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Abstract
We present three topics in this thesis: the next generation warp bridge sampling,

Bayesian methods for modeling source intensities, and large-sample hypothesis testing

procedures in multiple imputation.

Bridge sampling is an e↵ective Monte Carlo method to estimate the ratio of the

normalizing constants of two densities. The Monte Carlo errors of the estimator are

directly controlled by the overlap between the densities. In Chapter 1, we generalize

the warp transformations in Meng and Schilling (2002), and introduce a class of

stochastic transformation, called warp-U transformation, which aims at increasing

the overlap of the densities of the transformed data without altering the normalizing

constants. Warp-U transformation is determined by a Gaussian mixture distribution,

which has reasonable amount of overlap with the density of unknown normalizing

constant. We show warp-U transformation reduces the f-divergence of two densities,

thus bridge sampling with warp-U transformed data has better statistical e�ciency

than that based on the original data. We then propose a computationally e�cient

method to find a Gaussian mixture distribution and investigate the performance of

the corresponding warp-U bridge sampling. Finally, theoretical and simulation results

are provided to shed light on how to choose the tuning parameters in the algorithm.
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Abstract

In Chapter 2, we propose a Bayesian hierarchical model to study the distribution

of the X-ray intensities of stellar sources. One novelty of the model is its use of a

zero-inflated gamma distribution for the source intensities to reflect the possibility of

“dark” sources with practically zero luminosity. To quantify the evidence for “dark”

sources, we develop a Bayesian hypothesis testing procedure based on the posterior

predictive p-value. Statistical properties of the model and the test are investigated

via simulation. Finally, we apply our method to a real dataset from Chandra.

Chapter 3 presents large-sample hypothesis testing procedures in multiple impu-

tation, a common practice to handle missing data. Several procedures are classified,

discussed, and compared in details. We also provide an improvement of a Wald-type

procedure and investigate a practical issue of the likelihood-ratio based procedure.
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Chapter 1

Warp Bridge Sampling: the Next

Generation

1.1 Motivations and Applications

MCMC methods enable us to simulate data from an unnormalized density without

knowing the normalizing constant. However, in scientific and statistical studies, many

problems are formulated as (ratios of) normalizing constants.

An example in physics and chemistry is the partition function, which describes

the statistical properties of a system in thermodynamic equilibrium. It is the integral

of the system density q(!;T, v) = exp
⇣

�H(!,v)
kT

⌘

, where T is the temperature, k is

the Boltzmann’s constant, v is a vector of system characteristics, and H(!, v) is the

energy function. Because of the high dimentionality of the energy function, Monte

Carlo methods are often used to estimate the integral (see, for example, Bennett,

1976; Ceperley, 1995; Voter and Doll, 1985).
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Chapter 1: Warp Bridge Sampling: the Next Generation

Another example is the computation of the observed-data likelihood, L(⇥;Yobs), in

the presence of massive missing data. More specifically, L(⇥;Yobs) can be formulated

as the normalizing constant of the conditional distribution of Ymis given (Yobs,⇥), with

the complete-data distribution as the unnormalized density, i.e.,

L(⇥;Yobs) , P (Yobs|⇥) =
Z

P (Ymis, Yobs|⇥)u(dYmis).

An application lies in the genetic linkage analysis, where ⇥ represents the locations

of disease genes relative to a set of markers, Yobs is the vector of genotypes of markers

for some members of a pedigree, and an example of the missing information is the

ellele types inherited from the parents. For a large pedigree with many loci, direct

calculation of the observed-data likelihood is often prohibitive. Fortunately, it is feasi-

ble to simulate Ymis from the conditional distribution, P (Ymis|Yobs,⇥), and to evaluate

P (Yobs, Ymis|⇥), so researchers often resort to Monte Carlo methods to estimate the

observed-data likelihood.

In addition, Monte Carlo integration is often used to estimate Bayes factors for

the purpose of model selection. Let Y be the data, fitted to two plausible models M
0

and M
1

, parametrized by ⇥
0

and ⇥
1

. The Bayes factor of the two models is defined

as the ratio of the model likelihoods, P (Y |M
0

) and P (Y |M
1

), where

P (Y |Mi) =

Z

P (Y |⇥i,Mi)P (⇥i|Mi)u(d⇥i)

is the normalizing constant of the unnormalized density, P (⇥i, Y |Mi), of ⇥i. In most

applications, Monte Carlo draws of ⇥i from its posterior distribution, P (⇥i|Y,Mi),

2



Chapter 1: Warp Bridge Sampling: the Next Generation

are made for the purpose of statistical inference. So no additional sample is needed

to estimate the Bayes factor via Monte Carlo methods.

Some good reviews of the applications of estimating the (ratios of) normalizing

constants can be found in Meng and Wong (1996), Gelman and Meng (1998), Shao

and Ibrahim (2000), and Tan (2013).

This chapter is organized as follows. First, we provide a brief review of bridge

sampling and warp bridge sampling, highlighting the power of transformation in in-

creasing the overlap of two densities and thus reducing the Monte Carlo errors in

estimating the normalizing constants. Then, we introduce a general class of stochas-

tic transformation that can warp two densities into having substantial overlap without

altering their normalizing constants. Theoretical results and simulation studies are

provided to demonstrate the potential of this class of transformation. In Section 1.4,

we propose a computationally e�cient method to find a specific transformation in the

class and study the properties of the corresponding estimator. Finally, we compare

both the computation costs and the statistical e�ciencies of estimators with di↵er-

ent tuning parameters, in the hope of providing some guidance for choosing these

parameters.

1.2 Literature Review: Warp Bridge Sampling

Bridge sampling (Bennett, 1976; Meng and Wong, 1996) is an e↵ective method

to estimate the ratio of the normalizing constants of two unnormalized densities.

The Monte Carlo errors of the estimator depend on the amount of overlap between

the two densities. Warp bridge sampling aims to reduce the Monte Carlo errors by

3



Chapter 1: Warp Bridge Sampling: the Next Generation

transforming the data so that the densities of the transformed data have more overlap.

To fix the idea, for i = 1, 2, let qi be the two unnormalized densities with respect

to a common measure u, each with a normalizing constant ci. We use pi to denote

the normalized density, i.e., pi(!) = c�1

i qi(!), for ! 2 ⌦i, where ⌦i is the support of

qi. We are interested in estimating the ratio of the two normalizing constants, i.e.,

r = c
1

/c
2

or � = log(r), with the available draws, {wi,1, wi,2, · · · , wi,ni}, from pi.

1.2.1 Bridge Sampling

Bridge sampling relies on a simple fact that for any function, ↵, that is defined

on ⌦
1

\ ⌦
2

and satisfies

0 <

�

�

�

�

Z

⌦1\⌦2

↵(!)p
1

(!)p
2

(!)u(d!)

�

�

�

�

< 1,

the following identity holds,

r =
c
1

c
2

=
E
2

[q
1

(!)↵(!)]

E
1

[q
2

(!)↵(!)]
, (1.1)

where Ei represents the expectation with respect to the density pi. The corresponding

bridge sampling estimator of r is defined by replacing the expectations in (1.1) by

the sampling averages, that is,

br↵ =

n�1

2

n2
X

j=1

q
1

(w
2,j)↵(w2,j)

n�1

1

n1
X

j=1

q
2

(w
1,j)↵(w1,j)

. (1.2)

4



Chapter 1: Warp Bridge Sampling: the Next Generation

Di↵erent choices of ↵ correspond to estimators with di↵erent statistical e�cien-

cies, quantified by the asymptotic variance of b�↵ = log(br↵), or equivalently, the

asymptotic relative variance of br↵, E(br↵ � r)2/r2. Meng and Wong (1996) showed

that asymptotically the variance of b�↵ can be approximated by its first-order term

(n
1

+ n
2

)�1V↵(p1, p2), where

V↵(p1, p2) =
R

p⇤
1

p⇤
2

(p⇤
1

+ p⇤
2

)↵2u(d!)
�R

p⇤
1

p⇤
2

↵u(d!)
�

2

� 1

s
1

� 1

s
2

, (1.3)

with si = ni/(n1

+ n
2

), and p⇤i = sipi.

The importance sampling and the geometric bridge sampling are both special cases

of bridge sampling, with ↵imp / 1/q
2

and ↵geo / 1/
p
q
1

q
2

, respectively. Meng and

Wong (1996) showed that the asymptotic variance of the geometric bridge sampling

estimator, denoted as b�geo = log(brgeo), is

Var
⇣

b�geo

⌘

=

✓

1

n
1

+
1

n
2

◆

n

b
⇥

1�H2

E(p1, p2)
⇤�2 � 1

o

+ o

✓

1

n
1

+ n
2

◆

, (1.4)

where b =
R

⌦1\⌦2
[p⇤

1

(!) + p⇤
2

(!)]u(d!) 6 1, and HE(p1, p2) is the Hellinger distance

between p
1

and p
2

, defined as

HE(p1, p2) =



1

2

Z

⇣

p

p
1

(!)�
p

p
2

(!)
⌘

2

u(d!)

�

1/2

. (1.5)

When all the draws are independent, Meng and Wong (1996) found that the

5
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optimal choice of ↵ in terms of minimizing the asymptotic variance of b�↵ is

↵opt(!) / 1

s
1

q
1

(!) + rs
2

q
2

(!)
.

Since ↵opt depends on the unknown quantity r, Meng and Wong (1996) proposed

an iterative sequence, defined below, that converges to the optimal bridge sampling

estimator, bropt,

br(t+1)

opt =

1

n
2

n2
X

j=1

"

l
2,j

s
1

l
2,j + s

2

br(t)opt

#

1

n
1

n1
X

j=1

"

1

s
1

l
1,j + s

2

br(t)opt

# , (1.6)

where li,j = q
1

(wi,j)/q2(wi,j), for i = 1, 2, and j = 1, 2, · · · , ni. The sequence typically

converges to bropt within 10 iterations in our simulation. We define the (sample-size

adjusted) Harmonic distance between p
1

and p
2

as

HA(p1, p2) =

⇢

Z

⌦1\⌦2

⇥

p⇤
1

(!)�1 + p⇤
2

(!)�1

⇤�1

u(d!)

��1

� s�1

1

� s�1

2

. (1.7)

Then the asymptotic variance of b�opt = log(bropt) is

Var(b�opt) =
1

n
1

+ n
2

HA(p1, p2) + o

✓

1

n
1

+ n
2

◆

. (1.8)

Kong et al. (2003) formulated the Monte Carlo estimation of integrals as a statis-

tical inference problem, where the parameter to be estimated is the non-negative mea-

sure, u, which we purposefully choose and pretend to be unknown. Let {wi,1, · · · , wi,ni}

be independent draws from the probability measure, Pi(d!) = c�1

i qi(!)u(d!), for

6
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i = 1, · · · , k. Then the maximum likelihood estimator (MLE) of u is a discrete

measure defined on the set of all the simulated data, ⌦k, i.e.,

bu({!}) = n bP ({!})
Pk

s=1

nsbc�1

s qs(!)
,

where n is the total sample size, bP is the discrete measure supported on ⌦k with

equal probability, and bci is the MLE of ci, which satisfies

bci =

Z

qi(!)bu(d!) =
k
X

l=1

nl
X

j=1

qi(wl,j)
Pk

s=1

nsbc�1

s qs(wl,j)
. (1.9)

In the special case of k = 2, the MLE of c
1

/c
2

is equivalent to the optimal bridge

sampling estimator, bropt, in (1.6). When k > 2, Tan (2004) shows that the MLE

of

✓

c
1

ck
, · · · , ck�1

ck

◆

defined in (1.9) has the minimal asymptotic variance-covariance

matrix among the extended bridge sampling estimators.

1.2.2 Warp Bridge Sampling

According to (1.8), the only way to further reduce the asymptotic variance of b�opt

without making additional draws from p
1

or p
2

is to reduce the Harmonic distance

between the two densities. More specifically, we can apply a transformation, Fi, to

the original data such that the unnormalized density, eqi, of the transformed data,

ewi,j, has the same normalizing constant as qi, i.e.,

ewi,j = Fi(wi,j)
iid⇠ epi = 1

ci
eqi,

7
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where epi is the normalized density of ewi,j. Then, the bridge sampling estimator with

the transformed data also estimates r. If the transformations lead to

HA(ep1, ep2) < HA(p1, p2),

the optimal bridge sampling estimator based on { ewi,1, · · · , ewi,ni} will have smaller

asymptotic variance than that based on {wi,1, · · · , wi,ni}.

Warp transformation, proposed by Meng and Schilling (2002), is a class of trans-

formations that aims at reducing the distance between the resulting densities while

keeping the normalizing constants unchanged.

In the remainder of this chapter, we refer the warp-X bridge sampling to the

bridge sampling with the data and the densities in (1.2) replaced with the warp-X

transformed data, { ew(X )

i,1 , · · · , ew(X )

i,ni
}, and their corresponding densities, eq(X )

i , where the

superscript (X ) represents the type of transformation. The corresponding estimator

is denoted as b�(X )
↵ = log (br(X )

↵ ) for general choices of ↵, and b�(X )
opt = log

�

br(X )
opt

�

for the

optimal bridge sampling. Let ⇣ be the vector of parameters that characterizes the

warp-X transformation. It is important to note that ↵ is typically a functional of the

two densities, as in the geometric bridge sampling and the optimal bridge sampling,

so in the warp-X bridge sampling, ↵ may also depend on ⇣.

Warp-I transformation “moves” one density “closer” to the other density to reduce

their distance. Let µ be a location parameter, e.g., the di↵erence between the means

or the modes of the two densities. The transformations applied to the data are

ew(I)

1,j = w
1,j � µ, ew(I)

2,j = w
2,j,

8
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0
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0.
4
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p1
p2
p~1
(I)

µ

Figure 1.1: Graphical illustration of warp-I transformation. The dashed and the solid lines
are the curves of p

1

and p
2

. The dash-dot line is the density, ep(I)

1

, of the warp-I transformed
data, obtained by moving p

1

to the left by µ units. The shaded areas are the overlap
between two densities. After warp-I transformation, the overlap increases.

and the corresponding densities are

eq(I)

1

(w) = q
1

(w + µ), eq(I)

2

= q
2

.

The warp-I bridge sampling estimator of r is

br(I)

↵ =
n�1

2

Pn2

j=1

eq(I)

1

( ew(I)

2,j)↵( ew
(I)

2,j)

n�1

1

Pn1

j=1

eq(I)

2

( ew(I)

1,j)↵( ew
(I)

1,j)
=

n�1

2

Pn2

j=1

q
1

(w
2,j + µ)↵(w

2,j)

n�1

1

Pn1

j=1

q
2

(w
1,j � µ)↵(w

1,j � µ)
.

Figure 1.1 shows the densities before (left penal) and after (right penal) warp-I trans-

formation, demonstrating the increase of the overlap.

Warp-II transformation matches both the center and the spread of the two densi-

ties to increase the amount of overlap. Let µi be a location parameter, Si be a scaling

9
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Figure 1.2: Graphical illustration of warp-II (left) and warp-III transformation (right).
The dashed and the solid lines are the curves of p

1

and p
2

. The dash-dot lines are p(II)

1

(left)
and p(III)

1

(right), obtained by warp-II and warp-III transformation, respectively.

parameter, and ⇣ = (µ
1

, µ
2

,S
1

,S
2

). The warp-II transformation applied to wi,j is

ew(II)

i,j = S�1

i (wi,j � µi),

the unnormalized density of which is

eq(II)

i (!) = |Si|qi(Si! + µi).

Then the corresponding warp-II bridge sampling estimator is

br(II)

↵ =
n�1

2

Pn2

j=1

|S
1

|q
1

(S
1

S�1

2

(w
2,j � µ

2

) + µ
1

)↵(S�1

2

(w
2,j � µ

2

))

n�1

1

Pn1

j=1

|S
2

|q
2

(S
2

S�1

1

(w
1,j � µ

1

) + µ
2

)↵(S�1

1

(w
1,j � µ

1

))
.

The dash-dot curve in Figure 1.2 (left) is an example of ep(II)

1

, which has more overlap

with p
2

than p
1

or ep(I)

1

.

10
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One common feature of warp-I and warp-II transformations is that the transfor-

mation Fi is a deterministic function that maps each wi,j to a unique value. Warp-III

transformation, on the other hand, is a stochastic transformation that maps wi,j to

di↵erent values with certain probabilities to induce symmetry. The warp-III trans-

formation applied to wi,j is

ew(III)

i,j = bi,jS�1

i (wi,j � µi), (1.10)

where bi,j takes �1 and 1 with equal probability. The unnormalized density of ew(III)

i,j

is

eq(III)

i (!) =
|Si|
2

[qi (µi � Si!) + qi (µi + Si!)] . (1.11)

Figure 1.2 (right) shows an example of ep(III)

1

(the dash-dot curve). More explanations

and examples of warp I-III transformations can be found in Meng and Schilling (2002).

1.3 Warp-U Bridge Sampling

1.3.1 Setup of the Problem

The warp I-III transformations are very e↵ective in increasing the overlap of the

two densities and thus reducing the asymptotic variance of the bridge sampling es-

timator, especially when both densities are unimodal. When one or both densities

have multiple modes, the power of these transformations is limited. In this section,

we generalize warp-III transformation and introduce warp-U transformation, which is

capable of “bringing” all the modes of a distribution together and forming a unimodal

11



Chapter 1: Warp Bridge Sampling: the Next Generation

distribution (and hence the designation “warp-U”).

We focus on the estimation of one normalizing constant and choose the other

density to be a well-known density, �, such as the standard normal distribution or

t-distribution. The reasons are the following. First, the goal of the transformation is

clear, that is, to transform the data so that the corresponding density will be “close”

to �. Second, the ratio of two normalizing constants can be obtained by estimating the

two constants separately, which also bypasses the problem of di↵erent dimensionalities

of the two densities in bridge sampling (Chen and Shao, 1997). Finally, if both

datasets are transformed to have substantial overlap with a common distribution,

�, the resulting densities would also have substantial overlap with each other, thus

the ratio can also be well estimated by the bridge sampling estimator with the two

transformed datasets. We’ll see an example of this in Section 1.5.4.

For clarification, we redefine the notations here. Let q be the unnormalized density

of a continuous distribution, and {w
1

, · · · , wn} be n independent draws from p = 1

c
q,

where c is the normalizing constant of q. To estimate c via bridge sampling, we choose

the other distribution, �, to be a well-known and normalized density, and make m

independent draws, {z
1

, · · · , zm}, from it. Warp-U transformation aims at reducing

the divergence between � and ep, the density of the warp-U transformed data ewj, and

thus reducing the asymptotic variance of the corresponding warp-U bridge sampling

estimator b�(U)
↵ = log (br(U)

↵ ).

The density � should be easy to evaluate, easy to simulate from, and typically

symmetric and unimodal. Examples include the standard normal distribution, t-

distribution and Laplace distribution. For concreteness, we assume � to be the density

12
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of the standard normal distribution throughout the paper. The conclusions in this

section also hold for any other choices of �.

1.3.2 Intuition of Warp-U Transformation

Warp-U transformation is determined by a Gaussian mixture distribution, i.e.,

�mix(!; ⇣) =
K
X

k=1

�(k)(!) =
K
X

k=1

⇡k |Sk|�1 �
�S�1

k (! � µk)
�

, (1.12)

where K is the number of components in �mix, �(k) represents the k-th compo-

nent in �mix including its weight ⇡k, and ⇣ is the vector of parameters, i.e., ⇣ =

(⇡
1

, · · · , ⇡K , µ1

, · · · , µK ,S1

, · · · ,SK).

Alspach and Sorenson (1972) showed that the Gaussian sum approximation can

converge uniformly to any piecewise continuous density function. So for a reasonable

choice of K, we can find a �mix that has su�cient overlap with p. Section 1.4 discusses

a computationally inexpensive method to find such a �mix, where the performance of

the resulting warp-U bridge sampling is studied theoretically and via simulation.

Before going into the details, we first assume �mix is known and fixed, and explain

the intuition of the corresponding warp-U transformation. Figure 1.3 (left) shows the

densities, p (red dashed line) and �mix (blue solid line), which have reasonable amount

of overlap.

We explain, in Figure 1.4, how a Gaussian mixture distribution can be changed

back to the standard normal distribution. The blue solid curve on the vertical plate in

Figure 1.4(a) is �mix, which is decomposed into three components, �(k), for k = 1, 2, 3,

corresponding to the three blue solid curves in Figure 1.4(b). Each component, �(k),

13
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Figure 1.3: (Left) density p (dashed line) and a Gaussian mixture density �mix (solid line),
which has substantial overlap with p; (Right) after warp-U transformation, �mix turns into
the standard normal distribution (solid line) and p turns into ep(U) (dashed line).

is moved by µk units to the origin and then rescaled by S�1

k , resulting in ⇡k�, as

shown in Figure 1.4(d) (the blue solid curves). So after the transformation, the sum

of the three components becomes the standard normal distribution.

From another prospective, if X ⇠ �mix, then X can be represented stochastically,

i.e.,

X = S
⇥

Z + µ
⇥

,

where Z ⇠ �, ⇥ is a discrete random variable with a probability mass function

P (⇥ = k) = ⇡k for k = 1, 2, 3, and ⇥ and Z are independent. Figure 1.4(b) shows the

joint distribution of ⇥ and X, and their marginal distributions are on the two vertical

plates. For k 2 {1, 2, 3}, we define a deterministic function Fk(x; ⇣) = S�1

k (x � µk).

Then, the random index ⇥ can induce a random transformation, F
⇥

(x; ⇣) = S�1

⇥

(x�

µ
⇥

). By applying the random transformation to X, we obtain F
⇥

(X; ⇣) = Z, and

14
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Figure 1.4: Illustration of warp-U transformation. (a) �mix (solid line) and p (dashed line);
(b) the joint and marginal distributions of X and ⇥ (solid line); (c) the joint and marginal
distributions of W and  (dashed line); (d) the joint and marginal distributions of ⇥ and eX

(solid line) and those of  and fW (dashed line), where eX and fW are obtained via warp-U
transformation.

thus we �mix into �. In terms of data transformation, if (xi, ✓i) is drawn from the joint

distribution of (X,⇥), then exi = S�1

✓i
(xi � µ✓i) is a random draw from �.

Now we describe how the warp-U transformation, determined by �mix, turns p into

ep, the red dashed line in Figure 1.3. Let W be a random variable from p. To obtain

the random transformation for W , we create a new random variable  that serves

the same purpose as ⇥, i.e., to index the transformation. We define  by assuming
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the conditional distribution of  given W is,

$(k|!) , P ( = k|W = !) = �(k)(!)/�mix(!), (1.13)

for k = 1, · · · , K. As a result, p is also decomposed into K components, i.e., p(!) =

PK
k=1

p(k)(!), where

p(k)(!) = p(!, = k) = �(k)(!)
p(!)

�mix(!)
. (1.14)

Figure 1.4(c) shows the joint distribution of (W, ) (thick red dashed curves) and

their marginal distributions (thin red dash curves in the two vertical plates).

The warp-U transformation applied to W is defined as

fW = F
 

(W ; ⇣) = S�1

 

(W � µ
 

) ⇠ ep. (1.15)

To apply warp-U transformation to the data wj, we first calculate the probability

mass function $(·|wj) according to (1.13), then draw  j from $(·|wj), and finally

apply the deterministic transformation F j(·; ⇣) to wj. Graphically, each p(k) in Figure

1.4(c) is re-centered and re-scaled, like their counterpart �(k). The red dashed lines

in Figure 1.4(d) are the joint distribution of  and the warp-U transformed variable,

fW , the marginal distribution of which has a substantial overlap with �.

Note that when K = 1, warp-U transformation degrades to warp-II transforma-

tion. When K > 1, Theorem 1 in Section 1.3.3 implies the divergence between ep and

� is smaller than that between p and �mix, hence justifying warp-U transformation.

16
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1.3.3 Key Theorem for Warp-U Transformation

In this section, we define the general form of warp-U transformation and show in

theory the increase of overlap due to the transformation.

Let p and � be the densities of any two continuous probability distributions, and

W ⇠ p and Z ⇠ � be two random variables. Let ⇡ be probability distribution, and

⇡(✓)u(d✓) be its induced probability measure. More specifically, if ⇡ is a discrete

distribution, u is a counting measure; if ⇡ is a continuous distribution, u is the

Lebesgue measure. For any ✓ in the support of ⇡, let H✓ be a one-to-one and almost

surely di↵erentiable function indexed by ✓, and F✓ be its inverse function. Let ⇥ be

a random variable from ⇡, and it is independent of Z. We define X = H
⇥

(Z), which

implies that the conditional distribution X
�

�⇥ = ✓ is

�X|⇥(!|✓) = �(F✓(!)) |H0
✓(F✓(!))|�1 , (1.16)

and the density of X is

�mix(!) =

Z

�X|⇥(!|✓)⇡(✓)u(d✓) =
Z

�(F✓(!)) |H0
✓(F✓(!))|�1 ⇡(✓)u(d✓). (1.17)

We denote $(·|!) to be the conditional distribution ⇥|X = !, which is given by

$(✓|!) = �X|⇥(!|✓)⇡(✓)
�mix(!)

. (1.18)

We create a new random variable  and its joint distribution with W by defining the

conditional distribution to be P ( = ✓|W = !) = $(✓|!). Let p ,W and �⇥,X be the

17
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Z ⇠ �
⇥ ⇠ ⇡
Z ? ⇥

!
X = H

⇥

(Z) ⇠ �mix

⇥|X = ! ⇠ $(·|!)
(⇥, X) ⇠ �⇥,X

! eX = F
⇥

(X) ⇠ �

W ⇠ p
 |W = ! ⇠ $(·|!)

( ,W ) ⇠ p ,W

! fW = F
 

(W ) ⇠ ep

Figure 1.5: Relationships of all the random variables and their densities in warp-U
transformation.

joint distribution of ( ,W ) and that of (⇥, X), respectively. Then,

p ,W (✓,!) = $(✓|!)p(!) (1.19)

�⇥,X(✓,!) = �(!|✓)⇡(✓) = $(✓|!)�mix(!), (1.20)

and

p ,W (✓,!)

�⇥,X(✓,!)
=

p(!)

�mix(!)
. (1.21)

The random transformation, F
 

, applied to W ,

fW = F
 

(W ) ⇠ ep,

is called warp-U transformation. Figure 1.5 illustrates the relationships of these

random variables and their densities.

Many measures can be used to quantify the discrepancy between two densities,

p
1

and p
2

. One of the most frequently used divergences is the f -divergence, which is

18
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defined as

Df (p1, p2) =

Z

p
2

(!)f

✓

p
1

(!)

p
2

(!)

◆

u(d!),

where f(·) is a convex function and f(1) = 0. Examples of f -divergence include the

squared Hellinger distance, the Kullback-Leibler divergence, and the Je↵reys diver-

gence, the corresponding f functions being f(x) = (
p
x� 1)

2

/2, f(x) = � log(x),

and f(x) = �(1� x) log(x), respectively. Statistical distances, such as the Hellinger

distance (1.5), the Harmonic distance (1.7), and the L
p

-distance (p > 0), defined

below, can also be used to assess the divergence of two densities,

L
p

(p
1

, p
2

) =



Z

|p
1

(!)� p
2

(!)|pd!
�

1/p

. (1.22)

The following theorem states warp-U transformation reduces the f -divergence

between the two densities.

Theorem 1. Let D(p
1

, p
2

) be a monotonically increasing function of an f-divergence

between two densities, p
1

and p
2

. Then the following inequality holds,

D(ep,�) 6 D(p,�mix), (1.23)

where ep is the warped p with respect to �, as defined by

ep(!) = �(!)

Z

p(H✓(!))

�mix(H✓(!))
⇡(✓)u(d✓). (1.24)

The equality in (1.23) holds if and only if  and fW are independent, e.g., when

K = 1, or when p = �mix almost surely.
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We derive the expression of ep in (1.24) below. Since fW = F
 

(W ), the joint

distribution of  and fW can be expressed as

ep ,fW (✓,!) = p ,W (✓,H✓(!))|H0
✓(!)| = �(!)

p(H✓(!))

�mix(H✓(!))
⇡(✓), (1.25)

where the second equation is obtained from (1.16), (1.18), and (1.19). The density of

fW in (1.24) is obtained by integrating out ✓ from (1.25). The proof of the inequality

in (1.23) can be found in Appendix A.1.

The Hellinger distance, the Harmonic distance, the L
1

distance, and all the f-

divergences satisfy the condition in Theorem 1, so the inequality in (1.23) holds for

these definitions of divergence. However, the inequality does not necessarily hold for

L
p

distance when p 6= 1. As a simple counterexample, let K = 1 and �mix(!) =

|S|�1� (S�1(! � µ)), then ep(!) = |S|p(S! + µ). The L
p

distance between ep and � is

L
p

(�, ep) =

✓

Z

||S|p(Se! + µ)� �(e!)|p de!
◆

1/p

= |S|1�1/pL
p

(p,�mix),

so the relationship between L
p

(ep,�) and L
p

(p,�mix) depends on |S|.

The transformation we discussed in Section 1.3.2 is a special case of warp-U

transformation, where ⇥ is a discrete random variable with the point mass function

P (⇥ = k) = ⇡k, and Hk(!) = Sk! + µk.
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1.3.4 Graphical Illustration of Theorem 1

In this section, we illustrate graphically how warp-U transformation increases the

area of the overlapping region of two densities, defined as

O(p
1

, p
2

) =

Z

min{p
1

(!), p
2

(!)}d! = 1� L
1

(p
1

, p
2

)/2.

We also show theoretically the decrease of their L
1

distance.

Figure 1.6(a) shows a trimodal distribution p (dashed curve) and the Gaussian

mixture with K = 2 components (solid line). As discussed in Section 1.3.2, p is

decomposed intoK components, denoted as p(k). Figure 1.6(b) shows p(1) (thin dashed

line) and �(1) (thin solid line), as well as their overlapping region (shaded in red), and

Figure 1.6(c) shows p(2), �(2), and their overlap (shade in yellow). The shaded region

in Figure 1.6(a) is the overlap of p and �mix, which is exactly the sum of the shaded

area in Figure 1.6(b) and that in Figure 1.6(c). This is because

min{�mix, p} = �mix min{1, p/�mix} =
K
X

k=1

�(k) min{1, p/�mix},

and by (1.14) or (1.21), we can replace p/�mix with p(k)/�(k), and obtain

min{�mix, p} =
K
X

k=1

min{�(k), p(k)}.

More generally, for any function f ,

�mixf

✓

p

�mix

◆

=
K
X

k=1

�(k)f

✓

p(k)

�(k)

◆

.
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Figure 1.6: Graphical illustration of the increase in the area of the overlapping region after
warp-U transformation. (a) p (dashed line) and �mix (solid line); (b) the first component of
p, denoted as p(1) (thin dashed line), the first component of �mix, denoted as �(1) (thin solid
line), and their overlap (shaded in red); (c) p(2), �(2), and their overlap (shaded in yellow);
(d) the corresponding curves and shaded areas after warp-U transformation; (e) the yellow
region is added on top of the red region; (f) the green area shows the additional overlap
due to warp-U transformation.

For k = 1, · · · , K, the warp-U transformation leads to the same relocating and

rescaling of �(k) and p(k), resulting in

e�(k)(!) = ⇡k�(!), (1.26)

ep(k)(!) = ⇡k�(!)
p(Sk! + µk)

�mix(Sk! + µk)
= e�(k)(!)

p(k)(Sk! + µk)

�(k)(Sk! + µk)
. (1.27)

Figure 1.6(d) shows ep(k) (thin dashed lines), e�(k) (thin solid lines), and their overlap-

22



Chapter 1: Warp Bridge Sampling: the Next Generation

Table 1.1: The area of the overlapping region, the L
1

distance, the Hellinger distance, and
the Harmonic distance between p and �mix and those between ep and �.

densities Overlap L
1

distance Hellinger distance Harmonic distance
(p,�mix) 0.66 0.68 0.28 0.68
(ep,�) 0.92 0.16 0.08 0.05

ping regions (shaded in red and yellow), which remain the same as those in Figure

1.6(a). This is because by (1.27),
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where the second equation is obtained by replacing e! with S�1

k (! � µk) and by the

definition of �(k)(!).

Figure 1.6(e) combines the two shaded regions, which constitute only part of the

total overlap of � and ep. The additional overlap, shaded in green in Figure 1.6(f), is

due to the concavity of min(·), in other words, the reduction of the L
1

distance is due

to the convexity of f(!) = |! � 1|. More specifically,

K
X

k=1

⇡k�(!)f

✓
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�(Sk! + µk)

◆

> �(!)f

 

K
X
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!

,

so by (1.27), we have

Z K
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e�(k)(!)f
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d! >
Z

�(!)f

✓

ep(!)
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◆
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Graphically, the green region is from the overlap between ep(k) and the remainder of

e�(l) that does not overlap with ep(l), for k = 1, · · · , K, and l 6= k. Table 1.1 displays the

overlap, the L
1

distance, the Hellinger distance, and the Harmonic distance between
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Figure 1.7: Graphical illustration of the increase of the overlap due to warp-U transforma-
tion, even the components p(1) and p(2) are moved further apart. See Figure 1.6 for more
explanation.

p and �mix and those between ep and �. Consistent with Figure 1.6 and Theorem 1,

the overlap increases and the distance decreases after the warp-U transformation.

In the example of Figure 1.6, due to the warp-U transformation, the two com-

ponents of p are scaled and then moved to the origin, and the resulting density ep is

a single-modal distribution with more overlap with � than that between p and �mix.

Figure 1.7 illustrates that even if �mix does not match well with p and the correspond-

ing warp-U transformation moves the components p(k) further apart, the inequality

O(�, ep) > O(�mix, p) still holds. Figure 1.7(a) shows the one-modal density p (dashed

line) and the bi-modal density �mix (solid line), which matches poorly with p. Figure
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1.7(b) and (c) highlights p(1) and p(2) (thin dashed lines), which are moved further

apart in the process of warp-U transformation, as shown in Figure 1.7(d). But warp-U

transformation still results in additional overlap, highlighted in green in Figure 1.7(f).

1.3.5 Warp-U Bridge Sampling

According to Theorem 1, after the warp-U transformation defined in (1.15), the

unnormalized density of { ew
1

, · · · , ewn} can be expressed as

eq(!; ⇣) = �(!)
K
X

k=1

q(Sk! + µk)

�mix(Sk! + µk)
⇡k, (1.28)

where ⇣ denotes the vector of parameters in �mix. By replacing q with cp, we get

eq = cep, meaning the normalizing constant of eq is the same as that of q. As a result,

we can estimate c with the bridge sampling estimator based on {z
1

, · · · , zm} iid⇠ � and

{ ew
1

, · · · , ewn} iid⇠ ep, i.e.,

bc(U)

↵ = br(U)

↵ =
m�1

Pm
j=1

eq(zj; ⇣)↵(zj; ep,�)

n�1

Pn
j=1

�( ewj)↵( ewj; ep,�)
. (1.29)

We emphasize that ↵ is typically a functional of the two densities, e.g., the optimal

choice of ↵(·; ep,�) is proportional to (s
1

ep + s
2

�)�1. Since �mix also has some overlap

with p, the normalizing constant can also be estimated with the bridge sampling

estimator based on {x
1

, · · · , xm} iid⇠ �mix and {w
1

, · · · , wn} iid⇠ p, i.e.,

bc(mix)

↵ = br(mix)

↵ =
m�1

Pm
j=1

q(xj)↵(xj; p,�mix)

n�1

Pn
j=1

�mix(wj; ⇣)↵(wj; p,�mix)
. (1.30)
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Theorem 1 implies D(ep,�) 6 D(p,�mix) for both the Harmonic distance and the

Hellinger distance, so the asymptotic variance of b�(U)
↵ = log (bc(U)

↵ ) is smaller than that

of b�(mix)
↵ = log (bc(mix)

↵ ) for both the geometric and the optimal bridge sampling.

We use a simulation to demonstrate the potential of warp-U bridge sampling by

comparing it with other warp bridge sampling estimators. In this section, the vector

of parameters, ⇣, in the density, �mix, is fixed and independent of {w
1

, · · · , wn}. For

example, for fixed K, we can get a ⇣ based on the expression of q, using methods

such as iterative Laplace (Bornkamp, 2011) and fitting a Laplace approximation to

each mode (Gelman et al., 2013, Chapter 12). The performance of warp-U bridge

sampling where ⇣ is estimated from draws from p is explored in Section 1.4.

The red dashed curve in Figure 1.8(a) is a tri-modal density q, the normalizing

constant of which is to be estimated with n = 1000 i.i.d draws from it. An additional

m = 1000 i.i.d draws are made from N (0, 1) to conduct bridge sampling. As shown

in Figure 1.8(a), the two densities have very little overlap, and the Harmonic distance

is 25.62. We apply the optimal bridge sampling algorithm in (1.6) to the N = 10, 000

simulated replicate datasets, and obtain N vanilla optimal bridge sampling estimates

of c with no transformation, denoted as bcopt. Figure 1.9(a) shows the histogram of

b�opt � �, where b�opt = log (bcopt). The root mean square error (RMSE) of b�opt is 0.109.

Figure 1.8(b) shows that after warp-I transformation, the overlap between the two

densities increases and their Harmonic distance reduces to 4.47. The histogram of

b�(I)
opt�� is shown in Figure 1.9(b), and the RMSE reduces to 0.04. Warp-II and warp-

III transformations reduce the Harmonic distance even further, as shown in Figure

1.8(c) and 1.8(d), and the RMSE of b�(II)
opt and b�

(III)
opt are also reduced, see Figure 1.9(c)
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Figure 1.8: The two densities used in bridge sampling. Solid lines: the density of N (0, 1).
Dashed lines: (a) p, density of original data {w

1

, · · · , wn}; (b) ep(I), density of warp-I trans-
formed data; (c) ep(II); (d) ep(III); (e) ep(U); (f) ep(U+I), density after warp-U and then warp-I
transformation; (g) ep(U+II); (h) ep(U+III).

and 1.9(d).

The Gaussian mixture distribution that specifies the warp-U transformation is

shown in Figure 1.3 (left). The red dashed curve in Figure 1.8(e) is the density of

the warp-U transformed data. The harmonic distance between ep(U) and � reduces to

0.170, and the RMSE of b�(U)
opt is 0.009. We apply warp-I, II, and III transformations

to { ew(U)

1

, · · · , ew(U)
n } and the overlap between the resulting densities and � is reduced

even further, see Figure 1.8(f-h). The Harmonic distance between � and ep(U+III) is
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Figure 1.9: Histograms of b�(X )
opt � �. (a) b�opt � �, bridge sampling estimator with no

transformation; (b) b�(I)
opt � �, warp-I bridge sampling; (c) b�(II)

opt � �; (d) b�(III)
opt � �; (e) b�(U)

opt � �

; (f) b�(U+I)
opt � �; (g) b�(U+II)

opt � �; (h) b�(U+III)
opt � �.

the smallest and thus b�(U+III)
opt has the smallest RMSE. It is worth mentioning that

compared with warp-U transformation, the additional distance reduction due to the

additional warp transformation appears to be minor, as long as the Gaussian mixture

distribution that determines the warp-U transformation has su�cient overlap with p.

We also compare the two optimal bridge sampling estimators defined in (1.29) and

(1.30), denoted as bc(U)
opt and bc

(mix)
opt . Theorem 1 implies HA(ep(U),�) 6 HA(p,�mix), so the

asymptotic variance of b�(U)
opt is smaller than that of b�(mix)

opt . The superiority of warp-U
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Figure 1.10: (a) Dashed line: p, solid line: �mix; (b) histogram of b�(mix)
opt � �; (c) dashed

line: ep, density after warp-U transformation, solid line: �; (d) histogram of b�(U)
opt � �.

transformation is confirmed by Figure 1.10.

1.4 Estimating Warp-U Transformation

In the previous sections, we did not discuss how to obtain a �mix with su�cient

overlap with p, but instead assumed it is given. It is however the most crucial step

in warp-U bridge sampling, since �mix completely specifies the warp-U transformation

and determines the lower bound for the Monte Carlo errors of the corresponding
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warp-U bridge sampling.

In practice, a �mix should be obtained within a reasonable amount of time. In rela-

tively low-dimensional (6 10) problems, we can obtain a �mix based on the expression

of q (Bornkamp, 2011; Gelman et al., 2013). But in relatively high dimension, these

methods can be extremely computationally expensive and are often unstable. In this

section, we propose a simple model that can capture a reasonable amount of mass of

p, and the computation costs are linear in the dimensionality.

1.4.1 A �
mix

with Diagonal Covariance Matrixes

Assume we have good data (e.g., i.i.d draws) in D dimensions from p that can

represent the important regions of the density. We propose fitting the data to a

mixture of normal distributions with diagonal covariance matrixes, that is,

�mix(!; ⇣) = (2⇡)�
D
2

K
X

k=1

⇡k
|Sk|exp

✓

�1

2
(! � µk)

0S�2

k (! � µk)

◆

, (1.31)

where ⇡k is the weight of the normal distribution N (µk,S2

k), Sk is a positive definite

diagonal matrix,

Sk =

0

B

B

B

B

B

B

B

B

@

�k,1 0 · · · 0

0 �k,2 · · · 0

...
...

...
...

0 0 · · · �k,D

1

C

C

C

C

C

C

C

C

A

,

and ⇣ = (⇡
1

, · · · , ⇡K , µ1

, · · · , µK ,S1

, · · · ,SK) .

The reasons for choosing the diagonal covariance matrix are as follows. First of

30



Chapter 1: Warp Bridge Sampling: the Next Generation

all, without specifying the structures of the covariance matrixes, it is computationally

very expensive to estimate these D⇥D covariance matrixes, especially in high dimen-

sions; the computation costs are at least O(D2). Second, for full covariance matrixes,

the estimates of the parameters may be unreliable, because there may not be enough

degrees of freedom to estimate a total of K(1 +D(D + 3)/2) parameters. Finally, as

shown in previous sections, it is not necessary (and computationally too expensive)

to find a �mix that is almost identical to p in applying warp-U transformation; we only

need a �mix that has su�cient overlap with p.

We propose estimating ⇣ via the maximum likelihood method. It is important to

note that the MLE of ⇣ is not well-defined (Day, 1969; Kiefer and Wolfowitz, 1956),

because the likelihood can go to infinity if we let µ
1

equal to a data point from p

and S
1

! 0. Therefore, instead of maximizing the log-likelihood, we look for e⇣ that

maximizes a penalized log-likelihood, proposed by Chen et al. (2008),

eln(⇣) = ln(⇣) + pn(⇣),

where n is the sample size, ln is the log-likelihood of the parameters under the model,

and pn is the penalty term that depends on the data. The penalty prevents any of the

variances from approaching 0, and it converges to 0 as n ! 1. Thus, asymptotically

the penalized MLE (pMLE) of ⇣ does maximize the original likelihood.

Chen and Tan (2009) suggest the penalty function

pn(⇣) = �an

K
X

k=1

n

trace( bQ2

w⌃
�1

k ) + log |⌃�1

k |
o

,
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where trace(·) represents the trace function, an = 1/
p
n, bQ2

w is the empirical covari-

ance matrix of the data and ⌃k is the covariance matrix of the Gaussian component.

We change bQw to be diag([IQR
1

, · · · ,[IQRD), where [IQRd is the inter-quantile range,

i.e., the di↵erence between the third quantile and the first quantile, of the data in the

d-th dimension. We propose such bQw for two reasons. First, the empirical covariance

matrix may be unreliable if p has very fat tails, such as Cauchy distribution. Second,

since both bQw and ⌃k = S2

k in our model are diagonal matrixes, the computation

burden is lessened. The penalty pn is then simplified to be

pn(⇣) = � 1p
n

K
X

k=1

D
X

d=1

n

[IQR
2

d/�
2

k,d � log(�2

k,d)
o

.

The E-step and the M-step of the EM algorithm to search for the pMLE of ⇣ are

provided in Chen and Tan (2009). The EM algorithm is known to have some defects,

especially when the original density p is sparsely scattered in a high-dimensional

space. First, it is sensitive to the initial configuration; second, the algorithm is often

trapped at local maxima due to the di�culty of passing through regions with very

low likelihood. Fortunately, a good local maximizer of the penalized log-likelihood

often su�ces for the purpose of warp-U transformation.

For clarity, we discuss briefly what we do to obtain a good local maximizer via EM.

The method we provide is likely not optimal, but it does yield a fairly reliable estimate

of ⇣ for warp-U transformation. To reduce the dependence of the final estimate of ⇣

on the initial value, we apply EM to the same data repeatedly for M times, each time

with a di↵erent starting point ⇣(0). Based on simulation, it appears a small M usually

su�ces to provide a sound local maxima. The initial weights and covariance matrixes
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are set to be 1/K and 1.5 bQ2

w, respectively. For the first M/2 times, we randomly draw

K points without replacement from the available data as the initial mean parameters.

For the second M/2 times, along the dimension with the largest variance, we first

divide the region where 95% of the data sit into K subregions so that each subregion

contains approximately the same number of data points, and then sample one data

point from each of the K subregions as the initial mean parameters. The stopping

criterion we use for the EM algorithm is |l(t)n � l(t�1)

n | < 10�8D|l(t)n |. In our simulation,

the EM algorithm mostly stops within 100 iterations. After obtaining M estimates

of ⇣, we choose the one with the largest likelihood as our parameters, e⇣, for warp-U

bridge sampling.

1.4.2 Overcoming Adaptive Bias

For ease of reference, in this section and Section 1.4.3, we denote e⇣D as the pMLE

of ⇣ estimated from the whole dataset, {w
1

, · · · , wn}, from p, and b�(U)

D = log
�

bc(U)

D

�

as the corresponding warp-U bridge sampling estimator. However, because e⇣D is a

function of the data, the distribution of the corresponding warp-U transformed data,

{ ew
1

, · · · , ewn}, is no longer ep(·; e⇣D), as expressed in (1.24) or (1.28). Consequently,

additional bias is introduced to the estimator b�(U)

D .

We use an example in 10 dimensions to demonstrate the additional bias in b�(U)

D and

its impact on the RMSE of b�(U)

D . We compare the performance of four warp-U bridge

sampling estimators with the optimal choice of ↵, denoted as b�(U)

D,Diag, b�
(U)

D,Full, b�
(U)

I,Diag, and

b�(U)

I,Full, where the first subscript specifies whether ⇣ is estimated from the whole data

set (D) or from other sources independent of the data (I), and the second subscript
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indicates whether the covariance matrixes are restricted to diagonal matrixes (Diag)

or not (Full). The number of components in �mix, which determines the warp-U

transformation, varies from 5 to 20. For each K and each type of covariance matrixes,

we obtain a vector, e⇣I, by maximizing the penalized log-likelihood based on a fixed

dataset from p that is completely independent of the data used for bridge sampling.

Note, in real applications, it is unlikely for us to have the luxury of a separate and

large dataset just for the estimation of ⇣. We only use b�(U)

I,Diag and b�(U)

I,Full here as the

benchmark for comparison.

The density p is a mixture of 25 skewed t-distributions with degrees of freedom

ranging from 1 to 4, and none of the covariance matrixes of these t-distributions are

sparse. We simulate 10,000 replicate datasets, each of which contains 2,500 indepen-

dent draws from p and 2,500 independent draws from N (0, I
10

).

Figure 1.11 shows the summary statistics of b�(U)

Y,Diag (top row) and b�(U)

Y,Full (bottom

row), where the subscript “Y” represents “D” or “I”. The dotted and solid lines in

the figure correspond to b�(U)

D,Z and b�(U)

I,Z , respectively, where “Z” represents “Diag” or

“Full”. The first column in Figure 1.11 shows the excessive bias of b�(U)

D,Z compared

with b�(U)

I,Z . Note, as K increases, the Gaussian mixture model, �mix(·; e⇣I), fits to the

fixed dataset better, but it does not necessarily result in smaller bias, thus we see

the zigzag shape of the bias of b�(U)

I,Z . The second column shows the variance of b�(U)

D,Z

and that of b�(U)

I,Z are quite similar. The variance decreases as K increases, because on

average larger K corresponds to more overlap between p and the calibrated �mix, and

thus more overlap between ep and �. In addition, b�(U)

I,Z has slightly smaller variance

than b�(U)

D,Z for fixed K, because e⇣I is estimated from a much larger dataset than e⇣D.

34



Chapter 1: Warp Bridge Sampling: the Next Generation

|Bias| Standard Deviation RMSE
D
ia
go
n
al

C
ov

M
at
ri
xe
s

5 10 15 20

0.
00

0.
05

0.
10

0.
15

K
5 10 15 20

0.
00

0.
05

0.
10

0.
15

K
5 10 15 20

0.
00

0.
05

0.
10

0.
15

K

F
u
ll
C
ov

M
at
ri
xe
s

5 10 15 20

0.
00

0.
05

0.
10

0.
15

K
5 10 15 20

0.
00

0.
05

0.
10

0.
15

K
5 10 15 20

0.
00

0.
05

0.
10

0.
15

K

Figure 1.11: The three columns show the absolute value of the bias, the standard deviation,
and the RMSE of (i) b�(U)

D,Z = log(bc(U)
D,Z) (dotted lines), the warp-U bridge sampling estimator

specified by e⇣D, which is estimated from {w
1

, · · · , wn}, (ii) b�(U)
I,Z = log(bc(U)

I,Z ) (solid lines),

warp-U bridge sampling specified by e⇣I, which is independent of {w
1

, · · · , wn}, and (iii)
(dashed lines) the average of two warp-U bridge sampling estimators with half of data
estimating ⇣ and the other half for bridge sampling. The subscript “Z” represents “Diag”
(top row) or “Full” (bottom row) for the covariance matrixes in the Gaussian mixture
model.

The last column in Figure 1.11 shows the RMSE of b�(U)

D,Z is dominated by the bias

term, and is hence much larger than that of b�(U)

I,Z .

Since the additional bias of b�(U)

D,Z is due to the dependence of e⇣D and the data from

p, an obvious solution to remove it is to use two independent subsets of draws from p

to estimate ⇣ and to do bridge sampling. However using partial data for bridge sam-

pling will directly increase the asymptotic variance of the estimator. To remove the

additional bias without substantially increasing the variance, two conditions should
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EM BS ! b�(U)

H2 ! b�(U)

H = 1

2

⇣

b�(U)

H1
+ b�(U)

H2

⌘

BS EM ! b�(U)

H2

Figure 1.12: A proposed solution to remove the adaptive bias without increasing the
variance of the warp-U bridge sampling estimator. Each of the two estimators b�(U)

H1
and b�(U)

H2

is obtained by using (part of) one half of the data for the estimation of ⇣ and the other half
for warp-U bridge sampling. The final estimator of � is their average.

be satisfied: (i) independent subsets of draws should be used for estimating ⇣ and in

bridge sampling, and (ii) all the draws from p should be used at least once in bridge

sampling.

We propose one solution that works relatively well in terms of both the statistical

and computational e�ciency. As visualized in Figure 1.12, we split the data into two

halves, and obtain two separate bridge sampling estimators, denoted as b�(U)

H1
and b�(U)

H2
.

Each b�(U)

Hi
is obtained by using L 6 n/2 of one half of the data from p to estimate ⇣

and the other half for the warp-U bridge sampling specified by the estimated ⇣. The

final estimator b�(U)

H is the average of b�(U)

H1
and b�(U)

H2
. Empirical studies have shown the

correlation of b�(U)

H1
and b�(U)

H2
is very small (mostly < 0.06, see Figure 1.14), thus, the

variance of b�(U)

H is nearly half of the variance of b�(U)

Hi
. The dashed lines in Figure 1.11

show the bias, the standard deviation, and the RMSE of b�(U)

H,Diag (top row) and b�(U)

H,Full

(bottom row), which are very close to their corresponding benchmarks (solid lines).

1.4.3 Justification for Diagonal Covariance Matrixes

Using the simulation study in Section 1.4.2, we further justify the use of diagonal

covariance matrixes in �mix. Figure 1.13 (left) shows the RMSE of b�(U)

I,Diag, b�
(U)

I,Full, b�
(U)

H,Diag,

and b�(U)

H,Full. On average, the RMSE of b�(U)

I,Diag (thin solid line) is 51% larger than that of
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Figure 1.13: (Left) RMSE (on a logarithmic scale) of di↵erent estimators; (right) CPU
seconds of each EM algorithm. (Solid lines) warp-U bridge sampling with e⇣I; (dashed
lines) the average of the two warp-U bridge sampling estimators with half of data used for
estimating ⇣ and the other half for bridge sampling. (Thin lines) the covariance matrixes
are diagonal matrixes; (thick lines) the covariance matrixes are not restricted to diagonal
matrixes.

b�(U)

I,Full (thick solid line). However, the RMSE of b�(U)

H,Diag (thin dashed line) is only 16.7%

larger than that of b�(U)

H,Full (thick dashed line), and their di↵erence diminishes as K

increases. This is because whenK is large, on one hand, an overfitting problem occurs

for the full-covariance-matrix model due to the additionalKD(D�1)/2 parameters in

the model, and on the other hand, the diagonal-covariance-matrix model, being very

di↵erent from p, continues to fit the data better and the resulting RMSE decreases

at a stable rate.

Figure 1.13 (right) shows the CPU seconds for estimating ⇣ via the EM algorithm.

On average, it takes 12 times longer to obtain �mix with full covariance matrixes than

�mix with diagonal covariance matrixes in this study, and the di↵erence increases as

the dimension increases. In addition, in the step of bridge sampling, evaluating �mix

with full covariance matrixes is much more costly than �mix with diagonal covariance
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matrixes. Therefore, the small loss of statistical e�ciency and the huge reduction of

the computation costs justify the use of diagonal covariance matrixes. To reduce the

RMSE, it is more e↵ective to increase K than to use full covariance matrixes in the

model.

In the subsequent sections, we only consider �mix to be the Gaussian mixture

model with diagonal covariance matrixes. For simplicity, we drop the subscripts “H”

and “Diag”, and denote b�(X )

↵,1 and b�(X )

↵,2 as the estimators with half of data used for

estimating ⇣ and the other half in bridge sampling, where ↵ specifies the functional

used in bridge sampling. The combined estimator is b�(X )
↵ =

1

2

⇣

b�(X )

↵,1 + b�
(X )

↵,2

⌘

.

1.4.4 Estimation of the Variance of b�(U)

↵ and b�(mix)

↵

In estimating �, it is important to have some idea about the uncertainly associated

with the point estimate. We analyze the variance of b�(X )

↵,1 below. By symmetry, the

results also applies to b�(X )

↵,2. We do not intent to give rigorous proof for the variance

here, rather, we use heuristic calculation to provide an estimate of the variance.

Let {w
1

, · · · , wL} be the i.i.d draws from p we use to estimate ⇣, where L 6

n/2. We use e⇣L to denote the estimated vector, where the subscript “L” emphasizes

the sample size. Specified by the estimate e⇣L, we apply the corresponding warp-U

transformation to the other half of data {w
1+n/2, · · · , wn} iid⇠ p. Let b�(U)

↵,1 be the bridge

sampling estimator based on {z
1+m/2, · · · , zm} iid⇠ � and the warp-U transformed

data, { ew
1+n/2, · · · , ewn} iid⇠ ep. Then the conditional variance of b�(U)

↵,1 given e⇣L (Meng
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and Wong, 1996) is

Var
⇣

b�(U)

↵,1

�

�

e⇣L

⌘

=
2

n+m
V↵ (ep,�) + o

✓

1

n+m

◆

, (1.32)

where V↵ (ep,�) is defined in (1.3). By the law of total variance,

Var
⇣

b�(U)

↵,1

⌘

= EL

h

Var
⇣

b�(U)

↵,1

�

�

e⇣L

⌘i

+VarL
h

E
⇣

b�(U)

↵,1

�

�

e⇣L

⌘i

,

where EL and VarL are taken over the sampling distribution of e⇣L. Given e⇣L, the

asymptotic bias of b�(U)

↵,1 is in the order of (m+ n)�1, so

Var
⇣

b�(U)

↵,1

⌘

=
2

n+m
EL [V↵ (ep,�)] + o

✓

1

n+m

◆

. (1.33)

Figure 1.14 (left) shows the correlation between b�(U)

opt,1 and b�
(U)

opt,2 for di↵erent values

of K and m, based on 10,000 replications, within each of which n = 10, 000 data are

generated from p, as described in Section 1.4.2. The correlation between b�(U)

opt,1 and

b�(U)

opt,2 is due to the fact that L = 50K data points used in bridge sampling for one

estimator are used for estimating ⇣ for the other estimator, thus we observe the

correlation increases with K. Figure 1.14 (left) shows the correlation is very small

(< 0.06) even when K = 50, so

Var
⇣

b�(U)

↵

⌘

⇡ 1

2
Var

⇣

b�(U)

↵,i

⌘

=
1

n+m
EL [V↵ (ep,�)] + o

✓

1

n+m

◆

.

For a given e⇣L estimated from {w
1

, · · · , wL}, to estimate Var
⇣

b�(U)

↵,1

�

�

e⇣L

⌘

, we di-

vide { ew
1+n/2, · · · , ewn} and {z

1+m/2, · · · , zm} each into S > 2 non-overlapping subsets
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Figure 1.14: The correlation between b�(X )

opt,1 and b�(X )

opt,2 with di↵erent K and m/n.

of equal size, and obtain S separate estimators b�(U)

↵,1,s, for s = 1, · · · , S. The eval-

uations of eq and � at these data points are already done to obtain b�(U)

↵,1, so little

additional computation costs are required to compute b�(U)

↵,1,s. The empirical variance

of {b�(U)

↵,1,s; s = 1, · · · , S}, denoted as b⌫(U)

↵,1, estimates the variance of the bridge sam-

pling estimator with n/(2S) data from ep and m/(2S) data from �. So according to

the asymptotical expression of the bridge sampling estimator, V↵(ep,�) in (1.3) can

be estimated by (n + m)b⌫(U)

↵,1/(2S). Similarly, for a given e⇣L estimated from L of

the second half of the data from p, the corresponding V↵(ep,�) can be estimated by

(n+m)b⌫(U)

↵,2/(2S), where b⌫
(U)

↵,2 is the empirical variance of b�(U)

↵,2,s. Finally, the asymptotic

variance of the combined estimator b�(U)
↵ is approximately

1

n+m
EL(V↵(ep,�)), which

can be estimated by

b⌫(U)

↵ =
1

2

b⌫(U)

↵,1 + b⌫
(U)

↵,2

2S
=

1

4S(S � 1)

2

X

i=1

S
X

s=1

⇣

b�(U)

↵,i,s � �̄(U)

↵,i

⌘

2

, (1.34)

where �̄(U)

↵,i =
PS

s=1

b�(U)

↵,i,s/S. There is a trade-o↵ in choosing S, because small S
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may cause inaccurate estimation of the variance by b⌫(U)

↵,1 and b⌫(U)

↵,2, whereas large S

may break the asymptotic results we rely on to obtain (1.34), i.e., Var
⇣

b�(U)

↵,i,s

�

�

e⇣L

⌘

⇡
2S

n+m
V↵(ep,�).

Similarly, for the bridge sampling estimator with {w
1+n/2, · · · , wn} iid⇠ p and

{x
1+m/2, · · · , xm} iid⇠ �mix(·; e⇣L), we have

Var
⇣

b�(mix)

↵,1

⌘

=
2

n+m
EL [V↵ (p,�mix)] + o

✓

1

n+m

◆

,

and the variance of the combined estimator b�(mix)
↵ = (b�(mix)

↵,1 +b�(mix)

↵,2 )/2 is approximately

half of Var
⇣

b�(mix)

↵,1

⌘

. Theorem 1 implies V↵ (p,�mix) 6 V↵ (ep,�) for fixed e⇣L and for

both the geometric and the optimal bridge sampling, so asymptotically we expect

Var
⇣

b�(U)

↵

⌘

6 Var
⇣

b�(mix)

↵

⌘

.

1.5 Computation Configurations

In the algorithm to obtain b�(X )
↵ , there are three tuning parameters:

• K: the number of components in the Gaussian mixture model �mix(·; ⇣),

• L: the number of data points from p to estimate ⇣, (L 6 n/2),

• m: the sample size of the dataset sampled from N(0, ID) or �mix.

In this section, we use simulation results and theoretical calculations to show how

di↵erent choices of the tuning parameters a↵ect the statistical e�ciency and compu-

tation costs of b�(U)
opt =

1

2

⇣

b�(U)

opt,1 + b�
(U)

opt,2

⌘

and b�(mix)
opt =

1

2

⇣

b�(mix)

opt,1 + b�
(mix)

opt,2

⌘

, in the hope of
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providing some guidance for choosing these parameters.

1.5.1 Computation Complexity and Parallel Computing

The computation costs for obtaining b�(X )
↵ are determined by the tuning parameters.

The first step of the algorithm is to estimate ⇣ by applying the EM algorithm to L

data points repeatedly for M times. This requires MtEM amount of time, where tEM is

the average time of executing EM algorithm once. If the number of iterations in the

EM algorithm is fixed, then tEM / LK. Since ⇣ is estimated twice, the total execution

time is TEM = 2MtEM. Figure 1.15 (left) shows TEM (we set M = 2) with di↵erent

values of K for the 10-dimension example in Section 1.4.2. We set the sample size n

to be 10,000, so we can have results with larger K. For each simulation configuration,

we apply the entire algorithm to 10,000 replicate datasets from p. In Figure 1.15, we

vary K from 5 to 250, and set L = min(50K, 5000). Consequently, as K increases,

TEM exhibit quadratic growth when K 6 100, and linear growth when K > 100.

The second step is to apply warp-U transformation, specified by two di↵erent vec-

tors of parameters, to the first and the second half of the n data points from p. For

each data point wi, the probability mass function P ( = k|wi) =
⇡k|Sk|�1�(S�1

k (wi�µk))
PK

l=1 ⇡l|Sl|�1�(S�1
l (wi�µl))

needs to be calculated, for k = 1, · · · , K, to determine the probability of each linear

transformation. So the execution time of warp-U transformation performed on wi is

t(U)

Tr ⇡ K2t�, where t� is the amount of time for evaluating the density function of a

normal distribution with diagonal covariance matrix. The computation costs of this

step is T (U)

Tr = t(U)

Tr n.

The last step is to perform bridge sampling twice, each time using one half of
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Figure 1.15: The time decomposition in the process of obtaining b�(X )
↵ . (Left) TEM: time for

estimating ⇣ (twice); (middle) T (U)
BS (solid line): time for the optimal bridge sampling with

n warp-U transformed data and m data from �; T (U)
Tr (dash-dot line): time for the warp-U

transformation of the n data points from p; KT (mix)
BS (thick gray line); (right) T (mix)

BS : time
for the optimal bridge sampling with n data from p and m data from �mix.

the transformed data and m/2 data points from �, resulting in b�(U)

↵,1 and b�(U)

↵,2. The

most expensive part in this step is the evaluation of eq, which takes teq ⇡ t�K2 + tqK,

where tq and teq represent the amount of time to evaluate q and eq, respectively. In the

10-dimension example, according to simulation, teq ⇡ 250t�. The computation costs

of bridge sampling also depend on the choice of ↵. For the optimal or the geometric

bridge sampling, it takes T (U)

BS = t(U)

BS (n +m) amount of time, where t(U)

BS ⇡ t� + teq ⇡

t�+ tqK+ t�K2. Figure 1.15 (middle) shows T (U)

BS (solid line) and T (U)

Tr (dash-dot line)

when m = n = 10, 000.

In comparison, the last step, i.e., bridge sampling, is less expensive for b�(mix)
↵ . For

the optimal or geometric bridge sampling, T (mix)

BS = t(mix)

BS (n+m), where t(mix)

BS ⇡ tq+t�K,

which is approximately 1/K of t(U)

BS . Figure 1.15 (right) shows three lines of T (mix)

BS with

di↵erent values of m, growing linearly with K. For the same total sample size n+m,

T (U)

BS ⇡ KT (mix)

BS , as illustrated in Figure 1.15 (middle), where the curve KT (mix)

BS (thick

gray line) is almost identical to T (U)

BS .
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In summary, the computation costs to obtain b�(U)
↵ and b�(mix)

↵ are

T (U)

↵ = TEM + T (U)

Tr + T (U)

BS = 2MtEM + nt(U)

Tr + (n+m)t(U)

BS , (1.35)

T (mix)

↵ = TEM + T (mix)

BS = 2MtEM + (n+m)t(mix)

BS , (1.36)

where tEM / LK, both t(U)

Tr and t(U)

BS grow quadratically with K, and t(mix)

BS ⇡ t(U)

BS /K.

With the advance of computer technology, computation costs bear less and less

importance than the statistical e�ciency. The two estimators b�(X )

↵,1 and b�(X )

↵,2 can be

computed simultaneous in di↵erent processors. Most of the computation in obtaining

b�(X )

↵,i requires no communication, so the algorithm can be implemented in an embar-

rassingly parallel fashion, and the physical time can be reduced by simultaneously

using multiple processors.

First, the 2M EM algorithms to estimate ⇣ can be conducted independently with

no interaction, we can distribute the 2M tasks among ⇢ processors. Theoretically,

ignoring the possible overhead (time of thread creation/launching, data transforma-

tion, synchronization), the physical execution time of this step is T P
EM = d2M

⇢
etEM,

where d·e is the ceiling function. Besides, in the E-step of each iteration within the

EM algorithm, the evaluations of the L data points at each of the K proposed normal

distributions require no communication either, and thus can be speeded up further

by parallel computing.

Second, the computation burden of the bridge sampling estimator lies in the eval-

uations of functions at n+m data points, which also require no communication. With

⇢ processors, we can theoretically reduce the time to T (X )P

BS = dn+m
⇢

et(X )

BS . The step
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of warp-U transformation requires T (U)P

Tr = dn
⇢
et(U)

Tr . What is more, the evaluation of

eq, which involves K2 evaluations of � and K evaluations of q, and the calculation of

the transformation probability, which involves K2 evaluations of �, can be done in

parallel, so both teq and tTr can be reduced further with multiple processors.

Therefore, with ⇢ processors, even without paralleling the E-step in the EM al-

gorithm and the evaluation of eq or �mix, we can reduce the execution time of getting

b�(U)
↵ to

T (U)P

↵ = T P

EM + T (U)P

Tr + T (U)P

BS = d2M
⇢

etEM + dn
⇢
et(U)

Tr + dn+m

⇢
et(U)

BS . (1.37)

Similarly, with ⇢ processors, the execution time of obtaining b�(mix)
↵ is reduced to

T (mix)P

↵ = T P

EM + T (mix)P

BS = d2M
⇢

etEM + dn+m

⇢
et(mix)

BS . (1.38)

1.5.2 Choosing Tuning Parameters

Good statistical e�ciencies often come with large computation costs, so when

selecting tuning parameters and comparing b�(U)
opt and b�(mix)

opt , both factors should be

considered. We also compare the precision per CPU second (PpS), which accounts

for both the statistical and computational e�ciencies of the estimators,

precision per CPU second = PpS =
precision

CPU seconds
=

1/Var

CPU seconds
.

In this section, we use simulation to compare estimators with di↵erent tuning param-

eters, K, L, and m. If not specified, L = min (50K,n/2) and m = n.
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1.5.2.1 Impact of K on b�(X)

opt

Figure 1.11 shows the variance and the MSE of b�(U)
opt decrease as K increases. This

can be explained by Figure 1.16. The dotted line is the average of the maximum

log-likelihood l̄fit, defined as

l̄fit =
1

L

L
X

i=1

log
⇣

�mix(wi; e⇣L)
⌘

,

where {w
1

, · · · , wL} are used for estimating ⇣ via EM algorithm. It measures how

well the calibrated Gaussian mixture distribution fits to the L data points used for

estimating ⇣, so l̄fit is an increasing function of K. The solid line in Figure 1.16 rep-

resents the average log-likelihood l̄⇤ based on the other half of the data and evaluated

at e⇣L, i.e.,

l̄⇤ =
2

n

n
X

i=n/2+1

log
⇣

�mix(wi; e⇣L)
⌘

.

It indicates the divergence of p from the fitted �mix(·; e⇣L). For moderateK, on average,

as the mixture model fits the L data points better, more mass of p will is captured

by the calibrated �mix(·; e⇣L), and thus both l̄⇤ and the statistical e�ciency of b�(U)
↵

increases as K increases.

However, for a large K, the Gaussian mixture model will overfit the L 6 n/2 data

points from p. Figure 1.16 (right) shows l̄⇤ decreases slightly when K exceeds 100,

indicating a slight increase of the divergence between p and �mix(·; e⇣L). Figure 1.17

shows the |bias|, standard deviation, and the RMSE (on a logarithmic scale) of b�(U)
opt

(solid lines) and b�(mix)
opt (dashed lines), with K ranging from 5 to 250. When K exceeds

100, there is a slight increase in the variance and the RMSE of these estimators as K
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l̄fit and l̄⇤ l̄⇤ when K > 100

K

−3
4

−3
2

−3
0

−2
8

−2
6

5 50 100 150 200 250
K

−2
6.
40

−2
6.
30

−2
6.
20

100 150 200 250

Figure 1.16: (Dotted line) l̄fit; (solid lines) l̄⇤. The gray vertical line marks the value of K,
around which l̄⇤ changes from increasing to decreasing as K increases. The figure on the
right-hand side shows l̄⇤ for K ranging from 100 to 250.

continues to increase.

Figure 1.18 (left) shows the computation costs of b�(U)
opt (solid line) and b�(mix)

opt (dashed

line). When K > 100, T (U)
opt exhibits a quadratic growth with K, whereas T (mix)

opt grows

linearly with K. Since there is no gain in statistical e�ciency when increasing K

beyond 100, the additional computation costs are completely wasted. Figure 1.18

(right) plots the PpS. The largest PpS is obtained when K is around 20 ⇠ 30.

Based on our simulation, a rule of thumb in choosing K is K 6 n/100 in order to

avoid overfitting and unnecessary computation costs. Unfortunately, we do not have

a single rule to specify K, since there is a trade-o↵ associated with the choice of K.

On one hand, small K may result in insu�cient overlap between �mix and p, which

in turn may result in insu�cient overlap between � and ep. On the other hand, large

K comes with expensive computation costs, and the rate of reduction of the variance

decreases when K increases. Currently, we rely on users to specify a reasonable K to
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Figure 1.17: The three columns show |bias|, standard deviation and RMSE (on a loga-
rithmic scale) of b�(U)

opt (solid lines) and b�(mix)
opt (dashed lines). Di↵erent colors correspond to

di↵erent values of m in the estimators. Black: m = n; red: m = 16n; green: m = 32n.

balance the statistically e�ciency and the associated computation costs.

1.5.2.2 Impact of L on b�(X)

opt

Other factors being fixed, on average, larger L results in more overlap between p

and �mix, hence more overlap between ep and �, and better statistical e�ciency of b�(U)
↵ .

If we are not concerned about the computation costs, we should use the whole half

dataset to estimate ⇣ and the other half in bridge sampling, for each b�(U)

↵,i.

Chen et al. (2008) showed that if the data are from a mixture of K normal distri-

butions with parameters ⇣
0

and if the penalty term satisfies certain conditions, the

pMLE e⇣L is consistence; that is, e⇣L ! ⇣
0

almost surely as L ! 1. Further, Chen

and Tan (2009) showed under these conditions, the central limit theorem holds for

e⇣L. So if p is a mixture of K normal distributions exactly as specified in (1.31), then

as L ! 1, �mix(·; e⇣L) will converge to p, and thus the discrepancy between � and ep

will diminish to zero. Under more likely circumstances where p is not in the family

of (1.31), for fixed K, the distance between p and �mix(·; e⇣L) remains positive and not
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Figure 1.18: The total computation costs T (X )
opt (left), and the precision per CPU second

(right) of the optimal bridge sampling estimators b�(U)
opt (solid lines, m = n) and b�(mix)

opt (dashed
lines) with m = n (black), 16n (red), and 32n (green).

negligible, even with L ! 1, see Appendix A.2 for the theoretical calculations.

Figure 1.19 shows the impact of L on the performance of the algorithm to obtain

b�(X )
opt . The size of the sample to estimate ⇣ should be linearly dependent on K, so

we compare estimators with di↵erent values of L/K. In terms of the computation

costs, for fixed K, L only a↵ect TEM, so both TEM and T (X )
opt grows linearly as L, as

shown in Figure 1.19 (left and middle), where K is set to be 5 (black lines), 25 (red

lines), and 50 (green lines). On the side of statistical properties, for a fixed K, having

more data to estimate each parameter on average results in more overlap between p

and �mix(·; e⇣L), whereas small L/K may cause an overfitting problem and thus large

divergence between p and �mix(·; e⇣L). Figure 1.19 (right) shows the RMSE decreases

as L/K increases, but when L/K > 50, the reduction rate becomes very small. Figure

1.24 shows the similar impact of L/K on the RMSE of b�(X )
opt in a di↵erent example (50

dimensions). So we recommend setting L to be around 50K.
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Figure 1.19: The impact of L on TEM (left), T (X )
opt (middle), and the RMSE of b�(X )

opt (right).
Black lines: K = 5; red lines: K = 25; green lines: K = 50. When K = 50, we can only
take L/K up to 100, because L 6 n/2.

1.5.2.3 Impact of m and A Comparison of b�(mix)

↵ and b�(U)

↵

Similar to K and L/K, larger m improves the precision of b�(X )
↵ but increases the

computation costs. Figure 1.20 (left) shows the total computation costs of b�(U)
opt (solid

lines) and b�(mix)
opt (dashed lines) grow linearly as m increases from n to 64n. Figure

1.20 (middle) shows the standard deviation of b�(X )
↵ is inversely related to m, and the

reduction rate decreases as m increases.

Consistent with our theoretical results, Figure 1.17, 1.19, and 1.20 all show with

the same tuning parameters (K,L,m), the variance of b�(U)
opt is smaller than that of

b�(mix)
opt , but b�(U)

opt is computationally much more costly than b�(mix)
opt . Figure 1.17 (middle)

shows di↵erence between the variances of b�(U)
opt and b�

(mix)
opt increases as K increases. A

possible explanation is the following. In the process of warp-U transformation, the

overlap of ep(k) and e�(k) remains the same as that of p(k) and �(k), and the additional

overlap comes from the rematching of ep(k) with the remainder of e�(j) (for j 6= k) that

does not overlap with ep(k). The total number of possible rematches is K(K � 1)/2,
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Figure 1.20: The total amount of time T (X )
opt (left), the standard deviation (middle), and

the PpS of b�(U)
opt (solid lines) and b�(mix)

opt (dashed lines) with di↵erent values of m for K = 5
(black), 25 (red), and 50 (green).

so as K increases, it is more likely to form more additional overlap.

The advantage of b�(mix)
↵ over b�(U)

↵ is the inexpensive computation costs, T (mix)

BS , com-

pared with T (U)

BS and TEM. When TEM dominates T (mix)

BS , which is often true with large

K (see Figure 1.15), we can increase m for the estimator b�(mix)
↵ to improve its sta-

tistical e�ciency without significantly increasing the overall computation time. For

easy reference, we use b�(X )
↵ (m) to denote the estimator b�(X )

↵ with a specific config-

uration of m. Figure 1.18 (left) show that for large K, the di↵erence among the

computation costs of b�(mix)
opt when m = n (black dashed line), 16n (red dashed line),

and 32n (green dashed line), is negligible compared with TEM. The variance of b�(mix)
opt ,

however, drops substantially when m increases from n to 32n in Figure 1.17 (middle).

In fact, b�(mix)
opt (16n) and b�(mix)

opt (32n) are comparable with b�(U)
opt(n) in terms of statistical

e�ciency, but b�(U)
opt(n) is much more costly. Consequently, b�(mix)

opt (16n) and b�(mix)
opt (32n)

have larger PpS than b�(U)
↵ (n) for moderate and large K, see Figure 1.18 (right).

Figure 1.20 shows the statistical e�ciency of b�(U)
opt can also be improved by increas-

ing m, but the additional computation costs are significant. So in most cases, the
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PpS of b�(U)
opt decreases as m increases. It is, however, important to acknowledge that

for a fixed sample from p of size n, the best statistical e�ciency achieved by b�(U)
opt is

better than that by b�(mix)
opt , and the expensive computation costs of b�(U)

opt can easily be

overcome by parallel computing.

To sum up, it is su�cient to use L = 50K data points from p to estimate ⇣. When

L > 50K, the additional computation costs may not be reflected in the improvement

of the statistical e�ciency. When L < 50K, overfitting may occur, resulting in more

divergence between p and �mix(·; e⇣L). The variance of b�(X )
opt can be e↵ectively reduced

by increasing K and/or m up to some points. The rate of reduction in variance is

di↵erent for K and m. When K is small, increasing K reduces the variance faster

than increasing m; when K is large, increasing m is more beneficial to reduce the

variance. For the estimator b�(mix)
opt , having a large m, e.g., m = 10n, is recommended

thanks to the inexpensive computation costs T (mix)

BS .

1.5.3 An Example in 50 Dimensions

In this section, we use an example in 50 dimensions to show our proposed algo-

rithm works in high dimensions, and to further support the comparisons we made

in Section 1.5.2. Here, p is a mixture of 30 distributions, including Gaussian dis-

tributions, t-distributions, Cauchy distributions, and multivariate distributions with

gamma and/or exponential marginal distributions and with Gaussian copulas. Eval-

uating p at a point is about 700 times more costly than evaluating �. The contour

plots of p in Figure 1.21 show the density has very long tails and is quite skewed in

some directions. The simulation results are based on 10,000 replications, and in each
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Figure 1.21: The contours of the density p projected to di↵erent pairs of dimensions.

replication, n = 10, 000 data points from p are generated.

Figure 1.22 displays the computation costs of each of the steps in obtaining b�(X )
↵ .

Figure 1.23 shows the total computation costs, the RMSE, and the PpS of b�(X )
opt . As in

the 10-dimension example, the RMSE decreases as K increases up to 100, and when

K > 100, the mixture model overfits the data, resulting in a slight increase in the

RMSE. On average, the RMSE of b�(U)
opt is 60% of RMSE(b�(mix)

opt ), but the computation

costs of b�(U)
opt are 4.7 times of T (mix)

opt . In terms of the PpS, b�(mix)
opt is superior to b�(U)

opt

for any value of K. The comparison of the examples in 10D and 50D indicates that

the superiority of b�(mix)
opt over b�(U)

opt is more evident for larger tq/t�. In addition, for

large K, when we increase m from n (black lines) to 16n (red) and 32n (green), the

total computation costs of b�(mix)
opt only increases by a small fraction, but the gain in
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Figure 1.22: The time decomposition in the process of obtaining b�(X )
↵ (50 dimension). See

the caption in Figure 1.15.

statistical e�ciency is substantial.
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Figure 1.23: The total computation costs T (X )
opt (left), the RMSE (middle) on a logarithmic

scale, and the PpS (right) of b�(U)
opt (solid lines, m = n) and b�(mix)

opt (dashed lines) with m = n
(black), 16n (red), and 32n (green).

Figure 1.24 shows the impact of increasing L/K on TEM (left), T (X )
opt (middle),

and the log(RMSE) (right) of estimators with K = 5 (black lines), 25 (red), and 50

(green). Consistent with the results in Figure 1.19, as L/K increases up to 50, the

statistical e�ciencies of the estimators improve considerably, but as we continue to

increase L/K, the slope of the curves of log(RMSE) become very gradual. So this
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Figure 1.24: The impact of L on TEM (left), T (X )
opt (middle), and the RMSE of b�(X )

opt (right)
in the 50-dimension example. Black lines: K = 5; red: K = 25; green: K = 50. When
K = 50, we can only take L/K up to 100, because L 6 n/2.

example also supports the choice of L = 50K.

1.5.4 Estimating c1/c2

So far, we have mainly focused on estimating one normalizing constant. Suppose

we have {wi,1, · · · , wi,ni} iid⇠ pi = qi/ci for i = 1, 2, then the ratio of the two normalizing

constants c
1

and c
2

can be obtained with the following three procedures:

1. Estimate �
1

and �
2

separately via warp-U bridge sampling. We denote the

two estimators to be b�(U)

↵,I and b�(U)

↵,II, so � = log(c
1

/c
2

) is estimated by b�(U)

↵,I-II =

b�(U)

↵,I � b�(U)

↵,II.

2. Estimate �
1

and �
2

separately by the algorithm of b�(mix)
↵ , denoted as b�(mix)

↵,I and

b�(mix)

↵,II , and the corresponding estimator of � is b�(mix)

↵,I-II = b�
(mix)

↵,I � b�(mix)

↵,II .

3. Estimate the ratio directly by applying bridge sampling to the two sets of warp-

U transformed data. More specifically, we divide the data {wi,1, · · · , wi,ni} into

two halves, estimate a Gaussian mixture distribution, �mix,i, from the Li(6 n/2)
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Figure 1.25: T (X )
opt (left), log(RMSE) (middle), and PpS (right) of b�(U)

opt,II (solid lines, m = n),

and b�(mix)
opt,II (dashed lines) with m = n (black), 16n (red), and 32n (green).

of the first half of the data, and apply the corresponding warp-U transformation

to the second half of the data. Given the calibrated �mix,i, both the transformed

datasets, { ewi,j; j = 1 + ni
2

, · · · , ni} for i = 1, 2, have substantial overlap with

the common density, �, so we expect they overlap with each other substantially.

Therefore, we can apply bridge sampling to { ewi,j; j = 1 + ni
2

, · · · , ni} iid⇠ eqi for

i = 1, 2, and obtain one estimate of �, denoted as b�(U)⇤
↵,1 . Reversing the roles

of the two halves of the datasets, we obtain a di↵erent estimate, b�(U)⇤
↵,2 . By

symmetry, the final estimator is b�(U)⇤
↵ = 1

2

⇣

b�(U)⇤
↵,1 + b�(U)⇤

↵,2

⌘

.

In our simulation to compare the three estimators of �, p
1

is the same as p in

the 10-dimension example, and p
2

is a mixture of 20 skewed t-distributions, which

is more spread out than p
1

and has heavier correlation among di↵erent dimensions.

The results are based on 5,000 replications, and n
1

= n
2

= 10, 000 data points are

simulated from p
1

and p
2

in each replication.
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Figure 1.26: Total computation costs (left), log(RMSE) (middle), and PpS (right) of
b�(U)

opt,I-II (solid lines, m = n), b�(mix)
opt,I-II (dashed lines) with m = n (black), 16n (red), and 32n

(green), and b�(U)⇤
opt (long dashed lines).

Figure 1.17 and 1.18 show the statistical and computation e�ciency, as well as the

PpS of b�(U)

opt,I (solid lines), and b�(mix)

opt,I (dashed lines) with m = n (black), 16n (red), and

32n (green). Figure 1.25 shows these summary statistics of b�(U)

opt,II and b�
(mix)

opt,II. Figure

1.26 shows the summary statistics of the final estimators b�(U)

opt,I-II, b�
(mix)

opt,I-II, and b�(U)⇤
opt (blue

long dashed lines). The computation costs of b�(U)⇤
opt is almost identical to b�(U)

opt,I-II, be-

cause b�(U)

opt,I-II involves an additional evaluation of the normal density 2m times, which

is negligible. Figure 1.26 (middle) shows Var
⇣

b�(X )

opt,I-II

⌘

= Var
⇣

b�(X )

opt,I

⌘

+ Var
⇣

b�(X )

opt,II

⌘

,

which is consistent with the fact b�(X )

opt,I and b�
(X )

opt,II are independent. Interestingly, b�(U)⇤
opt

has a much better statistical e�ciency than b�(U)

opt,I-II or b�
(mix)

opt,I-II, and the reduction of the

RMSE is less a↵ected by the overfitting issue than other estimators as K increases

to 250. Figure 1.26 (right) shows the PpS of b�(U)⇤
opt is comparable with that of b�(mix)

opt,I-II

when m = 16n or 32n. So b�(U)⇤
opt has the advantage of having the lowest RMSE and

the largest PpS.
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1.6 Challenges and Opportunities

This chapter generalizes the warp-I, II, and III transformation proposed by Meng

and Schilling (2002), and introduces a class of stochastic transformation that aims

at reducing the f-divergence of two densities without changing their normalizing con-

stants. Asymptotically, the bridge sampling estimator with the warp-U transformed

data has smaller variance than that based on the original data.

Warp-U transformation is determined by a mixture distribution, �mix, that has

reasonable amount of overlap with the density p, the normalizing constant of which

is of interest. We suggest using the penalized EM algorithm proposed by Chen et al.

(2008) to fit a mixture of normal distributions with diagonal covariance matrixes to

the data from p. This method is computationally inexpensive, scales linearly with

the dimension, and can capture a large mass of p for a reasonably chosen number of

components in �mix. Adaptive bias is introduced if the estimated parameters in �mix

and the data used in bridge sampling are dependent. We propose one solution that

removes the bias without incurring additional variance. More specifically, the data

are divided into two halves, and we obtain two estimators by using part of one half

of the data to estimate ⇣ and the other half in bridge sampling. The two resulting

estimators have very small correlation, so the statistical e�ciency of the combined

estimator, i.e., their average, is as good as if the parameters in �mix are estimated

with other resources.

The selections of the three tuning parameters (K,L,m) are discussed in details

with theoretical and simulation results. In addition, we compare the statistical and

computational e�ciencies of the optimal warp-U bridge sampling estimator b�(U)
opt and
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b�(mix)
opt (the optimal bridge sampling estimator with data from p and �mix). For a fixed

�mix and sample sizes (n,m), asymptotically, b�(U)
opt has better statistical e�ciency than

b�(mix)
opt . However, b�(U)

opt is computationally more expensive than b�(mix)
opt , especially for large

K. Thus, if computation costs are of concern, b�(mix)
opt with a large sample from �mix

is often a better choice than b�(U)
opt with a small sample from �. Another advantage of

warp-U transformation is that we can apply bridge sampling to the two transformed

datasets to estimate the ratio of two normalizing constants directly.

Like any research, we also face many challenges which require further exploration.

First of all, Theorem 1 implies that for any continuous density � and p, the f-

divergence between (�mix, p) is larger than that between (�, ep), the densities due to

the warp-U transformation. We have only explored the Gaussian distribution as the

base density �, so one future direction is to investigate other base densities. For

heavy-tail problems, using t-distribution may be more e↵ective in capturing the mass

of p, requiring fewer components and thus smaller computation costs. If the support

of p is within a bounded region, a base density with bounded support may be more

appropriate. Nonetheless, we suggest using the diagonal covariance matrix for the

components in �mix and using our strategy in Figure 1.12 to remove the adaptive

bias.

Second, the possibility of using parallel computation techniques to speed up com-

putation is discussed in this chapter. The step of bridge sampling with the warp-U

transformed data is embarrassingly parallelizable, since no communication of the re-

sults is needed. With many computation resources available, the bottleneck may lies

in the estimation of ⇣ via the EM algorithm, which is not easily to parallelize. So
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a parallel version of EM or clustering methods, such as k-means algorithm, may be

used to reduce the computation costs even further.

Third, we assume the number of components in �mix is pre-specified by the user

and have not provided much guidance on how to choose K, except that K should be

6 n/100 to avoid overfitting. Both the computation costs and the statistical e�ciency

of the warp-U bridge sampling estimator increase with K. So a reasonable criterion

for choosing K should take into account both factors, for example, a weighted average

of the statistical e�ciency and computation costs, where the weights represent the

relative importance of the two factors. Whereas we can get a good estimate of the

computation costs as a function of K, it is di�cult to estimate how the MSE of

the estimator changes with K. Some widely-used criteria for choosing the optimal

K, such as AIC and BIC, deal with the trade-o↵ between the goodness of fit of the

model and its complexity, and may be used for our purpose. But keep in mind these

criteria may not directly represent the statistical and computational e�ciency of the

warp-U bridge sampling estimator. The method proposed by Lee et al. (2006), which

estimates the optimal K by dynamically adding the components one by one based on

incremental k-means until some criteria are met, may be a possible solution to our

problem.

Another interesting area of research is the connection of the estimator bc(U)
opt with the

likelihood method proposed by Kong et al. (2003). The estimator bc(mix)
opt is essentially

a special case of the likelihood method. More specifically, let q
0

= q = cp be the

unnormalized density, qi be the pdf of N (µi,⌃i), for i = 1, · · · , K, �mix =
PK

i=1

⇡iqi,

ni be the number of draws from qi, n = n
0

, and m =
PK

i=1

ni, then, when m ! 1

60



Chapter 1: Warp Bridge Sampling: the Next Generation

and ni/m ! ⇡i, the likelihood estimator defined below is equivalent to bc(mix)
opt ,

bc =
K
X

i=0

ni
X

j=1

q(wi,j)

nbc�1q(wi,j) +m
⇣

PK
k=1

nk
m
qk(wi,j)

⌘ . (1.39)

There are many other questions we have not explored. Theorem 1 states D(ep,�) 6

D(p,�mix) for any increasing function of the f -divergence. However, we have little

knowledge about the amount of reduction in the divergence, and when the superiority

of b�(U)
↵ to b�(mix)

↵ is more evident in terms of the statistical e�ciency. In addition, we

have not investigated how the dependence of the data would a↵ect our algorithm. We

would also like to explore more applications of the warp-U transformation.
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Chapter 2

Bayesian Methods for Modeling

Source Intensities

2.1 Introduction

One of the goals of source detection is to obtain the luminosity function, which

specifies the distribution of source intensities in a population. The luminosity function

of a population in X-rays can be estimated using the Chandra X-ray data. The

Chandra X-ray Observatory consists of high-resolution count-based detectors, which

record the arrival time, the 2D sky coordinates and the energy of each of the X-ray

photon arrives at the detectors.

We use independently constructed catalogues from optical, radio, or previous X-

ray surveys to locate the position of each source in a population. Centering at each

source location in the detector, we use the point spread function (PSF) to deter-

mine a circular aperture, also referred to as the source region, so that ⇠ 90% of the
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source photons are expected to fall within the region. In this paper, we develop a

novel method to simultaneously modeling the distribution of source intensities of a

population, based on the 2D binned counts in the source regions. Thus, we bypass

the traditional problem of detection entirely, and directly determine the quantity of

astrophysical interest, the population luminosity function. Currently, this is among

the first principled methods to use the independently constructed catalogues in an

X-ray source detection algorithm.

Several complications are associated with the data. First, the data are contam-

inated with background counts, which are recorded events that are not originated

from the source of interest. To quantify the background counts, we also collect the

2D binned count in a vast region with no sources. A common practice to obtain

source counts is to directly subtract the estimated background counts from the ob-

served counts in source regions. This ad-hoc method, however, often leads to negative

source counts. To overcome this problem, we model each observed count as the sum

of two independent Poisson random variables, the expected values of which are de-

termined by the background rate and the source intensity, respectively.

Second, the photon counts in some source regions are very low, and could be

completely from the background. We call a source X-ray dark, if its X-ray source

intensity is zero. We are particularly interested in whether such X-ray dark sources

exist as a discernible subpopulation of the population. To represent this possibility,

we model the distribution of source intensities as a mixture of a gamma distribu-

tion for sources with non-zero intensities, and a zero-inflated component (a positive

probability at zero) for sources that are intrinsically non-emitting. Note that in most
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flux-truncated analyses, power-law models (akin to a Pareto distribution) are fit to

the data, which by design ignore the downward slopes in the source brightness distri-

bution at low luminosities. The zero-inflated component models a subpopulation of

sources that are not just weak, but completely dark, and is an entirely new construct

hitherto never considered in astronomical problems. Including such a population in

the modeling provides powerful new avenues to investigate, e.g., areas of the H-R

diagram where sources have never been reliably detected, such as dA stars, or K and

M giants and supergiants. The individual source intensity is constrained by both the

observed counts at the source locations and the expected distribution, which acts as

a “smoothing” constraint even for weak sources. This obviates the need to determine

upper limits to undetected sources, since for every catalog object a full posterior

probability distribution of its intensity is obtained and used in the construction of

the luminosity function.

Third, there are a number of overlapping source regions in the data, especially at

locations far away from the center of the field. We bypass the problem by counting

the photons in each of the segments formed by these overlapping regions. We are able

to obtain the proportion of photons from each source that are expected to arrive at

that segment. This information allows us to principally model the source intensities

based on photon counts in the segments.

Finally, the background rate may have an increasing trend as the projected angle

on the sky from the center of the field increases. Instead of assuming a constant

background rate across the field, we assume it is piecewise constant, i.e., the whole

field is divide into several non-overlapping regions and the background within each
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region is homogeneous.

The remainder of the chapter is organized into three sections. In Section 2.2,

we develop the Bayesian method for modeling the X-ray luminosity function. A

simulation study, with simulated data mimicking typical stellar clusters, is conducted

to demonstrate the performance of our model. In Section 2.3, we propose a likelihood-

ratio based Bayesian hypothesis testing procedure, where the posterior predictive p-

value is computed to quantify the evidence against the null hypothesis of no X-ray

dark sources. The actual levels and powers of the test are examined under a variety

of simulation configurations. In Section 2.4, we apply our model and the hypothesis

testing procedure to two subsets of the Chandra/HRC-I observation of the stellar

open cluster, NGC 2516.

2.2 Modeling the Luminosity Function

2.2.1 Statistical Model

In this section, we introduce the hierarchical model that we use to describe and

fit the luminosity function. The model accounts for background contamination and

the possibility of dark sources. We take a Bayesian perspective to model fittings,

employing non-informative prior distributions for the parameters characterizing the

luminosity function because external information is not available for these parameters.
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2.2.1.1 Basic Bayesian Hierarchical Model

Suppose we observe a field with n sources for T seconds, and that for each source

we count Yi photons in its source region. Source region i is a circular aperture

centered at the putative location of source i, and its radius is determined by the

point spread function (PSF) so that ⇠ 90% of the source photons are expected to fall

within the region. Let ai (pixels) denote the area of source region i. We assume the

number of putative sources and their locations are determined with other instruments.

Jones et al. (2014), for example, investigate a Bayesian method for simultaneously

inferring the number of sources, their locations, and their expected photon counts.

For simplicity, here we assume there is no overlap among the n source regions; this

assumption is relaxed in Section 2.2.1.2. Due to background contamination, Yi can be

written as the sum of photon counts from the source, Si, and from the background,

Bi, i.e.,

Yi = Si + Bi, (2.1)

where Si and Bi are independent. We emphasize that we only observe Yi, and not Si

or Bi.

In addition to the counts in the individual source regions, we observe a pure

background count, X, from a presumably source-free region of area A pixels in the

observed field. The exposure time for the pure background observation is also T

seconds. In this section, we assume constant background rate across the field; an

extension of the model that allows for di↵erent background rates appears in Section

2.2.1.2.

The arrival of photons at the detector can be modeled as a Poisson process, that is,
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Si,Bi, and X are independent Poisson random variables. In addition to the exposure

time and source intensity, �i (count/s/cm2), the expected count from source i in its

source region is a↵ected by two known constants: (i) the proportion, ri, of photons

from the source that are expected to fall in the source region as determined by the

PSF, and (ii) the telescope e↵ective area, ei (cm2), at the source location, which

characterizes the e�ciency of the telescope, i.e.,

Si

�

��i
indep⇠ Poisson(riei�iT ). (2.2)

Similarly, with a background rate of ⇠ (count/s/pixel), the photon count in the back-

ground region is modeled

X
�

�⇠ ⇠ Poisson(A⇠T ), (2.3)

and the background count in source region i is modeled

Bi

�

�⇠
indep⇠ Poisson(ai⇠T ). (2.4)

The background count rates are not adjusted for the e↵ective area because (i) the

e↵ective area adjusts only for photon counts, whereas background events include both

X-ray photons and charged particles, and (ii) the background rate, ⇠, is quantified

in terms of the observed count. Finally, the observed count in source region i, Yi =

Si + Bi, also follows a Poisson distribution,

Yi

�

� (�i, ⇠)
indep⇠ Poisson ((ai⇠ + riei�i)T ) . (2.5)
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We take a Bayesian statistical perspective which involves the computation of the

posterior distribution of the unknown parameters, (⇠,�) with � = (�
1

, · · · ,�n), given

the observed data, D = (Y
1

, · · · , Yn, X). To do this, we must specify the likelihood

function and the prior distribution; a brief introduction to Bayesian data analysis

and parameter fitting is given in Appendices A.3 and A.4. Equations (2.3) and (2.5)

together define the distribution of D, and thus can be used to specify the likelihood

function of (⇠,�),

L(⇠,�|D) = exp (�AT ⇠) (AT ⇠)
X

X!

n
Y

i=1

exp[�(ai⇠ + riei�i)T ]
[(ai⇠ + riei�i)T ]Yi

Yi!
.

(2.6)

As for prior distributions, we first specify the prior distribution on ⇠ as 1Gamma[µ
0

, ✓
0

].

This choice simplifies computation because we can derive a closed-form posterior dis-

tribution for ⇠, given all other model parameters and data. Since the density function

of gamma distribution can take various shapes, it is a flexible model for the prior dis-

tribution, see Figure 2.1 (left panel) for examples. If prior information is available for

the background rate, µ
0

and ✓
0

can be chosen accordingly. Otherwise, a nearly flat

prior distribution with large variance can be used to reflect prior ignorance. Prac-

tically speaking, because the background count X is collected over a large region

(A pixels) and over a long period of time (T seconds), it is quite informative for ⇠,

and thus a weakly informative prior distribution has little impact on the posterior

1For the conventional parametrization of a gamma distribution, Gamma(↵,�), the mean and
variance are µ = ↵/� and ✓ = ↵/�2, respectively. To simplify interpretation, we instead use the
mean-variance parametrization, Gamma[µ, ✓]; the square brackets are used to distinguish the mean-
variance parametrization, i.e., the Gamma[µ, ✓] distribution has mean µ and variance ✓, and is
equivalent to Gamma(↵,�).
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Figure 2.1: (Left) Examples of gamma distributions; (Right) Examples of Beta distribu-
tions. The notation used to specify these distributions appears in footnotes 1 and 3.

distribution of ⇠. In our numerical studies, we set

AT ⇠ ⇠ Gamma
⇥

106, 1018
⇤

, or equivalently, ⇠ ⇠ Gamma



106

AT ,
1018

(AT )2

�

, (2.7)

which is nearly a flat prior distribution for AT ⇠.

To capture the possibility of X-ray dark sources, we model the population prior

distribution of source intensities as a zero-inflated gamma distribution, i.e., a mixture

of a gamma distribution and the � function at zero.2 The gamma component of this

prior distribution describes the intensities of sources that are not X-ray dark, whereas

the � function represents the X-ray dark sources in the field, i.e., those having �i = 0.

We model {�
1

, · · · ,�n} as independent random variables from this population prior

2The � function is a discrete distribution. If X ⇠ �0, then P (X = 0) = 1.
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distribution, i.e., independently,

�i
�

�µ, ✓, ⇡d

8

>

>

>

<

>

>

>

:

= 0 with probability ⇡d,

⇠ Gamma[µ, ✓] with probability 1� ⇡d,

(2.8)

where ⇡d is the proportion of dark sources. The prior distribution of � can be written

P (�
�

�µ, ✓, ⇡d) =
n
Y

i=1

 

⇡d�0(�i) + (1� ⇡d)
(µ/✓)(µ

2/✓)

�(µ2/✓)
�(µ

2/✓)�1

i e�(µ/✓)�i

!

, (2.9)

where �
0

(�i) = 1 if �i = 0, and �
0

(�i) = 0 if �i 6= 0.

Because we observe multiple sources, we can fit the parameters, µ, ✓, and ⇡d of

the population prior distribution on �. To do so, we must also set prior distribu-

tions on µ, ✓, and ⇡d, and study their posterior distribution. There is an important

di↵erence between the prior distributions on ⇠ and on �. A priori, ⇠ is assumed to

follow Gamma[µ
0

, ✓
0

], where µ
0

and ✓
0

are constants of our choice, whereas the dis-

tribution of � is modeled in a hierarchical fashion, i.e., we can leverage the replicates

{�
1

, · · · ,�n} to fit the population prior distribution and set fixed prior distributions

on the parameters describing this population distribution.

We assume µ, ✓, and ⇡d are a priori independent. A natural prior distribution

for ⇡d is a Beta distribution,3 the support of which is the unit interval. Examples

of Beta distributions are shown in Figure 2.1 (right panel). Prior knowledge as to

likely values of the proportion of the dark sources can be incorporated into this prior

3 The probability density function of Beta(↵,�) is P (x) = (�(↵)�(�))�1�(↵ + �)x↵�1(1 �
x)��1, where 0 < x < 1. The mean and variance of the distribution are ↵/(↵ + �) and
↵�/

⇥

(↵+ � + 1)(↵+ �)2
⇤

, respectively.
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distribution. Otherwise, we can assume ⇡d follows Beta(1, 1), which is a uniform

distribution between zero and one,

⇡d ⇠ Beta(1, 1) = Uniform(0, 1). (2.10)

Setting a prior distribution on (µ, ✓) is more subtle. It may be tempting to specify

a flat prior distribution on (µ, ✓), because these parameters can in principle take on

any positive values. A flat prior distribution on (0,1), however, is not a proper

distribution (since it cannot be normalized) and leads to technical di�culties in this

case, see Appendix A.6. Thus, we must specify a prior distribution that can be

normalized. Nonetheless, we would like the prior distribution of (µ, ✓) to reflect

ignorance since we have no prior knowledge about their values. To accomplish this,

we specify a relatively flat and heavy-tailed prior distribution with the aim of ensuring

that the posterior distribution is driven by D, rather than the prior distribution.

We start by identifying a rough range of � using background subtraction. Assum-

ing a constant background rate, we expect that approximately, bBi = Xai/A photons

in source region i are due to the background and bSi = Yi � bBi photons are due to

source i. Thus, b�i = bSi/(rieiT ) is a rough estimate of �i. Figure 2.2 shows histograms

of Yi and b�i for the non-overlapping sources within 6 arcmin from the center of the

field in the Chandra/HRC-I observation of the open cluster NGC 2516, in which

44.6% of the b�i are negative. We emphasize that b�i is a poor estimator of �i and

we do not espouse its use as such. We only use it as a very rough guide in setting a

prior distribution. The empirical mean and variance of the positive b�i are 1.2⇥ 10�6

and 8.7 ⇥ 10�12, respectively. Based on these calculations, we use two independent
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Figure 2.2: (Left) Histogram of the observed photon counts Yi of non-overlapping sources
located within 6 arcmin from the center of the field in the Chandra/HRC-I observation of
the open cluster NGC 2516; (right) histogram of the empirical estimates of �i obtained by
subtracting the estimated background counts from the observed counts.

zero-truncated Cauchy distributions,4 tCauchy (⌘
0

, �
0

), as the prior distributions for

µ and ✓. The Cauchy distribution is an appropriate choice for a weakly informative

prior distribution (Gelman et al., 2006, 2008) due to its heavy tails. We truncate

the prior distribution to be positive because both µ and ✓ must be greater than zero.

Figure 2.3 (left panel) shows several examples of normalized zero-truncated Cauchy

distributions. The mode, ⌘
0

, of the prior distribution on µ is set to match the mean

of the positive b�i, and the scale parameter, �
0

, is set to be 100⌘
0

, so that the density

of tCauchy(⌘
0

, �
0

) only drops by a half within 101⌘
0

units of the mode. Using the

4The probability density of Cauchy(⌘, �) is P (x) = �/
⇥

⇡
�

�2 + (x� ⌘)2
�⇤

for �1 < x < 1. The
zero-truncated Cauchy distribution, denoted as tCauchy(⌘, �), is proportional to the positive part
of Cauchy(⌘, �). The density of tCauchy(⌘, �) is P (x) = �/

⇥

C
�

�2 + (x� ⌘)2
�⇤

for x > 0, where
C = ⇡/2 + arctan(⌘/�) is the normalizing constant that ensures

R1
0 P (x)dx = 1. The mode of the

density is min(⌘, 0). Larger value of the scale parameter, �, results in to a heavier right-tail.
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Figure 2.3: (Left) Examples of normalized tCauchy distributions; (Right) density function
of the prior distribution for µ, with the mode of the distribution marked by the red vertical
line.

same method, we obtain the prior distribution for ✓. So

µ ⇠ tCauchy(1.2⇥ 10�6, 1.2⇥ 10�4), ✓ ⇠ tCauchy(8.7⇥ 10�12, 8.7⇥ 10�10). (2.11)

Figure 2.3 (right panel) plots this prior distribution of µ, which is fairly flat near the

mode and has a heavy right tail.

In all, the unknown parameters that we aim to estimate include µ, ✓, ⇡d, ⇠, and �.

By Bayes’ Theorem, their joint posterior distribution is

P (µ, ✓, ⇡d, ⇠,�
�

�D) / L(⇠,�|D)P (⇠)P (�
�

�µ, ✓, ⇡d)P (⇡d)P (µ, ✓), (2.12)

where the terms on the right-hand side of (2.12) are given by (2.6), (2.7), (2.9), (2.10),

and (2.11), respectively.
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Figure 2.4: An example of eight source regions in the detector. Source regions 7 and 8 do
not overlap with other source regions. Source regions 1-6 overlap and form a total of 13
segments. The highlighted segment is the intersection of source regions 1, 2, and 4.

2.2.1.2 Model Extension

When two or more sources are spatially close and their respective PSF-defined

source regions overlap, photons observed in one source region are a mixture of photons

from multiple sources and from the background. In this section, we extend the basic

model of Section 2.2.1.1 to handle overlapping sources.

Instead of modeling the photon count in each source region, we model the count,

Ys, in each segment defined by either a single non-overlapping source region or the

intersection of multiple source regions. The subscript, s, denotes the set of sources

whose regions overlap and form the segment. For example in Figure 2.4, the high-

lighted segment is defined by the intersection of source regions 1, 2, and 4, so

s = {1, 2, 4}, and Y{1,2,4} is the photon count in the highlighted segment. Each

Ys consists of a mixture of photons from the sources in s and from the background,

so

Ys =
X

i2s

Ss,i + Bs, (2.13)
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where Ss,i is the photon count from source i detected in segment s, and Bs is the

background count in segment s, with Bs and Ss,i for i 2 s assumed independent. We

emphasize only Ys, and not Ss,i or Bs is observed.

As in the basic model, the expected count in each segment is computed as a

function of several constants: (i) the area, as (pixels), of the segment, (ii) the expected

proportion, rs,i, of photons from source i 2 s that are recorded in segment s, and (iii)

the e↵ective area, es (cm2), of the segment. In particular, given the source intensity

�i, Ss,i is modeled as

Ss,i

�

��i
indep⇠ Poisson(rs,ies�iT ). (2.14)

In the basic model of Section 2.2.1.1, we assume the background rate is constant

across the field. In reality, this assumption is unrealistic because we observe an

increase in the observed background rate as the projected angle (in arcmin) on the

sky from the center of the field increases from 0 to 16, see Table 2.1. Here, we extend

the model to allow for piecewise homogeneous background. More specifically, we

divide the field into K fixed regions and assume a constant background rate, denoted

as ⇠k, in each region. A priori, we assume ⇠
1

, · · · , ⇠K are independently distributed

as Gamma [µ
0

, ✓
0

] , as in (2.7).

Let Xk be the observed background count and Ak (pixels) be the area of the

pure background in region k, for k = 1, · · · , K. As in (2.3), given ⇠ = (⇠
1

, · · · , ⇠K),

X = (X
1

, · · · , XK) can be modeled as

Xk

�

�⇠k
indep⇠ Poisson(Ak⇠kT ). (2.15)
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Table 2.1: Background counts and average background counts per pixel in di↵erent regions
in the Chandra/HRC-I observation of the open cluster NGC 2516.

Projected Angle Count (count) Area (pixels) Average count per pixel
0-6 219962 22029408 0.0100
6-8 146332 14093856 0.0104
8-16 285300 26448800 0.0108

If segment s is in region k, Bs is modeled as

Bs

�

�⇠k
indep⇠ Poisson(as⇠kT ), (2.16)

and thus

Ys

�

�⇠k,�
indep⇠ Poisson

  

as⇠k +
X

i2s

rs,ies�i

!

T
!

. (2.17)

We use an MCMC sampler to fit the model, and to obtain parameter estimates and

error bars, see Appendix A.4 for details of the model fitting algorithm.

2.2.2 Simulation Study

We use a series of simulation configurations to evaluate the statistical properties

of estimators based on our model. We make three simplifications in our simulation:

(i) there are no overlapping sources, (ii) the background rate is constant, and (iii) the

three constants (ai, ei, ri) associated with each source are the same for all sources,

and thus we remove the subscript i and use (a, e, r) to denote these parameters.

We choose the simulation parameters to mimic the Chandra observation of the

open cluster NGC 2516. The following parameters are fixed in the simulation, (i)

the exposure time T = 5 ⇥ 104 seconds, (ii) the area of the pure background region
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Table 2.2: Parameters in the simulation and their corresponding values in the model.

parameters in simulation �⇤i (count) µ⇤ (count) ✓⇤ (count2) ⇠⇤ (count)
corresponding values to model reT �i reT µ (reT )2✓ a⇠T

A = 2.5 ⇥ 107 pixels, (iii) the background rate ⇠ = 2 ⇥ 10�7 count/s/pixel, and (iv)

the number of sources n = 1000. Each replicate dataset is simulated according to the

following steps:

1. Simulate the background count, X, from Poisson(A⇠T ), where A⇠T = 2.5⇥105.

2. Simulate the expected source counts, {�⇤
1

, · · · ,�⇤n}, independently from a zero-

inflated gamma distribution, i.e., each �⇤i = 0 with probability ⇡d, and �⇤i ⇠

Gamma [µ⇤, ✓⇤] with probability 1� ⇡d.

3. For i = 1, · · · , n, simulate the background count Bi
indep⇠ Poisson(⇠⇤) and the

source count Si
indep⇠ Poisson(�⇤i ), and thus the observed photon count is Yi =

Bi + Si.

Note, the parameters that are marked by the superscript ⇤ are the scaled versions of

those used in our model, see Table 2.2.

The simulation depends on the parameters µ⇤, ✓⇤, ⇡d, and ⇠⇤. We fix µ⇤ = 15 and

consider 100 simulation configurations that we generate using a full factorial design,

i.e., crossing two values of ⇠⇤, five values of ✓⇤, and ten values of ⇡d, in particular, ⇠⇤ 2

{15, 30}, ✓⇤ 2 {50, 100, 300, 500, 1000}, and ⇡d 2 {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Under each configuration, m = 300 replicate datasets are generated and fit via

MCMC. We compute the (1� ⇢) highest posterior density (HPD, see Appendix A.3)

intervals with ⇢ 2 (0, 1) for µ⇤, ✓⇤, and ⇡d using each of the 100⇥300 replicate datasets.
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The actual coverage rate of the (1� ⇢) HPD interval for each parameter under each

configuration is estimated by the proportion of the 300 replicate (1 � ⇢) intervals

that contain the true parameter value under that configuration. Ideally, the coverage

rate of a (1 � ⇢) interval is exactly (1 � ⇢). The top row of Figure 2.2.2 illustrates

one replicate of the counts in source regions, simulated with ⇠⇤ = 30, ⇡d = 0.5, and

✓⇤ = 100, 500, and 1000, from left to right. As the variance, ✓⇤, of the population

distribution increases, with the mean fixed at µ⇤ = 15, more of the �i become con-

centrated near 300. The bottom row of Figure 2.2.2 shows the estimated coverage

rates of the HPD intervals for µ⇤, ✓⇤, and ⇡d. The horizontal coordinate is the nomi-

nal coverage, and the vertical coordinate is the estimated actual (observed) coverage.

Because the observed coverages lie near the 45� line, we see that the actual coverages

of the HPD intervals for the three parameters are close to their nominal rates. The

one exception occurs when ✓⇤ = 1000 and nominal rates are large. In that case, the

coverage rates for the three parameters appear to be slightly higher than the nominal

rates.

Table 2.3 shows the summaries of the posterior mode estimates and HPD intervals

of ⇡d based on the 100 ⇥ 300 replicate datasets. Since the background rate and the

exposure time are fixed in our simulation, larger ⇠⇤ corresponds to larger source

regions. In each cell of Table 2.3, the three summaries from top to bottom are (i)

the estimated actual coverage rate of the 95% HPD interval for ⇡d, (ii) the average

length of these 95% HPD intervals, and (iii) the root mean-squared error (rMSE) of
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Figure 2.5: (Top row) histograms of Y generated under three simulation settings with
⇠⇤ = 30, ⇡d = 0.5 and ✓⇤ = 100, 500 and 1000 from left to right; (bottom row) the coverage
rates of the HPD intervals for µ⇤ (blue dashed lines), ✓⇤ (black dotted lines) and ⇡d (red
solid lines).

the point estimates of ⇡d, estimated by

rMSE(b⇡d) ⇡
v

u

u

t

1

m� 1

m
X

j=1

⇣

b⇡(j)
d � ⇡d

⌘

2

,

where b⇡(j)
d is the posterior mode estimate of ⇡d based on the j-th replicate dataset

simulated under a particular configuration.

Coverage rates of most of the 95% HPD intervals in Table 2.3 are around 95% when

⇡d > 0, confirming that these HPD intervals exhibit approximately their nominal
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Table 2.3: The coverage rate of 95% HPD interval, the average length of the interval, and
the rMSE of the point estimates of ⇡d.

⇠⇤ ✓⇤
⇡
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

15

� 94.0% 94.7% 96.0% 96.3% 96.0% 97.7% 94.7% 96.0% 97.0%

50 0.02 0.07 0.08 0.09 0.09 0.1 0.1 0.09 0.09 0.1

0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

� 96.3% 94.0% 95.7% 95.0% 96.3% 96.7% 95.7% 97.0% 99.3%

100 0.04 0.09 0.11 0.12 0.12 0.13 0.13 0.13 0.13 0.18

0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02

� 97.0% 94.0% 94.3% 93.3% 95.7% 95.0% 99.3% 99.0% 98.7%

300 0.11 0.18 0.24 0.27 0.3 0.3 0.32 0.34 0.36 0.38

0.04 0.06 0.07 0.06 0.07 0.06 0.06 0.05 0.04 0.03

� 95.7% 95.0% 92.7% 96.0% 94.3% 95.0% 97.3% 97.0% 98.7%

500 0.17 0.25 0.32 0.36 0.41 0.44 0.46 0.48 0.47 0.41

0.07 0.09 0.1 0.11 0.09 0.1 0.09 0.07 0.06 0.03

� 95.3% 97.0% 98.0% 97.7% 97.0% 98.3% 97.7% 99.3% 98.3%

1000 0.32 0.38 0.44 0.5 0.54 0.57 0.61 0.61 0.6 0.49

0.17 0.16 0.16 0.16 0.15 0.13 0.11 0.09 0.07 0.04

30

� 92.3% 95.0% 92.0% 92.3% 94.7% 94.3% 95.3% 96.7% 98.0%

50 0.03 0.09 0.11 0.12 0.13 0.13 0.13 0.13 0.14 0.2

0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

� 93.3% 94.7% 94.0% 95.3% 95.3% 96.7% 97.3% 97.7% 98.7%

100 0.06 0.12 0.15 0.16 0.17 0.17 0.18 0.19 0.21 0.29

0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03

� 97.7% 97.0% 91.0% 91.7% 96.3% 93.3% 96.3% 98.7% 99.0%

300 0.13 0.2 0.28 0.32 0.35 0.38 0.4 0.43 0.46 0.42

0.05 0.06 0.07 0.09 0.08 0.08 0.08 0.07 0.05 0.03

� 96.0% 97.3% 97.0% 96.3% 95.7% 95.3% 97.3% 98.7% 99.3%

500 0.21 0.28 0.35 0.41 0.46 0.49 0.52 0.52 0.53 0.43

0.09 0.1 0.11 0.11 0.12 0.11 0.1 0.08 0.06 0.04

� 95.3% 96.7% 95.3% 94.3% 98.7% 98.3% 99.0% 99.0% 99.0%

1000 0.35 0.42 0.48 0.53 0.57 0.61 0.64 0.63 0.59 0.48

0.19 0.18 0.18 0.18 0.17 0.14 0.13 0.11 0.08 0.05

If the true coverage rate is 95%, the standard deviation of the estimated coverage rate is 1.3%. So
coverage rates between 92.4% and 97.6% are statistically indistinguishable from 95% at 2� level.

coverage rates. When ⇡d is large, however, the intervals have slightly higher coverages

than the nominal rates. We do not include the coverage rates when ⇡d = 0, because

none of the intervals contain the boundary of the distribution.
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Both the rMSE and the average length of the intervals are indicators of the uncer-

tainty associated with the estimates of ⇡d. Holding other parameters constant, both

the average length of the 95% HPD intervals and the rMSE increase as ✓⇤ increases.

The explanation is as follows. Figure 2.2.2 shows that for fixed mean, µ⇤, the gamma

distribution with larger variance, ✓⇤, is more concentrated at 0. It is hence more

di�cult for the model to distinguish the X-ray dark sources (�⇤i = 0) from the dim

sources with small but positive intensities. The rMSE and the average length of the

intervals also increase as ⇠⇤ or the area of source regions increases, because the noise

(i.e., count from the background) becomes increasingly overwhelming whereas the

signal (i.e., count from the source) remains unchanged. Overall, the rMSE’s of the

point estimates are all reasonably small, meaning that the point estimates of ⇡d are

reasonably close to the true values.

2.3 Testing for X-ray Dark Sources

2.3.1 Hypothesis Testing

We are particularly interested in whether there are any X-ray dark sources in the

pppulation. In our model, the proportion of X-ray dark sources is ⇡d, so we can

address the existence of dark sources via a statistical hypothesis test, where the null

and alternative hypotheses are

H
0

: ⇡d = 0 and H
1

: ⇡d > 0. (2.18)

The null hypothesis claims no X-ray dark sources in the pppulation.
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In classical hypothesis testing, the significance level ↵, which controls the proba-

bility of a false positive, is pre-specified, typically at 1% or 5%. A test statistic, T , is

a summary of the data that captures the discrepancy of the data generated under H
0

and H
1

. The corresponding p-value is the probability of sampling a value of the test

statistic under H
0

at least as extreme as the observed value, T
obs

= T (D), that is,

p-value = P (T (D
rep

) > T
obs

�

�H
0

), (2.19)

where D
rep

is a replicate dataset sampled under H
0

. For clarity, we assume larger

values of T are more consistent with H
1

. If the p-value is less than ↵, we say the

null hypothesis is rejected; otherwise, we have insu�cient evidence to reject H
0

.

To compute the p-value, the distribution of T (D
rep

) under H
0

, also known as the

reference (or null) distribution, is required. Unfortunately this is problematic if there

are unknown parameters under H
0

because in this case we cannot directly sample

D
rep

under H
0

to derive the reference distribution needed to compute a p-value. This

is the case in (2.18) because H
0

only states that there are no X-ray dark sources

without specifying the distribution of the source intensities of the X-ray luminous

sources, namely Gamma[µ, ✓].

Posterior predictive p-values (ppp-values) were designed by Rubin et al. (1984) to

address this di�culty, and extended by Meng (1994) and Gelman et al. (1996). A

ppp-value is often used to assess goodness of fit of a posited model (Gelman et al.,

1996). Assume the observed data, D, is fit to a model parametrized by a vector of

unknown parameters ⇥. The ppp-value is defined by averaging the classical p-value
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in (2.19) over the posterior distribution of ⇥, that is,

ppp-value = P (T (D
rep

) > T
obs

�

�D) =

Z

P (T (D
rep

) > T
obs

�

�⇥)P (⇥
�

�D)d⇥. (2.20)

To test the existence of X-ray dark sources, we calculate the ppp-value under H
0

(i.e., the model with ⇡d = 0). A ppp-value can be interpreted much like a classical

p-value. A small value means that data generated under the posterior predictive

distribution

P (D
rep

|D) =

Z

P (D
rep

|⇥)P (⇥|D)d⇥,

is unlikely to have given rise to the observed test statistic, T
obs

= T (D), hence the

null model should be rejected and the alternative model preferred. We use a Monte

Carlo simulation to approximate the ppp-value. This proceeds as follows:

1. Obtain posterior draws
n

(µ(l), ✓(l), ⇠(l)); l = 1, · · · ,M
o

from the posterior distri-

bution of (µ, ✓, ⇠) under the null model. This is done using the MCMC sampler

described in Appendix A.4, except we fix ⇡d = 0.

2. For l = 1, · · · ,M , simulate a dataset, D(l)
rep

, under H
0

, as described in (2.8),

(2.15), and (2.17), where the parameters are (⇡d, µ, ✓, ⇠) = (0, µ(l), ✓(l), ⇠(l)).

3. Calculate the test statistic T (l)
rep

= T (D(l)
rep

), for l = 1, · · · ,M .

4. Estimate the ppp-value by the proportion of the T (l)
rep

that are greater than T
obs

,

that is,

ppp-value ⇡ 1

M

M
X

l=1

I
�

T (l)
rep

> T
obs

�

, (2.21)
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where the indicator function I(c) equals to 1 if the statement c is true, and

otherwise is 0.

In practice, we simplify the procedure by fixing X(l)
rep

at the observed values, X, be-

cause we are primarily concerned about the source counts. In addition, K is typically

much smaller than n, and the combined source segments within region k is only a

small fraction of Ak, in other words, X contain substantial data for estimating ⇠.

For example, in the Chandra observation of the open cluster NGC 2516, within 6

arcmin from the center of the field, the combined source segments is only 4.3% of

the background region. As a result, the posterior distribution of ⇠ is largely deter-

mined by the observed background counts X and is concentrated around Xk/(AkT ).

Consequently, this simplification has little impact on the final ppp-value.

An important di↵erence between the classical p-value and the ppp-value lies in

their null distributions. Under H
0

, the classical p-value in (2.19) is uniformly dis-

tributed in the unit interval, implying the probability of observing a p-value less than

↵ when H
0

is true, and thus falsely rejecting H
0

is ↵. However, the distribution of

the ppp-value under H
0

may di↵er from uniform, so ↵ may not be the actual false

positive rate. Fortunately, Section 2.3.3 shows via simulation that the null distribu-

tions of the ppp-values in our model under di↵erent configurations are very close to

a uniform distribution when ↵ < 0.5. As a result, just like the classical hypothesis

test, the false positive rate of our procedure is approximately equal to the nominal

significance level, ↵.
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2.3.2 Test Statistic

The discussion in Section 2.3.1 presupposes a suitable test statistic that can be

used to distinguish H
0

and H
1

. A general choice, and one that we employ, is the

likelihood ratio (LR) statistic,

LR(D
rep

) =
supµ,✓,⇡d,⇠ L1

(µ, ✓, ⇡d, ⇠;Drep

)

supµ,✓,⇠ L0

(µ, ✓, ⇠;D
rep

)
, (2.22)

where L
0

and L
1

are the likelihood functions under the null and the alternative

models, i.e.,

L
1

(µ, ✓, ⇡d, ⇠;Drep

) = P (D
rep

�

�µ, ✓, ⇡d, ⇠) =

Z

P (D
rep

,�
�

�µ, ✓, ⇡d, ⇠)d�

=

Z

P (Y
rep

|�, ⇠)P (�|µ, ✓, ⇡d)d�,
(2.23)

with the probabilities in the second line defined in (2.17) and (2.9), respectively, and

L
0

(µ, ✓, ⇠;D
rep

) = P (D
rep

�

�µ, ✓, ⇡d = 0, ⇠) = L
1

(µ, ✓, ⇡d = 0, ⇠;D
rep

);

see Freeman et al. (1999) and Protassov et al. (2002) for other applications of the

likelihood ratio statistic in Astronomy. Note that the reason for integrating out �

in (2.23) is because � are random e↵ects in the model and the integrated likelihood

incorporates the associated uncertainty. The function P (D
rep

,�
�

�µ, ✓, ⇡d, ⇠) is inte-

grable because it can be written as

P (D
rep

,�
�

�µ, ✓, ⇡d, ⇠) = P (�
�

�D
rep

, µ, ✓, ⇡d, ⇠)P (D
rep

�

�µ, ✓, ⇡d, ⇠),
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where the posterior distribution of � given (D
rep

, µ, ✓, ⇡d, ⇠) is integrable because the

prior distribution for � is proper. However, the integration is intractable, so we make

two modifications to simplify the computation of the likelihood function.

In the first modification, we replace each ⇠k with an estimate based on the back-

ground counts, b⇠k = Xk/(AkT ), for k = 1, · · · , K. This substitution allows us to

avoid maximizing out ⇠ in computing LR. We expect this simplification has little

e↵ect on LR, because X contains substantial data for estimating ⇠, and thus the

values of ⇠ that maximize the likelihood functions L
0

and L
1

should be very close to

b⇠ = (b�
1

, · · · , b�K).

Second, we only consider sources whose regions do not overlap with other source

regions when computing LR. The resulting LR is a legitimate test statistic because

(i) it is a function of the observed data, and (ii) the source intensities do not determine

whether the source regions overlap or not, meaning we can view the sources without

overlap as a random subset of all sources. The downside of this simplification is the

reduction of the sample size, which leads to the decrease of the statistical power of

the test. It o↵ers a substantial computational advantage, however, in that it allows

us to express the integral over � in (2.23) as the product of univariate integrals, each

of which can be obtained analytically. We emphasize that we use all the data to fit

the null model and obtain the posterior draws of (µ, ✓).

With these two simplifications, the simplified likelihood is

eL
1

(µ, ✓, ⇡d,b⇠;Drep

) =
Y

i2S

Z

P (Y
rep,i

�

��i, b⇠k)P (�i
�

�µ, ✓, ⇡d)d�i, (2.24)

where S is the set of sources with no overlap, Y
rep,i|�i, b⇠ ⇠ Poisson(riei�iT + aib⇠T )
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if source region i is in background region k. The likelihood function under H
0

,

eL
0

(µ, ✓,b⇠;D
rep

), equals to eL
1

(µ, ✓, ⇡d = 0,b⇠;D
rep

). Thus, our final test statistic

is LR, as given in (2.22), but with L
0

and L
1

replaced by eL
0

and eL
1

, respectively.

The integration in (2.24) can be obtained analytically, see Appendix A.5 for de-

tails. Since eL
0

and eL
1

are functions of only a few parameters, their supremes required

for LR in (2.22) can be obtained via numerical methods, such as Newton-Raphson

method and Nelder-Mead method (Nelder and Mead, 1965; Gerald et al., 1989), which

are implemented in many computer programs, including R and Python.

2.3.3 Simulation Study

As mentioned in Section 2.3.1, a general challenge of using ppp-values is their

non-uniform distribution under H
0

. This means that ppp-values may be somewhat

less likely to reject H
0

than classical p-values. Thus, there will be fewer false positives,

but also somewhat less statistical power, i.e., ppp-values may be somewhat less able

to detect a subpppulation of X-ray dark sources. In this section, we explore the

distribution of the ppp-values via simulation. In addition, we examine the statistical

power of our hypothesis testing procedure using the 100 ⇥ 300 replicate datasets

described in Section 2.2.2.

Figure 2.6 shows histograms of the ppp-values and a Q-Q plot that compares

the uniform distribution with that of the ppp-values under H
0

. Figure 2.6 fixes

(µ⇤, ⇠⇤, ⇡d) at (15, 30, 0) and varies ✓⇤ = 100, 500, and 1000, from left to right. Since

we fix ⇡d = 0, these simulations all correspond to H
0

. In this case, the distribution

of the ppp-values under H
0

is quite close to the uniform distribution when ppp 6 0.5,
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Figure 2.6: (Top row) histograms of the ppp-values under H
0

, with the simulation pa-
rameters being ⇠⇤ = 30,⇡d = 0, µ⇤ = 15, and ✓⇤ = 100, 500, and 1000 (from left to right).
(Bottom row) the Q-Q plots comparing the uniform distribution with that of the ppp-values
under H

0

.

implying the probability of false positive is approximately equal to the significance

level ↵ for any reasonable value of ↵.

We apply our hypothesis testing procedure to each of the 100⇥ 300 datasets used

in Section 2.2.2, including those simulated under H
1

with ⇡d > 0. For each simulation

configuration, we compute the ppp-value, denoted as ppp(j), for each of the m = 300

replicate datasets, and estimate the probability of rejecting H
0

(i.e., rejection rate) by

the proportion of the {ppp(j); j = 1, · · · ,m} that are less than the significance level,
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Table 2.4: The rejection rates of our hypothesis testing procedure.

⇠⇤ ✓⇤
⇡
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

15

50 4.7% 100% 100% 100% 100% 100% 100% 100% 100% 100%

100 5.0% 98.7% 100% 100% 100% 100% 100% 100% 100% 96.7%

300 4.7% 41.3% 79.0% 90.0% 92.0% 95.0% 94.7% 89.0% 76.0% 45.3%

500 4.7% 21.7% 40.7% 48.0% 58.7% 63.0% 60.7% 58.7% 46.3% 26.7%

1000 6.7% 9.0% 17.3% 21.0% 23.3% 29.7% 22.7% 19.0% 15.0% 10.3%

30

50 4.3% 99.3% 100% 100% 100% 100% 100% 100% 100% 96.0%

100 4.0% 83.7% 98.7% 100% 100% 100% 100% 99.7% 99.0% 81.0%

300 5.0% 21.0% 52.7% 70.0% 83.3% 81.7% 79.7% 75.7% 55.0% 36.3%

500 5.3% 15.3% 31.7% 38.0% 43.0% 48.7% 47.0% 44.3% 27.3% 18.3%

1000 4.7% 9.3% 11.7% 19.0% 20.7% 21.7% 21.7% 18.3% 15.7% 11.3%

↵, that is,

rejection rate ⇡ 1

m

m
X

j=1

I
�

ppp(j) < ↵
�

.

The statistical power of the test is the probability that it rejects H
0

when H
1

is true.

We expect the power to increase with ⇡d. The rejection rate represents the power of

the test when the data are generated under H
1

, and the probability of false positive

under H
0

. Ideally, the power is large and the probability of false positive equals the

significance level.

Table 2.4 shows the rejection rates at ↵ = 5% significance level for data generated

under the 100 simulation configurations. The rejection rates corresponding to ⇡d = 0,

i.e., the probabilities of false positive, are all around 5%. All other columns in Table

2.4 show the powers of the test. Other parameters being constant, we find (i) larger

⇠⇤ or larger source regions lead to lower power, because the quality of the data (i.e.,

signal-to-noise ratio) is degraded, and (ii) the power decreases with ✓⇤, because with

large ✓⇤ there are more dim sources in the data, making the null and the alternative
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models less distinguishable.

The impact of ⇡d on the power is more complicated. For small ⇡d, the power

increases as ⇡d increases, because there are more source regions with small counts

that can not be explained by the null model. However, for large ⇡d, increasing ⇡d

leads to power loss. This can be explained by Figure 2.3.3, which shows histograms

of the posterior mode estimates of µ⇤ (left) and ✓⇤ (right) fit under the null model,

based on each of the 3 ⇥ 300 datasets simulated with ⇠⇤ = 30, µ⇤ = 15, ✓⇤ = 300,

and ⇡d = 0.1 (black lines), 0.5 (red lines) and 0.9 (green lines). As ⇡d increases, the

posterior mode estimates of µ⇤ and ✓⇤ fit under the null model move towards zero

in order to accommodate the large proportion of dark sources. That is, when there

are many dark sources, when H
0

is fit, the distribution of the luminous sources shifts

to accommodate them. Thus, for large ⇡d, as ⇡d increases, data simulated from the

fitted null model and data from the true model become less distinguishable, leading

to the decrease in power. It is important to note that the impact of ⇡d on the power

of the test is sensitive to the choice of the parameter distribution used for the non-

dark source intensities; in other words, if we were to model the distribution of non-

dark source intensities with a di↵erent distribution (e.g., log-normal distribution), the

influence of ⇡d on the power may be di↵erent. In addition, we assume no overlapping

sources in the simulation, and thus use all the data in computing the likelihood

functions L
0

and L
1

in (2.22). In the presence of densely overlapping sources, the

power is expected to be lower due to the reduction of e↵ective sample size.
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Figure 2.7: Histograms of the posterior mode estimates of µ⇤ (left) and ✓⇤ (right) fit under
H

0

(no dark sources). The 3⇥ 300 datasets are generated from the alternative model with
⇠⇤ = 30, µ⇤ = 15, ✓⇤ = 300, and ⇡d = 0.1 (black lines), 0.5 (red lines) and 0.9 (green lines).
The vertical dashed lines mark the true values of µ⇤ and ✓⇤. When the proportion of dark
sources grows, the distribution under H

0

for the luminous sources adjusts to accommodate
the dark sources.

2.4 Application

We apply the model and the hypothesis testing procedure to two subsets of the

Chandra/HRC-I observation of the open cluster NGC 2516, with exposure time of

T = 4.9 ⇥ 104 seconds. The first subset of data consist of the 649 sources within

6 arcmin from the center of the field (CF), where the background rate is assumed

constant. The average source regions is⇠ 1400 pixels, and the pure background region

is A
1

= 2.2 ⇥ 107 pixels. Out of the 649 source regions, 525 have no overlap with

other source regions. In addition to the 649 sources, the second dataset also includes

the 520 sources between 6 and 8 arcmin from the CF. For ease of reference, we call

the region within 6 arcmin and between 6-8 arcmin from the CF region 1 and region

2, respectively. Region 2 is also assumed to have a spatially uniform background,
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Figure 2.8: Histograms of the posterior distributions of µ (left), ✓ (middle) and ⇡d (right)
given the first dataset. The red solid lines are the posterior mode estimators and the blue
dash lines show the lower and upper bounds of the 95% HPD intervals of the parameters.

but with a background rate di↵erent from region 1. In region 2, the average source

regions is around 6900 pixels, the background region is A
2

= 1.4⇥107 pixels, and 227

out of the 520 source regions do not overlap with other source regions.

For the first dataset, the posterior distributions of µ, ✓ and ⇡d are shown in Figure

2.8, with the posterior mode estimates and the 95% HPD intervals of these parameters

marked by the solid and dashed vertical lines, respectively. The mode of the posterior

distribution of ⇡d is 0.71, and its 95% HPD interval is (0.23, 0.81), suggesting that

a large proportion of sources in the optical catalog are X-ray dark. While the large

spread in the posterior distribution of ⇡d allows it to be zero, the more likely scenario

is that there does exist a separate X-ray dim/dark population among the X-ray bright

stars.

Figure 2.4 (left) shows the population distribution of source intensities on the

scale of natural logarithm. Each gray line is a zero-inflated gamma distribution with

the parameters, (µ, ✓, ⇡d), drawn from their joint posterior distribution. The red

line corresponds to the zero-inflated gamma distribution with (µ, ✓, ⇡d) set to their
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Figure 2.9: (Left) The fitted distribution of source intensities on a logarithmic scale (base
e). The red line is the zero-inflated gamma distribution with the parameters set to their
posterior mode estimates. The blue line is the fitted gamma distribution for the source
intensities under the null model. Each gray line is a zero-inflated gamma distribution
with parameters, (µ, ✓,⇡d), drawn from their joint posterior distribution. (Right) The

distribution of the test statistics {T (l)
rep

; l = 1, · · · ,M} simulated from the null model fit to
the data within 6-arcmin from the center of the field.

posterior mode estimates. For comparison, we plot the gamma distribution (blue

line) with the mean and variance parameters being their posterior mode estimates fit

under the null model. The blue and red lines are quite similar, and they both imply

a large proportion of dim/dark sources in the population. We apply the hypothesis

testing procedure described in Section 2.3 to the data, and obtain the distribution

of the simulated test statistic, T (l)
rep

= log(LR(D(l)
rep

)), for l = 1, · · · ,M , as shown in

Figure 2.4 (right). The observed test statistic T
obs

= log(LR(D)) = 1.181 and the

ppp-value = 8.9%.

When we include data in region 2, the posterior distributions of the parameters

changes in two ways. First, with the combined dataset, the 95% HPD interval of ⇡d

is (0.12, 0.78), which is wider than that based on dataset 1. The reason is that while
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in region 1, the average of source regions is 1400 pixels, the average increases to 3847

pixels in the combined dataset. As discussed in Section 2.2.2, holding other factors

constant, the uncertainty associated with the estimates of ⇡d increases as the source

regions (or ⇠⇤ in the simulation) increase. Even though dataset 2 consists of more

data, the impact of increasing source regions overwhelms the impact of increasing

sample size, and the information from data in region 1 is diluted by the noisy data in

region 2, resulting in a wider interval for ⇡d. The point estimates and the bounds of

the 95% HPD interval estimates of the parameters µ, ✓, and ⇡d also decrease slightly

with the added data in region 2. As the posterior distribution of ⇡d shifts toward

zero, more sources whose observed counts are small relative to the background are

accommodated as dim (small but positive source intensities) rather than dark sources.

This leads to a decrease in the estimates of both the mean and the variance of the

non-zero source intensities. For dataset 2, the observed test statistic is 0.363 and

the estimated ppp-value is 23.2%. So there is insu�cient evidence to conclude the

existence of dark sources.

2.5 Summary

We have developed a Bayesian hierarchical model to investigate the population

distribution of source intensities. The main innovations are the introduction of X-ray

dark sources as a subpopulation and modeling the distribution of source intensities

as a zero-inflated gamma distribution. In addition, we extend the model to allow for

overlapping sources and piecewise homogeneous background. The simulation shows

under a variety of simulation configurations, the model produces point estimates with
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reasonably small errors and interval estimates with good coverage rates.

We have also proposed a Bayesian hypothesis testing procedure based on our

model. We selected the likelihood ratio as the test statistic and provided a detailed

description of how a posterior predictive p-value can be computed. The simulation

shows the probability of false positive of the test is approximately equal to the pre-

specified significance level. We have also examined the statistical power of the test via

simulation under various configurations, and analyzed the impact of di↵erent factors

on the power.

Finally, we apply the Bayesian model and the hypothesis testing procedure to

two subsets of the Chandra/HRC-I observation of the open cluster, NGC 2516. The

first subset are data within 6 arcmin from the center of the field, where the source

regions are relatively small and most of the source regions do not overlap. The second

subset includes all the data within 8 arcmin from the center of the field. The added

sources are further from the center of the field, and have larger regions and a greater

proportion of overlapping sources. For these two datasets, the posterior distribution

of ⇡d suggests a large proportion of sources could be X-ray dark, although the result

comes with large uncertainty.
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Chapter 3

Large-Sample Hypothesis Testing

with Multiply-Imputed Data

3.1 Introduction

Missing data is a common occurrence in research studies in healthcare science,

sociology, political science, etc. For example, the AIDS surveillance data of the US

Centers for Disease Control (Tu et al., 1993; Barnard and Meng, 1999) su↵er from

severe incompleteness, including a non-negligible fraction of unreported deaths and

censored time of the reported deaths. The New York City School Choice Scholarship

Program (Barnard et al., 2002, 2003; Krueger and Zhu, 2004), although carefully

designed and implemented, is pervaded by missing data, e.g., family background,

children’s pre-test and post-test scores.

In the frequentist framework, methods such as the EM algorithm are e↵ective

in handling missing data; in Bayesian analysis, missing data are treated as random
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variables, and the posterior distribution given the observed data is used to make infer-

ences. Unfortunately, these techniques are typically di�cult to implement, especially

in large-sample survey data with complex structures.

Imputation handles missing data by replacing them with imputed values and thus

allows the standard complete-data analysis to be applied to the completed data. In

addition, for public-use data, data producers can use their expert knowledge to make

informed and sensible imputation. Inconsistency in the analysis among users can be

alleviated by sharing the same imputed data to all users. The downside of single

imputation, however, is that we ignore the uncertainty associated with the imputed

data, and thus underestimate the variance of the estimates. The numerical example

in Li et al. (1991b) illustrates that the actual levels of a large-sample Wald test based

on a single imputation are much higher than the nominal levels.

Multiple imputation, proposed by Rubin (1978, 1987), rectifies the problem by

imputing the missing data several times. The standard complete-data analysis is

then applied to each of the completed datasets, and the resulting inferences are then

combined via some simple combining rules to form the final repeated-imputation infer-

ence. Multiple imputation inherits the advantages of simple imputation, meanwhile,

the final combined inference properly accounts for the uncertainty due to missing

data. Theoretical and applied justification for the use of multiple imputation in-

cludes Rubin and Schenker (1986), Rubin (1987), Schenker and Welsh (1988), Rubin

and Schenker (1991), and Schenker et al. (1993).

In this chapter, we review, compare, and modify some current large-sample hy-

pothesis testing procedures based on multiply-imputed data. We first present the no-
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tations and background that are necessary for understanding the procedures, which

are classified according to (i) what is available to form the final inference, e.g., the

complete-data moments estimates (point and variance-covariance estimates) or the

test statistics, and (ii) whether the derivation is based on the assumption of equal

fraction of missing information. In Section 3.3, we describe and compare procedures

proposed by Li et al. (1991b) and Xie (2011) based on the moment estimates. We also

provide a modification to a procedure by Xie (2011) to make it behave well under

all circumstances. In Section 3.4, we discuss and compare procedures by Li et al.

(1991a), Meng and Rubin (1992), and Xie (2011), when the moment estimates are

not available.

3.2 Notations and Background

3.2.1 Hypothesis Testing without Imputation

LetX = {x
1

, · · · , xn} be the complete data with the density f(X| ), parametrized

by a vector of parameters  2 Rh. We are interested in testing the null hypothesis,

H
0

: ✓ = ✓
0

, against the alternative hypothesis, Ha : ✓ 6= ✓
0

, where ✓ = ✓( ) 2 Rk is

a vector function of the model parameters  .

Let b✓ = b✓(X) be the maximum likelihood estimate (MLE) of ✓, and U = U(X) be

the associated variance-covariance matrix. When n is large, asymptotically we have

U�1/2(b✓ � ✓t)
�

�✓ = ✓t ⇠ N(0, Ik),

where ✓t is the true value of ✓. With lower-order variability, U is approximately equal
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to the true variance-covariance matrix, Ut = Var(b✓|✓ = ✓t), that is, (U |✓ = ✓t) ⇡ Ut.

Under the null hypothesis, the test statistic

D = (b✓ � ✓
0

)tU�1(b✓ � ✓
0

)/k,

which is proportional to the Wald �2 statistic, is asymptotically distributed as �2

k/k.

So the p-value is computed as P = Pr(�2

k/k > D).

With the presence of missing data, however, the analysis becomes more com-

plicated. We denote Xobs and Xmis as the observed and missing data, and X =

(Xobs, Xmis) as the complete data. Based on the observed-data likelihood, we can ob-

tain the MLE of ✓, denoted as b✓obs = b✓obs(Xobs), and the associated variance-covariance

matrix, T = T (Xobs). Asymptotically,

T�1(b✓obs � ✓t)
�

�✓ = ✓t ⇠ N(0, Ik), (3.1)

and (T |✓ = ✓t) ⇡ Tt, where Tt = Var(b✓obs|✓ = ✓t). The asymptotically optimal test is

based on the observed Wald statistic, i.e.,

Dobs = (b✓obs � ✓
0

)tT�1(b✓obs � ✓
0

)/k,

and the p-value is Pobs = Pr(�2

k/k > Dobs).

Note that the consequence of missing data is the loss of information. More specif-

ically, information from the observed and the complete data can be quantified by T�1

t

and U�1

t , respectively. Thus, the loss of information due to missing data is U�1

t �T�1

t ,
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and the increase in variance is Bt = Tt � Ut. The ratios of missing to observed in-

formation can be represented by the eigenvalues, denoted as � = (�
1

, · · · ,�k), of the

matrix (U�1

t � T�1

t )Tt = U�1

t Bt. So the vector of the ratios of complete to observed

information is ⇠ = (⇠
1

, · · · , ⇠k), where ⇠i = 1 + �i.

3.2.2 Multiple Imputation

Although there are methods such as the EM algorithm to compute the observed

estimates, i.e., b✓obs and T , they are often complicated to implement. Multiple impu-

tation is an easy-to-implement and yet principled method to handle missing data. It

involves two separate steps: imputation and analysis. In the imputation step, missing

data are generated m times, resulting in m completed datasets

X (l)
* = (Xobs, X

(l)
mis), for l = 1, · · · ,m.

In the analysis step, the complete-data procedure is applied to each of the m com-

pleted datasets, producing m point estimates, b✓*l = b✓(X (l)
* ), and variance-covariance

estimates, U*l = U(X (l)
* ). We denote S

m

as the set of moment estimates, i.e.,

S
m

= {(b✓*l, U*l); l = 1, · · · ,m}.

These estimates are combined to produce the multiple imputation point estimate

✓̄m =
1

m

m
X

l=1

b✓*l,
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with the associated variance-covariance estimate

Tm = Ūm + (1 +m�1)Bm,

where Ūm quantifies the within-imputation variance,

Ūm =
1

m

m
X

l=1

U*l,

and Bm measures the between-imputation variance,

Bm =
1

m� 1

m
X

l=1

(b✓*l � ✓̄m)(b✓*l � ✓̄m)
t.

The justification of the variance estimate, Tm, is the following. Assuming the

imputation is conducted properly (Rubin, 1987, Chapter 4), for example, from the

posterior predictive distribution, P (Xmis|Xobs), then,

b✓*l|Xobs, ✓ = ✓t
iid⇠ N (b✓obs, Bt), (3.2)

(m� 1)B�1/2
t BmB

�1/2
t |Xobs, ✓ = ✓t ⇠ Wishartk(Ik,m� 1). (3.3)

By (3.2) and the distribution of b✓obs in (3.1), we have

✓̄m|✓ = ✓t ⇠ N (✓t, Ut + (1 +m�1)Bt). (3.4)

Replacing (Ut, Bt) by (Ūm, Bm), we obtain Tm as an estimate of the variance of ✓̄m.
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3.2.3 Hypothesis Testing with Multiply-Imputed Data

If we have the luxury of obtaining a large number of completed datasets, Bm

would be an unbiased and accurate estimate of Bt, and Tm an accurate estimate of

Var(✓̄m|✓ = ✓t). Then, we can compute the p-value by referring the test statistic,

e

eDm = (✓̄m � ✓
0

)tT�1

m (✓̄m � ✓
0

)/k, (3.5)

to the distribution, �2

k/k. Unfortunately, m is typically 3 ⇠ 10, so there are not

enough degrees of freedom to estimate the k⇥k matrix, Bt, and (3.5) hardly produces

satisfactory results. Instead, a commonly used test statistic in practice is

Dm =
(✓̄m � ✓

0

)tŪ�1

m (✓̄m � ✓
0

)

k(1 + r̄m)
, (3.6)

where r̄m = (1 + m�1)tr(BmŪ�1

m )/k. The rationale for Dm is the following. With

the assumption of equal fraction of missing information (EFMI), i.e., Ut = �̄Bt, the

variance of ✓̄m is (1 + �̄m)Ut, where �̄m ⌘ (1 + m�1)�̄ can be estimated by r̄m with

k(m � 1) degrees of freedom. Then (3.6) is obtained by replacing Tm in (3.5) with

(1 + r̄m)Ūm.

The exact distribution ofDm under the null hypothesis is intractable, but it can be

well approximated by an F distribution. The reference distribution in Li et al. (1991b)

is derived under the assumption of EFMI, and the actual levels of the resulting test are

around the nominal levels when the assumption is not severely violated. Xie (2011)

proposes another F distribution to approximate the distribution of Dm without such

assumption. The resulting levels are closer than those from Li et al. (1991b) to the
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nominal levels when both k(m�1) and the coe�cient of variation of ⇠, defined below,

are large,

C2

⇠ =
1

k

k
X

i=1

✓

⇠i � ⇠̄

⇠̄

◆

2

=
1

k

k
X

i=1

✓

�i � �̄

1 + �̄

◆

2

,

where ⇠̄ and �̄ are the averages of ⇠ and �, respectively. In section 3.3, we describe the

two F distributions in Li et al. (1991b) and Xie (2011), and propose a modification

to the procedure in Xie (2011) by accounting for the additional variability due to not

knowing �. The modified procedure does not assume EFMI and outperforms both

methods, in terms of the actual level, in most situations.

When the dimension of the vector of parameters is large, the complete-data pro-

cedure may not provide the k ⇥ k matrix U*l, but rather the Wald �2 statistic,

d*l = (b✓*l � ✓
0

)tU�1

*l (b✓*l � ✓
0

). (3.7)

Let S
d

= {d*l; l = 1, · · · ,m} be the set of Wald �2 statistic from each of the m

complete-data inferences. Without S
m

, the complication in forming a final repeated-

imputation inference is that r̄m can not be computed with S
m

, and thus Dm is un-

known. Currently, there are three reasonably behaved methods to estimate r̄m. Li

et al. (1991a) proposed estimating r̄m based entirely on S
d

. Xie (2011) developed an

estimator by using an additional Wald �2 statistic, denoted as dfull, from the complete-

data inference applied to the combined data, Xfull = (X*1, · · · , X*m). Meng and Rubin

(1992) exploited the asymptotic equivalence between the Wald �2 statistic and the

log likelihood ratio, and obtained a procedure based on (i) the MLE of  under both

the null and alternative hypotheses, and (ii) the computer code for calculating the
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Table 3.1: Classification of large sample hypothesis testing procedures.

Available Information Assuming Bt = �̄Ut Not Assuming Bt = �̄Ut

S
m

Li et al. (1991b) Xie (2011) and its modification

No
S
d

Li et al. (1991a)

S
d

, dfull Xie (2011)

S
m

MLE, LLR Meng and Rubin (1992)

complete-data log likelihood ratio. The resulting test statistic in each of the three

procedures is then referred to an F distribution, derived under the assumption of

EFMI. We describe and compare these procedures in Section 3.4.

Table 3.1 classifies the above-mentioned large-sample hypothesis testing proce-

dures according to what information is available and whether the assumption of EFMI

holds. When S
m

is not available, there are currently no satisfactory methods without

assuming EFMI.

3.3 Hypothesis Testing Based on Sm

With S
m

, the multiple-imputation test statistic Dm in (3.6) can be computed.

Approximating the distribution of Dm under H
0

by F distributions with di↵erent

degrees of freedom results in a set of hypothesis testing procedures.

3.3.1 Sampling Distribution of Dm under H0

Since Dm is invariant under nonsingular linear transformation, without loss of

generality, we set ✓
0

= 0, Ut = Ik and Bt = diag(�
1

, · · · ,�k). With proper imputation,
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U*l ⇡ Ut, so we also assume Ūm = Ik. The test statistic is then simplified as

Dm =

Pk
i=1

✓̄2m,i

k(1 + r̄m)
, (3.8)

where

r̄m =

✓

1 +
1

m

◆

Pk
i=1

Pm
l=1

(✓*l,i � ✓̄m,i)2

k(m� 1)
,

and the subscript i represents the i-th component of the vector. From (3.4), under

the null hypothesis, ✓̄m,i|✓ = 0
ind⇠ N (0, 1 + �i), where �i = (1 + m�1)�i. So the

numerator in (3.8) is distributed as a linear combination of k independent �2

1

random

variables. In addition,
Pm

l=1

(✓*l,i � ✓̄m,i)2|✓ = ✓t
ind⇠ �i�2

m�1

, so r̄m follows a linear

combination of k independent �2

m�1

random variables. Because of the independence

of ✓̄m and {✓*l � ✓̄m; l = 1, · · · ,m}, the exact distribution of Dm under H
0

is

Dm|✓ = ✓
0

⇠
Pk

i=1

(1 + �i)�2

1,i

Pk
j=1

⇣

1 + �i
�2
m�1,j

m�1

⌘ , Ym, (3.9)

where �2

d,i are independent �
2

d random variables for i 2 {1, · · · , k} and d 2 {1,m�1}.

The distribution of Ym depends on the unknown parameters, � = {�
1

, · · · , �k},

so an approximated and known distribution is needed to conduct the hypothesis test.

Since each �i can only be estimated with m � 1 degrees of freedom, the procedure

obtained by replacing �i in Ym with its estimate typically has unsatisfactory results.

In the following sections, we describe the procedures proposed by Li et al. (1991b) and

Xie (2011), and discuss a modification to the estimated distribution in Xie (2011). The

levels and powers of these procedures are compared theoretically and in simulation.
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3.3.2 Approximating Ym Assuming Bt = �̄Ut: Li et al. (1991b)

With the assumption of EFMI, every �i equals to their average, �̄m, so Ym sim-

plifies to

YLRR

m =
�2

k/k

(1 + �̄m�2

v/v)/(1 + �̄m)
,

where v = k(m � 1). The distribution of YLRR
m can be further approximated by an

F distribution with degrees of freedom k and w, where so far the best choice of w is

proposed by Li et al. (1991b),

w(�̄m) =

8

>

>

>

<

>

>

>

:

4 + (v � 4)(1 + (1� 2/v)/�̄m)2, if v > 4,

(m� 1)(k + 1)(1 + 1/�̄m)2/2, otherwise,

(3.10)

which is obtained by matching the mean and variance of YLRR
m with a scaled Fk,w

distribution. Then, the distribution Fk, bwm , with bwm = w(r̄m), is used as the reference

distribution of Dm in computing the p-value, PLRR = Pr(Fk, bwm > Dm).

3.3.3 Approximating Ym without Assuming Bt = �̄Ut: Xie

(2011) with Modification

The approximation of Ym in Xie (2011) is achieved by ignoring the variability in

the denominator of Ym, or equivalently, assuming m ! 1. Then Ym is simplified to

be a weighted sum of independent �2

1

random variables,

YX

m =
1

k

k
X

i=1

1 + �i
1 + �̄m

�2

1,i. (3.11)
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Xie (2011) proposed to approximate YX
m further by a gamma random variable using

method of moments, i.e., YX
m

·⇠ Gamma(⇢m/2, ⇢m/2) ⇠ �2

⇢m/⇢m ⇠ F⇢m,1, where

⇢m = k(1 + C⇠,m)
�1, (3.12)

with

C⇠,m =
1

k

k
X

i=1

✓

�i � �̄m
1 + �̄m

◆

2

! C⇠, as m ! 1. (3.13)

Compared with the distribution, Fk,w(�̄m)

, in Li et al. (1991b), we notice that (i) for

the numerator degrees of freedom, ⇢m 6 k (the equality holds when Bt = �̄Ut), and

(ii) for the denominator degrees of freedom, w(�̄m) < 1.

How closely YX
m approximates Ym can be examined by their ratio, i.e.,

Z =
YX

m

Ym

=

Pk
j=1

(1 + �i
�2
m�1,j

m�1

)

k(1 + �̄m)
.

The mean of Z is 1, and its variance is 2/�m, where

�m = k(m� 1)

"

✓

�̄m
1 + �̄m

◆

2

+ C⇠,m

#�1

. (3.14)

When the variance of Z is large, YX
m ignores too much variability in Ym. To fix this

problem, we propose approximating Z by the distribution �2

�m
/�m, which matches

the first two moments of Z.

In practice, C⇠,m, ⇢m, and �m can be estimated by replacing �̄m and �2m =

Pm
i=1

�2i /m with their estimates r̄m and r2m =
Pm

i=1

r2i /m, in (3.13), (3.12), and (3.14).

We use bC⇠,m, b⇢m, and b�m to denote these estimates. According to simulation, we find
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when b�m 6 20(m � 1) or k 6 4, using Fb⇢m,b�m as the reference distribution generally

leads to levels closer to the nominal levels than using Fb⇢m,1. So we propose referring

Dm to the distribution Fb⇢m,b⌘m , where

b⌘m =

8

>

>

>

<

>

>

>

:

b�m, if b�m 6 20(m� 1) or k 6 4,

+1, otherwise,

(3.15)

and the corresponding p-value is PX,⌘ = Pr(Fb⇢m,b⌘m > Dm).

3.3.4 Comparison

The procedures we described above use the same test statistic, Dm, which is then

referred to an F distribution to compute the p-value. In this section, we compare

the levels and powers of these procedures when m ! 1 and when m is finite. For

ease of reference, we give names to the few tests we compare in this section and

list the corresponding test statistics and the reference distributions in Table 3.2. In

addition, we refer Tobs to the observed test with the test statistic Dobs referred to the

distribution �2

k/k.

3.3.4.1 Levels Comparison as m ! 1

Let D1 be the limit of Dm as m ! 1, then, D1 = k�1

Pk
i=1

b✓2obs,i/⇠̄. The

distribution of D1 under H
0

is Y1, the limit of Ym as m ! 1, i.e.,

Ym ! Y1 , 1

k

k
X

i=1

⇠i
⇠̄
�2

1,i.
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Table 3.2: Summary of Tests For Comparison.

Finite m m ! 1
Test name Stat Exact ref. Test ref. Test name Stat Exact ref. Test ref.

T m
LRR

Dm Ym

Fk, bwm T 1
LRR

D1 Y1

�2

k/k
T m

X Fb⇢m,1
T 1

X
�2

⇢1/⇢1T m
X,� Fb⇢m,b�m

T m
X,⌘ Fb⇢m,b⌘m

T m
Exact Ym T 1

Exact Y1

Ref. is short for reference distribution; Test ref. is the distribution used in the test as the reference;
Exact ref. is the exact distribution of the test statistic under H0.

For the approximated reference distributions, as m ! 1,

Fk, bwm ! Fk,1 ⇠ �2

k/k, (3.16)

Fb⇢m,? ! F⇢1,1 ⇠ �2

⇢1/⇢1, (3.17)

where ⇢1 = k(1 + C2

⇠ )
�1 6 k.

The actual level of an ↵-nominal-level test, T , based on D1 can be computed by

Pr(Y1 > QT (↵)), where QT (↵) is the 1 � ↵ percentile of the reference distribution

used in test T . Figure 3.1 shows the actual levels of the 5%-nominal-level tests, T 1
LRR

(black lines) and T 1
X (red lines), from a full factorial experiment with three factors,

1. The dimension of ✓: k = 5 (solid lines), and 50 (dashed lines);

2. The average ratios of complete to observed information: ⇠̄ = 1.2, 1.5, and 2;

3. The coe�cient of variation of ⇠ = (⇠
1

, · · · , ⇠k): C⇠ = 0, 0.05, 0.10, · · · , 0.50.

For each (k, ⇠̄, C⇠), we first generate the vector ⇠ with the pre-specified mean and

coe�cient of variation. Then, we simulate 1 million independent draws from Y1, and

estimate the actual level of each test by the proportion of the sample greater than the
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Figure 3.1: Actual levels of the 5%-nominal-level tests, with the test statistic D1 referred
to the distributions �2

k/k (black lines) and �2

⇢1/⇢1 (red lines), under di↵erent settings.
The solid and dashed lines correspond to the levels when k = 5 and 50, respectively. The
nominal level, 5%, is marked by the gray lines.

1 � ↵ percentile of the corresponding reference distribution. Note that when k = 5

and ⇠̄ = 1.2, the largest value of C⇠ is 0.33, thus in Figure 3.1 (left), the solid lines

are plotted up to C⇠ = 0.33.

When the variation of ⇠ is zero, �2

⇢1/⇢1 ⇠ �2

k/k is the exact distribution of D1

under H
0

, so the actual levels of T 1
LRR and T 1

X equal to the nominal levels. When

C⇠ > 0, the first two central moments of �2

⇢1/⇢1 match exactly with those of Y1, so

the red lines in Figure 3.1 are close to the nominal level, 5%. The distribution �2

k/k,

however, only matches with Y1 in expectation, and its variance is smaller than that

of Y1, more specifically,

Var (Y1) =
�

1 + C2

⇠

�

Var
�

�2

k/k
�

.

As a result, the actual levels of test T 1
LRR are larger than the nominal levels, and they

increase as C⇠ increases, as the black lines in Figure 3.1 show.
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3.3.4.2 Powers Comparison as m ! 1

Under the alternative hypothesis that ✓ = ✓t, the exact distribution of D1 is

Yt,1 ⇠ 1

k⇠̄

k
X

i=1

⇣

✓t,i +
p

⇠iZi

⌘

2

⇠ 1

k

k
X

i=1

⇠i
⇠̄
�2

1,i(ai),

where Zi
iid⇠ N (0, 1), and {�2

1,i(ai); i = 1, · · · , k} are independent noncentral �2 ran-

dom variables with degrees of freedom 1 and noncentrality parameters ai = ✓2t,i/⇠i.

The power of an ↵-nominal-level test, T , based on D1, is then Pr(Yt,1 > QT (↵)).

For comparison, we also investigate the power of test Tobs based on Dobs. Given ✓ = ✓t,

Dobs follows the scaled non-central �2 distribution, �2

k(⌫)/k, where ⌫ =
Pk

i=1

✓2t,i/⇠i.

So the power of the ↵-level test is Pr(�2

k(⌫)/k > Qk(↵)), where Qk(↵) is the 1 � ↵

percentile of �2

k/k.

In Figure 3.2, we show the powers of four 5%-nominal-level tests: (i) T 1
LRR (black

solid lines), (ii) T 1
X (red solid lines), (iii) T 1

Exact (blue dashed lines), and (iv) Tobs (green

dashed lines). We fix � ,Pk
i=1

✓2t,i/k = 0.5, and simulate 30 replicates of (⇠, ✓t) for

each (k, ⇠̄, C⇠). The power of each test is then estimated by the proportion of the 1

million draws from the distribution of the test statistic, specified by ⇠ and ✓t, that

are greater than the 95% percentile of the reference distribution. The plotted value

for each (k, ⇠̄, C⇠) is the average of the corresponding 30 estimated powers.

When C⇠ = 0, the four tests are equivalent, so the powers are the same. When

C⇠ > 0, we find (i) compared with test Tobs, tests based on D1 su↵ers from power

loss due to the ignorance of the variability in ⇠, and the loss is more severe for larger

C⇠; (ii) tests T 1
X and T 1

Exact have almost identical powers, because their reference
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Figure 3.2: Powers of four 5%-nominal-level tests: (i) (green dashed lines) test Tobs, with
the test statistic Dobs referred to �2

k/k, (ii) (blue dashed lines) test T 1
Exact, with the test

statistic D1 referred to Y1, (iii) (black solid lines) test T 1
LRR, with D1 referred to �2

k/k,
and (iv) (red solid lines) test T 1

X , with D1 referred to �2

⇢1/⇢1. The top and bottom rows

show the results when k = 5 and 50, respectively.

distributions, �2

⇢1/⇢1 and Y1, have the same mean and variance; and (iii) test T 1
LRR,

which has higher levels than tests T 1
X and T 1

Exact, also has larger powers, due to the

smaller variance of its reference distribution, �2

k/k.

In addition, other factors being fixed, the powers of tests T 1
X and T 1

Exact decrease

as C⇠ increases. This is because the null and alternative distributions of D1 are more

distinguishable when C⇠ is smaller. More specifically, for fixed � and ⇠̄, the di↵erence

in expectation between the distributions of D1 under Ha and H
0

is fixed, i.e.,

E(Yt,1)� E(Y1) = �/⇠̄;
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Figure 3.3: Distributions of the test statistis, D1, under the null (distribution Y1, black
lines) and the alternative (distribution Yt,1, red lines) hypotheses. Solid lines correspond
to results when C⇠ = 0, and dashed lines correspond to C⇠ = 0.5.

however, Var(Y1) increases more than Var(Yt,1) as C⇠ increases, see below,

Var(Yt,1) = Var(Y1)

 

1 +
1

(1 + C2

⇠ )k

k
X

i=1

✓2t,i⇠i

⇠̄2

!

.

This is also confirmed in Figure 3.3, which shows the distribution of Y1 (black lines)

becomes more spread out than Yt,1 (red lines) when C⇠ increases from zero (solid

lines) to 0.5 (dashed lines). On the contrary, the reference distribution of test T 1
LRR is

invariant to C⇠, whereas the distribution ofD1 underHa gets slightly more spread out

and separate from the reference distribution, so its power increases sightly with C⇠.

Figure 3.2 also shows the powers of all the tests decrease as ⇠̄ increases. This is because

of the reduction in expectation between the distributions of the test statistics under

H
0

and Ha. Finally, larger k corresponds to smaller variability in the test statistics

under both H
0

and Ha, and thus larger power.
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In summary, tests T 1
X and T 1

Exact have nearly identical behavior in terms of level

and power, because their reference distributions have the same first two moments.

Both the level and the power of test T 1
LRR are larger than T 1

Exact because its reference

distribution underestimates the variance of the test statistic under H
0

.

3.3.4.3 Levels Comparison with Finite m

In this section, we compare the actual levels of the tests based on Dm for finite m.

We again conduct a full factorial experiment with the three factors k 2 {2, 5, 10, 50},

⇠̄ 2 {1.2, 1.5, 2}, and C⇠ 2 {0, 0.05, · · · , 0.5}. The simulation is conducted according

to the following steps. For each (k, ⇠̄, C⇠),

1. Generate ⇠ that satisfies (i) each component is > 1, and (ii) the mean and

coe�cient of variance of ⇠ equal to the pre-specified values. Let �i = ⇠i � 1,

Bt = diag(�
1

, · · · ,�k), Tt = diag(⇠
1

, · · · , ⇠k), and Ut = Ik.

2. Generate ✓t so that � =
Pk

i=1

✓2t,i/k equals to the pre-specified value. In com-

puting the levels, � = 0 and ✓t = (0, · · · , 0).

3. Simulate b✓obs ⇠ N (✓t, Tt).

4. For l = 1, · · · ,m, simulate b✓*l
iid⇠ N (b✓obs, Bt).

5. Compute Dm as defined in (3.8), and the reference distribution, F , of the test.

6. Compute the p-value by Pr(F > Dm).

7. Repeat Step 3-6 for 106 times and compute the level or power of an ↵-nominal-

level test by the proportion of the computed p-values that are less than ↵.
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Figure 3.4: Actual levels of the 5%-nominal-level tests, T m
LRR (black lines), T m

X (red lines),
T m
X,� (orange lines), and T m

X,⌘ (cyan lines), with m = 3, under di↵erent settings. When k = 2,

the cyan and orange lines overlap; when k = 50, the cyan and red lines overlap.

Figure 3.4 shows the actual levels of the 5%-nominal-level tests, T m
LRR (black lines),

T m
X (red lines), T m

X,� (orange lines), and T m
X,⌘ (cyan lines), withm = 3. Figure 3.5 shows

the results when m increases to 10. Note, the maximum of C⇠ can be less than 0.5 for

some pairs of (k, ⇠̄), so there are no results with large C⇠ in these cases. The levels

of test T m
LRR, for m = 3, 10, and 1, are close to 5% when C⇠ < 0.1, but they become

substantially larger than 5% when C⇠ is large. Test T m
X produces levels considerably
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Figure 3.5: See the caption of Figure 3.4. Here m = 10.

larger than 5% when k is small, whereas test T m
X,� has levels much smaller than 5%

when k is large. The levels of test T m
X,⌘ are the closest to 5% among all the four tests

under nearly all the situations. In addition, the levels of tests T m
X,? (namely, T m

X , T m
X,�,

and T m
X,⌘) get much closer to 5% when m increases to 10.
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3.3.4.4 Powers Comparison with Finite m

Tests T m
LRR and T m

X,? use the same test statistic, Dm, but di↵erent approximations

to its distribution under H
0

. As a result, other factors being fixed, their actual levels

and powers are di↵erent. To make fair comparison of the powers of these tests, we

compare their receiver operating characteristic (ROC) curves. The horizontal axis of

a ROC curve is the actual level of an ↵-nominal-level test, for ↵ 2 (0, 1), and the

vertical axis is the corresponding power. A test with larger area under the curve is

considered to have better performance.

Figure 3.6 shows the ROC curves of several tests: (i) Tobs (green dashed lines),

(ii) T m
LRR and T m

X,? with m = 3 (black solid lines), (iii) T m
LRR and T m

X,? with m = 10

(red dotted lines), and (iv) T 1
LRR and T 1

X,?, which have nearly identical ROC curve as

test T 1
Exact (blue dot-dash lines). Other factors being fixed, the ROC curves of tests

T m
LRR and T m

X,? nearly overlap. This implies their performances are almost identical,

and thus tests with higher true positive rates also have higher false positive rates.

Figure 3.6 also shows increasing m from 3 to 10 results in a notable improvement of

the performances of tests T m
LRR and T m

X,?. We also find test Tobs is more superior than

tests based on Dm, when k, C⇠, and/or ⇠̄ are large, because more information in the

observed data is ignored by Dm.

To conclusion, among the four tests, T m
LRR, T m

X , T m
X,�, and T m

X,⌘, the levels of test

T m
X,⌘ are closest to the nominal levels under most situations. Even though test T m

LRR

appears to have higher powers than tests T m
X,?, it also has the highest levels. Their

ROC curves are nearly identical, so we recommend referring the test statistic Dm to

distribution Fb⇢m,b⌘m to compute the p-value. In addition, increasing m from 3 to 10
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Figure 3.6: ROC curves of tests (i) Tobs (green dashed lines), (ii) T m
LRR and T m

X,? with m = 3
(black solid lines), (iii) T m

LRR and T m
X,? with m = 10 (red dotted lines), (iv) T 1

LRR, T 1
X,?, and

T 1
Exact (blue dot-dash lines), and (v) T m

d

, the test based on S
d

by Li et al. (1991a) (see
Section 3.4.1), with m = 3 (gray solid lines) and m = 10 (gray dotted lines). The horizontal
coordinate of a ROC curve is the actual level of an ↵-nominal-leve test, with ↵ 2 (0, 1),
and the vertical coordinate is the corresponding powers. Note, when k = 5 and ⇠̄ = 1.2, the
largest possible value of C⇠ is 0.33, so we plot the ROC curves correspond to C⇠ = 0.33.

greatly improves both the actual levels and the ROC curves of these tests.

3.4 Hypothesis Testing without Sm

When S
m

is not available, the combined test statistic Dm can not be computed,

so we need to estimate Dm, as well as its corresponding sampling distribution. For-

tunately, Dm can be approximated by a function of r̄m and the average, denoted as
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d̄m, of the Wald �2 statistics defined in (3.7), that is,

Dm ⇡ eDm ,
✓

d̄m
k

� m� 1

m+ 1
r̄m

◆

/(1 + r̄m). (3.18)

So when d̄m is available, an estimate of r̄m corresponds to an estimate of Dm, and

thus a testing procedure.

3.4.1 Estimating r̄m Based on Sd: Li et al. (1991a)

So far, the best estimate of r̄m based purely on the set, S
d

, of the Ward �2 statistics

was proposed by Li et al. (1991a),

brd =

✓

1 +
1

m

◆

 

1

m� 1

m
X

l=1

⇣

p

d*l �
p
d
⌘

2

!

,

where
p
d is the mean of {pd*l; l = 1, · · · ,m}. Let bDd be the corresponding test

statistic with r̄m replaced by brd in (3.18). Li et al. (1991a) suggest using Fk, bwd
as the

reference distribution, where bwd = (m � 1)(1 + brd)2/k3/m. The factor k�3/m adjusts

the loss of degrees of freedom, because we only have the m scalar �2 statistics, rather

than the k(m � 1) degrees of freedom from the m pairs of k ⇥ 1 point estimate and

k ⇥ k variance-covariance estimate to compute r̄m. For ease of reference, we call this

test procedure T m
d

.

The gray lines in Figure 3.4 and 3.5 show the actual levels of 5%-nominal-level

test T m
d

where m = 3 and 10, respectively. It appears increasing m does not improve

the levels. As Li et al. (1991a) pointed out, the factor k�3/m was chosen to make

the test perform especially well when m = 3 in terms of the actual levels. Figure 3.6
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m = 3 m = 10
⇠̄ = 1.2 ⇠̄ = 2 ⇠̄ = 1.2 ⇠̄ = 2

k
=

5
0.
08

0.
12

0.
16

Td
m

Tobs

TX
m
η

TLRR
m

k
=

50
0.
1

0.
3

0.
5

0.
7

0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
C⇠ C⇠ C⇠ C⇠

Figure 3.7: Powers of 5%-nominal-level tests, (i) Tobs (green dashed lines), (ii) T m
X,⌘ (cyan

solid lines), (iii) T m
LRR (black solid lines), and (iv) T m

d

(gray solid lines) .

shows the ROC curves of the test when m = 3 (solid gray lines) and 10 (dashed gray

lines). When k is large, the test based purely on S
d

has much worse performance

than tests based on S
m

, because the set S
d

contains much less information than S
m

.

Figure 3.7 compares the powers of the 5%-nominal-level test T m
d

(gray solid lines)

with tests Tobs (green dashed lines), T m
X,⌘ (cyan solid lines), and T m

LRR (black solid lines).

Consistent with Figure 3.6, compared with procedures based on S
m

, we find (i) T m
d

is

associated with a severe loss of power, especially when k is large; and (ii) increasing

m significantly improves the power of T m
d

.
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3.4.2 Estimating r̄m Based on Likelihood Ratio: Meng and

Rubin (1992)

3.4.2.1 Procedure

Meng and Rubin (1992) proposed using a complete-data log likelihood ratio to

estimate r̄m. The procedure is based on the asymptotic equivalence of the Wald �2

statistic and the log likelihood ratio statistic, defined as

d0( b 0, b |X) , 2 log
f(X| b )
f(X| b 0)

, (3.19)

where b 0 = b 0(X) and b = b (X) are the estimates of the model parameters,  ,

that maximize the complete-data likelihood, f(X| ), under the null and alternative

hypotheses. The heuristic derivation of their equivalence is the following. Without

loss of generality, we can assume ✓ is a sub-vector of  , i.e.,  = (✓,#), and the

asymptotic variance-covariance matrix of the complete-data MLE, b = (b✓, b#), is

diag(U,W ). Then, asymptotically the complete-data likelihood is

f(X| ) / exp



�1

2
(b✓ � ✓)tU�1(b✓ � ✓)� 1

2
(b#� #)tW�1(b#� #)

�

. (3.20)

The MLE under the null hypothesis is b 0 = (0, b#). The equivalence of d0( b 0, b |X)

and b✓tU�1

b✓ is obtained by replacing b with (b✓, b#), and b 0 with (0, b#).

Let d(✓̄m, Ūm) = ✓̄tmŪ
�1

m ✓̄m, then Dm = d(✓̄m, Ūm)/k(1 + r̄m). Compare this ex-
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pression of Dm with (3.18), we can obtain an approximation of r̄m, i.e.,

r̄m ⇡ m+ 1

k(m� 1)

⇥

d̄m � d(✓̄m, Ūm)
⇤

. (3.21)

Meng and Rubin (1992) proposed estimating d(✓̄m, Ūm) using (i) the MLE of  based

on each of the completed dataset X*l under both the null and alternative hypotheses,

denoted as b 0
*l = b 0(X*l) and b *l = b (X*l), and (ii) the code for computing the

complete-data likelihood ratio, defined in (3.19), as a function of the point estimates.

Let  ̄0
m = m�1

Pm
l=1

b 0
*l and  ̄m = m�1

Pm
l=1

b *l be the averages of the m point

estimates under H
0

and Ha. Asymptotically,

d(✓̄m, Ūm) ⇡ d̄L , 1

m

m
X

l=1

d0( ̄0

m,  ̄m|X*l),

which can be obtained by replacing  ̄0
m in (3.19) with (0, #̄m), and  ̄m with (✓̄m, #̄m).

So we can estimate r̄m by

brL =
m+ 1

k(m� 1)
(d̄m � d̄L) ⇡ m+ 1

k(m� 1)
(d̄0m � d̄L),

where d̄0m , m�1

Pm
l=1

d0( b 0
*l, b *l|X*l) is asymptotically equal to d̄m. The resulting

test statistic is

DL =
d̄L

k(1 + brL)
, (3.22)

which is referred to distribution Fk,w(brL), where w(brL) is obtained by replacing �̄m in

(3.10) by brL. Note, since this procedure assumes the normality of the MLE in the

derivation, it is advised to use parameters, the MLE of which are close to a normal
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distribution.

3.4.2.2 A Practical Issue: Negative br
L

The procedure is especially useful when the dimension of  is large, and the log

likelihood ratio is easy to compute. Examples include testing a special structure

in a contingency table, testing the significance of certain explanatory variables in

generalized linear models, etc. When the sample size is large, and consequently the

MLE b and b✓ approximately follow normal distributions, the resulting test statistic

and the p-value are essentially the same as those in Li et al. (1991b). However,

although rare with a large sample, brL may be negative in some cases in practice.

Here, we discuss conditions for brL to be non-negative in exponential families. Let

T (X) be the su�cient statistic, and ⇣ = ⇣( ) be the natural vector of parameters.

Then the complete-data likelihood can be written as

f(X| ) = h(X) exp
�

⇣tT (X)� A( )
�

,

and the log likelihood ratio is

log
f(X| )
f(X| 0)

= [⇣( )� ⇣( 0)]tT (X)� [A( )� A( 0)].

If the MLE b is a linear function of T (X), without loss of generality, b (X) =

T (X), then d̄L and d̄0m can be written as functions of {( b 0
*l, b *l); l = 1, · · · ,m}. More
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specifically, d̄L = 2⇤( ̄0
m,  ̄m), and d̄0m = 2m�1

Pm
l=1

⇤( b 0
*l, b *l), where ⇤ is defined as

⇤( 0, ) = [⇣( )� ⇣( 0)]t � [A( )� A( 0)].

In addition to the linearity of T (X) and b , if ⇤ is a convex function, then we have

d̄0m =
2

m

m
X

l=1

⇤( b 0

*l, b *l) > 2⇤( ̄0

m,  ̄m) = d̄L,

and thus brL is guaranteed to be nonnegative.

The contingency table example in Meng and Rubin (1992) satisfies these two

conditions, and thus brL > 0. Let ⇡ be the array of probabilities for the table. We

are interested in testing a specific structure in ⇡, such as conditional independence,

against the saturated model, i.e., no structure in ⇡. Let b⇡0 and b⇡ be the MLE of ⇡

under the null and alternative models, c be the index of a cell in the table, xc be the

count in that cell, and n =
P

c xc be the total counts in the table. Then, the log

likelihood ratio is

d0(b⇡0, b⇡|X) = 2
X

c

xc [log(b⇡c)� log(b⇡0

c)] ,

under the constrain that
P

c b⇡
0
c =

P

c b⇡c = 1. Under the saturated model, b⇡c = xc/n.

So the su�cient statistic of the model and the MLE under the alternative model have

a linear relationship, as long as n is fixed in all the completed datasets. The function

⇤(⇡0, ⇡) = n
X

c

⇡c(log(⇡c)� log(⇡0

c))
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under the constrains that
P

c ⇡
0
c =

P

c ⇡c = 1, ⇡c > 0, and ⇡0
c > 0, has a non-negative

definite hessian matrix, so it is a convex function, so in this case brL > 0.

3.4.3 Estimating bDm based on Sd and d
full

: Xie (2011)

Xie (2011) proposed another method to estimate d(✓̄m, Ūm), given we have S
d

,

the m completed datasets, and the computer code to calculate the Wald �2 statistic.

Treating the m completed datasets as independent data, we can apply the computer

code to the combined dataset, Xfull = (X*1, · · · , X*m), and obtain the Wald �2 statis-

tic, dfull. Asymptotically,

dfull = (b✓full � ✓
0

)tU�1

full (b✓full � ✓
0

),

where b✓full = b✓(Xfull) ⇡ ✓̄m, and Ufull = U(Xfull) ⇡ m�1Ūm, so d(✓̄m, Ūm) ⇡ m�1dfull.

Let brfull and Dfull be the estimates of r̄m and Dm, obtained by replacing d(✓̄m, Ūm)

in (3.21) with m�1dfull, and brL in (3.22) by brfull, respectively. Then, the p-value is

computed by referring Dfull to distribution Fk,w(brfull), where w(·) is defined in (3.10).

3.4.4 Comparison

When the standard complete-data analysis does not produce the variance-covariance

matrix, U*l, the test statistic Dm in (3.6) can not be computed. Fortunately, Dm can

be approximated by a function of d̄m and r̄m. We typically can obtain the Wald �2

statistic, d*l, from each of the m complete-data inferences. So an estimate of r̄m leads

to an estimate of Dm, which is referred to an Fk, bw distribution, derived under the
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assumption of EFMI. Currently, we do not have an estimate of
Pk

i=1

r2i to allow for

the use of Fb⇢m,b⌘m .

The procedures by Meng and Rubin (1992) and Xie (2011) have interesting con-

nections. First, they are asymptotically equivalent to T m
LRR, so they are asymptotically

superior to the procedure by Li et al. (1991a). But keep in mind that they require

resources other than S
d

, and involve more computation. Second, the two procedures

are identical in certain situations. Xie (2011) treated the m datasets as independent

data, so in an exponential family, the likelihood of Xfull is

f(Xfull| ) =
m
Y

l=1

f(X*l| ) =
 

m
Y

l=1

h(X*l)

!

exp



m

✓

⇣t
T (Xfull)

m
� A( )

◆�

, (3.23)

where T (Xfull) =
Pm

l=1

T (X*l) is the su�cient statistic. If the MLE of  under H
0

and Ha are linear functions of the su�cient statistic, then b 0
full =  ̄0

m, b full =  ̄m, and

d0( b 0

full, b full|Xfull) = 2 log

 

f(Xfull| b full)

f(Xfull| b 0
full)

!

= 2
m
X

l=1

log

✓

f(X*l| ̄m)

f(X*l| ̄0
m)

◆

= md̄L,

where b 0
full and b full are the estimates of  that maximize (3.23) under H

0

and Ha, re-

spectively. In addition to the linearity condition, if the complete-data analysis substi-

tute the log likelihood ratio for the Wald �2 statistic, then dfull = d0( b 0
full, b full|Xfull) =

md̄L, and consequently, the procedures by Meng and Rubin (1992) and Xie (2011)

lead to the exact same results.

The procedure by Xie (2011) has several advantages over the likelihood-ratio based

procedures by Meng and Rubin (1992). First, the computer code for computing the

Wald �2 statistic is usually readily available, whereas the code for computing likeli-
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hood ratio may require additional e↵ort to achieve. Second, the Wald �2 statistic is

invariant to the transformation of parameters, but d̄L can be sensitive to the trans-

formation. Third, the MLE b 0
*l and b *l are not needed. However, the computation

of the procedure by Xie (2011) can be burdensome, since the complete-data analysis

needs to be applied to the gigantic dataset Xfull.

3.5 Concluding Remarks

In this chapter, we have studied and compared procedures for forming the repeated-

imputation inference based on multiply-imputed data. Due to the lack of degrees of

freedom to estimate individual eigenvalue of BtU
�1

t , the test statistic Dm in (3.6) is

used in practice, and it is referred to an F distribution to compute the final p-value.

The procedures can be classified according to whether or not the moments estimates,

i.e., point estimate and the associated variance-covariance estimate, from each of the

m completed dataset are available.

When the set of moments estimates are available, the statistic Dm can be com-

puted, so di↵erent reference distributions result in di↵erent procedures. Li et al.

(1991b) derived the distribution Fk,w(r̄m)

under the assumption of equal fraction of

missing information (EFMI). So when this assumption approximately holds, the pro-

cedure works well in terms of the actual levels and powers, but the actual levels can

be considerably higher than the nominal levels when the assumption is severely vi-

olated. Xie (2011) developed the distribution Fb⇢m,1 without assuming EFMI, and

are especially suited for high dimension, large fractions of missing information, and

large variability of the fractions. We propose a modification to the procedure by Xie

127



Chapter 3: Large-Sample Hypothesis Testing with Multiply-Imputed Data

(2011) to account for the additional uncertainty in the denominator of Dm, and sug-

gest criteria for deciding the denominator degrees of freedom for the F distribution.

We have conducted a thorough comparison of the actual levels and powers of these

procedures under di↵erent conditions and for finite m and when m ! 1. When

m ! 1, the reference proposed by Xie (2011), with or without our modification,

have the same first two moments with the true distribution of Dm under the null

hypothesis, so its behavior are nearly identical to using the actual null distribution of

Dm. For finite m, among all procedures, the actual levels of the modified procedure

we propose are closest to the nominal levels, under nearly all the conditions. For

fixed m, the ROC curves of these procedures are nearly identical, meaning higher

powers (true positive rates) come with the price of higher actual levels (false positive

rates). So in practice, we recommend using the modified distribution, Fb⇢m,b⌘m , as the

reference distribution. Overall, these calibrated F distributions are reasonably close

to the exact distribution of Dm under the null hypothesis, so the actual levels are

quite close to the nominal levels, and the powers are quite close to these using the

exact null distribution of Dm. When the assumption of EFMI does not hold, these

procedures all lose some powers due to using Dm instead of Dobs as the test statistic.

When the moments estimates are not available, both the statistic Dm and its

reference distribution need to be be estimated. The procedure by Li et al. (1991a)

only uses the m scalar Wald �2 statistics to estimate these quantities, and thus su↵ers

from a severe loss of power, compared with methods based on moments estimates.

Meng and Rubin (1992) proposed to use log likelihood ratio and the MLE of the model

parameters to estimate Dm, and Xie (2011) suggest obtaining the Wald �2 statistic

128



Chapter 3: Large-Sample Hypothesis Testing with Multiply-Imputed Data

from the complete-data inference applied to the combined data Xfull to estimate Dm.

Both procedures are asymptotic equivalent to the procedure by Li et al. (1991b).

We have also discussed a practical issue in the likelihood-ratio based procedure

by Meng and Rubin (1992), i.e., the estimate of r̄m can be negative. We propose

a su�cient condition that can guarantee the non-negativeness of the estimate. A

direction for future research is to investigate transformations that can be applied to

the model parameters to ensure the estimate of r̄m is non-negative.

The existing procedures for combining the Wald �2 statistics all implicitly assume

EFMI, since the reference distributions are some modified versions of Fk,w(r̄m)

, derived

under that assumption. Another direction for research is to explore other resources

that can be used to estimate the test statistic or its reference distribution, and to

develop procedures without the assumption of EFMI.
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Appendix

A.1 Proof of Theorem 1 in Chapter 1

In this appendix, we derive the inequality in Theorem 1. Due to the convexity of

the function f , we have

�(!)f

✓

Z

p(H✓(!))

�mix(H✓(!))
⇡(✓)u(d✓)

◆

6
Z

�(!)f

✓

p(H✓(!))

�mix(H✓(!))

◆

⇡(✓)u(d✓). (A.1)

By the expression of ep, the term on the left of the equal sign is equal to �(!)f
⇣

ep(!)
�(!)

⌘

.

LetDf (ep,�) be the f -divergence between ep and �, andDf (p,�mix) be the f -divergence

between p and �mix. Then,

Df (ep,�) 6
Z Z

�(!)f

✓

p(H✓(!))

�mix(H✓(!))

◆

⇡(✓)u(d✓)d! , D⇤
f (p,�mix). (A.2)

Below we show D⇤
f (p,�mix) = Df (p,�mix), thus the inequality in Theorem 1 holds.

Since H✓ and its inverse function, F✓, are both monotonic and di↵erentiable func-
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tions, we can substitute (!, ✓) with (F✓(e!), ✓) in D⇤
f (p,�mix), and obtain

D⇤
f (p,�mix) =

Z



Z

�(F✓(e!))/ |H0
✓(F✓(e!))| ⇡(✓)u(d✓)

�

f

✓

p(e!)

�mix(e!)

◆

de!. (A.3)

The expression in the square brackets is equal to �mix(e!), so

D⇤
f (p,�mix) =

Z

�mix(e!)f

✓

p(e!)

�mix(e!)

◆

de! = Df (p,�mix). (A.4)

A.2 Non-negligible Variance When L ! 1

In this appendix, we show that if p is not in the family specified in (1.31), the

term V↵(ep,�) remains positive and non-negligible when L ! 1.

For fixed ↵, p, and �, we define a non-negative continuous function of ⇣, f↵(⇣) =

V↵(ep,�). Assume the sequence of random variable
n

e⇣L;L = 1, · · · ,1
o

is defined in

the probability space (⌦,F , P
0

). Then, f↵,L = f↵(e⇣L), for L = 1, 2, · · · , is a sequence

of non-negative random variables in (⌦,F , P
0

), and

EL [V↵(ep,�)] =
Z

⌦

f↵,L(!)dP0

(!).

Let f ⇤
↵ be the inferior limit of the sequence {f↵,L}1L=1

, i.e., for any ! 2 ⌦,

f ⇤
↵(!) = lim inf

L!1
f↵,L(!).
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Then, f ⇤
↵ > 0 almost surely. Fatou’s lemma implies

lim inf
L!1

Z

⌦

f↵,L(!)dP0

(!) >
Z

⌦

f ⇤
↵(!)dP0

(!). (A.5)

The integral of f ⇤
↵ is greater than zero, meaning that using a gigantic dataset to

estimate ⇣ will not remove the discrepancy between p and the calibrated �mix, if p is

not a Gaussian mixture distribution exactly as specified in (1.31).

A.3 Bayesian Inference

In this appendix, we briefly introduce the basic concepts and computational meth-

ods needed for our Bayesian inference. Readers looking for a more complete intro-

duction should read Gelman et al. (2014).

Assume the vector of observed data D = (x
1

, x
2

, · · · , xn) follow a probability

distribution that is parametrized by a vector of parameters, ⇥. We wish to use D to

estimate ⇥. The likelihood of ⇥ is defined as the probability of D given ⇥, that is,

L(⇥;D) = P (D
�

�⇥). Information on ⇥ that is available before D is observed may be

summarized by the prior distribution of ⇥, denoted as P (⇥). Bayes’ Theorem allows

us to calculate the posterior distribution of ⇥, P (⇥
�

�D),

P (⇥
�

�D) =
P (⇥)P (D

�

�⇥)

P (D)
.

The posterior distribution combines the prior information with new information con-

tained in D, and is a complete summary of information as to likely values of ⇥.
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If no prior knowledge is available, a “non-informative” prior distribution can be

used. For instance, a flat prior distribution from �1 to +1 is often used as a non-

informative prior for the mean parameter of a distribution. This flat prior distribution

is not a proper distribution, in the sense that it does not integrate to 1 or any finite

positive value. In Bayesian inference, this type of improper prior distribution is

legitimate so long as the posterior distribution is proper.

Summaries of the posterior distribution can be used as fitted values (e.g. the pos-

terior mode, mean, or median) and error bars (e.g. a posterior probability interval)

of the parameters. (Asymmetric) error bars can be computed by finding an inter-

val of parameter values with a given posterior probability. The highest probability

density (HPD) interval1, for example, is the shortest interval with a given posterior

probability. Figure A.1 shows the lower and upper bounds of the 95% HPD interval

of a gamma distribution,2 marked by two vertical dotted lines. The areas under the

curve between the bounds is 0.95.

When analytical calculation of the Bayesian estimators is infeasible, we often

resort to Monte Carlo methods to approximate them. For example, the posterior

mean of a function, f , of ⇥ can be approximated by

E
�

f(⇥)
�

�D
�

=

Z

f(⇥)P
�

⇥
�

�D
�

d⇥ ⇡ 1

m

m
X

i=1

f(⇥(i)),

where ⇥(1), · · · ,⇥(m) is a sample of size m from P (⇥
�

�D). The 1 � ↵ ET interval is

1The 1 � ↵ HPD interval of a continuous random variable can be obtained by moving down a
horizontal line from the top of the probability density function until the area under the density curve
between the intersections of the horizontal line and the curve is 1� ↵.

2 The probability density function of Gamma(↵,�) is P (x) = �↵e��xx↵�1/�(↵) for x > 0.
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Figure A.1: The 95% HPD interval (the bounds are marked by the blue dotted lines) and
the 95% ET interval (marked by the red dashed lines) of a gamma distribution.

estimated by the empirical ↵/2 and 1 � ↵/2 quantiles of the sample, and the 1 � ↵

HPD interval can be estimated by the shortest interval that contains a proportion

of the sample equal to 1 � ↵. See Park et al. (2006) for more details on how to

approximate Bayesian point and interval estimators from a Monte Carlo sample.

Two popular algorithms to obtain posterior samples are Gibbs sampling (Geman

and Geman, 1984) and Metropolis-Hastings algorithm (Metropolis et al., 1953; Hast-

ings, 1970). Both algorithms are Markov Chain Monte Carlo (MCMC) methods that

provide a sequence of draws from a Markov Chain, the distribution of which converges

to the posterior distribution as the length of the sequence increases. Gibbs sampling

obtains observations from a joint probability distribution of random variables by se-

quentially drawing from the conditional distribution of each parameter while fixing

the others at their current values. Metropolis-Hastings algorithm uses a proposal

distribution and an accept-reject rule that again ensures the sequence converges to
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the posterior distribution. Some good reviews of the sampling algorithms can be

found in the statistical literature, such as Chib and Greenberg (1995), Casella and

George (1992) and Smith and Roberts (1993), or in the astrophysics literature, such

as Van Dyk et al. (2001) and Xu et al. (2014).

A.4 Sampling Algorithm of the Bayesian Model

We provide a detailed description of the algorithm to make the MCMC draws

from the posterior distribution of the parameters

P (µ, ✓, ⇡d,B,�, ⇠
�

�X,Y ) / P (µ, ✓)P (⇡d)P (�
�

�µ, ✓, ⇡d)P (⇠)P (B
�

�⇠)P (X
�

�⇠)P (Y
�

��,B),

(A.6)

where P (µ, ✓) is defined in (2.11), P (⇡d) = 1, and P (�
�

�µ, ✓, ⇡d) is defined in (2.9).

Let Rk be the set of segments in region k, for k = 1, · · · , K. Let R be the union of

all the segments in the data. Then,

P (⇠)P (B
�

�⇠)P (X
�

�⇠) /
Y

s2R

(asT )Bs / (Bs!)

⇥
K
Y

k=1

exp

"

�
 

�
0

+ AkT +
X

s2Rk

asT
!

⇠k +

 

↵
0

+Xk +
X

s2Rk

Bs � 1

!

log (⇠k)

#

where ↵
0

= 10�6 and �
0

= 1.1 are constants in the prior distribution of ⇠. The term

P (Y
�

��,B) is

Y

s2R

exp

"

�
X

i2s

rs,ies�iT + (Ys � Bs) log

 

X

i2s

rs,ies�iT
!

� log ((Ys � Bs)!)

#

.
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The Gibbs sampler makes draws from the joint posterior distribution by alterna-

tively sampling a single or a group of parameters from the posterior distribution of

these parameters while fixing other parameters at their current values. In the initial

step, we pick an initial guess of (µ(0), ✓(0), ⇡(0)

d , ⇠(0)), and simulate �(0) according to the

zero-inflated gamma distribution with parameters (µ(0), ✓(0), ⇡(0)

d ). In the (t + 1)-th

iteration, we alternatively make draws according to the following steps:

1. Draw ⇡(t+1)

d from Beta(n(t)
d + 1, n� n(t)

d + 1), where n(t)
d is the number of X-ray

dark sources (i.e., number of �(t)i = 0) in the t-th iteration.

2. For k = 1, · · · , K, for s 2 Rk, draw B(t+1)

s from the binomial distribution

Binomial
⇣

Ys,$
(t)
s

⌘

, where

$(t)
s =

as⇠
(t)
k

as⇠
(t)
k +

P

i2s rs,ies�
(t)
i

.

3. For k = 1, · · · , K, draw ⇠(t+1)

k from Gamma
⇣

↵(t+1)

k , �k
⌘

, where 3

↵(t+1)

k = ↵
0

+Xk +
X

s2Rk

B(t+1)

s , �k = �
0

+ AkT +
X

s2Rk

asT .

4. Draw (µ(t+1), ✓(t+1)). For simplicity, in the expression below, ↵ = µ2/✓ and

� = µ/✓. Other parameters being fixed, the posterior distribution of µ, ✓ is

3To make it easier to describe the algorithm, we use the conventional parametrization of the
gamma distribution, i.e., Gamma(↵,�), which is equivalent to Gamma [µ, ✓], where µ = ↵/� and
✓ = ↵/�2.
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proportional to

Q(t)(µ, ✓) = P (µ, ✓)

✓

�↵

�(↵)

◆n�n
(t)
d

exp

0

B

@

�
n
X

i=1

�(t)i + (↵� 1)
X

�
(t)
i >0

log
⇣

�(t)i

⌘

1

C

A

,

The Metropolis-Hastings algorithm is used to draw (µ(t+1), ✓(t+1)) jointly from

the above distribution. We use a normal distribution N (⌧ (t),⌃(t)) as the pro-

posal density, where ⌧ (t) is the mode of Q(t) and ⌃(t) is the inverse of its Hessian

matrix at ⌧ (t). A new draw (µ0, ✓0) from N (⌧ (t),⌃(t)) is proposed. We accept

(µ0, ✓0) as
�

µ(t+1), ✓(t+1)

�

with probability �, where

� = min

✓

1,
Q(t)(µ(t), ✓(t))

Q(t)(µ0, ✓0)

�(t)(µ(t), ✓(t))

�(t)(µ0, ✓0)

◆

, (A.7)

where �(t) is the density of N (⌧ (t),⌃(t)). With probability 1� �,
�

µ(t+1), ✓(t+1)

�

is set to be the current value
�

µ(t), ✓(t)
�

. In general, the proposal density �(t)

approximates the target density Q(t) quite well, and thus the acceptance ratio

is quite high. For example, the acceptance rate of the algorithm applied to the

real data in Section 2.4 is 0.7.

5. Let Ci be the set of segments that constitute source region i, i.e., Ci =
S

i2s{s}.

Let S(t+1)

i =
P

s2Ci

⇣

Ys � B(t+1)

s

⌘

, e↵(t+1) = (µ(t+1))2/✓(t+1), and e�(t+1) = µ(t+1)/✓(t+1).

For i = 1, · · · , n,

• If S(t+1)

i > 0, we generate �(t+1)

i from Gamma
⇣

e↵(t+1)

i , e�(t+1)

i

⌘

, where e↵(t+1)

i =

e↵(t+1) + S(t+1)

i and e�(t+1)

i = e�(t+1) +
P

s2Ci rs,iesT .

• If S(t+1)

i = 0, we draw �(t+1)

i from the zero-inflated gamma distribution,
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i.e.,

�(t+1)

i

8

>

>

>

<

>

>

>

:

= 0 with probability e⇡(t+1)

⇤ ,

⇠ Gamma
⇣

e↵(t+1)

i , e�(t+1)

i

⌘

with probability 1� e⇡(t+1)

⇤ ,

(A.8)

where

e⇡(t+1)

⇤ =
⇡(t+1)

d

⇡(t+1)

d + (1� ⇡(t+1)

d )
⇣

�(t+1)/e�(t+1)

⌘↵(t+1)
.

The 5 steps are repeated to generate the Monte Carlo sequence that converges to

the joint posterior distribution. We usually discard the first T
0

draws because they

may not follow the right distribution, especially if the initial values of the parameters

are far from the center of the distribution. This step is called burn-in. Our sampling

algorithm is very fast, and we set T
0

to be 20000.

Trace plots of the Monte Carlo draws of µ, ✓, and ⇡d from the posterior distribution

appears to be convergent. The leg-1 autocorrelation of these parameters are 0.82, 0.51,

and 0.95, and we made a total of 150,000 draws after the initial burn-in.

A.5 Computation of the Test Statistic

Here, we provide the analytical expression of the simplified likelihood function eL
1

,

which is defined in (2.24). Under the simplified alternative model, for i 2 S, if source

i is in region k, then Y rep
i |�i indep⇠ Poisson

⇣

riei�iT + b⇠⇤i

⌘

, where b⇠⇤i = aib⇠kT . A priori,
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�i independently follows the zero-inflated gamma distribution. So the likelihood is

eL
1

⇣

µ, ✓, ⇡d,b⇠;D
rep
⌘

=
Y

i2S

P (Y rep
i |µ, ✓, ⇡d,b⇠),

where

P (Y rep
i |µ, ✓, ⇡d,b⇠) =

Z

P (Y rep
i |�i,b⇠)P (�i|µ, ✓, ⇡d)d�i

= Ci

2

6

4

⇡d + (1� ⇡d)

Y rep
i
X

j=0

0

B

@

Y rep
i

j

1

C

A

(Wi)
j �(↵ + j)

�(↵)

�↵

(rieiT + �)↵+j

3

7

5

,

with Wi = rieiT /b⇠⇤i and Ci = exp
h

�b⇠⇤i + Y rep
i log

⇣

b⇠⇤i

⌘i

/ (Y rep
i !). Note that in the

above expression, ↵ = µ2/✓, and � = µ/✓. The likelihood function eL
0

(µ, ✓;Drep) =

Q

i2S P (Y rep
i |µ, ✓, ⇡d = 0).

Although the expressions of eL
0

and eL
1

are very complex, they are functions

of two and three parameters. In our simulation, we use the function “optimize”

implemented in R programming to find the supremes of log
⇣

eL
0

(µ, ✓;Drep)
⌘

and

log
⇣

eL
1

(µ, ✓, ⇡d;D
rep)
⌘

. The reason for taking the logarithm of both functions is to

reduce computer-precision related errors. The “optimize” function in R programming

works reasonably well. When occasionally it produces a negative test statistic (i.e.

logarithm of the likelihood ratio), we set the test statistic to be 0.
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A.6 Reason for Using A Proper Prior Distribution

for (µ, ✓)

Any Bayesian model must have a proper posterior distribution, meaning the pos-

terior distribution has to be integrable. We show in this appendix that the prior

distribution of (µ, ✓) in our model has to be proper (i.e., integrable) to ensure the

integrability of the posterior distribution. For simplicity, we assume (i) the dataset

only has non-overlapping sources, and (ii) the background is homogenous.

We first compute the posterior distribution of (µ, ✓, ⇡d,B) by integrating out ⇠

and � from the posterior distribution in (A.6),

P (µ, ✓, ⇡d,B
�

�D) =

Z

P (µ, ✓, ⇡d,B,�, ⇠
�

�D)d⇠d� = f(B;D)g(µ, ✓, ⇡d,B;D),

where

f(B;D) / �(↵
0

+X +
PBi)

(�
0

+ AT +
P

aiT )↵0+X+

P
Bi

n
Y

i=1

aBi
i (riei)

Yi�Bi

Bi!(Yi � Bi)!
,

and

g(µ, ✓, ⇡d,B;D) = P (µ, ✓)

⇥
n
Y

i=1

 

⇡dI(Yi = Bi) + (1� ⇡d)
(µ/✓)(µ

2/✓)

(µ/✓ + ei)(µ
2/✓+Yi�Bi)

�(µ2/✓ + Yi � Bi)

�(µ2/✓)

!

.

Since 0 6 Bi 6 Yi, f(B;D) can be bounded by two positive constants C
1

and C
2

,

that is

0 < C
1

6 f(B;D) 6 C
2

< +1.
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Therefore, the integrability of P (µ, ✓, ⇡d,B
�

�D) depends completely on the integrabil-

ity of g(µ, ✓, ⇡d,B;D). The integral of the positive function g(µ, ✓, ⇡d,B;D) is

Y1
X

b1=0

· · ·
Yn
X

bn=0



Z

g (µ, ✓, ⇡d,B = (b
1

, · · · , bn);D) dµd✓d⇡d

�

,

which is great than the single term that corresponds to B = (Y
1

, · · · , Yn), which is

Z

g (µ, ✓, ⇡d,B = (Y
1

, · · · , Yn);D) dµd✓d⇡d =

Z

P (µ, ✓)dµd✓

Z

⇡n
dd⇡d

If the prior on (µ, ✓) is improper, i.e.,
R

P (µ, ✓)dµd✓ = +1, then

Z

g(↵, �, ⇡b,B;Y )dµd✓d⇡d >
Z

P (µ, ✓)dµd✓

Z

⇡n
dd⇡d = +1,

which means the posterior distribution if improper. Therefore, a proper prior distri-

bution for (µ, ✓) is required to ensure the posterior distribution is proper.
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