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Dissertation Advisor: Professor Taubes Clifford H. Taubes

The moduli space of S'-type zero loci for Z/2-harmonic spinors in dimension 3

Abstract

Let M be a compact oriented 3-dimensional smooth manifold. In this paper, we
will construct a moduli space consisting of the following date {(X,)} where X is a
C'-embedding S curve in M, ¢ is a Z/2-harmonic spinor vanishing only on 3 and
|9l r2 = 1. We will prove that this moduli space can be parametrized by the space

X = { all Riemannian metrics on M} locally as the kernel of a Fredholm operator.
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1. INTRODUCTION

In [12], Clifford Taubes proved a generalized version of Uhlenbeck’s compactness
theorem [13]. Let (M, g) be a 3-dimensional Riemannian manifold. The Uhlenbeck’s

compactness theorem [14] can be stated in the following way:

Theorem 1.1. Suppose P is a principle G bundle over M for some compact Lie

group G and {A;} be a sequence of connections on P satisfying
(1.1) |F(A)2 < C

for some constant C' which is independent of i. Then there exists a subsequence of

{A;} converging (up to gauge transformations) weakly in L? to a L3 connection.

To state the theorem proved in [12], I need to introduce some notations. Firstly,
Clifford Taubes used the fact that s[(2; C) = su(2) @ isu(2) and P can be regarded as
one of its SO(3)-reduction associated with PSL(2;C). So he can fix one reduction and
denote P by P xgo(3) PSL(2;C). Therefore he can always decompose a connection
A = A +ia where A is the connection one form on the SO(3) reduction of P and a
is a su(2)-valued one form.

Secondly, if I denote the group of gauge transformations (the automorphism group
of P) by G, then the lie algebra s[(2;C) does not have norms which are invariant
under the action of G. So I should refine the L? boundedness condition (1.1) as

follows:

Definition 1.2. Let

_ _ 2 2 2
f(A)—AJ:iI(}EgA/|F(A) aAal®+|daal” + |da * al

where G, is the G-orbit of A.
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Now, the generalized Uhlenbeck’s compactness theorem proved in [12] can be stated

as follows:

Theorem 1.3. For any sequence of connections {A; = A; +ia;} defined on P X 50(3)
PSL(2;C), which has {F(A;)} being bounded, we have
o If {||ail|z2} is bounded, then we can find a subsequence of {A;} which is weakly L?
convergent up to the automorphism of P.
o If ||a;]|2 — o0, we can find a closed, Hausdorff dimension at most 1 subset ¥ and
a subsequence of {A; = A; +ia;} such that
1. {A;} converges weakly in Liloc—sense on M — % up to the automorphism of P
and
2. {mal} also converges weakly in L3 ,.-sense on M — % up to the

automorphism of P.

Moreover, the data ¥ can be formulated as the zero locus of a Zy-harmonic spinor,
say 1, defined on M — X, see [6]. In [6], Clifford Taubes showed more properties
for this data set ¥. Moreover, it is still a conjecture that ¥ is a C' curve for the
”generic” metric g, this conjecture is also mentioned in [1]. So a natural question we
can ask is the following: can we find a way to parametrize the data (3,)?

In this paper, I will give a local parametrization of the set of triples of the form
(g,%,%) with g being a Riemannian metric, 3 being a C' embedded circle and 1)
being a Z/2 harmonic spinor defined on the complement of whose norm extends
across as zero as to give a Holder continuous function on M. To say more about this,

let
A= {X C M|Y is the image of a C' embedding of the circle}.

For each 3 € A, define H be the subset of H'(M —; Z/2) with non-zero monodromy

around . Each e € H corresponds to a real line bundle Zy,, on M — 3. So as ¥
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varies, the set H varies continuously to define a finite sheeted covering space of A.
This is denoted by Ap. Denote by X the space of Reimannian metrics on M. Each
metric g € X has a corresponding spinor bundle §; — M. Denote by S;x . the
bundle S; ® Zs, .; this is a spinor bundle over M — X. This is called the Z/2 spinor
bundle. Define Y to be X x Ap.

Let £ — ) denote the infinite dimensional vector bundle defined as follows: Sup-
posing that y = (g,%,¢e) € X x Ay, then the fiber of £ over y is the infinite dimen-
sional vector space of L? sections over M — X of the Z/2 spinor bundle S, 5 .. This
vector space is denoted by &,. Let D denote the Dirac operator defined on &, by
the metric g. This operator gives a bounded, linear map from &, to the space of
square integrable sections of S, s .

With £ understood, the space of interest is the subset 91 in & whose elements are

data sets (y = (g, %, e),9 € &,) obeying

° D(y)w =0
e || extends across ¥ as a Holder continuous function on M

with its zero locus containing ..

[¥](p)

e ——————— > () near .
dist(p, X)2

e The L? norm of 1 is 1.

The set 9 inherits a topology from £. The goal is to give it some additional
structure. To say more about 91, we can consider the vector bundle F over ) whose
fiber F, is the L? sections of S,. Then 9 will be contained in the kernel of D : &€ — F
where D|g, = DW.

I will prove the following:
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Theorem 1.4. Let (y = (g,%,¢€),v) denote a given element in 9. There are finite
dimensional vector spaces Ky and Ky, a ball B C K; centered at the origin, a set
B C X with B = 71 (N) being the projection of N, a neighborhood of y, from Y to
X and a C' map to be denoted by f from B x B to Ky such that M near (y,v) is

homeomorphic to f~1(0).

The vector space K; and K in this theorem can be generated by the kernel and
cokernel of a Fredholm operator respectively. This theorem shows us several facts.
First of all, the C*-curve component ¥ in 91 can only be perturbed in finite dimen-
sional directions. Secondly, when dim(Ky) = 0, then 9t near (y,¢) is homeomorphic

to B x B.

2. BASIC SETTING AND RESULTS

2.1. Functional spaces. First of all, we start with some basic setting. Let (M, g) be
a compact 3-dimensional Riemannian manifold and ¥ € A be a C* circle embedding
in M. Moreover, we suppose that g is the product type metric near .. Namely, there
exists Vg, a small tubular neighborhood of ¥ which is parametrized by coordinate
(r,0,t) € [0,R] x [0,27] x [0,27], such that g|y, = dr? + r?df* + dt*. So we can
parametrized the circle 3 by ¢.

Secondly, let S be the spinor bundle over M with respect to g and Z be a real
line bundle defined on M — 3. We suppose that Z cannot be extended to the entire
manifold M, which means Z|,—,;— ~ R x [0,27]/{(2,0) ~ (—z,27) for all z € R}
homeomorpically for all 0 < a < R and t € [0,27]. We also fix a metric gz. So we
can define the scale |[v ® w| = |v||w]| for any (v,w) € S® L.

Thirdly, the S itself is equipped with the standard connection V¥, see [6]. Mean-
while, the connection 1-form of the real line bundle is zero. So we can define the
connection V°®? = VZ ® id; on the bundle S ® T.

Now we are ready to define the functional spaces we need in this paper.
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Definition 2.1. Let u € C°(M —%,S®T) be a smooth section of the twisted spinor
bundle § ® Z. We define the following norms and corresponding space:

L lullee = (g luP)3:

2 (fullzz = (fyy_g [l + [Vauf?)3;

3. [lullz2, = sup{fy;_x (0, w)[[[ollzz <1 and }.

Moreover, the spaces of sections bounded with respect to these norms will be denoted

by
LM —%;8®I) = closure of {u€ C°(M - %,S®1I) | [ul[z2 < oo}

for i = 1,0, —1. In the following paragraphs, we simply use the notation L? to denote

L3(M — X; S ® Z) and we usually omit the index 7 when it is zero.

Similarly, we can define the space of compactly supported sections, L%cpt by taking

the closure of the set of smooth, compactly supported sections with respect to the

norm || - [| 2.

Remark 2.2. We should always remember that the space L?, is the dual space of L?
in our case. In a general open domain €2 on R", the notation L? () usually denote
the dual space of L3 ,(). The advantage of taking dual of L} () is the following:

We can " differentiate” a L?*(2) function formally by coupling it with sections defined

on L?

1cpt Lhis gives us a functional defined on Licpt. Then the compactly supported

inputs of this functional allow us doing integration by parts formally without having
the boundary terms. Therefore, if we want to extend the domain of this functional
to be L?, we need to prove that there is no contribution from the boundary when we

have L? inputs.

The space L? | has the following property. This is a analogue version of theorem 1

in section 5.9 of [5].
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Proposition 2.3. Let f € L? . Then there exists a pair
(fo, f1) € L*(M — ;8 ®T) x L* (M — ;8@ I @ T M)
such that

2.) [ = o (o)

for all v € L?. Furthermore, we have

i, = (ol + )}

Proof. Let T; : L} — C be a bounded functional sending each v to [,, (v,f). By

Riesz Representation Theorem, there exists u € L? such that

(2.2) Ti(v) = /M_E(U,u) + (Vo, V).

So we can simply take f, = v and §; = V.

To prove the second part, by taking v = u in (2.2), we have

wllzz = T3(w) < flull ez [l 2, -

This inequality implies that ([, . [fol> + f1]2)z = [l e < (Il 22 -

Meanwhile, from (2.2) we have

Tl (P + P

if [Jo]| > < 1. So by the definition 2.1, we have [[f]lz2 | < ([y,_5 [fol* + If1]2)2. O

2.2. Some analytical properties of Dirac operators on M — 3. We will prove

the following proposition in this subsection.

Proposition 2.4. Let D|;2 : L — L be the Dirac operator. Then we have the

following properties:



1. ker(D|pz) is finite dimensional.
2. range(D|2) is closed.

3. Suppose we write the adjoint of D]L§ to be D]z, then we have
L? = range(D|2) ® ker(D|L2).
Remark 2.5. ker(D|r2) is not finite dimensional in general.

To prove this proposition, we need the following lemma. This lemma is also very

useful in the rest of this article.

Lemma 2.6. Let u € L?, then we have

/ |u|2§47r27’2/ |Vul?
r N,

for all r < R.

Proof. Let u € L? and {u,} be a sequence of smooth sections such that
u, = u
in L? sense. Since Z is nontrivial along  direction, we have
27
(e O < | [ Bufua(r.0,0)100
0
2
< / 1Vt (60, )6
0
| 2m ) L
< Varr( / Vo tn(r, 60, 8)2rd) 3
0
for any s,t € [0,27], 0 <r < R, where ey = %89. So we have

r 21 2
/ |un|2§/ / / lu,(r, s,t) |*rdsdtdr
N, 0 0 0

§47T2r2/ |V et
N,
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By taking n — oo, we prove this lemma. U

Proof. (of Proposition 2.4)

Step 1. First of all, for any u € L2, we have the Schrodinger-Lichinerowicz formula

D*u = Au+ %u,
4
in the following sense:
X
(2.3 [wepw = [vevw+ [Ficw

for all ¢ € L2 Here % is the scalar curvature of M. We should prove that (2.3) is

1,ept-

true for all ¢ € L2.

By lemma 2.6, we have

(2.4) /N CP < dn? /N v

for all ¢ € L7. Let us denote ([, IVC[2)2 = fe(r). We have fe(r) = 0 as r — 0.

Now we take the family of smooth functions

0 on Ng

X6
1 on M — Ns

with [V(x,)| < %. So by (2.3), we have

(2.5) oo 0w = 06094 + [T e

for all ¢ € L3. Clearly the second terms on the right hand side of (2.5) will converges
to [ Z(¢,u) as § — 0 by Cauchy’s inequality.
For the left hand side of (2.5), we have

/(D(Xaé),Dw = /X5<DC, Du) + e.
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Because of the inequality (2.4), ¢ can be bounded as follows.

C C 1
el < 5 [ ¢, Dw)l < —( €172 ]| Du| 2 < Cfe(8)[| Dl 2.
Ns Ns

So we have

[0 D)~ [ (6. Dwy

as 0 — 0.

Similarly, we have

[0, 94 = [ (v¢.vw)

as 6 — 0, too. So we have

(2:6) Jiweou = [vew+ [T

for all ¢ € L2.

Step 2. We prove ker(D|2) is finite dimensional in this paragraph. By taking

¢ =uin (2.6), we have
(2.7) hellz2 = CullullZe < [1DullZ> < [ullZz + CollullZ:

for some C7, Cy depending on the supreme and infimum of the scalar curvature Z.
Now, let {u,} C ker(D|.2) and |u,[|,2 < 1. Then there is a subsequence of {u,,}
converging weakly in L% which will also converge strongly in L?, but the inequality
(2.7) shows us that HuHif < Cy|[u|z2 for all u € ker(D|yz). So this subsequence will
actually converge strongly in L?. Therefore the unit sphere inside the space ker(D| Lf)

is compact, which means ker(D|.z2) is finite dimensional.
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Step 3. To prove it has a closed range, we need to show that for any Cauchy
sequence {Du,}, it will converge to Du for some u. We can suppose that u, are
orthogonal to ker(D|.2) without loss of generality. Here we claim that the following

inequality
(2.8) [1Do|[r> = Cs|o]| .2

holds for all v orthogonal to ker(D| L%). With this inequality in mind, the right hand

side of the inequality,
[ = wall 72 < (1D — wa) 172 + Culfum — unllZ2,

provided by inequality (2.7) converges to 0. Therefore {u,} is a Cauchy sequence.
To prove the inequality (2.8), we just follow the argument of section 4.2 in [6]. only
need to show that the spectrum of D| 2 18 discrete. To prove this statement, we pick
up a suitable A € (D) and show that (D — X))~ : L? — L? is a compact operator.
So let {v,} be a bounded sequence in L?, we have to show that {(D — \)~'v,} have

a converging subsequence. By (2.7) again, we have
1D = X)0u][72 < [JonllZe + (Co + N)[I(D = A) o, 2.

Meanwhile, because A ¢ o(D), so (D — A)~! is a bounded operator. Therefore

|(D — X))o, |2 < Cy||on]|L2 for some constant C) depending on A. So we have
1D = 2o < Collon 2

which implies (D — A\)~! is compact.
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Step 4. Now we already have L? = range(D|pz) & rcmge(D|L%)L. We only need

to show that
mnge(D|L%)l = ker(D|r2).

To show this is true, by taking any v € ker(D|2), we have

/(u, Do) = /(Du,n> =0

for all u € L2. So we can see this fact immediately. U

So far we prove that D| r2 has closed range and finite dimensional kernel. However
the cokernel of D[z which is also the kernel of D : L? — L%, is infinite dimensional
in general. In section 4, we will express the elements in ker(D|zz) explicitly in terms

of Bessel functions directly.

3. CLASSIFICATION OF SPIN STRUCTURES WITH THE SINGULAR S!- CURVE

In this section, we classify the spin structure on the singular submanifold. We
should start from the basic knowledge of spin structure first, readers can see [6], [9]

for the details.

3.1. Spin structures. Let M be a compact Riemannian manifold. Let dim(M) =
m. A spin structure of M is a Spin(m)-principle bundle P which is a 2-fold covering

of @, the frame bundle of T'M. More precisely, we have following diagram

P x Spin(m) —> P

Q x SO(m) —> Q>M

commutes.
Now suppose that there is a submanifold N C M with dim(N) = n. Moreover, we

suppose the normal bundle of N is trivial. Therefore, for any z € N, the cotangent
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space T, M can be decomposed as T, N ® v,, where we denote by v the normal
bundle of N. If we fixed an orthonormal sections in I'(v) to be {vy,...v_pn}, then
we can define the frame bundle @' of N as a subbundle of @) by considering the
map (e1,...,n) —> (€1, .c0s €4, V15 ey Upy) € Q. Furthermore, we can show that

AHQ') = P’ is a Spin(n)-structure of N:

Lemma 3.1. Let M be a m-dimensional Riemannian manifold. Suppose that there
is a smooth n-dimensional submanifold N C M with trivial normal bundle. Then
Jor any spin structure Psyinm) defined on M, there is a corresponding spin structure

P/

Spin

(n) defined on N which is a subbundle of ngm(m)|N. We call P' the reduced

spin structure on N.

Proof. Let @, Q" be the frame bundles over M and N respectively which are de-
fined in the previous paragraph. There is a SO(n)-action on @' and a inclusion map

i:S0(n) — SO(m). So we have the following diagram

ATHQ) x A7 0i(SO(n)) = AH(Q)

e g\

Q' x; SO(n) ! N

commutes.
It is obvious that A~1(Q’) is a 2-fold covering of Q’. To finish the proof, we only
need to show that A™! 0 4(SO(n)) is isomorphic to Spin(n). We prove this part as

following.

The cases n < 3 are easy to check, so we suppose that n > 3. Since m(Spin(n)) =

0, there is a natural lifting from Spin(n) to Spin(m) such that the following diagram

Spin(n) — Spin(m)

boo)

S50(n) —> SO(m)
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commutes. We need to show that [ is injective. Suppose not, we will have a,b €
Spin(n) such that {(a) = I(b). We can choose a curve v : [0, 1] — Spin(n) such that
7(0) = a and (1) = b. Then [ o~y will be a trivial loop in Spin(m), which maps to a
trivial loop in i*(SO(n)) C SO(m). This is a contradiction. Therefore we have that
[ : Spin(n) — XA"1 0 i(SO(n)) C Spin(m) is an isomorphism.

U

Remark 3.2. There is a intuitive way to understand this lemma. Recall that if M is
a product manifold A x R¥, then any spin structure P of M can be reduced to a spin
structure on A. In our case, if we rescale the metric near N along normal direction, we
can construct a manifold N x R™~" by taking the limit of this rescaling. Because the

spin structure on N is invariant under the scaling, we prove this lemma immediately.

It is well-known that if the second Stiefel-Whitney class W5(Q) = 0, then there
exist the spin structures and vice versa. Moreover, the spin structures can be classified

by H'(M;Z,) by considering the exact sequence of cohomology groups.

3.2. Classification of the spin structure on the boundary of a tubular neigh-
borhood. Let m = 3 and ¥ C M be a C* circle embedding in M. We consider the
tubular neighborhood N ~ ¥ x D (D is the 2 dimensional closed disc) and denote
the boundary of N by B. Now B C M is a submanifold and dim(B) = 2. We can
parametrize B by (0, ¢) — B with 0, ¢ € [0,27]. We define v; = Im{6 = 0} and
72 = Im{p = 0} where ; can bound a embedded disc inside B.

Let P be the spin structure on M, which is a Spin(3)-principle bundle on M, we
have the corresponding spin structure P’ on B by using lemma 3.1. Since the spin
structure on B can be classified by H'(B;Zy) = H'(S* x S';Zy) = Zy & Zs, there
are exactly 4 spin structures on B.

Similarly, since 7; and 7, are submanifolds of B, we can apply lemma 3.1 again

and get spin structures P/ and Py on v; and 7, respectively. There are only 2 spin
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structures on S*:
1. S x Spin(1);
2. [0,27] x Spin(1)/{(0,1) ~ (27, —1)}.
Therefore the spin structures defined on B can also be classified by the spin structures
on v, and .

Now we want to specify the spin structure P’ of B. The key point is that this
bundle is defined on entire M, so the spin structure P;’ can be extended inside the

disk . Now we prove the following lemma given by [15].

Lemma 3.3. Let D be a 2-dimensional closed disc equipped with a Riemannian metric
g. Suppose there is a spin structure P defined on D and P’ be the spin structure on

the S' boundary of D by lemma 3.1. Then P’ must be [0,2x] x Spin(1)/{(0,1) ~
(2w, —1)}.

Proof. We parametrize 0D = S' by {6 € [0, 2n]}. Let n(6) be the inner normal vector
defined on S' and v(6) be the tangent vector on S'. Following the notations defined
in lemma 3.1, we have v € I'(Q’) and (v,n) € I'(Q)). Since (v,n) is an nontrivial loop
in @, the lifting curve, (v,n)" € P is not a loop. However, the lifting of v is a loop if

P’ is trivial. O

Therefore, by this lemma, P/ = [0, 27] x Spin(1)/{(0,1) ~ (27, —1)}.

We write down the following conclusion to close this subsection.

Corollary 3.4. There are only 2 possible reduced spin structures P’ defined on B.

Moreover, it is totally determined by the reduced spin structure Py defined on 7y,

3.3. Classification of the real line bundle Z. Now we should consider the real
line bundle Z over M — ¥. Since the vector bundles can be totally determined by
the transition functions {U,gs, gas} which is one-one corresponding to the elements in

the sheaf cohomology H'(M; G). Therefore if we consider the restriction Z|p over B,
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there are only 4 possibilities (H' (B, Zy) = Zy & Z,). Furthermore,if we restricted the
line bundle on v; and 7,, either it will be a trivial line bundle or it will be a Mobius
strip. This observation will classify the line bundle Z|z. Moreover, if Z|,, is trivial,
then 7 can be extended to ¥ for sure. So we suppose that Z|,, is the nontrivial one.

Now, if we consider the corresponding spinor bundle S = P x, Az on 0B and
then tensor with Z, since both of them are nontrivial along v, the bundle S ® Z will
be trivial along ;. Hence, we can identify S ® Z to P’ X, A3 where P’ is the spin
structure defined on » which cannot extend to M.

By using this observation, we can fix a element ¢ € H C H*(M — X;7Z/2) in the
rest of this article, which determines one of those two type of spin structures defined

above.

4. THE HARMONIC SECTION DEFINED ON THE TUBULAR NEIGHBORHOOD WITH

THE EUCLIDEAN METRIC

4.1. The L? and L? harmonic sections expressed by modified Bessel func-
tions. Let us consider the space N = R? x S!. Denote E = S ® Z the total space of

twisted spinor bundle over N. The Dirac operator on N can be written as

D 0 n 0 n 0
R PR
where
—7 0 0 1 0 0
€1 = , €2 = , €3 =
0 1 00 -1 0

and z = x + 1y.
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Using the cylinderical coordinate, r := \/2? 4+ y? and 6 = arctan(¥), we can write

down the Fourier expansion of u as

(k=107 7+
e'\" T2 Uk,l
i(k+2)077—
e'\" 3 Uk’l

u(t,r,0) Zel”

for any C'>°—section u of . Here k runs over all integers and [ can be either in Z or
7 + % according to the spin structure we chose. The Dirac operator can be written

in terms of #, r by changing the coordinate, we have

QZQJFZ'QI w(Q_ﬁ).
0z Odx Oy or 1o’
o o0 0  _, 0 i
0z~ or oy o tirae)

Suppose u is a harmonic section. Then we have

6i(k_%)6(lU+ + 4= + @U_)kl

- ilt dr r ) o
Du = g e o 1 =0
ez(k

T F0(—U- — 4yt 4+ By,

which gives us a system of equations:

J [ Ut k-z) U+
dr U~ B —1 _ UH_%) U~
k|l r k|l

For [ # 0, this equation has standard solutions of the form

U+t up I~ Mo 1(lr)—ukll T3] _pa2 (I7)

v- /., —u 7 21k+ L (Ir) + gy l* §I—k—%(l7")

where I, is the modified Bessel function which can be written as

o0

1 r 2m~+p
Ip(r):n;)mll“(m+p+1)(§> '
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For the properties of Bessel functions, readers can see [4] for more detail.

For | = 0 we have

k.l )
Clearly we have I,(r) = O(r?). To normalized the leading coefficient of I,(Ir), We
define J,,(r) = I7PL,(Ir).
Now we apply these results to the sections of S ® Z over N. Fix an R > 0, we
define Ng := N N {r < R}. Suppose u € L*(N;S ® Z) and Du|y, = 0, then

, N i(k—1)07~

' el(k_i)ng_l l(fra) . _ez(k Q)QZJ_k 1 l(?")
o + ilt 27 — it t2
u= Uy € o + Uy € o
K200 —e g () ) ksoize T ()
. 1 1

u eik=)0pk=3 0
+) ’ +D . \
o 0 koo \ up el +a)ip—h—;

which has the leading term of order \iﬁ, ie.

+ higher order terms.

The Bessel functions () and I 1 () can be explicitly written as /= sinh(z) and

\/ = cosh(z). So we can change the basis of the leading term in terms of {%, e\_/;}

Let us using this expression and denote by 4" and 4~ the coefficients of the leading
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term, then we have

il e lir

_ alt[s+ va "= va
u= E ey, + U, ]
I

olilr e—lir

—sign(l) <~ sign(l) <7

+ higher order terms

where ﬁafl = (uafl — sign(l)ual) and 4y, = (uafl + sign(l)ual).

We defined the following space.

Definition 4.1. For any R > 0 given. Let Kr be a subspace of L*(Ng; S®Z) defined
by

1
Kr={ue L*(Ng;S®I)|Du=0and @, =0 for all || > ﬁ}.

Definition 4.2. Let u € L*(Ng), then there is the corresponding Fourier coefficients
{u,fl} We define the following terminologies:
o We call {(dg, + 1y, —sign(l)tg, + sign(l)ig,)} € I* x I* to be the leading
coefficients of u.
e Define {(u;",u; )} € I* x I? to be
() = (i, —sign(1)i) for [1] > o

_ X : X N . 1
(") = (ag;, —sign(l)ag;) + (do,, sign(ig) for U] < 5.

We call {(u,u; )} the Kg-leading coefficients of .

o We call (37, (ug, + tg,)e™, 3, (—sign(l)ag, + sign(l)ig,)e™) to be the leading
term of u.

e Define u™(t) = Y, u;f e and u=(t) = >, u; e where {u;"} is the Kp-leading
coefficients of u. We call u®(t) to be the Kp-leading term of wu.

e We call (uﬂt)\%, u‘(t)%) the Kz-dominant term of u, where u*(¢) is the Kg
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-leading term of u.

Moreover, we can see that if u € g, then the Kg-leading coefficients(term) will

be the leading coefficients(term) of u.

Now if we consider v € L3(Ng; S ® Z) and Dv = 0, we will have

=505, ) () e (1)

_ E: + it — lt
b= U 1€ + E Uy €

k>1;1#0 —ellhta) le+§,l(T) k<—1;l#0 ¢!kt J—k—%,l(r)
ot ei(kfé)erkf% 0
k,0

3 >

1
E>1 0 k<—1

- 1

So we can write

-1 1 -1
ARG it vty €207 (r) .
b= + E e ' 2 + higher order terms.
v e t30rs vy,e”207, (1)
1,0 1#0 1,1 11
So
g 1 1
vt get2fr2 o 62971 ,(r) .
0= ot g e’ R + higher order terms.
vye 202 140 vy, 297, ()
1,0 17l Qal

Again, we should define the leading coefficients and the leading term of v.

Definition 4.3. Let v € L?(Ng).

e We call the Fourier coefficients, {(v',;,v7,)}, denoted by {vF} € (C?)%, to be
the leading coefficients of v.

e We define v*(t), where v (t) = >, v €™ and v=(¢) = >, v; €, to be the
leading term of v.

e We call (vt(t)y/z,v7(t)v/Z) to be the dominant term of v, where v*(t) is the

leading term of v.
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In the rest of this article, we will always use the letters of Fraktur script, u, v, b, c,
etc., to denote the sections defined on L*(M — ;8 ® Z) or L3(M — ;S ®T). If
they satisfy the Dirac equation on Ng for some R > 0, then their corresponding (K g-
)leading coefficients will be denoted by the letters of normal script {u;"}, {vi}, {h}, {cf},
etc. which are in [2 x (2. Finally, the corresponding (Kg-)leading terms will be de-
noted by u* = > ufe v h* c* which are in L?(S') x L?(S'). Therefore we have
the L?-norm for u® will be the same as (||{u; }||7 + ||{ul_}||122)%

Now we should prove that the Kz-leading coefficients of u € Kz and v € L2 in a

smaller tubular neighborhood have the following regularity estimate.

Proposition 4.4. We have the following two properties.

a. Let u € Ky, then we can decompose
+ Ugp

for some uy € L%(N%; S ® I) where u*(t) = Y ute and
(4.1) unllzovagey < CR7 ez

for some constant C' only depending on the curvature of M. In the following para-
graph, we call (u—uy) the Kz-dominant term of u(we already define this in definition
4.2) and call uy the remainder term of u.

b. Let v € L¥(Ng;S ® Z) and Do = 0, then we can decompose

for some by € L%(N%;S ® T) where v=(t) = Y vfel and

(4.2) lomll3v) < CR7Z [0l 2 vy
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for some constant C' only depending on the curvature of M. Similarly, in the following
paragraph, we call (b—g) the dominant term of v (we already define this in definition

4.3) and call by the remainder term of v.

Proof. (proof of part a). To prove this part, we claim the following two statements:

()%
Firstly, we have D “ | € L*(Ng) and
u” (t)\/ig
ut(t) 7 _
(1.3) 1D ) By < CR 2l
for some C' > 0. Secondly
ut(t)
(4.4) (N { 22 () < CllullZavzy

We will prove these claims in the corollary 4.6.

Now, we fix a K > 0 and define

i(k—2)orr+
ey UkJ

T Z Z pilt _ Z pilt

(k77— _
k20 1<K et 20U, A0 1| <K 0

We can easily see that |ug x| < Ck+/r and |[Vug k| < C’K\/%, which means there
will be no boundary term when we do the integration by part for the Schrodinger-
Lichinerowicz formula. Now we let x be a positive smooth function supported on Ng

where

1 on Nar
X = °
0 on M — Ng

and [Vx| < C+.
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By applying Schrodinger-Lichinerowicz formula on yug x and using claims (4.3),

(4.4) above, we have

(4.5) ||u%,K||%§(N%§) < ||Dum,K||%2(NR) + Cﬁ”’v‘%f{“%?(zv,z)
u - 1
<D v ||%2(NR) "‘Cﬁnumﬂ”%?(m%)

< CR™||ullZ2(np)

for some C' > 0.

By taking K — oo in (4.5), we have

||u%||i%(N%) < CR7[ullZ2(ny-

(proof of part b). Similar to the proof of part a, we have the following two claims

which will be proved in corollary 4.8.

v 2 —2[ 112
(4.6) D z2vp) < CR™ 0|28y
and
(4.7) l 122 vy < ClIOIZ2 (v)-

Now we fix a K > 0, define

i(k—1)07/,+ +
elh=3) Vi , vz

bRk = Z Z eilt _ Z eilt

i(k+0y,— — /=
k20 |I|<K ')y I£0< K v Vz



23

We have |um’K| < CK\/T_3 and |Vu9q’}(| < CK\/; and ]VVum7K| < CK\% So by

applying Schrodinger-Lichinerowicz formula on xvgp g, we have

1
(4.8) 10,7172, ) < D001 ][72 + CﬁHUW,KH%Q(NR)

2R
3
2 1 2
<D z2(vp) + CEHDER,KHLQ(NR)
< CR7?|Jol[ 72wy
for some C' > 0. By taking the limit K — oo, we have

HUD‘%H%%(NQR) < CR_Q”UH%Q(NR)'
3

Notice that [V;, D] = 0, so we can use the same argument on V,;v now. Here we

need the following claim which is also proved in corollary 4.8.

vt (t)v/z

(4.9) 1DV NZ2vmy < CR™0lZ2(vp)
v (H)VZ

and

Ve )
(4.10) | ||%§(NR) <CR 2||U||%2(NR)'

v ()7
So we have

2 2 1 2

(4.11) oo e l[23 v, ) < IDIVORK]l[z2 (v + €z 032y

3

U+<t)\/Lg 2 1 2
< ||D[v . ]HLQ(NR) +Cﬁ||um7K”L%(NR)
NE

< CR™|o]|Z2(np)

for some C' > 0. By taking the limit K — oo, we prove this proposition. O
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In the next section, we will derive some regularity properties about the leading

coefficients.

4.2. Regularity properties and the asymptotic behavior of the L?-harmonic
sections on the tubular neighborhood. In this subsection, we will derive some
regularity theorem for those u € L?*(Ng;S ® Z) and Du = 0. These estimates
are similar to the doubling estimates appearing in [11]. Recall that, by standard

regularity theorem, u is a smooth section on any compact subset of Ng. We write

(k—=LHYorr+
e\ 3 Uk,l

u= § ezlt
I,k

e(k+%)9U];l
where
—+ ~ — g~
Ut T () =g 0T 1, (r)
v- /., W1 T2 (1) 4y, T g1 (1)
for [ # 0 and
U+ uy rhe
U~ u,;or_k_%

Since u € L2, so we have

uy, =0 for k < —1;

u,;lzofork;ZL

Moreover, let

ulj,leiéejkf%,l(r) - uz?,z@’%"llk+%,z('f’)

Ek,l — {eilt c L2}’

_U;,ze_i%eljk%,z (r) + Ul?,le_iégj—k—g,z(r)

then Ey,; L Epp for any two (k,1) # (K',0').
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By using these observation, we can prove the following proposition.

Proposition 4.5. Let u € L*(Ng; S ® Z) N ker(D) with the corresponding Fourier
coefficients {u;;}. Then the Kp-leading coefficients {u;"} is in I} for any k € N.

Moreover, we have

(2k +1)!

(4.12) 1" ezl < 3WH“HL2

Proof. First of all, let Py; : L?* N ker(D) — Ej,; to be the orthonormal projection.

We have
A_A,_ e\l|7‘ A e —|lr
. +u
i Up,1 Ug,
Poy(u) =e " ) . \[H s . lir
—&gn(l)umef + sign(l)u, eﬁ
for any .

Now recall that (uf', u;') = (iig;, —sign(l)ig,) for [I] > 3 and (uf, u;’) = (i, —sign(l)ig,)+
(tig,, sign()dg,) for [I] < 5

We can compute directly to get
Il Ze gy = Y [Poa(w)
!
R R
> St [ i i [ e
7 0 0
R
> S il / (€
0

2[ 2kR2k+1
(2k +1)!
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Meanwhile, the second line of this inequality also tells us that
R
el 72 =D |a(;l|2/0 e~ 2Mr gy
> Y e ig, "R

1
<3m

Z Z e_1|ﬁ0_71]2|l]2kR2k+1.

1< 5%

So we prove (4.12).

By using this proposition, we can prove (4.3) and (4.4) in the following way.

ut ()=
Corollary 4.6. Suppose that ( )ﬁ is the Kr-dominant term of a L?-harmonic

and

for some constant C' > 0.

Proof. We can compute directly that

ut(t) = ut(t) S
(o) [0k
u(t) W (t)
Then by proposition 4.5, we can prove this corollary immediately. U

4.3. Regularity properties and the asymptotic behavior of the L?-harmonic

sections on the tubular neighborhood. Suppose that v € L}(Ng;S ® Z) and
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Do = 0, then we can write

(k=301 +
20V

D = Zeilt

(k4+2)07,—
Lk (& 2 Vk,l
where
+ + ~ — i~
4 B Uk,le—%,l(T) - Uk,llJ—k—l—%,l(T)
— + g~ — A~
Vo ) Ul Tpgra(r) + v T 1, (r)
for I # 0 and
v+ vl rhTe
V= v " " >
k,0 ,

Since v € L?, so we have

vzl:OforkgO;

U,;l:OforkZO.

Proposition 4.7. Let v € L?(Ng; S®Z)Nker(D) with the corresponding coefficient

{v,ﬁil}. Then the leading coefficients {(v;")} defined in definition 4.3 is in [? for any
k € NU{0}. Moreover, we have

(2K + 3)!

“[|o]lZ2

(4.13) (0 ezl < R2k+3

Proof. We use the notations defined in proposition 4.5.

_’U:UZJ%J(T) . vfflj a(7)

Py, = :
U:ujé,z(?") _Uizljg,l@")
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for I # 0 and

1
O Ufori
P—l,O = 1 ) Pl,O =
V_q T2 0

sinh(Ir)

Since J1, = I we have

1
27

sinh?(Ir R
ol > St + o) [ D il ol [

140
12k R2k+3

>Z |U11|2+|U ll| )Z (k + 3)!

0 l2kR2k+3

:;’ ‘22 (2k + 3)!

Therefore we prove this proposition. O

We also have the following corollary which is similar to the corollary 4.6. We omit

the proof for this corollary.

BONE

Corollary 4.8. Suppose is the dominant term of a L3-harmonic sec-
v (t)VZ

tion v as we showed in proposition 4.4, then we have

a.
v 2 —2)| 112
D z2vg) < CR™ 0| 72(vp)
and

I 122 vy < CllollZ2 (v
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for some constant C' > 0.

b.

]H%?(NR) < CR_4||U||%2(NR)
and

H%f(NR) < OR7M|o][Z2(np)

for some constant C' > 0.

Finally, we can prove the following theorem by using proposition 4.7 now.

Theorem 4.9. For any v € L3(Ng) N ker(D), we have
lollZ2qv,) < 7 ZlolZ2ovp:
Moreover, we can also prove that
C
||Ut||%2(NT) < Tgﬁ”“”%?(zv,%)-

for some constant C > 0 and all r < %.

Proof. To prove the first statement, we use the lemma 2.6 to get
HU“%?(NT) < C'7“2||Vt’||%2(z\rr)

for all v € L?(Ng) and r < R.
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By the lemma 2.6, proposition 4.7 and proposition 4.4 b, we have

vt (t)\/z
/ b|* < OrQ/ |Vo|* < 20r2/ |V 0V 2 + |Vog|®
r r T v

“(VE
3
<20 HUHL2 (Ng) +207"4HUERHL2 Nr)
3
< 40@”“”%2(1\@)

for some C' > 0.

To prove the second statement, we notice that by applying lemma 2.6 on vy,

v ()\/z
[oe<e [ wnp <o [0 TV ) ps womr
r r s U

NG

By using the proposition 4.7, we have

+
v (V= r?
[ P <2z ol
N,

ONE
So we have
2 3 2
/N o < 27 ol + 2 oy,

Then by the first statement proved above and proposition 4.4 b,

3
,
loal330x,) < g0z, < Czllolacn:

So we prove the second statement. U

Remark 4.10. By using this theorem, proposition 2.3 and lemma 2.6, we can prove

that for any v € L3(Ng) N ker(D), we have

lollz2, vy < 7 E 10 NZ2 (-
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Moreover, we can also prove that
C
Hth%Z’_l(NT) < 7"5§||U||%2(NR)'
for some constant C' > 0.

5. VARIATIONAL FORMULA AND PERTURBATION OF CURVES

We introduce some tools needed for the proof of the main theorem here.

5.1. Variational formula. We should review the following fact about the Sobolev
inequality and introduce a modified Poincare inequality first.

Let u € L} (M — X;8S ® I). We have |u| € L*(M — %;R). Since ¥ is a measure
zero subset of M, we can extend |u| as a L? section on M. Moreover, suppose u is in
L3(M — ;8 ®7T), we will have |u] € L*(M;R).

Now, by Sobolev inequality, we have

(5.1) [ullzoarmy < CH’JHL%(M;R)

for some constant C' > 0. Another important tool we need is a modified type of

Poincare inequality.

Lemma 5.1. Let u € L? and u L ker(D), then we have
(5.2) Jull 22 < C[[Dul| 2

for some C' depending only on the volume of M.

Proof. The lemma can be showed immediately by proving the Dirac operator has
empty radius spectrum and empty continuous spectrum and has nonnegative 1st

eigenvalue. See [6] for the proof. O

Now, we define the following functional:
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Definition 5.2. Let f € L? |, we define the functional

Bitw) = [ IDuP + )

for all u € L2.

Since D is self-adjoint, the Euler-Lagrange equation of F; will be
(5.3) D*u = f

We can prove the following proposition:

Proposition 5.3. For any f € L2, the corresponding functional Ej is bounded from

below and for any u € L? we have
(5.4) Ei(u) > o||Du|7. - 5

for some o« > 0,8 € R (This property is usually called coercive). Moreover, if we
consider the admissible set of E; to be all sections in L? N ker(D)*, then E;(u) has a

unique minimizer.

Proof. We separate the proof into 3 parts.

Step 1. First of all, we define the following smooth functions on M:

1 ODM—N%

X1
0 on N%

and X2 = 1 — X1-

Then we claim the following statement: There exist d, Ky > 0 such that

(5.5) Biw) 25 [ pGawP+ [ o) - Ko
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Assuming this clam is true, then by proposition 2.3, we have

/ME<X111, f) = /ME(Xm, fo) + (V(x1u), 1)

for some (fo,1) € L2(M — ;8 ®T) x L* (M — ;8 ® Z® T*M). So by Cauchy’s

inequality, we have
B 25 [ D0+ [ ) - K
M-% M-%
1
ZMD&wwé—ﬂvwwmé—zﬂﬁﬁrﬁ/ (xau, o) — Ko
€ M-%
Meanwhile, since xy;u =0 on N n, We have
IVOawlze < IDGaw) |72 + sup |2]]|ul|72

by Schrodinger-Lichnerowicz formula. Therefore for any ¢ < g we have

0 1
ﬂwz;wmw@—wﬂ;mm@—gmm+ﬂjuﬁm—m
5 2 2 2 1 2
> 1IP0I — (14 203 elbanlF — I, — Ko.

Now since yju = 0 on {r < %}, by regularity theory of the elliptic operator, we

have
aullze < CIDOGW) 2z
So by taking € small enough, we have
0 o L
(5.6) Ej(w) = 2 [1DOaw)l” = lIFIZ, — Ko

Therefore, by setting a = ¢ and 8 = L||f||2. + Ko, we can prove that Ej is bounded
1

from below and coercive.
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Step 2. We prove the claim (5.5) now. By using Schrodinger-Lichinerowicz for-

mula, we have

(5.7)

2 2 2 _
Bz [ a2 [ gEe ey [ aee [0+ o

for any v < 1, where & is the scalar curvature on M. Since we have product metric

on Ng, so #Z = 0 on Ng. Therefore there is a constant C' > 0 such that

/ Rl < C / .
M- M-

Now for any € > 0, by using Holder inequality and Sobolev inequality, we have

¢ [ bl e paen)
M-X M=%

<e(f baul) +Cvolany?

< 5HX111H%§ - K.

for some constant K. > 0 depending on €.

Meanwhile, we have

1
/ [Vul® > 5/ Vixawl]* = C lo(x1)ul?.
M=% M=% M-

Since o(x1) is supported on M — Ng, by proposition 2.6, we have

| Jetanr<c [ v
M- Ngr
Therefore we have

1
(5:5) [ower=g [ Ve o [ v
M-X 2 M=%

Ng
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Similarly, since (1 — x1) is also supported on M — N B, We have

|M—mmmsc/|ww

Ngr
which implies
(5:9) | (1 =x0)u, Pl < ell(t = xullez + Cellfl 2, < 06/ Vul* + K.
M-% Nr
for some constant K. depending on ¢.

Therefore by (5.8) and (5.9) there exists 6 > 0 small enough such that

2 —x1)u, > 5 1 2 /.
Jooweks [ iz [ ol - &

Now, by taking ¢ < § and v = 2§, we can estimate (5.7) as follows

.wwz%/'|wa%w5 %m%wmmm—K¢4ﬁ+/ (s )

M- M=% M-

1
z%/ MMwW—%MM%—&—K&~ﬂW;+/ (a3,
M-% de ! M-%

Again, by regularity theory of Dirac operator
Paullze < ClIDOGW |2,
we can take € small such that
2 0 2
elbaulze < SID0aw)lz..

So we have

, 1
B =6 [ DCawP+ [ fud) - Ko K- R,

M- M-%

Let K. + K. + ﬁHfH%Q_l = Ky, then we proved our claim.
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Step 3. Now we should prove that F; has a unique minimizer in L? N ker(D)=*.

Suppose we have a sequence {u, } C L2 N ker(D)* such that

n—00 uelL?

Let us call inf,c 2 Es(u) = m. Then there exists ng € N such that
Ei(u,) <m+1
for all n > ngy. So
alDu|7 = B < Ey(u,) < m+1

for all n > ng. This inequality implies the sequence {||Du,| 12 }nsn, is bounded. By
lemma 5.1, we have {||u,[|z2} is bounded. So a subsequence of {u,} has a weak limit,
say u, which is a minimizer of Ej.

Finally, we prove the uniqueness. Suppose we have u,,u, are two minimizers in

L? N ker(D)*, then

Uy + Up
2

B < [ H(1Du 4 Duf) + 3 )+

<ubv f)

1 1 1 1
< [ =|Dug|* + =|Duw|* + =(u, -

=m

by Cauchy’s inequality. The equality holds if and only if Du, = Du,, which implies

U, = U, by lemma 5.1.

With this proposition in mind, we have the following proposition.

Proposition 5.4. Suppose that f € L2 (M — ;S ®7Z) and f|y, = 0 for some r > 0.
Then there exists a h € L2(M — ;S ® ) such that Db = § and
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a. [|bllrz < C|[fl|z2, for some universal constant C' > 0;
b. Blx, € Ky

c. The K,-leading term of b, h*, will satisfies
|2 P 1) el Z2s 7Pl (B F)uell72 < ClIFNZ2

for some universal constant C' > 0.

Proof. First of all, we define u; € L*(M — 3;S ® ) to be

—[lr

. ez’lt vz

on Ni and Du; = 0. Then we have

[l 2z <

I

Meanwhile, by using proposition 5.3, there exists a 6 € L? such that D26 = f.
Taking 6 = DG, we have Dh = f. Now, since 6 € range(D), it will perpendicular
to ker(D|r2) by proposition 2.4. So it will perpendicular to w;. Suppose that the
Fourier coefficients of b are h,f?l.

Therefore we can define

. hey
U = —
26,1

W

where ﬁal = (hg, —sign(l)hg,) and iz&l = (hg, + sign(l)hg,). So we also have
]2 < 2C.

Meanwhile, we have

/ <6,al>_o_|h0,l\/ e_2|l|’"dr+/ (B, i)
M- 0 M—N,
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So we have

AC|1)2

gl < T IPB)

where P, is the orthogonal projection from L? to span{w;}. Suppose p is a L? section

such that Dy = 0 and

= E U(Ilul

> 55
on N,. Then we have
. g2 e .
Iollee < Clirolsliz, = > =5 < D g=amp PO
>3 1> 25

4C ~ ~
S v Z IFi(0)]17: < Cllbl[7-.
i—c2p2
Now we define h = b — n, which satisfies Dh = 0 and h € K,.. Moreover, we have
16l < ClB]| 2.
Notice that by lemma 5.1, we have by Cauchy inequality
o112 Al A A c
16lize < ClbllZ> < Cllbllllfllez, < ellblles + ZlIFllez,
So by choosing £ small enough, we have
16112 < ClIfll 22, -

So we prove a and b. For ¢, we can get it immediately by using proposition 4.5.

Therefore we finish our proof. U

5.2. Perturbation of X: local trivialization. In this subsection, we define some

notations and explain the local trivialization of £. First of all, let Nz be the tubular
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neighborhood of ¥ € A. There exists a neighborhood of ¥ in A, say Vs, such that
Y C N R for all X' € V5. Therefore, we can parametrize the elements in Vs by
{n:8*— Clp € C" and ||n||c» < CRr} for some Cr depending on R. We map 7 to
{(n(t),t)} = &' C Nkg.

Here we choose a variable v < % This variable will also be used in the rest of

this paper. Also, we fix a T' > 1 which will be specified in the following subsections.

Finally, we define a smooth, real valued function x : M — [0, 1] such that

© 1 on N £
X =

0 on M — N,
(We will omit the label (t) later, but keep in mind that this function depends on t).

Now, for each (7,t), we define the following map

P M- - MY,

(5.10) (z,1) = (z + xO(2)n(t), 1)

with ¥ = {(n(t),t)}. This map is a diffeomorphism if ||||c: < C, for some constant
C, depending on t.

Recall that the fiber of € over (g,%',e) € X x Ay is the space L} (M — X5 S, sv.),
which can be identified to L}(M — X;Syw+yx.) ~ LI (M — 3;Sy5.). Therefore, for
an element (¢,%) € X x Ay, there exists N' C X x Ay, a neighborhood of (g,Y),
such that the bundle €|y ~ m(N) x B. x L where L} ~ L}(M — %;S,x.) and
B.={n:S"— Clpe C"and ||n]|c: < e} for some small € > 0.

By the same token, we have the local trivialization of F near (g, X, e) to be 71 (N) x
B. x L?. The Dirac operator D : £ — F will be a family of first order differential
operator mapping from B, x L? to B, x L% Therefore, the tangent space of 9 will be

contained in V x L? where V = {n : S — C|n € C'}. By proposition 2.4, we know
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the perturbation along L? is finite dimensional. We will prove that the perturbation

along V is also finite dimensional in section 7.

5.3. Perturbation of »: estimates. In this subsection, I will say more about the
estimates we get when the curve X be perturbed. Recall that we assume the product
metric defined on Ng, which is gy, = dr? + r?df + dt*. In the following subsections,
we choose a positive constant v < %. The precise value of v can be assumed to be
decrease between each successive appearance. Also, we fix a T" > 1 which will be
specified in the following subsections.
Suppose there exists a pair (y,n) where n € C*(S';C) and
1 on N L
X = )
0 onM— N,
For any pair (x,7), we can define the following corresponding one parameter family

of diffeomorphism

¢s M —3> — M — 3

(5.11) (z,t) = (z + sx(z)n(t),t)

with s < ¢ for some small ¢y and X3 = {(sn(t),t)}. Now we fix a s < ¢y and use
(u,T) to denote the coordinate on ¢s(Ng) in the following paragraphs.

If we write down the relationship of 9;, 0, and 9; and the pull-back tangent vectors
(¢5)7(0r), (¢5)"(0u) and (¢s)" (),
0= (6s)" (570 + 510u + 5{0u)
9. = (¢S)*(%au + %aﬂ> )
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we will have

(¢s)*(a7') (815)
(9)(0) | = (0-)
(¢5)" (%) (0:)
where
L+ s(x=n + x=1) 0 0

1
1+ s(xen + x=0)

—sxn — sz —m) L+ sxzn —sxan
—sxn — s —0n) —sxen 1+ sxen
Since we are not going to change our metric and spinor bundle over M here,

so the spin representation x : TM — CI(TM) will always send 0,, 0,0z to e; =

-1 0 0 0 01 . .
,€y = ,63 = respectively. Therefore, the Dirac

0 =« -1 0 0 0
operator Dy defined on ¢4(Ng) will be

Ds 261'87+62‘au+€3'8a
13
+ 5 Z €; Z wkl(ei)ekel
i=1 k,l
In the following sections, we will identify all these perturbed curves to ¥ by using

the pull-back operator (¢;)*. So we have to write down explicitly

Dy = (¢5)" 0 Ds =e1 - (¢5)"(0r) + €2 - (¢5)"(Ou) + €3 - (¢5)"(0a)

F 530 @Y (6. wale)eser

=1k

We can see that, after some standard computation,

(5.12) (¢s5) (wra(e:)) = M(w(e) )M + (AM)M ™ = (dM)M ™.
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Here we write down precisely the O(s) order term of Z?:l €i Y _pi(@s) (wri(es) ) erer,

which can denote by

— [(dM)11(€1)1d+ (d./\/l)11<62)62 -+ (dM)11(63)€3]

+ [—(dM)12(e1)ex — (dM)13(eq)es + (dM)as(eq)ereses + (dM)sa(er)ereses]

0
= D(s(xn + x=n)1d) + D( - ) = Fs.
—ixn 0

So the term 377 ¢, > ki(@s)* (wii(ei))exer can be expressed as

(5.13) % Z e > () (wule:))erer = Fo + A,

where F; is the O(s)-zero order differential operator described as above and A; is
the remainder which is an O(s?)-order operator.

Meanwhile, suppose that we have the following assumptions: There exist kg such

that

(5.14) 7] z2(s1) < Kot”,
(5.15) 17|l 251y < Ko,
(5.16) 72| 22 (1) < Ko,

We can see that these inequalities will imply that there exists k3 = O(kg) such that

1
(5.17) max{ |x:||7], [xz||n], [m]} < yrriee
(5.18) lxzmell 22 Ixzmell L2 < yrka
(5.19) Ixz2nll 225 X2l 2, [Ixzznlle < Yk

where we use the notion v = (755).
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Here we prove these implications. Firstly, notice that by Sobolev inequality, we

have n is continuous. So

1 2 2m
PO <5 [l [ o)
T Jo 0

1
%Ilnlliz + 2{[nllz2l[nell 2

I 54 2.3
— KT 2K5¢
o0 + 2K)

IN

IN

1
(% + 2),%31?3.

IN

Meanwhile, we have |x.|, [xz| < Cyrt. Therefore

1
|Oc)=lmil, [0zl Il < Crorz,

This implies (5.17). The inequality (5.18) can be proved by the fact |x.|, [xz| < Cyrl
and (5.15) and (5.19) can be proved by the fact |x..|, |xz|, [xz:| < Ch7 % and (5.14).

Under these assumptions, for any s, we have

1
1+ s(x.n+ xz7)

— 1’ < 2’)/T/€15.

So we can write =1+ 05, for some |ggyn| < 297k;15.

1
1+s(x=n+xz17)
For the perturbed Dirac operator D,,, we have the following proposition.

Proposition 5.5. There exists k1 = O(kg) depending on kg with the following
significance. The perturbed Dirac operator D, satisfies (5.14) - (5.19) can be written

as follows:
(5.20) Doy = (1+ 0sy) D + 5021 + xzM)(€10:) + O5 + Ry + A, + F

where

o O, = [e1(sxND. + sxN0z) + ea(sx:10. — sX.105) + es(—sxznd. + sx.nd:)] is a
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first order differential operator.

® R, : L} — L?is a O(s?)-first order differential operator supported on N — N
with its operator norm ||R| < v2k%s?.

e A, is a O(s)-zero order differential operator supported on N, — N <. Moreover,  let

us denote by 7 = 0, the vector field defined on Ng, then
(5.21) / | A [%izdVol (M) < v2kitst
{r=ro}

for all ry <.

e F, is a O(s)-zero order differential operator where

0 sUX1N
(5.22) Fs = D(s(x.n+ xz1)1d) + D( .
—sixn 0

Proof. By using the conventions defined above, we have

(5.23)
I4+s(x-n+xzm) 0 0 0 0 0
M = (14 05y 0 L O [+ ] —sxn sxzn —sxmn
0 0 1 —SXI1] —SX:0]  SXaT)
0 0 0
+ —s*xx:z(m—am)0 0 0 |-

—s*xx:(mip—nn) 0 0

Therefore by (5.12) we can write

(5.24) Dy =(1 + 05x0) (D + s(xzn + xz0)(€10r))
+ (1 + 0y le1(sx70: + 5x770z) + ea(sx=70. — sX70z)
+ e3(—sxzn0, + sx.n0s)]

+Re + A, + F,
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where we define

—1

5.25 R, = —
(5.25) 1+ s(x.n + X357

) [e2(s*xx= (07 — 7m)0y) + es(s*xx: (i — i) 0,)]

to be a first order differential operator with ||R|| < 7v2x2s2.

Finally, we denote

Oy =[e1(sxn0: + sx10;)
+ ea(sxzN0. — 5X10=)
+ e3(—sxzn0; + sx=10:)]
and
IR = 0synler(sx70. + sx770:)
+ ea(sxzn0: — sX.10;)
+ eg(—sxzn0. + sx.10:)]

where R\ is a O(s?)-first order differential operator. We should also notice that
(1 + 0syn)(Sx=m + x2M)(€10r) = s(x=.n + xz7)(€10:) + SRP where SR is also a

O(s?)-first order differential operator. So we can rewrite
Dsyn = (14 0sxn) D + s(xzn + XxzM)(€10;) + O5 + Rs + As + F

where Ry = R, + 0RY + R,
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To prove the estimate (5.21) of A,, we should notice that the term (dM)M™?
involves at most the second derivative of x and 7, which can be estimated by (5.16),
(5.18) and (5.19). So we get (5.21) immediately.

O

By using the conventions of this proposition, we can prove the following proposition.

Proposition 5.6. Let 1) € L? be a harmonic section. Then
IRu()lx < Crinie’s”

for some constant C' depending on the [[¢)|| 2. In fact, this estimate is true for any

¢ € L? which can be expressed as ¢ = \/rv(t, 0, r) with v being a C'-bounded section.

Proof. By proposition 4.4 b., we have ¥ = /rv(t,0,r) with v being a C'-bounded

section. We write down the definition of R

1
1+ s(xan + x=0)

[e2(s”xx=(177 — 7)) + es(s*xx= (i) — 17)0y)]
+ Osynle1(sxnd; + sxijz) + ea(sxzN0, — sx.N0s) + e3(—sxznd, + sx:n0s))

+ sy (Sx=n + xz7)(€10;).

Then by using (5.14), (5.15), (5.16), (5.17), (5.18) and (5.19) we will notice that every

term of R, can be written as the type s?a/30; where |||z~ < ’}/Tlilt% and

/ 1B|%i7dVol(M) < ypr2t?.
So we have

IRz < Pllollcvimte.
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5.4. Composition of the perturbations: estimates. In this subsection, we dis-
cuss the composition of perturbations and its corresponding Dirac operator. These

computations will be used in the following subsections.

Let v < %, T > P > 1 be fixed for a moment. We assume that there is a sequence

{(xi,m:)} satistying the following two properties:

1. x; is a smooth function satisfying

1 on NTJH
Xi =
0 onM— Nz
T’L
for all i e NU{0}.
2. There exists ko > 0 such that
2
v
(5.26) 17ll 2251y < K2
t
(5.27) (M)l z2(s1) < R
(528) ”(ni)ttnLQ(Sl) S R, .

for all 7 € N.

Similar to the argument of (5.16), (5.18) and (5.19), we have the following impli-

cations

s
(5.29) max{|(x:):||ml, [(xa)zlmal, [(m0)el } < yrks T
(5.30) 1 Oxa)=mill 22, 1| (xa)zmill L2 < Yrks,
(5.31) 1(Xa)22mill 225 1O 22mill 2, 11 (Xa)z2mil 22 < ks

for some k3 = O(ka).
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Furthermore, we denote 1’ = Z;‘:l XM
As we have showed in previous subsection, we can define the following family of
diffeomorphisms
gL M —X — M-—X,;
(5.32) (z,8) = (2 +s(n'()(1)), 1)
with s < ¢y for some small ¢y and 3, = {(s(n'(t)),t)}. Now fix a s, we use (u,T) to

denote the coordinate on ¢%(Ng).

The Dirac operator D,,: define on M — X will be
Dyiy = <¢8)Z o D; =ey - (¢S)i(a7') +eg- (¢s)z(au> +es- (¢8)i(8ﬂ)

+ % Z e Y (¢s) (wules))erer.

=1 <l

N

In this subsection, we prove the following proposition.

Proposition 5.7. There exists a k3 = O(k2) depending on ky with the following
significance. The perturbed Dirac operator D, which satisfies the hypothesis (5.26)

- (5.31) can be written as follows:

(5.33) Dyivr = (1+ QiH)Dsni + 5((Xi+1)Mir1 + (Xis1)zMi41)e10

+@i+1+Ri+1+Az’+1+}—i+1

where

e O the (x,n) = (Xit1,Mir1) version of O is a first order differential operator
of order O(s).

e Ritl: 12 — [?is a O(s?)-first order differential operator supported on
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N = N i with its operator norm bounded in the following way:
IR < vimss™
o Aitlis a O(s)-zero order differential operator. Moreover, let us denote by 7 = 9,

the vector field defined on Ng, then

(i4+ 1)

(5.34) /{ A iV ol(M) < (s
r=rg

for all ro < 7.
e Filis a O(s)-zero order differential operator where
(5.35)
. - 0 SUXi+17)i+1
Fo = D(s((Xir1)Mi41 + (Xit1) 1) Id) + D( )-

—SIXi+17i+1 0

Proof. We can also define the matrix M® to be

CANCE (&)
@)@, | =M"| (9.)
CANES) (9:)

Notice that the support of (x;), and (x;)z are disjoint for all ¢ # j. Therefore we

can write M1 as follows

(5.36) M = ! M+ N

14 S((Xi+1)2Mit1 + (Xit1)2Mi+1)
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where N is a (it1,mi11) version of M:

N — ! .
L+ s((Xir1) =M1 + (Xir1)2Mi41)
S((Xit1)=Miv1 + (Xiv1)2Mig1) 0 0
—SXi+17i+1
—52Xi+1(Xi+1)2(77i+177i+1 - ﬁi+1ﬁi+1) S(Xi+1)277i+1 _S(Xi+1)277i+1
—SXi+1ﬁi+1
_52Xi+1(Xi+1)z(77i+1ﬁi+1 — Nit1Tit1)  —S(1) i1 S(Xig1):Mi
Let us define 1+3((X')z;'+(X‘)2ﬁ') = 1+¢'. Define ©; and R to be the (Xi+1,ni+1)

version of ©4 and R,. Then we have
Dyyitr = (14 0™ ) (Dyy — AY) + 5((Xiw1) i1 + (Xi1)Tir1)e10s
+ 6i+1 +Ri+1 +Ai+1
=(1+ QHI)Dsni + 5((Xit+1) 241 + (Xiv1)z0it1) €10

+OI L R L [ATT — (14 oA

where AT = 25:1 ej de(w,(fﬂ)(ej))ekel with w(*Y being the pull back of Levi-

Civita connection (¢%™!)*(w). Using these conventions, we have
AT = (1+ AL = [(dMTH M) = (dM)(M) ™ = o Hd M) (M) 7.

Now by using (5.35) and (5.36), we can see that F:™ is the O(s) order term of the
(dMFY (ML — (dMP) (M) L. Therefore by using (5.26), (5.27) and (5.29), we
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have

/ (MY MY = (dMIY(MI) L = FF RigdVol (M) < Cob (o

for some universal constant C. Therefore we can choose k3 = O(k2) large enough

such that the right hand side of this equation is smaller than }ﬂ%( .

Jrdst
Tz‘+1
Meanwhile, we have

K3S8™.

(5.37) / (dMIPYMI) T (dMIYMI) PidV ol (M) < CA2a2

Th3S

for all j, so we have

/ |(dM)(MI)HPizdVol(M) < v3(i + 1)k3s°.

Now recall that || < ypsks(5r)2. So we have

(5.38) / ) |0 (MY (M) HEizdV ol (M) < (i + 1)(

Therefore by taking

4.4
Ti+1 Jhizs”.

A = A5 - (1 AL -

we prove this proposition.

Similarly, we have a ¢-th version of proposition 5.6 as follows

Proposition 5.8. Let 1) € L? be a harmonic section. Then

IR ()22 < Crg s

VA

2.2
TiJrl) ’

for some constant C' depending on the [[¢[[z2. In fact, this estimate is true for any

Y € L? which can be expressed as ¢ = /rv(t,0,7) where v is a C'-bounded section.
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5.5. Variational formula for the perturbed Dirac operators. In subsection
5.1, we prove that there exists a unique minimizer for E; in L? N ker(D). The ar-
gument in subsection 5.1 also works not only for D but also for the perturbed Dirac
operator Dy,,, D, appearing in subsection 5.3 and 5.4. However, using the varia-
tional method to find the solution Dj,;u; = § wouldn’t give us enough information
about u; changing by varying s. Therefore, we should say more about this in this

subsection.

Proposition 5.9. For any j > 0 fixed. Suppose f € L2, and 1y € L? be a harmonic

section satisfies
Dugy =¥,
then there exist u = uy + u® and ¢y > 0 such that
Dgyiu = §

and [[u*||z2 < C([luollzz + [Ifll 2, )s for s € [0, co] and C being a universal constant C'.

Furthermore, the existence of uy can be given by proposition 5.4.

Proof. Suppose D,,; is a perturbed Dirac operator and § € L?,. We want to solve

u € L? satisfies
Dsnju = f

We solve this equation iteratively. Firstly, we know that the perturbed Dirac op-
erator D,,; can be written as D + §7 where 67 : L? — L2 is a first order differential
operator with its operator norm ||6?|| < C's for some C' > 0. Meanwhile, by proposi-

tion 5.4, there exists uy € L? such that

Duo = f
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So we have
Dsn]’uo = f — (55(UO).

Since |uollz2 < C[fll .2 ,, we have [|67(uo)[| 2, < Cs||f|| 2 . By taking s small enough,
we have [|d7(uo) (|2, < 5Ifllz2,-

Now we solve v; € L? such that
DUl = (Sg (Ll())

by using proposition 5.3. Then we have Dy, (ug+01) = f+01(b1) where [|67(by)][ 2 <

51107 (uo) || < {1Ifllz2, -
If we call 67(ug) = 30, —07(b1) = 31 and ug + v; = uy, we can see the patten of

induction. Suppose that we have
Dgpiuy =§ — 3
with 3]z < #HfHLz_l, then we can solve v;,; € L? which satisfies
Doy =3
by proposition 5.3. Therefore we have
Dy (U, +001) =+ 5£(Uz‘+1)-

where [|0](vi11) ]|z, < 5ll3ill < s Ifllz2, - By taking w4051 = w54 and —6](vi11) =
3i+1, we finish our argument of induction.
Finally, we take the limit ¢ — oo, then we have u;,; — u in L%-sense which will

satisfy

Dsnj (u) = f.
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Moreover, since u—ug = > - v; and v; = £67(v,_1), we have Y ;" v; is a O(s)-order
L? section. We call 77 v, = u?.

Therefore, we construct a solution uy + u® satisfies

(5.39) Dgpi(ug +u’) = .
O
Here we have the following remark for this proposition.
Remark 5.10. In our proof, since we can always write §7 = >°°°, 3253 where the

operation norm of (5{ is bounded uniformly. So u can be written as .-, su. where

| sz Siu(i)Hz — 0 as m — oo.

6. THE GENERAL Y EMBEDDING IN M

Now we try to derive the same results as we did in previous section, but this time

we don’t need to assume that ¥ has a product type tubular neighborhood.

6.1. Asymptotic behavior of the L?-harmonic section. Let g be a smooth met-
ric and ¥ C M be a C! curve embedded in M. We can define the tubular neigh-
borhood of ¥ by sending the elements in the normal bundle {v € vs||v] < R} to
M by the exponential map. We can parametrize this neighborhood by cylinderical
coordinate (r,60,t) and g = dr® + r?d6* + dt? + O(r?). In the following section, we
will use Dp,oq to denote the Dirac operator of product metric.

The argument in section 5 can be modified for the general metric if we can prove

the following lemma

Lemma 6.1. For any R > 0 fized. Let v € L3(Ng;S ® I) such that D(v) = 0, then

there exists v* € L?*(Np; S ® I) such that D,yoqd™ = 0 and

(6.1) b=10"+05,
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satisfies the following estimate:

3
2

(6.2) [050ll 22w,y < O(r

).

Proof. We divide our proof into two parts.

Step 1. Here we set up the strategy of the proof. First of all, it is clearly that we
can write D = Dy.oq + O(r?) L1 + O(r) Ly where £ is a bounded first order differ-
ential operator and L, is a zero order operator which is composed by some Clifford

multiplication.

Secondly, the argument in Lemma 2.6 still works for the elements in L?(N,; S®Z).

So by using the equation
Dp'I‘OdU = O<T2)£1(U) + O(T)ﬁo(b),

we have [|O(r?)L1(0) + O(r)Lo(0) || 2(n,) < O(a?) for all @ < R. Let us call this term

f. So we have
DprodU = f

for some [ satisfies || f||r2(n,) < O(a?)for all a < R.
Here we need to use the regularity theorem in [3].

Theorem 6.2. Let R be the Atiyah-Patodi-Singer boundary condition for the spinor
bundle S on the manifold X with boundary Y, then we have for any v € L?(X;S)

we have
[0][2x) < CU[R(0Iy) 22 vy + ol 2y + ([ Dproad| 22(x))
2

for some constant C.
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In our case, ¥ can be regarded as a degenerated boundary. We take X = M — N,
and Y = 0N, then we have

10l z2ar—n,y) < CUIR(0V) 22 o,y + 0Nl 21—,y + | Dproad |l L2 (ar—n,))-
2

Now, if we take r goes to 0, the boundary term || R(v]y)][12 (an,) Will vanish by lemma
2

2.6. So we have

(6.3) [0l 2r—sy < Clollr2m—5) + | Dproad|l L2 (ar—sx))-

Therefore, if we can prove that there exists a v* € L? such that D,yoqd™ = 0 and

N[
I
o)
—~
=
Ol
N

[ / b — 0 [2idV ol(M))
{r=ro}

then we can prove the lemma by using (6.3).

Step 2. Now we prove the existence of v* € L?. To prove this part, we write down

the Fourier expression of v on Nk as we have done in section 3.

i(k—2)0y/+
e\ T3 Vk,l

o(t,r,0) = Ze”t
1k

i(k+3Y0y—
e'L( +3) Vk,l
The equation Dv = 0 will give us the equation

d_ _

d
avi:l — BV +

! + o prf) — ()
mv + B (f) = 0;

GJWV_ + P,;,(f) =0

where P is the projection mapping to the first component of the Fourier expansion.

(k+3)+0(r?)

a, /6 have the form m
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Now we can find the two nonzero functions pf(r) by solving the following ODE:

+ + .
o Pry = Qp
dr ki k)

d

%/)1;75 = _ﬁ/)/;z-

So we have Cr+3) < p;l < Cor®+3) and Cpr—*+3) < Pr1 < Cor=*+3) for some
CQ > Cl > 0.

Therefore we have

d B )
(6.4) a(ﬂizvkﬂ = _Pizmvﬁ - Pkfngl(nﬁ
d _ [ _ o
(6.5) E(pk,lvk—m = _Pk,zmvk,z - Pk,zpk,z(U)J

for all k, 1.
Suppose k > 0, the integral of (6.4) shows that

N[

_ _ b P
|/’Zlvk,l(b) - P+Vk,z(a)| < / pz_,l(|vk—j_l| + |PI:_Z(U)|) < (b2k+2 - a2k+2)2(/ O(1))

N

(6.6) < C(b*F+2 — q2+2)3(p — q)2.

By using this inequality we have

for some ¢ € C. |V, > %r‘ ~2 > =2 which contradicts the lemma 2.6 if ¢ # 0.
So we have lim,_,q p;leTl(r) =0.

Now, by taking a — 0 in (6.6), we have

1, _ 3
Cib*2 |Vk,l|(b) < |P;1V;c,l|<b) < b
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So we have
(6.7) Vil (r) < ngiO(r)

for all & > 0 with some number »7,  |ng > < oo. Similarly, by using the same

argument, we can also prove that

(6.8) |Vk+l|(7“) < ng,O(r).
for all £k <0.

For the case k = —1, by (6.7) we have lim,_,, leijl = ¢ for some ¢ € C. So we
have

NI

Vo) = v_ur% + o(r2).

Similarly, we have

N|=

Vl+l(7“) = UUT’% +o(rz2).
For the case k < —1, if we have
limsup |p}, V| (r) = ¢ < 00
r—0 ’ '
then we have |V,7[(r) < cr~*=2 < ¢r2. On the other hand, if we have
limsup |y, Vi |(r) = oo,
r—0

then we have k < —2 by (6.6) and (6.8). Moreover, (6.6) implies that

]p;lejl(b) - p;lvkjl (a)] < C’p;l(a)a?
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So

P;l (b)

apZz(a)

| Via(b) — a™*Viy(a)| < i O(1).

Therefore we have

lim sup |a2Vle(a)| < ng,0(1)

a—0

which implies

Vieal (r) < g O(r%).
So we can conclude that

Vil (r) < n,O(r2)

for all £ < —1. We finish our proof.

Remark 6.3. By the same token, we can also show that the element in ker(D|.2)
has similar decomposition. To be more precisely, for any u € ker(D|;z2), there is a

decomposition u = u* + ug o such that Dy.q(u*) = 0 and |ug; o] = 0(\/%).

6.2. Modify the propositions in section 5. . Now we modify the results we get
in section 5 without the assumption of having Euclidean tubular neighborhood.
First of all, we should set up several notations. Let Ng to be the tubular neigh-
borhood of X, we should now use D,,,q to denote the Dirac operator with respect to
Euclidean metric on Ni. We define D™ = XnDproa + (1 — xn)D, where x, is defined

in section 5.4. So we have

D™ = D,.0q on N

r .
Tn+1



60

Moreover, we have the following proposition. Here we take 0y = 0,, 0, = Jp and

83 - at.

Proposition 6.4. Let [D™ — D] = §, we have
5" = 5" 4 53"

where

° 5571) is a first order differential operator supported on N_- such that

(ﬂm = Zaiai with [a;] < O(r?) and |as], |as| < O(r).

° 5(()71) is a zero order differential operator supported on N such that

1657 = O(r).

Meanwhile, we can write a new version of propositions in section 5 as follows.
We follow the setting in section 5. Suppose (11, x1) satisfies (5.14), (5.15), (5.16).
We also define

QbS(t? Z, 2) = (tv zZ+ 3771<t>7 Z+ 8ﬁ1<t>>

and
3 3 3
Doy =3 e (9a)(e0) + D _ei Y (6:)" (win)ejen
i=1 =1 J,k=1

Then we have the following proposition

Proposition 6.5. The perturbed Dirac operator can be written as

D5771 = (1 + pl)D(l) + S((Xl)znl + (Xl)Zﬁl)(elat> + @s + Rs + -/45 + ]:s + 6(1)
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where

e O, = [e1(sxN0; + sx0s) + e2(sxzN0> — $X2705) + €3(—sx:n0, + sx.n0z)] is a  first

order differential operator.

e R, : L7 — L*is a O(s*)-first order differential operator supported on N, — N
with its operator norm from |R|| < v#x}s*. Moreover, for any ¢ € L} N ker(D)

we have

3

IRs(¥)lz2 < Crzrie’s®

for some constant C' depending on ||¢|| 2.
o A, is a O(s)-zero order differential operator supported on N, — N £. Moreover, let

us denote 7 = 0, be the vector field defined on Ng, then
(6.9) / | A [%izdVol (M) < yrritst
{r=ro}

for all rg <.

e F, is a O(s)-zero order differential operator where

0 StXN
(6.10) Fs = D(s(x.n + xzm)1d) + D(

—sixp 0
e 01 can be written as §(1) = 5((]1) + 59) where 5?) is a first order operator with
5%” = Zai@» with |a;] < O(r?) and |as|, |as| < O(r)
and 5((]1) is a zero order operator with
5] = O(r).

Moreover, 6V is supported on Ng.
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Similarly, we have a new version of proposition 5.7. Suppose that we have a
sequence of pairs, {(x;,7:)}, which is defined in subsection 5.3. Moreover, we suppose

n; satisfies (5.26),(5.27) and (5.28) and we write n’ = Z;:o s7T1x;n;. Then we have

Proposition 6.6. There exists k3 = O(k2) depending on ko with the following sig-
nificance. The perturbed Dirac operator Dy, which satisfies the hypothesis (5.26),
(5.27), (5.28), (5.29), (5.30), (5.31) can be written as follows:

(6.11)
Dy = (1+ 0" DE 4 5((xi)miss + (Xis)si41)e10r

+ O p R 4 A FiAl 4 50D

where

e O the (x,n) = (Xit1,Mis1) version of O is a first order differential operator
of order O(s).

o RiML: [2 — [%is a O(s?)-first order differential operator supported on

N — N_:_ with its operator norm
T Ti+1
i+1 2 2.2
IR < vprgs”

e Aitlis a O(s)-zero order differential operator. Moreover, let us denote 7@ = 9,

be the vector field defined on Ng, then

A ) 1
(6.12) / JAT PigdV ol (M) < v%&%(%)s‘*.
{r=ro}
for all o < .

e Fi*lis a O(s)-zero order differential operator where
(6.13)
0 SEXi+17i+1

}fﬂ = D(s((Xi+1)2Mi1 + (Xit1)z0is1)Id) + D( . : )
—SUXi+1Mi+1 0
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e 50D can be written as §G+D — 5((]i+1) + 5§i+1) where 5§i+1) is a first order

operator with

07 =" ;0; with |a;| < O(r?) and |as|, [as| < O(r)

5((]i+1)

and is a zero order operator with

650 = O(r).

Moreover, 60*Y is supported on N .
Tl

7. FREDHOLM PROPERTY

7.1. Basic setting. In this section, we develop an important theorem which in-
dicates that the the perturbation along V is finite dimensional as I mentioned in
section 5.2. The operator, T4+ 4-, we construct in this section can be regarded as the
linear approximation of the moduli space 9t we defined in our main theorem. We

roughly sketch the idea of construction this operator in the following subsections first.

First of all, we consider the idea which comes from [2]. Let N be a tubular neigh-
borhood of ¥ equipped with the Euclidean metric. By the computation in subsection

4.1, we know that for any u in the ker(D|r2(n.se7)) can be written as

Glilr o—lilr
ity NG ~— z
u= Z € t[ua_»l . f [T + u07l . f —|lr ]
! —s1gn(l)% s1gn(l)eﬁ

+ higher order terms.

We define B mapping from ker(D|2(y.se1)) to L?(S; C?) by B(u) = (3, a&l@i\llt +

S it — Y sign(l)ad et + 3, sign(lyig e~ ).
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Secondly, we define the following spaces

Eap® = (Y we™,y | —sign(yue)|(w) € lo} and
l

l

Exp™ ={(Q_me ", Y _sign(ljme™"")|(w) € b},

l

then we have the corresponding projections 7+ : L?(S*; C?) — Exp*.

Proposition 7.1. Define the maps p* = 7% o B in the following diagram.

B
keT(D|L2(M—E;S®I)) _— L2<Sl; (C2)

p —
s

Exp~
We will have
a. D |gerpt) : ker(pt) — Exp~ is a Fredholm operator.

b. pTlierp-) : ker(p~) — Exp* is a compact operator.

Proof. a. First of all, for any r» > 0 small enough we have

/ Duf? = / Vul? + / (1w, Byu)in, dVol + / (%P, )
M—N, M—N, AN, M—N,

by Schrodinger-Lichinerowicz formula. Now by taking the limit r — 0 and u €

ker(p*), we have

= Vul? — za2+/ Rul.
[, vt S lag =

So

IullZ2arosy < D gyl + CllullZaqa—s)
!
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for some constant C' = sup [#|. If u € ker(p™[ker(pt)), then 37, |I]|dg,[* = 0, which

implies that

||u||i%(M72) < OHUH%%M@)-

So the kernel of p~|ie,(p+) Will be finite dimensional.

To prove that p~|er(p+) has finite dimensional cokernel, we can prove the following
statement instead: There exists n > 0 with the following significance. For any
> tige™ € Exp™ such that ag, = 0 for all I satisfying |I| < n, there exists u €
ker(D|rz) such that [ B(u) — (i)l 22 < 5l (g )| ze-

Suppose this claim is true. We let W := {37, e™ag,|ig, = 0 for all [I| > n}.
We prove that range(p™|kerpt)) + W = Exp~ as the follows. Suppose not, there
exists v € L?(S*; C) such that v ¢ range(p™ |ker+)) + W. Then we can assume that
v L (range(p™ |ker(p+)) + W). So by using the claim in previous paragraph, for any

> eig, € Exp™ with || 35, eag, || 2 = 1, we have

(v, Z e“tﬁ&ﬁ = (v, Z eiltﬂaﬁ + (v, Z e”tﬂ&»
1

[1|<n [l|[>n
= (v, Y eMig,) + (v, B(w) + X
l|<n

=X
where | X| < 1||v||z2, which is a contradiction. Therefore we have

dim(coker(p™ |ker(pty)) < 2n + 1.
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Here we suppose ||(4,,)]l;2 = 1 without loss of generality. To prove this claim, we

can consider the following section

(x is the smooth function defined in subsection 5.3). So by this setting, we have

efnR

[ D(u)|| 2 < C 7

By proposition 5.4, there exists u* such that D(u*) = D(uy). Moreover, we have

1Bz < O

7 So by taking u = uy — u*, we finish the proof of this claim.

b. By the similar argument, we have

Z |l||ﬂo,z|2 < CH“”%?(Mfz)
1

So any bounded sequence {u™} such that {p*(u™) = (ngle)} converges, we have

D lag P+ llag, P < C.
! I

This implies that there exists a convergent subsequence of {u(™} which converges to

some u and lim,, ., p*(u™) = p*(u). Therefore p* e (- is compact. O

We should remember that under a small perturbation of the metric and >, the
dimension of cokernel of pT| ker(p—) Will be a upper semi-continuous function. I will
leave this proof in appendix 10.2.

With this proposition in mind, we can derive the linearization for our moduli space

in the following subsection.
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7.2. Linearization. Here we derive the linearization of 9t along V (defined in section
5.2). Suppose that we have a L3-harmonic spinor

ONE

P = + higher order terms.
d-(t)Vz

Now we perturbed the metric on a subset which is supported away from 3, then we

have a corresponding family of Dirac operators D). So
DE)ip = sf + o(s).

for some f € L? and f is compactly supported away from X. By proposition 5.4, there
exists h € L? such that D®)h = . So we have

D¥) (¢ — sh) = o(s).

So 1) — sh is a first order approximation of harmonic spinor. However, this section is

just in L?, which means that it has the leading order term of the order O(\/LF)
Now, we consider the perturbation of ¥ in a tubular neighborhood, say ¥, =

{(t,sn(t))} for some C! function n : S' — C. Then we can write down the following

Taylor expansion

dtn ht
Uitz =) =shz—sm) = v = [| 2V |+ [ F ls+ o).
2VZ Vz

Our goal is to make this section in L3, so we need to kill the O(%) terms. To achieve

this goal, the perturbation n must satisfies

dtn = —2h",

d~7=—2h".
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However, this equation is not solvable. It even doesn’t have finite dimensional cok-
ernel. So we need to add an auxiliary part to this equation. Since the choice of b is
not unique, by using the proposition 7.1, we can rewrite our linearization equation

as follows
d™n+ct = —2ht,
dn+c =-2h"

where (ct) € Exp~. Our goal in the next section is to prove that operator is Fred-

holm.

7.3. Fredholmness of finite Fourier mode case. The linearization in previous

subsection can be written as follows

dtn+ct = —2h",
47+ c = —2h.

with the following constraint:

(7.1) |dT]? +|d|* # 0.

This constraint comes from the assumption that Lp)l > 0 for all p near . Now,
dist(p,x)2

this equation implies

(7.2) dct —dtec =—-2d~h" +2d"h".

Moreover, there is the following relationship between ¢* and ¢™: if we write ¢™ =
pie™, then we have ¢ = Y sign(l)p,e™. Namely, the ¢~ is determined by c™.
g Y. Yy

Therefore, we can define the following operator

Ta+a- () =d ¢ —dte
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In this section, we will use the following notation.
Definition 7.2. Let g = >, g € L?, we write ¢°7* = Y, sign(l)g,e™.

So we can rewrite our operator in the following way:
Ta+a-(c) = d ¢ — dtcws

with 73+ 4- : L* — L*. Here we should explain the meaning of L?. We can easily
see that, T+ 4 is not a C—linear operator, since the conjugate term ¢ involved.
However, it is still a R—linear operator. Therefore we define our index under the real

vector space, even though the underlying space has some complex structure.

So in our case, we should define the inner product to be

(F.0) = Rel | £~ g

for all f,g € C(S';C). We can see that, under this definition, the L?—bounded
space will coincident with the one equipped with the usual inner product over C.

We will prove the following property:

Proposition 7.3. T+ 4- is a Fredholm operator and index(7z+ 4-) = 0 when both

d" and d~ have only finite many Fourier modes:

M M
d+ — Z dl—i—eilt; d- = Z dl_ 6ilt
M M

for some M € N.

In this section, we will assume that d* have only finite many Fourier modes and
prove the proposition 7.3. Then we will prove the general case in the next subsection.

Before we prove this property, we should define some notations.
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Definition 7.4. Let a = (z,y) € C x C, we define the spouse of a, denoted by a,

to be (g, —z) € C x C. We can easily see that a=—a.
Similarly, for any p-tuple of complex pairs, we have the following definition.

Definition 7.5. Suppose we have A = (a4, as, ..., ap_1,a,) € (CxC)? for some p € N,

we define the spouse of A, denoted by A, to be (d,, dp_1, ..., d2,d1) € (C x C)P.

Now we write our proof of proposition 7.3 in the following 8 steps.

Step 1. In this and the next step, we will prove that 74+ 4- has finite dimensional
kernel. Firstly, we notice that the n-th Fourier coefficient of (d~c — d*cs) can be
expressed as

M

(d~c— d*cm?), = Z d”pn—1 +sign(l —n)d; i n.

I=—M

If we take n > M, then we have sign(l —n) = —1 for all | = —M, ..., M. So we have

M
(7.3) (d-c—d"e™), = > d_pn— — df Pin
l=—M
for n > M.
Similarly

M
(dc—d"e™), = > dZpai +df prn
I=—M

forn < —M.
If we take n = —n’ and then take the conjugation on the both side of this equation,

we will have the following equation:
—_ M —
(7.4) (d7e—d" ™)y =Y d5pu—i + di .
I=—M

for n’ > M.
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To show that the kernel of T4+ 4- is finite dimensional, here is the idea: we claim
that every element in ker(74+4-) can be determined by their Fourier coefficients
from —2M to 2M. Therefore the dimension of ker(7g+ 4-) cannot exceed 4M + 2.
To prove this statement, suppose there are two elements ¢; and ¢ in ker(7Tg+ 4-) who
have same Fourier coefficients from —2M to 2M. Then ¢; — ¢, is also in ker(Tg+ 4-).
Therefore, our claim is true iff any ¢ € ker(7g+ 4-) which has zero Fourier coeflicients
from —2M to 2M is identically zero.

Step 2. Now we prove this claim. Suppose that ¢ € ker(7z+ 4-) has zero Fourier

coefficients from —2M to 2M. Because ¢ € ker(Tg+ 4-), we have

M
Z d:lpn—l - dl—’—ﬁl—n =0
l=—M

di_lpnfl + dl_ﬁlfn =0

M=

l=—M

for n > M, we can rewrite this equation by pairing (p;, p—;) := v; and (d —d;r) =

_j7

d; for all j € Z. Now we have

M
Z (di,Tp-1) =0
=M
M A

> {dop,0pt) =0

=M

with the bracket (-, -) denoting the usual inner product over C. Here we can use the

following convention: Let U = (u;), W = (w;) € (C x C)%, we define a new bracket
{(--)) to be

€L
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So our equation can be written as

<

<<Da >>n =0

where D = (d;) and V' = (v;) and n > M.

Now we apply the following squeezing lemma.

Lemma 7.6. Given A = (a;)j=12, ., € (CXC)P. IfV = (v;);ez € (Cx C)? satisfies

(A V) =0; (A V) =0

b

for allm > 0. Then there is B = (0, ...,0, by, ...b;) € (CxC)? with and det Aq +
b

0 such that

(B, V))m =0; ((B*,V))m =0,

where B* = (0, ...,O,Eq, s 51), for all m > 0.

a
Proof. 1f det P # 0, then we can just take A = B. The lemma holds trivially.
a
ap .
Suppose now det = 0. Then we have aa, = a; for some oo € C — {0}. So
ax

we have

We also have
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Denote

~

B = (A —ad) = (4, — aay,4p_1 — qag, ....,as — aa,_1,0).

Notice that: Since aa, = a1, we have a, — aa; = a, + |a|?a, = (1+|al?)a, # 0. This
implies B} # 0.

Now let By = (0,a, — away, Gy—1 — Qag, ...., a2 — ca,_1). We can easily verify that
(A= ad, V))mi1 = ((BL, V) = 0.

for all m > 0.

Since (A — ad) = (A + @A)", the second equation gives us

for all m > 0.

Now by repeating this process inductively, we prove this lemma. O

Back to our problem, we have the equations

<

<<D’ >>n =0

for n > M. Now we can apply lemma 7.6 on A = (d_pr,d—_(pr-1y, .., dpr), m = n— M.

bq

So there exists B € (C x C)? such that det # 0 and

by

(B, V))n=0

(B V) =0



4

for all n > M. Together with the condition v; =0 for [ = 0,1, ...,2M, we have

(B V)) a1 = (bg, vars1) = b;p(2M+1) +b,0-@m+1) =0
(B, V) ars1 = (b1, varry1) = 51_]9(2M+1) + b7 p-emr+1) = 0,
bq

by
Suppose vy, Vs, ..., Upro are all zero for some k > M + 1. Then the equation tells us

which implies v9p711 = 0 because det # 0. Now we can solve v, inductively:

that

(B, V)1 = (b, Vnrkt1) = b:[p(MJrkH) + b, P (k1) =0

~

(B*, V)1 = (b1, Uarasr) = by P(arsk+1) + b D—(arsrs1) = 0.

So we have vy 11 = 0. Therefore we have v; = 0 for all [ which implies ¢ = 0.

Step 3. We still have several parts to prove. To show that 74+ 4- is a Fredholm
operator, we can either prove 74+ 4- has finite dimensional cokernel, or we can prove
the following properties instead:

1. ker(Tj 4-) is finite dimensional,
2. range(Tg+ 4-) is closed,

3. range(T;, ;- ) is closed.
We prove these properties step by step.

Step 4. Here we prove ker(7}; ,-) is finite dimensional. Here 7, ,- is the adjoint

operator of T+ 4-. We can get the following computation by definition: Let ¢ =
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S e, k=Yg € 12

(7:i+d Re / 7:i+d ]_fdt).
st
5[ Tea 0 kdt+/ k- Tov o ()
st
- Z Z —1Pn—1 + Slgn(l - n)dl—’_ﬁl—n)Qn
neZ l=—M
+ Z Z qn _lpn I — Slgn(l - n>dl Di— n)
neZ l=—M
= Z Z dZ1Gn+i + sign(n )dl q-n+1)Pn
neZ l=—

+ an Z lQn-‘rl + Sign(n)di_Cj—n+l)

neE”L l=—M

= (¢, Tgr a-(K))-

We get the last equality by taking
M
Tioa-(B) =Y (D dyuss + sign(n)dy gnpr)e™.
nez i=—M

Now we can apply the argument in step 1 and 2 on 7 ,-, then we will get

dim(ker (T4 4-)) < oc.

Step 5. Properties 2 and 3 in step 3 are similar. Here we only prove property 2.
Readers can prove the property 3 by applying the same argument again.

Before we prove the property 2. we need the following lemma.

Lemma 7.7. Let By, : L? — L? is the projection defined by

Pk . Z fneint — Z fneint

In|<k
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Then we have
Tara|(-pona2) - (I = Pan)(L?) = (I = Par)(L?)

18 1njective.

Proof. Let f € (I — Pyy)(L?), clearly T'(f) € (I — Py)(L?), so we should prove this

map is one to one.

Suppose f = > fre'k® € (I — Py)(L?), by solving the equation given by lemma

7.6, we have

(B, V>>M+1 = (bg, Vopr41) = b;p(2M+1) +b,p-@mi1) = far

~

<<B*7 V>>M+1 = <i717 UzM+1> = bfp(2M+1) + Efﬁ—(zMﬂ) = f—(M+1)-

So we can solve vanrt1) = (P2m+1, P—(2m+1)), Which is unique.

Now suppose v(2pr+1), ---» Um+k are uniquely determined (where k > M + 1) , we

consider the equation

<<B> ‘7>>k+1 - <bq7 UM+k+1>
= by posske1) + 0y P—(askr) T Fr(V@arsn), - Vsk) = fo

((B*>‘_/>>k+1 = <61aUM+k+1>

= [;fp(M+k+1) + B;rﬁ—(M—&-k—H) + Gr(Vemt1), - VMtk) = f-(t1)-

where Fi.(von41)s - Ursk) = fer1 and Gr(venrs1ys - Vargr) are determined by {vearg1ys - Varg }-
So we can solve v(yyk41) uniquely.
Therefore, the map Tg+ 4-|(1—pyy ) (r2) i an injective map from (I — Payr)(L?) to

(I = Pur)(L?). O
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If we decompose L? = Pyy(L*) @ (I — Panr)(L?), we have Tgr g- (Pari(L?)) C
P3M(L2) and 7Zl+,d*((l — PQM)(Lz)) C (I — PM)<L2)

Step 6. We will prove the property 2 in Step 3 in the following 2 steps. Suppose
now we have ¢® € L? k € N such that {7+ 4-(c*)} converges to some f € L?. Let
{v’;} be the corresponding pairing [2-coefficients of ¢*. Here we can assume that
c® L ker(Tg+4-) without loss of generality. We have to show that there exist ¢ such
that Tg+ 4-(c) = f.

First of all, suppose that c¢* is bounded by some constant K. We choose a subse-
quence, which denote by ¢* again, such that {vﬁ}keN converge for all p < 3J with

some J > M. Let us say
k
v, = Up

for p < 3J and here we choose J large enough such that v, # 0. Now by lemma 7.7,

we have a unique solution ¢ such that
Tara-(c) = f

where the corresponding [?-coefficients of ¢ are v, for p < 3M. So we only need to
show that c is in L%
Now for any r € N, we have

Dol < D Mo —illz + > oF Il

i<r i<r 1<r

<3 ok~ il + K

i<r

and we the first term converges to 0 as k — oo. Therefore we have

Y uilE <1+ K

i<r
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for any » > 0. So ¢ € L.

Step 7. Suppose that ¢* is unbounded, say ||cx||z2 — oo (by taking subsequence

if it is necessary). we can take ¢f = T Which satisfies g+ g- (¢*) — 0. We should

L
prove that this case will lead a contradiction. This is the part that condition (7.1)
involved.

To begin with, we should define the following notations.

Definition 7.8. We define the number 7 = inf{\/|d*[2 + [d~|2}. We also define the
following sets as

L ={|d* =d"[} c 5,

2. Q. = {|ld| — |d¥]| < =7},

3. QF ={|d*| > |d| + e},

4. Q- ={|d7| > |d¥| +e7}.

So we have S' =0, . UQFUQ.

Now we fix an e < % which will be specified later. We define x; . to be a nonnegative
real valued function defined on S which has value 1 in Q1,2 and 0 in QF UQ. Also,
define x2. to be 1in QF and 0 on {|d*| < [d~| + 57}. Define x5, to be 1 in Q7 and

0 on {|d"| > |d~| + 57}. Moreover, suppose that

X1,e + X2, + X3,e =1

Step 8. In this Step, we will modify our statement in step 7 by some observation
and define some notations which will be used later. First of all, for any L € N let
Py : L* — L? be a projection which maps Y., e to > oi<L qe™. Now suppose
we have a sequence {c"} with all have L? norms equalling 1 and 7+ 4- (c*) converges
to 0 in L? sense. For any i € Z fixed, suppose that the limit sup of {|c¥|} is nonzero,

than we can using the argument in step 6 by taking J > i to achieve a contradiction.
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By using this observation, for any L € N given, we can add the additional assump-
tion into our statement: Pr(c*) = 0 for any k. This number L will be specified later

which is determined by € and ;.. Here we should restate our statement as following:

Lemma 7.9. There exists L € N depending only on d*, such that for any sequence

{cF ren C L? satisfying
|FNlze =1, Pp(c®) =0 for all k € N,

we have infren{||Ta+ a- (¥)||z2} > Co, where Cy depending only on the C*-norm of

d* and T.

We still have several constants to define. We consider the function ) = %; defined
on Q.. Extend this function as a C' function defined on S'. Then we can approx-
imate it by its first N; Fourier modes, S, such that the L?norm and L*-norm of
|Q — S| are O(g).

Since X1, + X2, + X3, = 1, we have

L= lc®llze < Ixaectllce + Ixaecllze + lIxs.ec®l ze-

Therefore, there exists i € {1,2,3} such that |x;.c¥|[,2 > 3 infinite many times.
We take this subsequence and renumber them consecutively from 1. Since x;. is a
smooth function, we approximate x; . by its first Ny Fourier mode, denoted by (i .,
such that |[x1. — (el < e < 3 and sup [x1,. — C1c| < €, so by Cauchy’e inequality,

we have ||G;.c¥||2 > §. Now we shall start our proof of lemma 7.9 case by case.

Proof. Case 1. If i =1, we have

C1,57;l+,d* (Ck) = Cl,efk‘
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where limsup ||(1 f*l2 < € Now we can write
CreTara () = Tar a- () + (G Tara- () = Tar a- (Grec)).

We can write the second term as [T+ 4-, C1.-](c¥). Let (1. = >, ; €™, then we can
get
[Tarams GLel(€) = Gue((€)) — (G )™

= Z Z g;sign(n — j)pk_ i) = (Z sign(n)g;pn—;)]e™

n€Z |j|<N [51<N:
— nt
= D 2D gpay)e™.

[n|<Ny l71<Ny

So this term will be 0 by taking L > 2N;.

Therefore we have

7Zz+,d— (Cl,ack) = C1,afk

- J_Q,ack - d+ (Clﬁck)aps

dived both side by d~, then we have

+ k
4 et

Notice that |[d~| > 7(1 — &) on Q; ., so the right hand side still converges to 0 in L?

sense. Moreover, because fZ_ =@ on Q. and |(; .| < e outside €4 ., so we have

k
et — QG = S 4 0y (o)
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(This Orz2(e) term has its L? norm of order O(g)). Write Q = S+ (Q — S) where the

L*-norm and L*-norm of @ — S are O(¢). So we have

k
1. = ST = 2L 0(e)

Finally, let P* : [* — [? be the projections map >, pe™ to >,. me’ and
> 1o e respectively. Here we denote ¢ .cF = A% and ({1,.¢F)%s = B* for a while.

We have

k
PiAk—l-PiSBk Cldsf +0L2( )

We notice that
P*(4) = PR(B),
and

[P, S|B* = (PTSB* — SPTBF)

_Z Z SBn ]eznt Z Z SBn ]emt

n>0 |j|<Na n>j |j|<N2

> D 1SBajle™

[n[<N2z |j|<N2

the last term will be 0 when we take L > 2N; + 2N;.

Therefore we have

Cl,afk
J—_%

k
P+Bk — SPtAk = Op2(e) + P—(Clc’lf_f )

PTA* + SPTB* = Ops(e) + PT(
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Since ||A*||z2 > &, we can suppose that either |[PTA*||2 > &5 or |[PTA"||2 > 5.
Suppose that ||[PTA¥||;2 > & then we will have

PTA* + SPTBY — S(PTBF — SPTA*) = (1 + |S|*) P+ A*

k k
= Op2(e) + P+(_41§f ) + SP—<C1§;’C )

Therefore we have

1 1, -
= < IPT A2 < L+ [P AM1 < O() + [ P* ¥l + (ISP f¥]12)

1
<O(e) + ;4||fk||L2

for € arbitrary. so we have

k T
>
||f ||L2 <13

for all k.

Case 2. If i = 2, we have

C2,57:1+,d*<ck) = 7ti+,d*(c2,ack) = C2,afk

= d (Coec®) + dT(Gooct)™ = G f*

dived both side by d* and notice that |4-| <1 — Ze on Q, so we have

Cocf® d- e
||2d—+||L2(Q:) = ||dj(C2,aCk) + (Ce®) 200

—_ T
> [(Ge®) iz = (1= 5O (Ge 20z

.
= §5||C2,6Ck)||L2(Qj)'
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Therefore we have

T 1 T
55(5 —0(e)) < §5||§2,ack)||L2(Q:)
G f” 2
< ||d€—+HL2(Qj) < ;kaHL?-

Then we fix a small € such that the left end is a positive constant. We get
1£*]|2 > C72

where C'is a constant depending only on C'-norm of d=*. U

Remark 7.10. We should notice that this lower bounded C, can be chosen as a con-
tinuous function Co(7, ||d¥||c1, ||d™||c1). Moreover, if we have a sequence of {d**)}
such that the corresponding 7*), ||d®®)||c1 are bounded and do not accumulate at

0, then inf{Co (7™, |d*®)[|ca, [[d~P[|c1)} > 0.

So far we have proved that T+ 4- is a Fredholm operator. However, we haven’t
show that the index is a constant when we change (d*,d™). To prove this part, we
consider both (df, d;) and (dj , d; ) have nonzero Fourier coefficients from —M to M.

According to the lemma 7.7, we have 7;l_+,d;|(1_p2M)(loo) : (I = Popg)(L?) — (I —

Pyr)(L?) is injective for i = 1,2. Therefore, we have the quotient map:
Tora /(T = Pant)(L?)) = L /Ty o~ (I = Paar)(L?))

with index(Tg+ o) = index(Tgr 4 ) for i = 1,2. However, both L?/((I — Py)(L?))

and L? /Ty 4 ((I — Py)(L?)) are finite dimensional spaces. So

index (7;d1++(1—t)d;r tdy +(1-t)dy )

is a constant for all ¢ € [0,1].
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7.4. General cases. Now we turn to the proof of the general case. We will prove

the following theorem

Theorem 7.11. Let
Ta+.q-(c) =d ¢ — dtcws
be the operator from L? to L?, with the following constraint:
(7.5) A2+ |d 2 £ 0.
Moreover, suppose that
ld* e, ld™ [ler < oo

Then we have Tg+ 4~ is a Fredholm operator and the index will be 0.

Step 1. To prove this theorem, notice that we can approximate the operator 7+ 4-
by a sequence of Fredholm operators {7;+,(k)7d—,(k)}keN, where d¥®) are the first k
Fourier modes of d*. Since that the Fredholm operators form an open set inside
the Hom(L?), this is insufficient to say that Tg+4- itself is a Fredholm operator.
However, recall that we have the following well-known equivalent statement for the

Fredholm operators [8].

Lemma 7.12. Let X be a Hilbert space and F € Hom(X). Then F is a Fredholm

operator iff there is an inverse S € Hom(X) such that
SF =FS =1 mod(Com(X))

where Com(X) is the subspace(ideal) consisted by all compact operators mapping from

X to itself.
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Now since 7y+.x) 4-.v is a Fredholm operator for all & € N by proposition 7.3, there

exists a sequence of right inverse {S*} such that
Tar.t0.a-00 5" = I mod(Com(X)).

Suppose that [|S*¥|| is bounded uniformly by a number K. For any e > 0, there exists

a constant N > 0 such that || 74+ 4~ — Ty g-.0 || < € for all E > N. So we have
Tara-SN = Tyr.0 -0 SN +0(e)SY =T+ 0(e) SN mod(Com(X)).

Since [|O(e)S™]| < O(e)K, we can choose € small enough such that [|O()SY|| < 1.
Therefore we have I + O(g)SY invertible. Let V be the inverse of I + O(¢)SY, we

have
Ta+.a- SNV = I mod(Com(X)).

So T4+ 4~ have the inverse SNV modular the ideal of compact operators. Therefore

it is a Fredholm operator.

Step 2. In step 1, we prove that if there is an uniform bound for {||S*||}, then
theorem 7.11 will be immediately true. To prove this claim, we should know how to
construct these inverses S*. In the following paragraphs, we use 7% to denote the
operator Ty+.i) g-. and T to denote Tg+ 4-.

A standard way to construct S* is to use the decomposition L? = N(T*) @
N(T*)t = R(T*) @ N(T**). By the standard Fredholm alternative, we have T :
N(T*)t — R(T*) is a bijection. Therefore by open mapping theorem (see [10]),
there is a bounded inverse map S* : R(T*) — N(T*)*. Now, we define S* to be
S¥ o Prirwy.

Here we should imitate this idea to construct S*. Here we know that T* :

(I — P)(L?) — T*((I — PL)(L?)) C (I — Pp_)(L?) is a bijection, where L is the
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number given by lemma 7.9. Moreover, we can prove that T*((I — Py)(L?)) is a
closed subspace by using the argument in step 6,7,8 in section 7.3. Therefore we
have an bounded inverse R* : T*((I — P.)(L?)) — (I — Pp)(L?). Meanwhile, the
remark 7.10 tells us that R* have a uniform bounded norm. Now we set our S* to

be R¥ o Priq;_pyyz2))- So {||S*||} has a uniform bound.

Step 3. Finally, we shall prove that S* is actually an inverse of 7%, modular
the ideal of compact operators. To prove this, just recall that both (I — P)(L?)
and T((I — Pr)(L?)) are finite codimensional. We denote (I — Pr)(L?) = A and
T((I — PL)(L?)) = B for a while, so L? = A@® A+ = B® Bt

(T*S* — I)(v) = 0 for any v € B.
So for any bounded sequence {v* = (vf,v%) € B @® B+ = L?}, we have
(THS™ = D)(v*) = (T*S* = I)(v3)

where {v5} lies in a finite dimensional space B+. We can get a convergence subse-

quence of {v4} easily. This implies
(T*S* — 1) = 0 mod(Com(X)).

Similarly, we have (S*7*—1) = 0 mod(Com(X)), too. Therefore we finish our proof.

Remember that d* are the leading coefficients of a L? harmonic section, so by
proposition 4.7, it is smooth. Meanwhile, notice that 7z+ - maps from L? to L? for
any k € N. We can easily show that all these maps are Fredholm by using the same
argument.

Especially, we have
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Corollary 7.13. The map Tg+ 4- : L3 — L3 is a Fredholm operator.

In the following sections, we will assume that the domain of Tg+ 4- is L3(S*; C).

7.5. Relation between 7 and the original equation. Recall that by the argu-

ment in subsection 7.2, we want to solve the equation

dtn+c= —2h",

A7 + P = —2h~

which will give us the equation T+ 4-(¢) = —2(d"h* — d*h™). Here we define the
map J by J(h*,h™) = —2(d~h* —d*h~) and the map O, which maps from ker(T)
to L*(S'; C), by

T+ —aps

This map will give us 7 when A* = 0.
Now by using the notations in section 7.1, we can always be decomposed the
pair (ut,u™) € L*(SY;C) x L*(SY;C) as nt(ut,u”) + 7 (u*,u”). By using this
proposition and the Fredholmness of T+ 4-, we can find a finite dimensional vector

space Hy C Exp* such that range(Tg+ 4-) & J (Ho) = L?

8. PROOF OF THE MAIN THEOREM: PART I

In this section, we will prove the theorem 1.4 in the version without showing f is
C!. In the next section, we will prove that f is a C* map. The argument in this
section assumes that the metric ¢ defined on a tubular neighborhood is Euclidean.
The general case is more complicated but with the similar argument, see appendix

10.1 for the detail.



38

8.1. Definition of K; and K,. Here we define the finite dimensional spaces K; and
Ky. By the discussion in section 5.2, we know that the vector bundle £ and F can
be locally trivialized as m(N) x B, x L? and 7 (N) x B. x L? respectively.

Use H; to denote the space O(ker(Tg+4-)). We define the vector spaces as follows

Ky = Hy x ker(D|2);

Ko = Hp.

where B is defined in proposition 7.1.

Since Tg+ 4- is a Fredholm operator, O(ker(7z+ 4-)) is finite dimensional. Mean-
while, by proposition 2.4, ker(D| L%) is also finite dimensional. So K; is finite dimen-
sional.

In fact, the map O is injective on ker(7z+ 4-) since the equation

dtc+d c® =0,

dc—dtes =0

implies ¢ = 0. So dim(O(ker(Ta+4-))) = dim(ker(Tg+ 4-)) = dim(H;). Meanwhile,
by definition of Hy, we have dim(Hy) = dim(coker(Tg+ 4-)).

8.2. Basic setting. Before we start our argument, we define the following notations

first.
R

Firstly, in the following paragraphs, we fix v < 7, T" > 1 for a moment. The

precise values of v and T will be specified later. Moreover, let us assume that

1
||7:11,d* |range(7’o;~_17d_)|| <1

Secondly, we suppose that there exists ¢y > 0 which is the upper bound for s. The
precise value of ¢y can be assumed to decreased between each successive appearance.

Now we define the following notations.
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Definition 8.1. For any A C M, we call a section u : [0,¢o] x A - S®7Z is in
C¥([0, col; L (A; S @ Z) if and only if [[u(s, )|l 2(as07) < o0 for all s € [0,¢o] and
u(-,z) : [0,¢0] = (S ®Z), varies analytically on [0,co] (The remainder of Taylor

series will converge to zero in L?-sense).

Definition 8.2. For any i € N x > 0, we define

(8.1)
A, = {f € C¥((0, ol L2 (M = Ny S @ 1)) [[§(s, )| 2, < T—}

(8.2)
K
B = (€ C(0.al: (Vg = Ny SO DN e, < 2
(8.3)
LN
€y = {7 € C(0, ols TN 538 @ TN, ), vy < (r® = 12) ()
t
forallr2<r1§ﬁ .

Thirdly, suppose that we perturb the metrics g on the region M — Ny analytically
with the parameter s. Let us call this family of perturbed metric ¢g°. We use the
notation D,ey = D + T° to denote the Dirac operator perturb by metric. The
operator T% : L? — L?, will be a 1st order differential operator with its operator
norm [|77%]| < Cs.

Therefore we have

Dpertw = SfO

for some fo = T%(¢)) € C¥([0, co]; L?).
To prove theorem 1.4, we need to prove the following claim: There exists € > 0

with the following significance. For any § € O(ker(Tg=4-)) with [|{]|z = € there
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exist n, € C¥([0, ¢o]; CH(S; C)) and &, € {u € L?|B(u) € Hy} such that
(8.4) Dyert.n, (1 + sts) =0

for all s € [0,co] with the constraint 7, = s 4+ n+ where 7, L O(ker(Tg+ q4-))-
Moreover, we have to show these data (7s,€s) will be homeomorphic to a open set
in R with k& = dim(ker(D|;2)). By using this claim, we can define the map f by
f(g°,s€,v) = B(st,) for any ¢ € dim(ker(D|2)) with |4)||2 small. Then, I should
prove that this map is C*.

So I separate my proof into 3 parts. In this section, I will prove that there exists
(ns, &) satisfying (8.4). In the next section, I will prove the set of data (n, &)
satisfying (8.4) will be homeomorphic to a open set in R* with k = dim(ker(D|z2))

and f is a C'-map.

Remark 8.3. In fact, the £ we choose in our claim can be a smooth map & : [0, ¢] —
O(ker(Ta=4-)) with [|€][.2 = € and ¢ can be replaced by a smooth family ¢(s) €

ker(D| £2)- The argument in the rest of this section will still hold under this setting.

8.3. Part I of the proof: First order approximation of 7, and £,. Now we are
ready to prove our claim. I separate this proof into 10 steps.

Firstly, we define the following smooth function:

0 onNg
1 on M — Npg '

Step 1. In this and the next step, we will denote by ko a O(1) constant. The
precise value of k¢ can be assumed to increase between each successive appearance.

By using proposition 5.3, there exists by € L? such that

Dby = fo.
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So we have

Dpert(qu) - ShO) = _STS(UO)~

Since T* is a first order differential operator, we have

I7°(ho)ll 22, < Csllbollzz < Csllfoll 2 -
This implies
Ko
8T8<f)0> S 529(12

by taking rg > 2C|[fol[ 12, large enough.

Step 2. In this step we construct the data of perturbation 7y and prove 7, will
satisfy the condition (5.26), (5.27), (5.28) and (5.29).

Since fo = 0 on NV,, we have Dby = 0 on N,. So by proposition 4.4, we can write

+
o

ho = h\/_g + bxo.
ng

NE

on N,. By theorem 7.11, there exists (1o, ¢o) such that

Qha_—f— d+770+ Co = ]CS_
2hg+ d Mo+ & =ko

where (kg , kg ) € Hy. So there is a corresponding ¢ which satisfies Dcg = 0 on M — X

and

Cop = + CR,0-
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Since we have b satisfies Dby = §o which is given by proposition 5.3, so

el hg 122, Pl )ell 7, (g )eel72 < CllbollZa vy < Clifollzz,

2

by part c of proposition 5.4. By taking s > 2% ||fol| .2 ., we have
t2 -

R K
(8.5) In51E: < e IRl < S

Ko
1 )allze < 5 bolloz < ro.

Moreover, since Tg+ 4-(co) = d~h*t — d*h™ mod(J (Hy)), we can choose ¢y such that

Ro
_t7

K
(5.6) leollZs < 2 o)l < 5

K
Ieoluls < 2, ol < o

So ny = (k¢ — 2hg —co) + m(k’g —2hg — ¢7?) will satisfy (5.14),

W
(5.15) and (5.16), so it satisfies (5.17), (5.18) and (5.19).

We should notice that the condition kg > 2%]]f0]| 2, will give us a constraint
for g°. In the following paragraphs, we should always assume ||follz2, < vz, This
assumption will give us some restriction to define A/ in theorem 1.4. We will discuss

this part in section 8.5.

By this setting, we will also have

Ko

K
(8.7) kg 172 < 701‘, 1k ellze < =5

K
e kil <
Furthermore, since

K
IT*(co)l[z2, < Cslleoll > < 870

ko
so we have sT°%(¢g) € s222 .
Finally, notice that we still have some options for the choice the ¢y. We can choose

another ¢y by adding an element in ker(7). So we can choose ¢y such that the
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corresponding 7y satisfies 7y = € + ng where - L O(ker(T)). Moreover, we should
assume ¢ also satisfy (5.14), (5.15) and (5.16). So (8.6) still holds in this case.

Before we move on to the next step, I would like to make some remarks here.

Remark 8.4. We know that ny satisfies (5.14), (5.15) and (5.16). By using the same

argument in the proof of (5.17), we have

Imoller < Cllmoll7a + llmollzz llmoll2) < Csge
Meanwhile, we can estimate the following Holder seminorm (I follow the standard

way to estimate the Holder norms, reader can see [7] for the detail):

(@) = )
a#b la —bl7

[t ]o,

NI

When |a — b|] < ¢, we have

1 ’ 1 1
Il < supl— [ anl(s)ds| < sup nalla — b} < Ciroeh
T a#b |la—bl1 Ja
when |a — b > t, we have
1 1
[Inello,r < C'sup || < Crpr
11
So we have the Holder estimate
(8.8) 7ol .y < Ciror.

Remark 8.5. We should also notice that the choice of (1o, ki) is unique. More pre-

cisely, for any & € O(ker(T)), the choice of i will be unique.

Step 3. Now we can fix o forever. In this and the next steps, we will determine
another constant k; = O(kg). The precise value of k1 can be assumed to increase
between each successive appearance. First of all, since 7y satisfies (5.17) to (5.19),

we should assume k; is the constant appearing in these estimates in the beginning.
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On Ng we can define

+ +
ho _o_ LA
b _ vz b 2vz .opb NE
ho=Xo| ;= Ji%=Xo| o ]i%=Xo :
o %o i No_

vz 2Vz NE

We also define b = by — b5 and ¢§ = ¢o — f.

So we have

Dpert(qvb + SCy — Sbo) = STS(CO — ho)
= Dypert() + 565 — shp) + Dpert(scg - 8[‘)8)

= Dyert (¥ + 56 — sh3) + Dl (sch — shp).

Notice that

—C()—Qho+
Dy (=sch = sht) = sDlnplxo | 2" )
“C 4l
2Vz
Z.c'0+2h3r
= S$Xo ai\/g o + SO’(XO)CS - SU(XO)hg
¢ +2hg
2Vz
_Z'd+770+d+7'70
= 5o YVF )+ so(xo)eh — so(xo)bs
id flo+d~ 7o
vz
— sty — 50(x0)t) — D] Ny ()
_Z'dim Z‘M
= SXo csz + SXo d*f + so(xo)c) — so(xo)bg
- 0 N 0
e e

— 50(x0)t — 5D|ny (8)-



95

where we have

cﬂps_h— _ d*
XZO—ZO —XzTo 75
SU(XO)CS - SU(XO)US - SU(Xo)ég =S c;[th =S d\[
— Xz ﬁo inOTE
We can check that
.d+7'70
VR b b b 0
SXo e + 50 (x0)cg — 50(X0)hg — 50 (X0)E = O, (V).
;d” o
7z
So
_,L'd+770
(8.9) Dl (—s¢) — sht) = sxo d,‘f + 02(th) — Dpere(s8).
Z‘ 0
Vz

Meanwhile, we define

—id~TioV/Z

€ = Xo .
—idnoy/z
_Z'CH’?o
which satisfies D(sep) = xo d—\{g + se10pe9 + sD(x0)(52). So we can simplify
2 & Mo
NE

(8.9) as follows
e
(8.10)  D|n,(—se) — shh) = D(seq) — se1dpeq + O2(¥) — sD(X0)<X—0) — Dpers(st).
0
Recall that the Dirac operator Dy, can be written as

Digyono = (14 0°)D + s((x0):m0 + (X0):70)e10; + O2 + A] + F7 + R

= (1+0")D + s((x0):m0 + (X0)z7l0)e10; + @2 + W)+ A+ F)+ R
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where

é(s) = e1(sx0m00: + Sx07005),

Wso = ea(5(X0):M00: — 5(X0):M00z) + es(—5(X0)z100: + 5(X0):1002)-

We use the following notations to simplify the upcoming equation:

(8.11) WP (seq) + 0" (e20. + e30:)(sep) = s°By;
(8.12) —W{(s¢§ — sh) — 0°(e20: + e30:)(s¢§ — sb) = *Bo;
(8.13) W2 (sep) + 0" (e20. + e30:)(s¢p) = s°Bs;
(8.14) s((x0)=10 + (x0)z70) €10 = sCo;
(8.15) —SD(XO)(%) + (0” — Dexdi(seo) + s((x0)=m0 + (X0)=70 )10 (se0) = sC;
(8.16) —0%e10i(scf — sh) — s((x0)=m0 + (X0)7l0) €1 (s¢§ — sbF) = sCo;
(8.17) 0"e10,(se¢) + s((x0)=10 + (X0)=7l0)e10(s¢) = sCs;
(8.18) 0Y(sep) = s2Q;
(8.19) —0%(scd — sh?) = s2Q,
(8.20) 0% (se)) = s2Qs.
where

_ 0 ixn
¢ = —(X=1 + XY — _ V
—ixn 0

which has the property

D(sey) = —Fo(v).
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Now by using the fact that Dy = 0, (8.10) yields

D|np(—sch — shg) = D(seq) — se10:e0 + Diayono (V) — (A2 + F2 + RO () + sCy — s
= Dixono (520) + Dayono (1) = (A + F¢ + R (¢ + seo)

+ 8%By + 5C + 5C1 — 52Q1 — Dpers(s8h).
Therefore we have

Dpert(¢ + SCo — ShO) = STS(CO - hO)
= Dpert<w + ch — S{)g + 326) + DSXOUO (w —+ 880) — fg(seo)

— (AL + RY(¥ + seg) + 5°B1 + 5(Co + C1) — $7Q1 — Dyer(st}).
So
(8.21)
Diggnopert (0 + s¢§ — sbf + seq) = (AT + R + F.)(seq + sej + scf — sb)

+ (A + R () + sT*(co — bo)

3 3 3
(8.22) 2O _Bi) = 5D _C)+ 5D Qi) — Dpen(st}).
i=1 i=0 i=1
Here we show that
3
(8.23) A2 () + (A% + F)(seq + sef + scf — sh) — S(Z C;) € s€tt,
=0
3
(8.24) RY(¢) + seq + sep + scf — shd) — 32(2 B;) € s*B},
i=1
(8.25) sT*(co — bo) € s*A°.

Jalo] Jalo}
We already show that s7%(hg) € ;> in step 1 and sT%(cy) € 22 in step 2, so

we only need to prove (8.23) and (8.24). By the definition of C;, Cy, C3, proposition
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4.4 and Sobolev embedding, we can see that sC3 € s€;* for some x;. Meanwhile, by
proposition 5.5, we have A%(¢) + seq + sej, + scf — sh?) € s€}'. So we prove (8.23).

Finally, by proposition 5.5, we have

| RY(seq + sefy + scf — shd) || 12 < kIS ||[v + seo + s¢f — shf|| 2

3 3
< yrristt: < ke s?

for any s < ——. Meanwhile, by proposition 5.6, we have

Yrki ’
3
IRY(W)||r2 < Cirie®s® < kyes?
for any v < #% So we prove (8.24).
Step 4. In this step we prove that there exists ¢’ € L? such that Dy, (s%¢}) =

$2Q; + s°B + s*C for some B € B} and C € €}* where i = 1,2,3.

Here we have to prove the following lemma.

gt (1) gt (t)
Lemma 8.6. Let Q be either of the type s*xo i/(z;) or of the type s*xo \_/(i)

q q

Vz vz

where ||¢* ||z < ki, ||(¢5)el|z2 < k1. Then there exists a L? section ¢ which can be

written as

¢ = s\
=AM WO

for the first type and

¢ =) s'x
i>0 e; (HVZ

for the second such that Dy, (s*¢') = s*°Q+s*B+s°C for some B € B}* and C € €}

for all s < —L—. Furthermore, we have ||¢'|| ;2 < 25;.
272 k1t2 1
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Proof. First of all, let Q is of the first type. We start with the element

/ 7 vz
¢ = Xo
V=
Under a straight-forward direct computation, we have
D(s%¢y) = s°Q + s°B + s°C
with B € %iﬁn% and C € €J"'. Recall that by proposition 5.5, we have
Dayono = (14 0°)D + s((x0)=10 + (x0)z7l0) €10y + OF + A + FJ + R.
By the argument proving the results (8.23) and (8.24), we have
8/62
s((x0)=10 + (X0)=0)e10:(s%¢p) + (A7 + FJ)(s%¢p) € s°€1
0" D(s%¢) + RY(s%e)) € SZ‘B’;QV%'{%.

Meanwhile, recall that ©° = [e; (sx10, + sx70:) + (X570, — sX.105) +e3(—sxzn0, +

sx:n0s)]. Here we recall the decomposition
00 =02+ W

Notice that W? is a O(sk;)-first order differential operator with its support on N, —

2 .2
N, which implies WY (s%¢;) € s*B7"""™. So we have

0Y(s%e)) = ©%(s%¢)) + 5°B

2 .2
SYRK .
for some B € ‘B, 7'. Moreover, since

e e
09(s%¢y) = x00%(s* %) + ©(x0)s” >
X0 Xo
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S 252
and the second term is in s28]7" so we have
e/
0Y(se)) = Xo@g(s2x—0) + s°B
0

2 .2
SYrkY

for some B € B,

Now we call Q; = XO@S(;—%), which can be simplified as

a) (1)

2 vz

=s
Q=0 |y
ﬁ
where
@ = —i(xo70)q"

¢ = —i(Xo"0)q" -

By using the fact ||¢F||z2 < kit, ||(¢F)il|z2 < k1, fundamental theorem of calculus
and Holder’s inequality, we have ||¢F|| 1 < C'kyr2. Therefore by using (5.16), (5.17),

we have ||qf |22 < &2¢2, ||(¢F)ellz2 < x2e2. So we have
(8.26) Dayono (87¢4) = 8°Qy + 8By + s°Co

5772"”% smt%
for some By € ‘B, and Cp € €77,

Here we define a L?*(S'; C)-module V which is generalized by

z° 0 1 1 1
{ : |(a,b) € (Z+ =) xZor (a,b) € Zx (Z+ =),a+b==}.
0 Zazb 2 2 2

Now, we define a linear map J by the following rule:
q+za2b —iﬁoq+zb2“ b _Z‘ﬁoq+zb712a+1

J = +
— _bza asb a+1 at+1zb—1

q 2z ifoq~ 2% ingg 2%tz
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This map is not will defined on the entire V since it makes no sense when a = —1.
However, if we start with z = with (a,b) = (3,0) or (a,b) = (0,3), we
g 2bz°
q+2a2b
can always define J"(z) for any n. Here we call the term x = . is of the
q 2°z°

type (a,b). To prove that J"(x) is well-defined for all n when z is of the type (3,0) or
(0,1), we should prove that there is no term in J"(z) which is of the type (—1,3) or

(%, —1). We show this fact inductively. When n = 0, this statement is obvious true.

Suppose there exists a smallest n € N such that J"(x) has a component of the type

(=1,2) or (,—1). For the first case that the component appearing in J"(x) is of

the type (—1, %), it must generated from a component in J"!(z) of the type (%, —1),

which is a contradiction. For the second case that the component appearing in J"(x)

3

is of the type (2,—1), either this component comes from a component in J"!(z)

of the type (—1, %), which is a contradiction again, or it comes from a component
5

in J"'(z) of the type (2,—2). The later case is also impossible because we start

0) or (0,%) and each time we apply J on it will only

from the term of the type (1 .

29
change (a,b) by (£1,£1). So there must be a number m < n — 1 such that J™(x)

3

contains a component of the type (—1,32) or (2,—1), which leads a contradiction.

Therefore all the component in J"(z) are not of the type (—1, %), which means J"(x)
is well-defined for all n.

Now we define ¢} inductively by

)., — ¢
22 — SX§+1J<( k—le k—2)) + ezili
0

By induction hypothesis, suppose that ¢; € L? such that

szono(sze;c) = 52Qk+1 + 528k + SQCk
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Kkt (g )2 2 ko k(e )0 03 )
where By, € %12”05 (et )VT'W, Cr € QSIZJ*OS DR The first term on the right,
Oki1, can be written as

¢, — ¢
Qk—i—l k+1@0(—1)‘

k+1
Xo

By taking s < —r, we can see that the sequence {e;} will converge in L? sense to
K1t2

some ¢. Meanwhile, we can see that

1 —
D8X0770 (82223_,'_1) k+2@0( %) + 825Bk+1 + 825Ck+1 + S2Bk + S2Ck.

Xo

where 6By.1 € B A2t and 0Cp,, € €] k2 We define inductively that

Bii1 = 0Byi1 + By, Cry1 = 0Cry1 + Cp and

¢h g — ¢
X0+2@0(( k+1 k)) _ Qk+2~

X0
Furthermore, if we take s small enough such that Y722 " (k + 1) = o < lem
T
eg s< %5721,{1, B and C, — C € €7,
T

Therefore, by taking & — oo, we finish our proof by induction.

To get the Li-estimate of ¢/, we notice that

¢!
l<:+1Xl(<):+2Jk:( 0)

e — exllzz = lls ”

||L2 = 2k

by using the fact ||¢i5 || z2 < (gig.1)ell < K2 So we have [e'll e <2r1 O

Now we apply this lemma to the Q;, Qs and Qg in (8.18), (8.19) and (8.20), we

can find ¢} and e}, such that

szon0(32e;;) - SQQi + 828 + sC for ¢ = ]_, 2.
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For Q3, we notice that

R . 0 "
5°Q3 = O (sx=1 + sx=M)Y + O] | v
—ixn 0
the first term is in s€7' and the second term is the first type of lemma 8.6. So there

exists e such that
D sxomo (Sgef”)) =5 Qs + s*B 4+ sC.

Finally, we can prove that Dper(s€)) = Dy pert(s8 ) for some %g’s € L* by
proposition 5.9. Furthermore, we can decompose %8,5 = ?878 + 3%,5 where B(Eg,s) e Hy
and B(Eés) € Hy. Again, by proposition 5.4, we have the following estimates for
B (Eés):

Ro Ro Ro
(8.27) IB(t5,)172 < 7"2’ 1(B(5)):lZ < o (B ))ullz: < 5

Therefore we can rewrite (8.22) as
(8.28) Dgyonopert (1 — s¢§ — sbf — se + st} + stg,) = S"A+ B+ sC

3 .
where ¢f =e¢g+ep+s> . ¢, A AP, B e BT and C € €F'. We give —scf — sh] —
sef + st} | a name €

Now we can fix k1 forever.

8.4. Part I of the proof: Iteration of (1;, (c¢/,h?,e/ € ¢",),f;,). In this subsec-
tion we will construct an iterative process by determining the following two constants
I>vand P € (T% +1,7T5) where T > 512 is any fix number. We will also use an-

other constant ¢ > 0 which depends only on t. In addition, we will also give the

upper bound for ¢y. We divide our argument into the following 6 steps.
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Step 1. Suppose we have ¢; = 1) + s € L? satisfies
(8.29) Doy pert (Vi + 8785 = sf;

where 0! = Z;:o X;7;- Moreover, we assume the following conditions:

(8.30) Inductive Assumptions
1. sf; can be decomposed as
sfi = s2fi7A + 82f/i7B + sfic

Whel"e f’L,A e Q[Z'F)iﬁo7 f;B e %fiﬁl and fz,c e Cfiﬁl.
2. The sequence {(x;,7;)}1<j<; satisfies (5.26), (5.27), (5.28) with ry = ePJk.

3. We have €& = ijo(—sc§ — shY — se + € ) and {¢'} converges in L* sense.

In fact, 2;:0(—&? — sh9 — sef) converges in Li-sense.
In order to do the iteration, we need to construct the following data

(ni+17 (C?H, h?Jrla Q?Jrl» Eg—i—l,sa Ezﬁ—l,s)? fi-i-l)

€ LX(S";C) x (L3)? x (L%)? x (AL + B0 4+ selo)

form all previous data {(n;, (¢f,b9, ¢, € €,),f;)}j<i- We will show that all con-

ditions in (8.30) will be satisfied inductively.
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Step 2. In this step, we will construct h;;; and determine the constant cq in terms

of €, vand T'. First of all, since f; ¢ € ¢ 50 we have
1.
Q:TS P'ky

Xit1fic € €y
and
(1 = xi+1)fic € D
Now we can rewrite

(8.31) sfi = 32fi,A + sfi.p + se;

. 1.
where f; 4 € Q[f " i =85+ (1 = Xir1)fic and € 1= xiq1fic € Qﬁ;fpflp "

5 i
Before we start to solve h;;1, we need to show that §;, 5 € ;—z%f o,
2

3 i
Firstly, by taking s small enough we will have sf, 5 € ;;25 *BZP %0 This fact can be
’ 2
5
achieved if we assume ¢y < €% (50)
8T3 K1

Secondly, by lemma 2.6, for any ¢ € Lj and |||,z = 1, we have

| / (1= o)) = | / (1= yen)CFuc)]

T
< C=||f; 2
< C=llficll
< C()E Pra()?
LN}
Ti+1)2

< —Pro(

<
8

by taking v small enough. Therefore we have [|(1 — xi1)ficllz, < S:;%, which

implies that f; p € 4;% %ZHFO.
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Suppose (8.29) and (8.31) are true for i. We can solve

Dgpibiz1,4 = sfia

Dyyibiv1, = fiB

by using proposition 5.9. Since f; aly , =0and f; 5|y , =0, we have
Ti+1 Ti+1
t t
(e W i 05
c 2,2
(Ti+1)5||(hi-l,A)ttH%2 < bisallze < $°lffiallzz, <52 T5io-
This implies that
ePlkg ePlkg
(8.32) 1755y allze < 1726 [(hiy a)elle < 1T
" ePlkg ePlkg
[Py a)uellzz < 1 [Birr,allze < prec)
by taking ¢y < i(%)%
Meanwhile, we have
eP'ky eP'kg
(8.33) 1 e < FECESE (71, )ellz2 < FURGESE
+ €Pi1€0 €Pili()
[(hiy peelle < 1 [0ir1,8lz2 < JrEcER

So we put these data together, denote h;;1 = bil,A + hiiﬂ,B — sEifs. Then we have

Dsni,pert(wi - SbiJrl) = STS([Ji+1)'

i+l KQ
sT%(h;41) is of order O(s?), which can be written as a term sT%(h;; ) € Qlil 2



107

Step 3. Now we find 7;,1 € O(ker(T))*, ciyq and its corresponding L*-harmonic

section ¢;;1 such that

2hiiy + A niga+ e =k
2h; +d i+ iy =k

for some (k. ,, ki,,) € Hy and

€Pi/€0
(8.34) k51l < Sy I05DIZ: <

EPilfo + 2 SPil‘ﬂQ
ST (k)2 < 5

By using proposition 5.9, there exists ¢;41 where Dy, ic;i; = 0 and

Cit1

2v/z s
Cit1 = aps + Crjit1 T iy
Cit1

2vZ

Moreover, since c; 11 satisfies Tg+ - (cip1) = d=(kfy — 2hf ) — dT (ki — 2hi,), we

have

EPZI{Q

<’:‘Pil‘€0
(8.35) lciva )72 < EEDE [(cis1)ell 72 <

9Ti+1’

eP'rg

[(cirn)all2 < , lleisillzz < ePlro.

i+1 K0
According to these estimates, we can show that s7%(¢;y1) € Q[Zl 2

Meanwhile we can easily check that 7,,1 satisfies ¢ + 1-th version of (5.26), (5.27)
and (5.28) with (Ko, k3) = (e P'ko, P’k ) and so does it satisfies the condition (5.29),
(5.30) and (5.31). So the inductive assumption 2 in (8.30) is ture. Also, we have the

k3 = e P’k version of proposition 5.7 and proposition 5.8. Therefore we have

T

15 .
165t < EQPQ%%(TiH

)75,

(8.36) /{ . | AT 2izdVol (M) < ﬁg‘lp‘%‘f(ﬁ)

by taking P < Ts and s small enough.
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Remark 8.7. Here we show the estimate of the Holder norm of ;. By the argument

similar to remark 8.4, we have the following Holder estimate

1

t v
< Cky

T
T (ﬁ) T%'

T’L'

.
=

(8.37) 750l 1y < CroPY( )i < CroT

for all 7.

Step 4. In this step and the next step, we construct f;;; and prove the inductive

assumption 1 in (8.30). Firstly, since Dgyic;41 = 0 we have

Dayi pert (¥ — €1 — shiy1) = ST (—ciy1 — hiya).

Secondly, recall that we can write

D377i+3Xi+177i+1 = (1 + QSXi+17h'+1)D57]i + 5((Xi+1)z77i+1 + (Xi+1)2ﬁi+1)€18t

_i_@i—i-l_'_Ri-i-l_'_Ai-i-l_'_‘FH-l.

Now by proposition 5.9, we can decompose b1 = b7, + b0, + b3, and ¢4 =
¢/ + by + i as follows: recall that b1 = b2, + b5, and ¢;q = ¢, + ¢, such

that

Dh?+1 = 5f;,.4 + fi,B:

0o _
Dc;, = 0.
Since sf; 4 + fip =0 on N_r_, we have
y ) Ti+1
+
hi+1 Cit1
0o __ NE .0
1= | e + bwrit1: G = + g1

i

D
N0y
LS
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So we define

T ) kit
i+1 Cit1 i1

b vz Lo 2Vz Lopb vz

i+1 = Xi+1 e » Cip1 = Xit1 | s P 8 = X s
i+l i1 i+1

vz 2VZ NE

Now we compute
) b s b s
(8.38) Dsn1|Nﬁ (S(Cz‘+1 + Cz‘+1) + S(bz‘ﬂ + bi+1))
TZ

:DS<C$+1 + b?—i—l) + (Dgyi — D)S(C?H + h?+1) + Dgyis(ciyy +biyy)
:Ds(cgﬂ + U?Jrl) + (Dsni - D)5<c?+1 + h?-s—l)

For the first term on the right hand side of (8.38), we can follow the argument in step

3 in subsection 8.3 to get

—id iy 1V/Z

€i+1 = Xi+1 .
—id* N1/

such that

) ¢;
Ds(=chiy = i) = O () + Dlsei) = serdilesss) = sD0ir) () = D(stla).

For the second term on the right hand side of (8.38), since

Ti+1

=0

= s> _m0.+ ) 0;0:) + AL,
=0 =0

we have

(Dgyi — D)s(biy + i) = s Z @g(hg+1 + o)+ S‘Ai(hg+1 + )
§=0
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Therefore we can derive from (8.35) the following equality
(8.40)

D

s IN o (_S(C?H +ig) — S(h?—&-l + b))

=07 (1) + D(sei1) — serdy(eisr) — 3D(Xz‘+1)(;i+11)
it

+s Z @g‘(b?ﬂ — )+ s AL fo— o) — Dpert(sei')ﬂ)-
§=0
Recall that the Dirac operator D,,:+1 can be written as
Dygyivr = (14 0" Dy + 5((Xit1)=Mi41 + (Xiz1)z700) €10
+ O 4 AT L R 4 Fitl
=(1+ QiH)Dsni + 5((Xit1)=Mit1 + (Xi+1)z70) €10
+ éi+1 + Wz’+1 + Ai+1 + Ri+1 + ‘7_—i+1
where
éiﬂ =e1(SXi417i+10: + 5Xi+1ﬁi+162)7
W =es(s(Xit1):Ti+10: — 5(Xi+1):7i110z)

+ 63<_5(Xi+1)577i+laz + S(Xi+1)z7h+1az)-
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We use the following notations to simplify the upcoming equation:

(8.41)
(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

W (¢ — 1) = $°B;
W§+1(sei+1) + 0" (€20, + €30:)(sei11) = 2By

Wit (sl ) — sbiyy) — 0 (e20. + e302) (5], — sb?,y,) = s°Bo;

S((Xit1) =it + (Xis1)zMi41)€100; + sAL(sed ) — sb?,,) = sCo;

¢; i
—SD(Xi+1)( s ) + (Q +_ 1)618t(82i+1)
Xi+1

+5((Xi41) M1 + (Xit1)zTi41) €10y (sei1) + sAL(seiq1) = sCy;

—0"e10,(s¢§ — s3) — s((Xit1) M1 + (Xit1)zMi41)e10; (s — shi ) = sCa;

éiJrl(% — )+ Z QZ(SC?H _ Shfﬂ) _ 32Q0;
7=0

éi“(“iﬂ) + Z @g(S%H) = 3291;

=0

il
_@Z;r (Sczg+1 - Shzgﬂ) =5°Qy.
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Put all these data together, (8.40) yields

Digyi pert(Vi — 5641 — big1) = ST (—¢iy1 — big1) + s¢
= Dyyi(thi — sefy — sbi ) + (Dsyier — Dy )i
+ Dy (seiy1) — (AZ;H + Réﬂ)(wi + seit1)
+ 8*(Bo + By) + s(Co + C1) + 5(Qo + Q1)
- Dpert(sfffﬂ)
= Dyyi (thi — sefy — sbi 1) + (Dsyier — Dy )i
+ Doy (seign) + (Dagier = Dage) (5641 = shi4)

— (A R (¢ + scf iy — shl + seiq)

2 2 2
+520) B+ _C)+ s Q)
=0 =0 j=0
- me(s{%i’ﬂ).

Therefore, we have

D gyit1 pert (i — SC??H - Shfﬂ + seip1) =sT%(Ciy1 — biy1) + s€;

— (AT R (0 — scf iy — shl, + seiq)

(8.50) - 52(2 By) —s(>_Cj) — S(Z Q)
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Now we prove that

2

(8.51) AT (4 — sy — sh? ) + seipr) + S(Z C;) + s€i41 € 3€§(+11+CE)Pi)”°;
=0
2 .
(8.52) R (W — s¢iq — sbiyy + seip1) + 32(2 B;) € Sz%g—:fmos
=0
(8.53) STy (—cip1 — bipr) € 2L ™.

We already prove (8.53) in step 2 and step 3. By using k3 = Pk, version of

(5.34), we can prove that
AT (s + sy — sl + seir)llizv,-n) < ePla (7 — 7).

Meanwhile, by (k2, 3) = (e P'kg, eP'r1) version of (5.26) - (5.31), we have 5(2?:0 Cj) €
s@ioflpi“l. So we get (8.51).

Finally, by using (ka, k3) = (e P'kg, eP'ky) version of proposition 5.8, we have

i 3 i t
IR (i + seliy — sy + seia)lliz < Crpe”Poai(r)’
3
CvjeP'riv2 . t s
S — . Pmlg)?
i 3
<eP nl(TZ.+1)2
by taking P < /T and ¢ < %l -. So we have REF (¢ + sef | — shl | + seiy1) €
_ Cvyjk1t2
s2BEE" . Meanwhile, by (kg k3) = (eP'kg, e Pirp) version of (5.26) - (5.31) again,

we have 3(2220 B;) e SQ‘Bgffi'“. So we prove (8.52).

Step 5. In this step, we state the following lemma which is the ¢ + 1-th version
of lemma 8.6 in previous subsection. The proof of this lemma can follow from the

argument of lemma 8.6 directly. So we omit the proof.
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Lemma 8.8. Suppose Q be either the following 4 types:

q:r/(j) q}(t) q}(t) qrﬁ)

2 z 2 z 2 z 2 z

S Xi ¢ , S or s

Xeet | o ASanll W (1) (1)
7z NE 7z 7z

where ||¢F||r2 < ks, [[(F)ellr2 < Ks. Then there exists a L3 section ¢ which can

be written as

+ > +

320 e; vz ) >0 e; (HVz

[ RN
7; Xi+1 e;(t)\/z JZZ; Xi+1 e;(t)\/g

for the each type respectively such that D+ (s*') = s*Q + s*B + sC for some
i+l
B e B, and C € €, for all s < = Furthermore, we have |[¢'|| ;2 < 2rs3.

2«/%531‘?

By using this lemma, we can show that there exist ¢, ;, j = 0,1,2, such that
Dsni+1,pert(82e;+1,j) = $2Qj + SQBJ' + SCJ"

Meanwhile, by the proposition 5.9 and proposition 5.4, we can show that there exist

), and &, satisfying Dgyic1 per (8,1, + 585 ) = Dperetlyy, B(£,,,) € Ho and

(8.54)

1B(€71,6)ll72 < ST [(B(51,6)ellz2 < ST (B30l < 5

Therefore we can rewrite
(8.55)

. g 9 g b 2L\ _ .2 2 _
Dgpitt pert (i — 8¢y — sbiyy +sely + sl + 5785, ) = s"A+ 5B+ sC = fiy.
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with ¢f,,_,  + > ¢l and A € ALTOT B e BT and € € €C™. So by

taking ¢ < £51, we prove the inductive assumption 1 in (8.30).

Step 6. Finally, we should prove the inductive assumption 3 in (8.30). To prove
this part, we notice that both b7 ; and ¢/, ; vanish on 3, therefore we can do the

integration by parts to get

167411172 < [1Dgyeb? i 172 + ClIbL 1172

for some constant C' depending on the curvature of M. Now by the fact Dy,:H;11 =0

+ i+1
hiiavz Ptk

e

and by (8.32) and (8.33) and corollary 4.6, we have

[ Denibiiillzz < lo(Xiv)l[Divallzz + [ Dy l2v ey < TA(i+1)
T'L

Pi-l—l
16741l < Clibirallze < Crprrin.
So we have
Pi—Hlil
||bzg+1||L§ < CW-
Similarly, we have
PH_I/‘&l
||C’L-'y-].||[z2 < O T7’+1 N
For the L2-part, we have
P Iav)
181 lz2 < Clle e < Ol
P )

85 1ull2 < CllE ez < C i,
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So Eiﬁ_lﬁ — 0 in L?-sense. Therefore we finish the proof of the inductive assumption
3 in (8.30).
By induction, we get a sequence 1); € L? and a family of perturbations 7' =

zj‘:o X;7; such that
Dy pert (Vi + 32'(3?;173) — 0

as i — oo in L2, sense. Moreover, since |[¢h;41 — ¢ 12 < Crs(£) for some C' > 0, so
we have 1; — 1h, in L? sense. Meanwhile, since [|7;]|2 < Crs(£)" for some C' > 0,
we have Y n; — 1, in L? sense.

To prove that 1 converges to a C* circle, we only need to use the Holder estimates

in remarks 8.4 and 8.7. We have

1

t4
Il < Crol 7).

20

for all i. Therefore, by Arzela-Ascoli theorem, there is a subsequence of the partial
sum {n'} converging in C! sense. So the limit, 7, will be a C! circle.

In the case that B(ts) = 0, ¢ will vanish on ¥ and Dg, pert(¢5) = 0. So ¢ € L3.

Remark 8.9. Suppose we consider a smaller neighborhood of ((g,%, e),v) to param-
etrize. This means we can take t, ¢y smaller. In this case, the constant ¢ can be

chosen smaller, too. We can see that

1 o
=11 njller =0
L E

as t goes to 0. Similarly, we have £, — €0 is O(g). So all these terms we derived in

this iteration process is o(s)-order.

8.5. Part I of the proof: The set 7(N). Here we should say more about the
neighborhood A/. We define the topology on Y as follows. Let ((g, X%, €),%) € M, we
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use refine the notation used in section 5.2 in the following way:
Veyo={n:5" = Cllnller < C; (n(t),t) € N}
and define
Yorcr =19 € X1g — gllez < C'; dist(E, supp(g — g)) < r}.
So we can generate the topology on ) by the family of open sets {#;., ¢ X Vs, c}
forr <R, C,C" € RT.

Now we define our N' = ”//g,r’crs/z X Vs ¢ for some C small enough. Reader

r>t
can double check the argument in step 2 of section 8.3: By taking A in this way, we

have all elements in 7 (N) will follows the argument in this section.

Remark 8.10. It seems to be impossible to take N to be UT>0 ”ngms/z X Vs r.c because
the map f will not differentiable on this set. However, the choice of v can be arbitrary

small.

9. PROOF OF THE MAIN THEOREM: PART II

In this section, we prove two statements. Firstly, we have to show that the choice
of (s, %s) have dimension equaling dim(ker(D|zz)). Secondly, we have to show that

the function f we defined in previous section is C.

9.1. Part II of the proof: parametrization of (7,,1;). First of all, by the ar-
gument in the previous section. After we fix a & € H;, we have the choice of 7, is
unique. Also, we have B(1);) is unique.

According to this observation, we can prove the following proposition instead.

Proposition 9.1. For any two solutions (1, ¥s) and (s, ¥) satisfying D (1o — ) =
0, then ¥s — ¢} = 0.
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Proof. We can write Dy, ,ere = D + P(s) where P(s) is an analytic operator with

respect to s. Meanwhile, since we have 1, — ¥* € C*([0, ¢o]; L?), so we have

Dsns,pert("l}s - ¢:) = D(¢s - ¢*) - P('S)(ws - 1/1*) =0

So inductively, we have (1, — ¥*) = O(s¥) for all k. This implies (¢s — ¥*) =0. O
By this proposition, we know that we can parametrize the data 1, by elements in

ker(D|.z). Therefore, we can define a map J¢" : s1) — 1, where 1) € ker(D|z) and

1)z = 1.

9.2. Part II of the proof: C! regularity of f. Since the function f is defined on

a infinity dimensional space, so the definition of C! will be in the sense of Frechet

C'. Here we recall the definition of Frechet C*.

Definition 9.2. Let B;, By are two Banach space. % : %, — %5 be a bounded
operator. Then .7 is differentiable at p if and only if there exists a bounded linear

operator d,.# : %, — %P5 such that
|7 (2) — dpF (x) = F (D)l 5, = o(l|z[| )

In addition, if .7 is differentiable everywhere and d,,.% vary continuous. Then we call

Z a C! map.

Now let .% maps from R" x % to R™. Suppose we have

0
&xi

(9.1) Z(p) := hi(p) is continuous near 0.

(9.2) The family of directional derivatives {D,.# := j,(p)|v € A, ||v|| = 1}
is equicontinuous near 0,
(9.3) {DyZF = ky(v)|p € R" x A} is equicontinuous on

{v e B||v]| =1}
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Then we can define the linear operator as follows:

v F (

F(p)v

llvll

"9
(9.4) ZLy(z,0) =) 57 (p)wi+ D
i=1 ¢

To prove this is the linear approximation, we need to do more. However, this is the
only possible linear operator tangential to .# at 0.

Now, suppose we already show that these linear operators are the differential of
Z. To show .Z is actually C', it is sufficient to show that %, varies continuously.
So the condition (9.1) and (9.2) are exactly what we need to show.

Here I divide my proof into two parts. In first part, I will assume that f is
differentiable at every point and then showing that f is C*. In the second part, I will
prove that f is differentiable.

Step 1. Since € is analytic, the family of directional derivatives of f is actually
equicontinuous at any point except p = 0 with any direction fixed. Therefore we only
need to show the conditions (9.1) and (9.2) hold near 0.

Since we have

(9.5) s =) st =) st +0(s?)
=0 =0

We can further simplify this equation by using the conclusion in remark 8.9.
(9.6) st = st + o(s)

Now, recall the way we construct k:(j)E in Step 1 and Step 2 in section 8.3. In the case
that we have no perturbation for g, k:(jf = 0. That is to say, st = o(s). Therefore
we have the directional derivatives of f along H; will be 0. Meanwhile, it is obvious
that they are continuous by using (9.6).

To prove (9.2), we use (9.6) again. Here we can check that if we perturb the
metric along the opposite direction, then the corresponding €} will only change the

sign. So the directional derivatives along 7 (N) also exist and are continuous at 0.
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Furthermore, since the estimates showed in section 8 are independent of the choice
of ¢°, so it also doesn’t depend on v. Therefore we have {j,(p)} is equicontinuous at
0.

So we finish our argument in this step.

Step 2. In this step, we need to show that f is differentiable. By definition 9.2,

we need to show that for any p = (y,w) € R" x 4,

(9.7) 1 (y + 2w+ v) = Ly (@, 0) = fly, w)| < o(y/]|z]]* + [[v]]2)

where z,y € K; and w,v 4w € m1(N). All we need to show is the ”small 0” in (9.7)
will converge to zero uniformly. Namely, we are going to prove (9.3) here. Now, since
we already prove that the directional derivatives of f are all continuous, so we can
obtain (9.7) by showing that {k,(v)} is equicontinuous.

By using the conclusion in 8.5, we suppose that ||0s¢%||c2 = Ct3, then the direc-
tional derivative of f along v = ng—gz” at g* will be %%(B(ség)ﬂszso. Now we can

prove (9.3) by using the fact that €2 is analytic and the estimates (8.7) and (8.33).

Therefore, we complete the proof of this part.

9.3. Summary of the proof. Let me summarize what we proved in this section:
For any ((g,%,e),1), there exist a neighborhood of y = (g,%,¢), N' C ), finite
dimensional ball B € K; and finite dimensional vector space K all defined as above

such that 9t will locally homeomorphic to the kernel of f where

~

f(g°, s&, s¢) = B(H (s1))

Moreover, f is a C'* function.

We complete our proof.
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10. APPENDIX

10.1. Remark of the proof when the metric is not Euclidean around .
Here I will sketch the proof for the metric which is not Euclidean near . The idea is
to replace the propositions 5.5 and 5.7 by propositions 6.4 and 6.5 in the arguments
containing section 8.

First of all, let me summarize what I have done in section 8. We start with a
perturbation ¢g* and which will give us an extra term fy such that D,e+1) = fo. Then
in the next step we construct a triple (b, ¢o,70) such that Dby = fo, Deyg = 0 and
”eliminate” the % part in by by (¢, 70). Then we repeat this process. Each time we
will produce a new § which can be decomposed into 3 parts, which belongs to 2, ‘B
and € defined in definition 8.2 (We omit all subscripts here).

Now, we restart the process of producing (o, ¢o,70) for the general case, but this
time we replace the Dirac operator D by D™ defined in section 6.2. So DWh, = f,
and DW¢y = 0. By using the same argument, we will still generate ;. The only
difference will be an extra term in €, which is something we can deal with. This part
is generated by the operator 6! defined in proposition 6.3.

Now we do this process step by step. We replace D by D in i-th step, then we

will get the same result. So the whole argument works for the general case.

10.2. Upper semi-continuity of dim(coker(p™|ker(p+))). In this final part, I will
answer the question about the upper semi-continuity of dim(coker(p~|kerp+)))-
Since P~ |ger(p+) 1s a Fredholm operator, we can decompose Exp~ = range(p™) ®W

where W is finite dimensional. Now, for any c*

€ range(p~), there exists ¢ €
ker(D|2) such that B(c) = ¢*. Suppose we have a perturbed Dirac operator Dpey;.
We can follow the argument in the proof of proposition 5.9 to get a ¢ such that

Dpere(¢') = 0 and || B(c — )| < e[| B(c)]|-
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To prove coker(p~|ker(p+)) i upper semi-continuous, we need to show that the
dimension of cokernel under a small perturbation will be less or equal than the di-
mension of W. We can prove this fact by showing that range(p,.,.) + W = Exp~.

Suppose this is not the case, then we can find v € Ezp~, ||v|| = 1 such that v L W

and v L range(p,.,;). So we have
(v, B(¢')) = 0= (v, B()) + O(e)

This means that, if we decompose v = vy + v; where vy € range(p~) and v; = W,
then we have [|vg]] < O(e) and v; = 0. Therefore, we have ||v]| = O(e), which is a
contradiction.

Therefore we prove the upper semi-continuity of dim(coker(p™|ger(p+)))-
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