μM. Between 53.4 and 73.7% of compound 28 was found to remain unchanged after 60 min incubation with mouse or human liver microsomes (1 and 10 μM).
Table 2. Functional Potencies and Efficacies of Ligands 2, 10, 11, and 28–31: Agonism and Inactivation at Human α4β2-nAChRs122–125

<table>
<thead>
<tr>
<th>compound</th>
<th>IC\textsubscript{50} (nM)</th>
<th>efficacy (%)a</th>
<th>efficacy HS (%)b</th>
<th>IC\textsubscript{50} (nM)</th>
<th>efficacy (%)</th>
<th>efficacy HS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1400</td>
<td>53</td>
<td>100</td>
<td>110</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.8</td>
<td>55</td>
<td>100</td>
<td>4.8</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1200</td>
<td>110</td>
<td>92</td>
<td>169</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>21</td>
<td>92</td>
<td>9.4</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>22</td>
<td>22</td>
<td>61</td>
<td>31</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>8.4, 2300c</td>
<td>21</td>
<td>45</td>
<td>58</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>290</td>
<td>88</td>
<td>110</td>
<td>430</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

aThe efficacies were measured in a mixture of HS and LS α4β2-nAChRs. bThe efficacy values were extrapolated using compound 11 defined as a full agonist at the HS α4β2-nAChR. cCompound 31 activates both HS and LS α4β2-nAChRs with sufficient selectivity to distinguish activity at each subtype. Efficacy of 31 at LS α4β2-nAChRs is approximately 17%.

Table 3. Binding Affinities of Compounds 10, 11, and 27–31 at Seven nAChR Subtypes122–125

<table>
<thead>
<tr>
<th>compound</th>
<th>a2β2</th>
<th>a2β4</th>
<th>a3β2</th>
<th>a3β4</th>
<th>a4β2</th>
<th>a4β4</th>
<th>a4β2/a3β4</th>
<th>selectivity a4β2/a3β4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24000</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.3</td>
<td>311</td>
<td>8.7</td>
<td>692</td>
<td>4.6</td>
<td>860</td>
<td>12.0</td>
<td>150</td>
</tr>
<tr>
<td>29</td>
<td>0.1</td>
<td>249</td>
<td>3.0</td>
<td>6520</td>
<td>0.1</td>
<td>82.6</td>
<td>0.5</td>
<td>65200</td>
</tr>
<tr>
<td>30</td>
<td>1.0</td>
<td>935</td>
<td>15.4</td>
<td>>10000</td>
<td>0.6</td>
<td>1790</td>
<td>3.0</td>
<td>>16300</td>
</tr>
<tr>
<td>31</td>
<td>1.7</td>
<td>559</td>
<td>40.6</td>
<td>5640</td>
<td>1.2</td>
<td>16.9</td>
<td>1.4</td>
<td>4700</td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
<td>70</td>
<td>29</td>
<td>260</td>
<td>4.9</td>
<td>23</td>
<td>9.8</td>
<td>53</td>
</tr>
</tbody>
</table>

aK\textsubscript{i} values were determined by competition for [3H]epibatidine binding sites using radioligand binding. bα4β2, prepared from rat forebrain.
Replacing the acetylene bond of compound 11 with a substituted cyclopropane or an isoxazole ring lead to compounds 29 and 30, respectively. Introduction of different amino groups at the S-position of the pyridine ring yielded a series of 3-alkoxy-cyclopropane or an isoxazole ring lead to compounds 29 and 30.

These compound analogues (29–31) act as α4/2-nAChRs partial agonists (Table 2) with low nanomolar binding affinities (Kᵢ = 0.1–1.2 nM) and excellent subtype selectivity at β2*- over β4*-nAChRs (Table 3). Compound 29 has been co-crystallized with Ct-AChBP, and its binding mode was found to be similar to that reported for compound 2; both compounds rely on the presence of two cationic centers spaced ~5.8 Å from each other for their binding interactions, including cation–π interactions with W153 (loop B) and Y201 (loop C) as well as a set of H-bonds with the backbone atoms of W153 (loop B), Q116 (loop E), and I128 (loop E). (Figure 7.) The hydroxyethyl group of compound 29 appears to be flexible and is able to adopt different orientations, thus highlighting the ability to carry out structural modifications of this appendage without causing significant alterations in activity. The antidepressant-like properties of compounds 29–31 were demonstrated in the classical mouse FST (1–30 mg/kg). The lack of significant interactions with other neurotransmitter receptors and transporters widely distributed throughout the CNS as well as the favorable preliminary absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) profiles place these specific α4/2-nAChR ligands in a favorable position to be further studied as new antidepressant drug candidates.
nAChRs and weak activity at ganglionic α3β4-nAChRs (EC50 = 23 μM; efficacy = 52% relative to that of compound 10).148 In vitro, compound 33 stimulated dopamine release from slices of rat striatum prepared from various brain regions, and the effect was blocked by nAChR antagonists compound 1 or compound 18.149 On the other hand, compound 33 was found to show relatively weak effects on NE or 5-HT release. Subchronic or chronic administration of compound 33 demonstrated robust antidepressant-like effects in the learned helplessness model in rat, which were significantly blocked by nAChR antagonist compound 1 in the subchronic study.150 In addition, compound 33 was also found to improve cognitive and motor function in monkey models of Parkinson’s disease.151,152

1-(5-Chloropyridin-3-yl)-1,4-diazepane, 34.

Table 4. Clinical and Preclinical Evidence for the Viability of Targeting nAChRs in Depression

<table>
<thead>
<tr>
<th>ID</th>
<th>receptor subtype selectivity</th>
<th>antidepressant/anxiolytic results</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>α4/2 partial agonist, less potent α3/4 and α7 full agonist</td>
<td>Improved FST; augmented the antidepressant effects in depressed smokers</td>
<td>12, 38, and 109–114</td>
</tr>
<tr>
<td>11</td>
<td>α4/2 partial agonist</td>
<td>Improved FST, TST, and NIH</td>
<td>35, 38, and 126–129</td>
</tr>
<tr>
<td>12</td>
<td>α4/2 full agonist</td>
<td>Improved FST</td>
<td>38, 39, and 120</td>
</tr>
<tr>
<td>13</td>
<td>Nonselective noncompetitive antagonist</td>
<td>Improved FST, social interaction test, light/dark assay; failed phase 3 clinical study as add-on in treating resistant patients; dark assay</td>
<td>19, 21, 50, 51, and 66–72</td>
</tr>
<tr>
<td>16</td>
<td>α4/2 partial agonist</td>
<td>Improved FST Failed as augmentation of antidepressant therapy for major depression in phase 2 clinical study</td>
<td>78 and 108</td>
</tr>
<tr>
<td>18</td>
<td>α4/2 competitive antagonist</td>
<td>Improved FST and TST</td>
<td>22 and 87–89</td>
</tr>
<tr>
<td>19</td>
<td>α7 antagonist</td>
<td>Improved FST and TST</td>
<td>89–92</td>
</tr>
<tr>
<td>20</td>
<td>α4/2 antagonist</td>
<td>Antidepressant and anxiolytic like response in preclinical studies</td>
<td>93</td>
</tr>
<tr>
<td>21</td>
<td>α4/2 partial agonist, α3/4 and α and α7 full agonist</td>
<td>Antidepressant-like activities in several rodent models; safety issues, poor absorption and limited brain penetration</td>
<td>94–101</td>
</tr>
<tr>
<td>22</td>
<td>α4/2 partial agonist</td>
<td>Improved FST, TST, and chronic NSF</td>
<td>95 and 97</td>
</tr>
<tr>
<td>27</td>
<td>α4/2 partial agonist, α3/4 agonist</td>
<td>Improved FST</td>
<td>119–121</td>
</tr>
<tr>
<td>28</td>
<td>α4/2 partial agonist, less potent α3/4 agonist</td>
<td>Improved FST</td>
<td>122</td>
</tr>
<tr>
<td>29</td>
<td>α4/2 partial agonist</td>
<td>Improved FST</td>
<td>63 and 125</td>
</tr>
<tr>
<td>30</td>
<td>α4/2 partial agonist</td>
<td>Improved FST</td>
<td>124 and 141</td>
</tr>
<tr>
<td>31</td>
<td>α4/2 partial agonist</td>
<td>Improved FST</td>
<td>123</td>
</tr>
<tr>
<td>32</td>
<td>α4/2 partial agonist</td>
<td>Improved FST</td>
<td>142–147</td>
</tr>
<tr>
<td>33</td>
<td>α4/2 partial agonist</td>
<td>Improved learned helpless</td>
<td>148–152</td>
</tr>
<tr>
<td>34</td>
<td>α4/2 partial agonist</td>
<td>No effect alone at FST; enhanced the antidepressant-like effect of SSRI (compound 4) and SNRI (compound 6)</td>
<td>23 and 58</td>
</tr>
<tr>
<td>35</td>
<td>α7 agonist</td>
<td>No effect alone at FST; enhanced the antidepressant-like effect of SSRI (compound 4) and SNRI (compound 6)</td>
<td>23 and 153</td>
</tr>
</tbody>
</table>

NS3956 (34)23 was found to be a partial agonist at human α4/2-nAChRs (Ki = 0.36 nM) with good selectivity (Ki,α7 = 399 nM and KI,α4 = 944 nM). In the oocyte expression system, this compound was very potent at HS α4/2-nAChRs (EC50 = 11 nM), with an efficacy of 47% of the response to a maximally efficacious concentration of ACh.23 At LS α4/2-nAChRs, potency and efficacy were both reduced, with an EC50 of 604 nM and an efficacy of 38% relative to that of ACh. In reference to the subtype selectivity and off-target activity, actions at α7- or α3/4-nAChRs of compound 34 were weak or absent, and it did not show any significant interactions with the monoamine transporters, including 5-HT, DA, and NE. Moreover, compound 34 exhibited an ED50 value of 0.033 mg/kg in the [3H]epibatidine binding assay when tested in vivo, indicating that it was able to cross the BBB. Interestingly, compound 34 (0.3–3.0 mg/kg) was shown to be inactive in the mouse FST when tested alone, whereas when tested as a combination therapy, it significantly enhanced the antidepressant-like effects of the SSRI compound 4 and the SNRI compound 6 at 1.0 mg/kg.23 These results suggest the possibility of a synergistic interaction between nicotinic agonism and the action of antidepressant medications. In vitro binding studies along with the detailed interactions with Ls-AChBP revealed that a bromine substitution at the 6-position increased the efficacy at HS α4/2-nAChR, and a relatively small substitution, such as chloro, bromo, or ethoxy, at the 5-position of the pyridine ring in a 1-(pyridin-3-yl)-1,4-diazepane scaffold improved selectivity for α4/2-over α7-nAChRs.57

(R)-4-Chloro-N-(quinuclidin-3-yl)benzamide, 35.
antidepressant-like effect of the SSRI compound 4 or the SNRI compound 6.23

CONCLUSIONS

Considerable evidence supports the hypothesis that hyperactivity of the cholinergic system over that of the adrenergic system leads to depression. Clinical and preclinical studies provide evidence that modulating nAChRs may lead to antidepressant effects when given alone and in combination with traditional antidepressants (summarized in Table 4). Compound 10 has a clear and long-recognized activity as an antidepressant, and a childhood history of depression elevates with traditional antidepressants (summarized in Table 4). Antidepressant effects of several agonists in animal models are attenuated by coadministered antagonists, suggesting that nAChR activation contributes to some antidepressant-like drug effects. Antagonists alone also elicit antidepressant-like effects, suggesting that inhibition of nAChR function through processes such as desensitization also contribute to antidepressant efficacy, consistent with the cholinergic/adrenergic hypothesis. Moreover, compound 10 and many nicotinic ligands have limited selectivity across nAChR subtypes or subtype isoforms, meaning that they could have a matrix of effects across subtypes as well as on the activation—inactivation axis. There still is a need for reliable assays for several nAChR subtypes, in vitro, complicating the interpretation of results and strategies in identification of promising compounds. It is also important to be mindful that behavioral tests in animals measure changes in behavior that correlate with clinical efficacies of currently available antidepressants and do not necessarily predict effective antidepressant activity in humans, particularly in treatment-resistant patients.

Recent phase 3 findings indicated that the nAChR antagonist compound 13, the 2S-(+)-enantiomer of the broad-spectrum, noncompetitive nAChR antagonist, compound 1, did not show efficacy as an adjunct therapy for patients that were nonresponders to traditional antidepressant treatment. This suggests that simple antagonism of what is likely to be a number of nAChR subtypes has an insufficient antidepressant effect. However, the lack of nAChR subtype specificity and the marginal free concentration in brain are also significant issues for compound 13 that may have contributed to the negative outcomes in the phase 3 trials. Those outcomes are not likely to be accurate predictors of effects of nicotinic full or partial agonists with greater nAChR subtype selectivity.

Designing a compound that has actions more like those of compound 10 (short-lived nAChR agonism mediated by binding to the orthosteric sites followed by receptor desensitization) may produce a more efficacious antidepressant. Factors outlined above need to be addressed toward optimization of ligand action of the desired type and at the appropriate nAChR subtypes. These challenges aside, preclinical evidence shows potent antidepressant-like efficacy of compound 11 and some of its analogues in the mouse FST. These ligands have high selectivity at α4/β2*-nAChR over other nAChR subtypes and act as partial agonists at the α4β2-nAChR isofrom. These findings suggest and support the hypothesis that ligands selectively targeting the α4β2-nAChR isofrom may hold significant promise as efficacious antidepressants. These ligands would offer advantages over nicotinic agents that are relatively nonselective and produce adverse side effects through actions at peripheral nAChRs or at central non-α4/β2*-nAChRs.

Aside from their selectivity for α4/β2*-nAChR, compound 11 and its analogues have favorable pharmacokinetic and toxicological profiles. Advancement of the best of these ligands to and through clinical trials still requires substantial investment of effort and capital. Our work funded under a National Cooperative Drug Discovery and Development program has provided important impetus to such advancement, but private sector engagement and commitment to treatment of depression or other psychiatric disorders will be necessary. This poses an additional challenge given the perhaps more proximal benefit of attention on new drugs to treat diseases of aging and metabolism and acute/chronic pain than to treat psychiatric disorders that are poorly understood, perhaps because of their etiopathogenic heterogeneity. If nAChR ligands are to be prescribed as antidepressants, then it may happen through the inverse route that compound 7 took to be prescribed as a smoking-cessation aid. α4/β2*-selective agonists and partial agonists that are attractive as potential antidepressants may also be efficacious as smoking-cessation aids. It is entirely possible that this class of compounds will first reach the clinic as an improvement over compound 2 and that antidepressant efficacy is ascertained thereafter. Regardless, studies with α4/β2*-nAChR-selective ligands have already contributed to an improved understanding about nAChR subtypes and isoforms, and elucidation of roles played by the nicotinic system in the effects of these ligands certainly have illuminated the neurobiology underlying depression.

AUTHOR INFORMATION

Corresponding Author
Phone: +1-312-996-7577; Fax: +1-312-996-7107; E-mail: kozikowa@uic.edu.

Notes
The authors declare no competing financial interest.

Biographies

Li-Fang Yu received a Bachelor of Science degree in chemistry at Beijing Normal University (2004). She subsequently pursued graduate studies at Shanghai Institute of Materia Medica Chinese Academy of Sciences, where she obtained her Ph.D. in Medicinal Chemistry (2009) under the mentorship of Dr. Fa-Jun Nan. She completed her postdoctoral training at the University of Illinois at Chicago in the laboratory of Dr. Alan P. Kozikowski, where she worked on developing nicotinic ligands for use in depression. She is currently an associate professor of Medicinal Chemistry at East China Normal University. Her research interests are CNS drug design and development.

Han-Kun Zhang completed his Ph.D. in Medicinal Chemistry in 2009 at Shanghai Institute of Materia Medica, Chinese Academy of Sciences, under the mentorship of Dr. Li-Hong Hu. His dissertation research centered on the discovery of novel antidiabetic and antitumor agents derived from natural products. He began his postdoctoral research career at the University of Illinois at Chicago, under the direction of Dr.
Alan P. Kozikowski, where his research focus was on the development of novel nAChR ligands and HDAC inhibitors. In 2013, he joined the School of Life Sciences, East China Normal University, as an Associate Professor, and his current research interests are focused on GPCR-based drug discovery.

Barbara J. Caldarone is the Director of the NeuroBehavior Laboratory at the Harvard NeuroDiscovery Center and an Instructor at Brigham and Women’s Hospital in Boston, Massachusetts. She completed her postdoctoral training at Yale University School of Medicine, where she began studying the relationship between nicotinic acetylcholine receptors and depression; she continued this work in industry at PsychoGenics, where she worked on characterizing novel nicotinic ligands for the treatment of depression. She currently works with investigators from the Harvard research community in utilizing mouse behavioral models to help understand and develop treatments for neurodegenerative and psychiatric disorders.

J. Brek Eaton received a Bachelor of Science degree in Microbiology from Arizona State University with an emphasis on Molecular Biology and Immunology in 1998 after studying engineering at Florida Institute of Technology. He is currently a research technician at Barrow Neurological Institute employed in the Neurochemistry Laboratory of Dr. Ronald J. Lukas. Current research is focused on the discovery of novel ligands targeting neuronal nicotinic acetylcholine receptors, both for use as therapeutics and as research tools to advance understanding of the biophysics underlying nicotinic acetylcholine receptor function.

Ronald J. Lukas received undergraduate and early graduate training in Physics at the State University of New York (SUNY) and Columbia University before earning a Ph.D. in Biophysics from the SUNY Health Sciences Center in Brooklyn and serving as a postdoctoral fellow in Chemical Biodynamics at the University of California, Berkeley, and in Neurobiology at Stanford University. He since has directed the Laboratory of Neurochemistry at the Barrow Neurological Institute, conducting multidisciplinary work concerning nicotinic acetylcholine receptor structure, function, and roles in neuropsychiatric disorders.

Alan P. Kozikowski is a Professor of Medicinal Chemistry and Pharmacognosy at the University of Illinois at Chicago. He has previously held positions at the University of Pittsburgh, the Mayo Clinic, and the Georgetown University Medical Center. He has made numerous contributions to the CNS and cancer fields and published over 500 research articles. His interest in epigenetics led to the identification of highly selective HDAC6 inhibitors for application to orphan indications such as Rett syndrome and Charcot–Marie–Tooth disease. Some of his designed PSMA inhibitors have been advanced to phase 2 clinical trials for prostate cancer imaging. His efforts in the GSK-3 area have recently led to a new startup company to advance novel therapeutics for pancreatic and brain cancers.

ACKNOWLEDGMENTS

We thank the National Institute of Mental Health (NIMH grant U19MH085193) for research support. The Phoenix research component was also supported in part by the Barrow Neurological Foundation, and work by this team was conducted in part in the Charlotte and Harold Simensky Neurochemistry of Alzheimer’s Disease Laboratory.

ABBREVIATIONS USED

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR*D</td>
<td>Sequenced treatment alternatives to relieve depression</td>
</tr>
<tr>
<td>MDD</td>
<td>Major depressive disorder</td>
</tr>
<tr>
<td>nAChR</td>
<td>Nicotinic acetylcholine receptor</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective serotonin reuptake inhibitor</td>
</tr>
<tr>
<td>SNRI</td>
<td>Serotonin norepinephrine reuptake inhibitor</td>
</tr>
<tr>
<td>ACh</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>mAChR</td>
<td>Muscarinic acetylcholine receptor</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic–pituitary–adrenal</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-Aminobutyric acid</td>
</tr>
<tr>
<td>LS</td>
<td>Low sensitivity</td>
</tr>
<tr>
<td>HS</td>
<td>High sensitivity</td>
</tr>
<tr>
<td>VTAs</td>
<td>Ventral tegmental area</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single photon emission computed tomography</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>AChBP</td>
<td>Acetylcholine binding protein</td>
</tr>
<tr>
<td>Ac</td>
<td>Aplysia californica</td>
</tr>
<tr>
<td>Ls</td>
<td>Lymnaea stagnalis</td>
</tr>
<tr>
<td>Ct</td>
<td>Capitella teleta</td>
</tr>
<tr>
<td>FST</td>
<td>Forced swim test</td>
</tr>
<tr>
<td>NSF</td>
<td>Novelty-suppressed feeding</td>
</tr>
<tr>
<td>NIH</td>
<td>Novelty-induced hypophagia</td>
</tr>
<tr>
<td>ADME tox</td>
<td>Absorption, distribution, metabolism, excretion, and toxicity</td>
</tr>
</tbody>
</table>

REFERENCES

Perspective

(18) Hennings, E. C.; Kiss, J. P.; Vizi, E. S. Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices.

(19) Fryer, J. D.; Lukas, R. J. Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function.

(20) Lopez-Valdes, H. E.; Garcia-Colunga, J. Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake.

(21) Weber, M. L.; Holland, C. M.; Shaffer, C. L.; Flik, G.; Cremers, T.; Hurst, R. S.; Rollema, H. Therapeutic doses of antidepressants are projected not to inhibit human α4β2 nicotinic acetylcholine receptors.

(22) Popik, P.; Kozela, E.; Krawczyk, M. Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipramine and citalopram.

(24) Eglen, R. M. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.

(25) Mineur, Y. S.; Picciotto, M. R. Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis.

(27) Changeux, J. P. Nicotine addiction and nicotine receptors: lessons from genetically modified mice.

(30) Ma, Z.; Strecke, R. E.; McKenna, J. T.; Thakkar, M. M.; McCarley, R. W.; Tao, R. Effects on serotonin of (-)-nicotine and dimethylphenylpiperazinium in the dorsal raphe and nucleus accumbens.

(32) Caldarone, B. J.; Harrist, A.; Cleary, M. A.; Beech, R. D.; King, S. L.; Picciotto, M. R. High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation.

(33) Rabenstein, R. L.; Caldarone, B. J.; Picciotto, M. R. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2α7-nicotinic acetylcholine receptor subunit knockout mice.

(36) Caldarone, B. J.; Harrist, A.; Cleary, M. A.; Beech, R. D.; King, S. L.; Picciotto, M. R. High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation.

(37) Rabenstein, R. L.; Caldarone, B. J.; Picciotto, M. R. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2α7-nicotinic acetylcholine receptor subunit knockout mice.

(41) Arias, H. R.; Fedorov, N. B.; Benson, L. C.; Lippiello, P. M.; Gatto, G. J.; Feuerbach, D.; Orrells, M. O. Functional and structural interaction of (-)-reboxetine with the human alpha4beta2 nicotinic acetylcholine receptor.

(42) Klink, R.; de Kerchove d’Exaerde, A.; Zoli, M.; Changeux, J. P. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei.

(43) Wu, J.; Lukas, R. J. Naturally-expressed nicotinic acetylcholine receptor subtypes.

(44) Quik, M.; Perez, X. A.; Grady, S. R. Role of alpha6 nicotinic receptors in CNS dopaminergic function: relevance to addiction and neurological disorders.

(45) Gotti, C.; Zoli, M.; Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance.

(48) de Filippi, G.; Mogg, A. J.; Phillips, K. G.; Zwart, R.; Sher, E.; Chen, Y. The subtype-selective nicotinic acetylcholine receptor positive allosteric potentiator 2087101 differentially facilitates neurotransmission in the brain.

(49) Gong, C. L.; Chiu, Y. T.; Lin, N. N.; Cheng, C. C.; Lin, S. Z.; Lee, T. J.; Kuo, J. S. Regulation of the common carotid arterial blood flow by nicotinic receptors in the medulla of cats.

(50) Shytle, R. D.; Silver, A. A.; Sheehan, K. H.; Sheehan, D. V.; Sanberg, P. R. Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine.

(51) Papke, R. L.; Sanberg, P. R.; Shytle, R. D. Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes.

Journal of Medicinal Chemistry
From ab initio quantum mechanics to molecular variants modulate function of α6 that nicotinic acetylcholine receptor (nAChR) α5 subunits and/or nicotinic acetylcholine receptors: an integrated approach to behaviorally defined in crystal structures of a homologous binding protein. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10926−10931.

(96) Mineur, Y. S.; Somenzi, O.; Picciotto, M. R. Cytisine, a partial agonist of high-affinity nAChR ligands, has antidepressant-like properties in male C57BL/6 mice. *Neuropharmacology* 2007, 52, 1256–1262.

