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The moduli space of S1-type zero loci for Z/2-harmonic spinors in dimension 3

Abstract

Let M be a compact oriented 3-dimensional smooth manifold. In this paper, we

will construct a moduli space consisting of the following date {(Σ, ψ)} where Σ is a

C1-embedding S1 curve in M , ψ is a Z/2-harmonic spinor vanishing only on Σ and

‖ψ‖L2
1
= 1. We will prove that this moduli space can be parametrized by the space

X = { all Riemannian metrics on M} locally as the kernel of a Fredholm operator.
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1. Introduction

In [12], Clifford Taubes proved a generalized version of Uhlenbeck’s compactness

theorem [13]. Let (M, g) be a 3-dimensional Riemannian manifold. The Uhlenbeck’s

compactness theorem [14] can be stated in the following way:

Theorem 1.1. Suppose P is a principle G bundle over M for some compact Lie

group G and {Ai} be a sequence of connections on P satisfying

‖F (Ai)‖L2 ≤ C(1.1)

for some constant C which is independent of i. Then there exists a subsequence of

{Ai} converging (up to gauge transformations) weakly in L2
1 to a L2

1 connection.

To state the theorem proved in [12], I need to introduce some notations. Firstly,

Clifford Taubes used the fact that sl(2;C) = su(2)⊕ isu(2) and P can be regarded as

one of its SO(3)-reduction associated with PSL(2;C). So he can fix one reduction and

denote P by P ×SO(3) PSL(2;C). Therefore he can always decompose a connection

A = A + ia where A is the connection one form on the SO(3) reduction of P and a

is a su(2)-valued one form.

Secondly, if I denote the group of gauge transformations (the automorphism group

of P ) by G, then the lie algebra sl(2;C) does not have norms which are invariant

under the action of G. So I should refine the L2 boundedness condition (1.1) as

follows:

Definition 1.2. Let

F(A) = inf
A+ia∈GA

∫

|F (A)− a ∧ a|2 + |dAa|2 + |dA ∗ a|2

where GA is the G-orbit of A.
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Now, the generalized Uhlenbeck’s compactness theorem proved in [12] can be stated

as follows:

Theorem 1.3. For any sequence of connections {Ai = Ai+ iai} defined on P ×SO(3)

PSL(2;C), which has {F(Ai)} being bounded, we have

• If {‖ai‖L2} is bounded, then we can find a subsequence of {Ai} which is weakly L2
1

convergent up to the automorphism of P .

• If ‖ai‖L2 → ∞, we can find a closed, Hausdorff dimension at most 1 subset Σ and

a subsequence of {Ai = Ai + iai} such that

1. {Ai} converges weakly in L2
1,loc-sense on M − Σ up to the automorphism of P

and

2. { 1
‖ai‖2ai} also converges weakly in L2

1,loc-sense on M − Σ up to the

automorphism of P .

Moreover, the data Σ can be formulated as the zero locus of a Z2-harmonic spinor,

say ψ, defined on M − Σ, see [6]. In [6], Clifford Taubes showed more properties

for this data set Σ. Moreover, it is still a conjecture that Σ is a C1 curve for the

”generic” metric g, this conjecture is also mentioned in [1]. So a natural question we

can ask is the following: can we find a way to parametrize the data (Σ, ψ)?

In this paper, I will give a local parametrization of the set of triples of the form

(g,Σ, ψ) with g being a Riemannian metric, Σ being a C1 embedded circle and ψ

being a Z/2 harmonic spinor defined on the complement of whose norm extends

across as zero as to give a Holder continuous function on M . To say more about this,

let

A = {Σ ⊂ M |Σ is the image of a C1 embedding of the circle}.

For each Σ ∈ A, define H be the subset of H1(M−Σ;Z/2) with non-zero monodromy

around Σ. Each e ∈ H corresponds to a real line bundle IΣ,e on M − Σ. So as Σ
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varies, the set H varies continuously to define a finite sheeted covering space of A.

This is denoted by AH . Denote by X the space of Reimannian metrics on M . Each

metric g ∈ X has a corresponding spinor bundle Sg → M . Denote by Sg,Σ,e the

bundle Sg ⊗ IΣ,e; this is a spinor bundle over M − Σ. This is called the Z/2 spinor

bundle. Define Y to be X ×AH .

Let E → Y denote the infinite dimensional vector bundle defined as follows: Sup-

posing that y = (g,Σ, e) ∈ X × AH , then the fiber of E over y is the infinite dimen-

sional vector space of L2
1 sections over M − Σ of the Z/2 spinor bundle Sg,Σ,e. This

vector space is denoted by Ey. Let D(y) denote the Dirac operator defined on Ey by

the metric g. This operator gives a bounded, linear map from Ey to the space of

square integrable sections of Sg,Σ,e.

With E understood, the space of interest is the subset M in E whose elements are

data sets (y = (g,Σ, e), ψ ∈ Ey) obeying

•D(y)ψ = 0

• |ψ| extends across Σ as a Holder continuous function on M

with its zero locus containing Σ.

• |ψ|(p)
dist(p,Σ)

1
2

> 0 near Σ.

• The L2
1 norm of ψ is 1.

The set M inherits a topology from E . The goal is to give it some additional

structure. To say more about M, we can consider the vector bundle F over Y whose

fiber Fy is the L
2 sections of Sy. ThenM will be contained in the kernel of D : E → F

where D|Ey = D(y).

I will prove the following:
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Theorem 1.4. Let (y = (g,Σ, e), ψ) denote a given element in M. There are finite

dimensional vector spaces K1 and K0, a ball B ⊂ K1 centered at the origin, a set

B ⊂ X with B = π1(N ) being the projection of N , a neighborhood of y, from Y to

X and a C1 map to be denoted by f from B × B to K0 such that M near (y, ψ) is

homeomorphic to f−1(0).

The vector space K1 and K0 in this theorem can be generated by the kernel and

cokernel of a Fredholm operator respectively. This theorem shows us several facts.

First of all, the C1-curve component Σ in M can only be perturbed in finite dimen-

sional directions. Secondly, when dim(K0) = 0, then M near (y, ψ) is homeomorphic

to B × B.

2. Basic setting and results

2.1. Functional spaces. First of all, we start with some basic setting. Let (M, g) be

a compact 3-dimensional Riemannian manifold and Σ ∈ A be a C1 circle embedding

in M . Moreover, we suppose that g is the product type metric near Σ. Namely, there

exists NR, a small tubular neighborhood of Σ which is parametrized by coordinate

(r, θ, t) ∈ [0, R] × [0, 2π] × [0, 2π], such that g|NR
= dr2 + r2dθ2 + dt2. So we can

parametrized the circle Σ by t.

Secondly, let S be the spinor bundle over M with respect to g and I be a real

line bundle defined on M − Σ. We suppose that I cannot be extended to the entire

manifold M , which means I|r=a,t=b ≃ R × [0, 2π]/{(x, 0) ∼ (−x, 2π) for all x ∈ R}
homeomorpically for all 0 < a < R and t ∈ [0, 2π]. We also fix a metric gI . So we

can define the scale |v ⊗ w| = |v||w| for any (v, w) ∈ S ⊗ I.
Thirdly, the S itself is equipped with the standard connection ∇S , see [6]. Mean-

while, the connection 1-form of the real line bundle is zero. So we can define the

connection ∇S⊗I = ∇I ⊗ idI on the bundle S ⊗ I.
Now we are ready to define the functional spaces we need in this paper.
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Definition 2.1. Let u ∈ C∞(M−Σ,S⊗I) be a smooth section of the twisted spinor

bundle S ⊗ I. We define the following norms and corresponding space:

1. ‖u‖L2 = (
∫

M−Σ
|u|2) 1

2 ;

2. ‖u‖L2
1
= (

∫

M−Σ
|u|2 + |∇u|2) 1

2 ;

3. ‖u‖L2
−1

= sup{
∫

M−Σ
〈v, u〉|‖v‖L2

1
≤ 1 and }.

Moreover, the spaces of sections bounded with respect to these norms will be denoted

by

L2
i (M − Σ;S ⊗ I) = closure of {u ∈ C∞(M − Σ,S ⊗ I) | ‖u‖L2

i
≤ ∞}

for i = 1, 0,−1. In the following paragraphs, we simply use the notation L2
i to denote

L2
i (M − Σ;S ⊗ I) and we usually omit the index i when it is zero.

Similarly, we can define the space of compactly supported sections, L2
i,cpt by taking

the closure of the set of smooth, compactly supported sections with respect to the

norm ‖ · ‖L2
i
.

Remark 2.2. We should always remember that the space L2
−1 is the dual space of L2

1

in our case. In a general open domain Ω on R
n, the notation L2

−1(Ω) usually denote

the dual space of L2
1,cpt(Ω). The advantage of taking dual of L2

1,cpt(Ω) is the following:

We can ”differentiate” a L2(Ω) function formally by coupling it with sections defined

on L2
1,cpt. This gives us a functional defined on L2

1,cpt. Then the compactly supported

inputs of this functional allow us doing integration by parts formally without having

the boundary terms. Therefore, if we want to extend the domain of this functional

to be L2
1, we need to prove that there is no contribution from the boundary when we

have L2
1 inputs.

The space L2
−1 has the following property. This is a analogue version of theorem 1

in section 5.9 of [5].
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Proposition 2.3. Let f ∈ L2
−1. Then there exists a pair

(f0, f1) ∈ L2(M − Σ;S ⊗ I)× L2(M − Σ;S ⊗ I ⊗ T ∗M)

such that

∫

M−Σ

〈v, f〉 =
∫

M−Σ

〈v, f0〉+ 〈∇v, f1〉(2.1)

for all v ∈ L2
1. Furthermore, we have

‖f‖L2
−1

= (

∫

M−Σ

|f0|2 + |f1|2)
1
2

Proof. Let Tf : L
2
1 → C be a bounded functional sending each v to

∫

M−Σ
〈v, f〉. By

Riesz Representation Theorem, there exists u ∈ L2
1 such that

Tf(v) =

∫

M−Σ

〈v, u〉+ 〈∇v,∇u〉.(2.2)

So we can simply take f0 = v and f1 = ∇v.

To prove the second part, by taking v = u in (2.2), we have

‖u‖2L2
1
= Tf(u) ≤ ‖u‖L2

1
‖f‖L2

−1
.

This inequality implies that (
∫

M−Σ
|f0|2 + |f1|2)

1
2 = ‖u‖L2

1
≤ ‖f‖L2

−1
.

Meanwhile, from (2.2) we have

|Tf(v)| ≤ (

∫

M−Σ

|f0|2 + |f1|2)
1
2

if ‖v‖L2 ≤ 1. So by the definition 2.1, we have ‖f‖L2
−1

≤ (
∫

M−Σ
|f0|2 + |f1|2)

1
2 . �

2.2. Some analytical properties of Dirac operators on M − Σ. We will prove

the following proposition in this subsection.

Proposition 2.4. Let D|L2
1
: L2

1 → L2 be the Dirac operator. Then we have the

following properties:
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1. ker(D|L2
1
) is finite dimensional.

2. range(D|L2
1
) is closed.

3. Suppose we write the adjoint of D|L2
1
to be D|L2 , then we have

L2 = range(D|L2
1
)⊕ ker(D|L2).

Remark 2.5. ker(D|L2) is not finite dimensional in general.

To prove this proposition, we need the following lemma. This lemma is also very

useful in the rest of this article.

Lemma 2.6. Let u ∈ L2
1, then we have

∫

Nr

|u|2 ≤ 4π2r2
∫

Nr

|∇u|2

for all r ≤ R.

Proof. Let u ∈ L2
1 and {un} be a sequence of smooth sections such that

un → u

in L2
1 sense. Since I is nontrivial along θ direction, we have

|un(r, s, t)| ≤ |
∫ 2π

0

∂θ|un(r, θ, t)|dθ|

≤
∫ 2π

0

|∇e2un(r, θ, t)|rdθ

≤
√
2πr

1
2 (

∫ 2π

0

|∇e2un(r, θ, t)|2rdθ)
1
2

for any s, t ∈ [0, 2π], 0 < r ≤ R, where e2 =
1
r
∂θ. So we have

∫

Nr

|un|2 ≤
∫ r

0

∫ 2π

0

∫ 2π

0

|un(r, s, t)|2rdsdtdr

≤ 4π2r2
∫

Nr

|∇e2un|2.
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By taking n → ∞, we prove this lemma. �

Proof. (of Proposition 2.4)

Step 1. First of all, for any u ∈ L2
1, we have the Schrodinger-Lichinerowicz formula

D2u = ∆u+
R

4
u,

in the following sense:

∫

〈Dζ,Du〉 =
∫

〈∇ζ,∇u〉+
∫

R

4
〈ζ, u〉(2.3)

for all ζ ∈ L2
1,cpt. Here R is the scalar curvature of M . We should prove that (2.3) is

true for all ζ ∈ L2
1.

By lemma 2.6, we have

∫

Nr

|ζ|2 ≤ 4π2r2
∫

Nr

|∇ζ|2(2.4)

for all ζ ∈ L2
1. Let us denote (

∫

Nr
|∇ζ|2) 1

2 = fζ(r). We have fζ(r) → 0 as r → 0.

Now we take the family of smooth functions

χδ =







0 on N δ
2

1 on M −Nδ

with |∇(χg)| ≤ C
δ
. So by (2.3), we have

∫

〈D(χδζ), Du〉 =
∫

〈∇(χδζ),∇u〉+
∫

R

4
〈χδζ, u〉(2.5)

for all ζ ∈ L2
1. Clearly the second terms on the right hand side of (2.5) will converges

to
∫

R

4
〈ζ, u〉 as δ → 0 by Cauchy’s inequality.

For the left hand side of (2.5), we have

∫

〈D(χδζ), Du〉 =
∫

χδ〈Dζ,Du〉+ e.
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Because of the inequality (2.4), e can be bounded as follows.

|e| ≤ C

δ

∫

Nδ

|〈ζ,Du〉| ≤ C

δ
(

∫

Nδ

|ζ|2) 1
2‖Du‖L2 ≤ Cfζ(δ)‖Du‖L2 .

So we have

∫

〈D(χδζ), Du〉 →
∫

〈Dζ,Du〉

as δ → 0.

Similarly, we have

∫

〈∇(χδζ),∇u〉 →
∫

〈∇ζ,∇u〉

as δ → 0, too. So we have

∫

〈Dζ,Du〉 =
∫

〈∇ζ,∇u〉+
∫

R

4
〈ζ, u〉(2.6)

for all ζ ∈ L2
1.

Step 2. We prove ker(D|L2
1
) is finite dimensional in this paragraph. By taking

ζ = u in (2.6), we have

‖u‖2L2
1
− C1‖u‖2L2 ≤ ‖Du‖2L2 ≤ ‖u‖2L2

1
+ C2‖u‖2L2(2.7)

for some C1, C2 depending on the supreme and infimum of the scalar curvature R.

Now, let {un} ⊂ ker(D|L2
1
) and ‖un‖L2

1
≤ 1. Then there is a subsequence of {un}

converging weakly in L2
1, which will also converge strongly in L2, but the inequality

(2.7) shows us that ‖u‖2
L2
1
≤ C1‖u‖L2 for all u ∈ ker(D|L2

1
). So this subsequence will

actually converge strongly in L2
1. Therefore the unit sphere inside the space ker(D|L2

1
)

is compact, which means ker(D|L2
1
) is finite dimensional.
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Step 3. To prove it has a closed range, we need to show that for any Cauchy

sequence {Dun}, it will converge to Du for some u. We can suppose that un are

orthogonal to ker(D|L2
1
) without loss of generality. Here we claim that the following

inequality

‖Dv‖L2 ≥ C3‖v‖L2(2.8)

holds for all v orthogonal to ker(D|L2
1
). With this inequality in mind, the right hand

side of the inequality,

‖um − un‖2L2
1
≤ ‖D(um − un)‖2L2 + C1‖um − un‖2L2 ,

provided by inequality (2.7) converges to 0. Therefore {un} is a Cauchy sequence.

To prove the inequality (2.8), we just follow the argument of section 4.2 in [6]. only

need to show that the spectrum of D|L2
1
is discrete. To prove this statement, we pick

up a suitable λ 6∈ σ(D) and show that (D − λ)−1 : L2 → L2 is a compact operator.

So let {vn} be a bounded sequence in L2, we have to show that {(D − λ)−1vn} have

a converging subsequence. By (2.7) again, we have

‖(D − λ)−1vn‖2L2
1
≤ ‖vn‖2L2 + (C1 + λ2)‖(D − λ)−1vn‖2L2 .

Meanwhile, because λ 6∈ σ(D), so (D − λ)−1 is a bounded operator. Therefore

‖(D − λ)−1vn‖L2 ≤ Cλ‖vn‖L2 for some constant Cλ depending on λ. So we have

‖(D − λ)−1vn‖2L2
1
≤ Cλ‖vn‖2L2

which implies (D − λ)−1 is compact.
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Step 4. Now we already have L2 = range(D|L2
1
) ⊕ range(D|L2

1
)⊥. We only need

to show that

range(D|L2
1
)⊥ = ker(D|L2).

To show this is true, by taking any v ∈ ker(D|L2), we have

∫

〈u, Dv〉 =
∫

〈Du, v〉 = 0

for all u ∈ L2
1. So we can see this fact immediately. �

So far we prove that D|L2
1
has closed range and finite dimensional kernel. However

the cokernel ofD|L2
1
which is also the kernel of D|L2 : L2 → L2

−1 is infinite dimensional

in general. In section 4, we will express the elements in ker(D|L2) explicitly in terms

of Bessel functions directly.

3. Classification of Spin structures with the singular S1- curve

In this section, we classify the spin structure on the singular submanifold. We

should start from the basic knowledge of spin structure first, readers can see [6], [9]

for the details.

3.1. Spin structures. Let M be a compact Riemannian manifold. Let dim(M) =

m. A spin structure of M is a Spin(m)-principle bundle P which is a 2-fold covering

of Q, the frame bundle of TM . More precisely, we have following diagram

P × Spin(m) > P

Q× SO(m)

Λ×λ

∨
> Q

Λ

∨
> M
>

commutes.

Now suppose that there is a submanifold N ⊂ M with dim(N) = n. Moreover, we

suppose the normal bundle of N is trivial. Therefore, for any x ∈ N , the cotangent
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space TxM can be decomposed as TxN ⊗ νx, where we denote by ν the normal

bundle of N . If we fixed an orthonormal sections in Γ(ν) to be {v1, ...vm−n}, then
we can define the frame bundle Q′ of N as a subbundle of Q by considering the

map (e1, ..., en) 7−→ (e1, ..., en, v1, ..., vm−n) ∈ Q. Furthermore, we can show that

Λ−1(Q′) = P ′ is a Spin(n)-structure of N :

Lemma 3.1. Let M be a m-dimensional Riemannian manifold. Suppose that there

is a smooth n-dimensional submanifold N ⊂ M with trivial normal bundle. Then

for any spin structure PSpin(m) defined on M , there is a corresponding spin structure

P ′
Spin(n) defined on N which is a subbundle of PSpin(m)|N . We call P ′ the reduced

spin structure on N .

Proof. Let Q, Q′ be the frame bundles over M and N respectively which are de-

fined in the previous paragraph. There is a SO(n)-action on Q′ and a inclusion map

i : SO(n) → SO(m). So we have the following diagram

Λ−1(Q′)× λ−1 ◦ i(SO(n)) > Λ−1(Q′)

Q′ ×i SO(n)

Λ×λ

∨
> Q′

Λ

∨
> N
>

commutes.

It is obvious that Λ−1(Q′) is a 2-fold covering of Q′. To finish the proof, we only

need to show that λ−1 ◦ i(SO(n)) is isomorphic to Spin(n). We prove this part as

following.

The cases n < 3 are easy to check, so we suppose that n ≥ 3. Since π1(Spin(n)) =

0, there is a natural lifting from Spin(n) to Spin(m) such that the following diagram

Spin(n)
l
> Spin(m)

SO(n)

λ

∨
i
> SO(m)

λ

∨
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commutes. We need to show that l is injective. Suppose not, we will have a, b ∈
Spin(n) such that l(a) = l(b). We can choose a curve γ : [0, 1] → Spin(n) such that

γ(0) = a and γ(1) = b. Then l ◦ γ will be a trivial loop in Spin(m), which maps to a

trivial loop in i∗(SO(n)) ⊂ SO(m). This is a contradiction. Therefore we have that

l : Spin(n) → λ−1 ◦ i(SO(n)) ⊂ Spin(m) is an isomorphism.

�

Remark 3.2. There is a intuitive way to understand this lemma. Recall that if M is

a product manifold A×R
k, then any spin structure P of M can be reduced to a spin

structure on A. In our case, if we rescale the metric near N along normal direction, we

can construct a manifold N ×R
m−n by taking the limit of this rescaling. Because the

spin structure on N is invariant under the scaling, we prove this lemma immediately.

It is well-known that if the second Stiefel-Whitney class W2(Q) = 0, then there

exist the spin structures and vice versa. Moreover, the spin structures can be classified

by H1(M ;Z2) by considering the exact sequence of cohomology groups.

3.2. Classification of the spin structure on the boundary of a tubular neigh-

borhood. Let m = 3 and Σ ⊂ M be a C1 circle embedding in M . We consider the

tubular neighborhood N ≃ Σ × D (D is the 2 dimensional closed disc) and denote

the boundary of N̄ by B. Now B ⊂ M is a submanifold and dim(B) = 2. We can

parametrize B by (θ, ϕ) 7−→ B with θ, ϕ ∈ [0, 2π]. We define γ1 = Im{θ = 0} and

γ2 = Im{ϕ = 0} where γ1 can bound a embedded disc inside B.

Let P be the spin structure on M , which is a Spin(3)-principle bundle on M , we

have the corresponding spin structure P ′ on B by using lemma 3.1. Since the spin

structure on B can be classified by H1(B;Z2) = H1(S1 × S1;Z2) = Z2 ⊕ Z2, there

are exactly 4 spin structures on B.

Similarly, since γ1 and γ2 are submanifolds of B, we can apply lemma 3.1 again

and get spin structures P ′′
1 and P ′′

2 on γ1 and γ2 respectively. There are only 2 spin
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structures on S1:

1. S1 × Spin(1);

2. [0, 2π]× Spin(1)/{(0, 1) ∼ (2π,−1)}.
Therefore the spin structures defined on B can also be classified by the spin structures

on γ1 and γ2.

Now we want to specify the spin structure P ′ of B. The key point is that this

bundle is defined on entire M , so the spin structure P ′′
1 can be extended inside the

disk D. Now we prove the following lemma given by [15].

Lemma 3.3. Let D be a 2-dimensional closed disc equipped with a Riemannian metric

g. Suppose there is a spin structure P defined on D and P ′ be the spin structure on

the S1 boundary of D by lemma 3.1. Then P ′ must be [0, 2π] × Spin(1)/{(0, 1) ∼
(2π,−1)}.

Proof. We parametrize ∂D = S1 by {θ ∈ [0, 2π]}. Let n(θ) be the inner normal vector

defined on S1 and v(θ) be the tangent vector on S1. Following the notations defined

in lemma 3.1, we have v ∈ Γ(Q′) and (v, n) ∈ Γ(Q). Since (v, n) is an nontrivial loop

in Q, the lifting curve, (v, n)′ ∈ P is not a loop. However, the lifting of v is a loop if

P ′ is trivial. �

Therefore, by this lemma, P ′′
1 = [0, 2π]× Spin(1)/{(0, 1) ∼ (2π,−1)}.

We write down the following conclusion to close this subsection.

Corollary 3.4. There are only 2 possible reduced spin structures P ′ defined on B.

Moreover, it is totally determined by the reduced spin structure P ′′
2 defined on γ2

3.3. Classification of the real line bundle I. Now we should consider the real

line bundle I over M − Σ. Since the vector bundles can be totally determined by

the transition functions {Uαβ, gαβ} which is one-one corresponding to the elements in

the sheaf cohomology H1(M ;G). Therefore if we consider the restriction I|B over B,
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there are only 4 possibilities (H1(B,Z2) ∼= Z2⊕Z2). Furthermore,if we restricted the

line bundle on γ1 and γ2, either it will be a trivial line bundle or it will be a Mobius

strip. This observation will classify the line bundle I|B. Moreover, if I|γ1 is trivial,

then I can be extended to Σ for sure. So we suppose that I|γ1 is the nontrivial one.

Now, if we consider the corresponding spinor bundle S = P ×κ ∆3 on ∂B and

then tensor with I, since both of them are nontrivial along γ1, the bundle S ⊗I will

be trivial along γ1. Hence, we can identify S ⊗ I to P ′ ×κ ∆3 where P ′ is the spin

structure defined on Σ which cannot extend to M .

By using this observation, we can fix a element e ∈ H ⊂ H1(M − Σ;Z/2) in the

rest of this article, which determines one of those two type of spin structures defined

above.

4. The harmonic section defined on the tubular neighborhood with

the Euclidean metric

4.1. The L2 and L2
1 harmonic sections expressed by modified Bessel func-

tions. Let us consider the space N = R
2 × S1. Denote E = S ⊗ I the total space of

twisted spinor bundle over N . The Dirac operator on N can be written as

D = e1 ·
∂

∂t
+ e2 ·

∂

∂z
+ e3 ·

∂

∂z̄

where

e1 =





−i 0

0 i



 , e2 =





0 1

0 0



 , e3 =





0 0

−1 0





and z = x+ iy.
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Using the cylinderical coordinate, r :=
√

x2 + y2 and θ = arctan( y
x
), we can write

down the Fourier expansion of u as

u(t, r, θ) =
∑

l,k

eilt





ei(k−
1
2
)θU+

k,l

ei(k+
1
2
)θU−

k,l





for any C∞−section u of E. Here k runs over all integers and l can be either in Z or

Z + 1
2
according to the spin structure we chose. The Dirac operator can be written

in terms of θ, r by changing the coordinate, we have

∂

∂z
=

∂

∂x
+ i

∂

∂y
= eiθ(

∂

∂r
− i∂

r∂θ
);

∂

∂z̄
=

∂

∂x
− i

∂

∂y
= e−iθ(

∂

∂r
+

i∂

r∂θ
).

Suppose u is a harmonic section. Then we have

Du =
∑

l,k

eilt





ei(k−
1
2
)θ(lU+ + d

dr
U− +

(k+ 1
2
)

r
U−)k,l

ei(k+
1
2
)θ(−lU− − d

dr
U+ +

(k− 1
2
)

r
U+)k,l



 = 0

which gives us a system of equations:

d

dr





U+

U−





k,l

=





(k− 1
2
)

r
−l

−l − (k+ 1
2
)

r









U+

U−





k,l

.

For l 6= 0, this equation has standard solutions of the form





U+

U−





k,l

=





u+
k,ll

−k+ 1
2 Ik− 1

2
(lr)− u−

k,ll
k+ 1

2 I−k+ 1
2
(lr)

−u+
k,ll

−k+ 1
2 Ik+ 1

2
(lr) + u−

k,ll
k+ 1

2 I−k− 1
2
(lr)





where Ip is the modified Bessel function which can be written as

Ip(r) =
∞
∑

m=0

1

m!Γ(m+ p+ 1)
(
r

2
)2m+p.
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For the properties of Bessel functions, readers can see [4] for more detail.

For l = 0 we have





U+

U−





k,l

=





u+
k,0r

k− 1
2

u−
k,0r

−k− 1
2



 .

Clearly we have Ip(r) = O(rp). To normalized the leading coefficient of Ip(lr), We

define Ip,l(r) = l−pIp(lr).

Now we apply these results to the sections of S ⊗ I over N . Fix an R > 0, we

define NR := N ∩ {r < R}. Suppose u ∈ L2(N ;S ⊗ I) and Du|NR
= 0, then

u =
∑

k≥0;l 6=0

u+
k,le

ilt





ei(k−
1
2
)θIk− 1

2
,l(r)

−ei(k+
1
2
)θlIk+ 1

2
,l(r)



+
∑

k≤0;l 6=0

u−
k,le

ilt





−ei(k−
1
2
)θlI−k+ 1

2
,l(r)

ei(k+
1
2
)θI−k− 1

2
,l(r)





+
∑

k≥0





u+
k,0e

i(k− 1
2
)θrk−

1
2

0



+
∑

k≤0





0

u−
k,0e

i(k+ 1
2
)θr−k− 1

2





which has the leading term of order 1√
r
, i.e.

u =





u+
0,0e

−i 1
2
θr−

1
2

u−
0,0e

i 1
2
θr−

1
2



+
∑

l 6=0

eilt[u+
0,l





e−i 1
2
θI− 1

2
,l(r)

−lei
1
2
θI 1

2
,l(r)



+ u−
0,l





−le−i 1
2
θI 1

2
,l(r)

ei
1
2
θI− 1

2
,l(r)



]

+ higher order terms.

The Bessel functions I 1
2
(x) and I− 1

2
(x) can be explicitly written as

√

2
πx

sinh(x) and
√

2
πx

cosh(x). So we can change the basis of the leading term in terms of { elr√
r
, e

−lr√
r
}.

Let us using this expression and denote by û+ and û− the coefficients of the leading
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term, then we have

u =
∑

l

eilt[û+
0,l





e|l|r√
z

−sign(l) e
|l|r√
z̄



+ û−
0,l





e−|l|r√
z

sign(l) e
−|l|r√
z̄



]

+ higher order terms

where û+
0,l = (u+

0,l − sign(l)u−
0,l) and û−

0,l = (u+
0,l + sign(l)u−

0,l).

We defined the following space.

Definition 4.1. For any R > 0 given. Let KR be a subspace of L2(NR;S⊗I) defined
by

KR = {u ∈ L2(NR;S ⊗ I)|Du = 0 and û−
l = 0 for all |l| > 1

2R
}.

Definition 4.2. Let u ∈ L2(NR), then there is the corresponding Fourier coefficients

{u±
k,l}. We define the following terminologies:

• We call {(û+
0,l + û−

0,l,−sign(l)û+
0,l + sign(l)û−

0,l)} ∈ l2 × l2 to be the leading

coefficients of u.

• Define {(u+
l , u

−
l )} ∈ l2 × l2 to be

(u+
l , u

−
l ) = (û+

0,l,−sign(l)û+
0,l) for |l| >

1

2R

(u+
l , u

−
l ) = (û+

0,l,−sign(l)û+
0,l) + (û−

0,l, sign(l)û
−
0,l) for |l| ≤

1

2R
.

We call {(u+
l , u

−
l )} the KR-leading coefficients of u.

• We call (
∑

l(û
+
0,l + û−

0,l)e
ilt,

∑

l(−sign(l)û+
0,l + sign(l)û−

0,l)e
ilt) to be the leading

term of u.

• Define u+(t) =
∑

l u
+
l e

ilt and u−(t) =
∑

l u
−
l e

ilt where {u±
l } is the KR-leading

coefficients of u. We call u±(t) to be the KR-leading term of u.

• We call (u+(t) 1√
z
, u−(t) 1√

z̄
) the KR-dominant term of u, where u±(t) is the KR
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-leading term of u.

Moreover, we can see that if u ∈ KR, then the KR-leading coefficients(term) will

be the leading coefficients(term) of u.

Now if we consider v ∈ L2
1(NR;S ⊗ I) and Dv = 0, we will have

v =
∑

k≥1;l 6=0

v+k,le
ilt





ei(k−
1
2
)θIk− 1

2
,l(r)

−ei(k+
1
2
)θlIk+ 1

2
,l(r)



+
∑

k≤−1;l 6=0

v−k,le
ilt





−ei(k−
1
2
)θlI−k+ 1

2
,l(r)

ei(k+
1
2
)θI−k− 1

2
,l(r)





+
∑

k≥1





v+k,0e
i(k− 1

2
)θrk−

1
2

0



+
∑

k≤−1





0

v−k,0e
i(k+ 1

2
)θr−k− 1

2





So we can write

v =





v+−1,0e
i 1
2
θr

1
2

v−1,0e
−i 1

2
θr

1
2



+
∑

l 6=0

eilt





v+−1,le
i 1
2
θI 1

2
,l(r)

v−1,le
−i 1

2
θI 1

2
,l(r)



+ higher order terms.

So

v =





v+−1,0e
i 1
2
θr

1
2

v−1,0e
−i 1

2
θr

1
2



+
∑

l 6=0

eilt





v+−1,le
i 1
2
θI 1

2
,l(r)

v−1,le
−i 1

2
θI 1

2
,l(r)



+ higher order terms.

Again, we should define the leading coefficients and the leading term of v.

Definition 4.3. Let v ∈ L2
1(NR).

• We call the Fourier coefficients, {(v+−1,l, v
−
1,l)}, denoted by {v±l } ∈ (C2)Z, to be

the leading coefficients of v.

• We define v±(t), where v+(t) =
∑

l v
+
l e

ilt and v−(t) =
∑

l v
−
l e

ilt, to be the

leading term of v.

• We call (v+(t)
√
z, v−(t)

√
z̄) to be the dominant term of v, where v±(t) is the

leading term of v.
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In the rest of this article, we will always use the letters of Fraktur script, u, v, h, c,

etc., to denote the sections defined on L2(M − Σ;S ⊗ I) or L2
1(M − Σ;S ⊗ I). If

they satisfy the Dirac equation on NR for some R > 0, then their corresponding (KR-

)leading coefficients will be denoted by the letters of normal script {u±
l }, {v±l }, {h±

l }, {c±l },
etc. which are in l2 × l2. Finally, the corresponding (KR-)leading terms will be de-

noted by u± =
∑

u±
l e

ilt, v±, h±, c± which are in L2(S1)× L2(S1). Therefore we have

the L2-norm for u± will be the same as (‖{u+
l }‖2l2 + ‖{u−

l }‖2l2)
1
2 .

Now we should prove that the KR-leading coefficients of u ∈ KR and v ∈ L2
2 in a

smaller tubular neighborhood have the following regularity estimate.

Proposition 4.4. We have the following two properties.

a. Let u ∈ KR, then we can decompose

u =





u+(t) 1√
z

u−(t) 1√
z̄



+ uR

for some uR ∈ L2
1(N 2R

3
;S ⊗ I) where u±(t) =

∑

u±
l e

ilt and

‖uR‖L2
1(N 2R

3
) ≤ CR−1‖u‖L2(NR)(4.1)

for some constant C only depending on the curvature of M . In the following para-

graph, we call (u−uR) the KR-dominant term of u(we already define this in definition

4.2) and call uR the remainder term of u.

b. Let v ∈ L2
1(NR;S ⊗ I) and Dv = 0, then we can decompose

v =





v+(t)
√
z

v−(t)
√
z̄



+ vR

for some vR ∈ L2
2(N 2R

3
;S ⊗ I) where v±(t) =

∑

v±l e
ilt and

‖vR‖L2
2(N 2R

3
) ≤ CR−2‖v‖L2(NR)(4.2)
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for some constant C only depending on the curvature ofM . Similarly, in the following

paragraph, we call (v−vR) the dominant term of v (we already define this in definition

4.3) and call vR the remainder term of v.

Proof. (proof of part a). To prove this part, we claim the following two statements:

Firstly, we have D





u+(t) 1√
z

u−(t) 1√
z̄



 ∈ L2(NR) and

‖D





u+(t) 1√
z

u−(t) 1√
z̄



 ‖2L2(NR) ≤ CR−2‖u‖2L2(NR)(4.3)

for some C > 0. Secondly

‖





u+(t) 1√
z

u−(t) 1√
z̄



 ‖2L2(NR) ≤ C‖u‖2L2(NR)(4.4)

We will prove these claims in the corollary 4.6.

Now, we fix a K > 0 and define

uR,K =
∑

k 6=0

∑

|l|≤K

eilt





ei(k−
1
2
)θU+

k,l

ei(k+
1
2
)θU−

k,l



−
∑

l 6=0;|l|≤K

eilt





u+
l

1√
z

u−
l

1√
z̄



 .

We can easily see that |uR,K | ≤ CK

√
r and |∇uR,K | ≤ CK

1√
r
, which means there

will be no boundary term when we do the integration by part for the Schrodinger-

Lichinerowicz formula. Now we let χ be a positive smooth function supported on NR

where

χ =







1 on N 2R
3

0 on M −NR

and |∇χ| < C 1
R
.
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By applying Schrodinger-Lichinerowicz formula on χuR,K and using claims (4.3),

(4.4) above, we have

‖uR,K‖2L2
1(N 2R

3
) ≤ ‖DuR,K‖2L2(NR) + C

1

R2
‖uR,K‖2L2(NR)(4.5)

≤ ‖D





u+(t) 1√
z

u−(t) 1√
z̄



 ‖2L2(NR) + C
1

R2
‖uR,K‖2L2(NR)

≤ CR−2‖u‖2L2(NR)

for some C > 0.

By taking K → ∞ in (4.5), we have

‖uR‖2L2
1(N 2R

3
) ≤ CR−2‖u‖2L2(NR).

(proof of part b). Similar to the proof of part a, we have the following two claims

which will be proved in corollary 4.8.

‖D





v+(t)
√
z

v−(t)
√
z̄



 ‖2L2(NR) ≤ CR−2‖v‖2L2(NR)(4.6)

and

‖





v+(t)
√
z

v−(t)
√
z̄



 ‖2L2(NR) ≤ C‖v‖2L2(NR).(4.7)

Now we fix a K > 0, define

vR,K =
∑

k 6=0

∑

|l|≤K

eilt





ei(k−
1
2
)θV +

k,l

ei(k+
1
2
)θV −

k,l



−
∑

l 6=0;l≤K

eilt





v+l
√
z

v−l
√
z̄



 .
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We have |uR,K | ≤ CK

√
r3 and |∇uR,K | ≤ CK

√
r and |∇∇uR,K | ≤ CK

1√
r
. So by

applying Schrodinger-Lichinerowicz formula on χvR,K , we have

‖vR,K‖2L2
1(N 2R

3
) ≤ ‖DvR,K‖2L2 + C

1

R2
‖vR,K‖2L2(NR)(4.8)

≤ ‖D





v+(t) 1√
z

v−(t) 1√
z̄



 ‖2L2(NR) + C
1

R2
‖vR,K‖2L2(NR)

≤ CR−2‖v‖2L2(NR)

for some C > 0. By taking the limit K → ∞, we have

‖vR‖2L2
1(N 2R

3
) ≤ CR−2‖v‖2L2(NR).

Notice that [∇i, D] = 0, so we can use the same argument on ∇iv now. Here we

need the following claim which is also proved in corollary 4.8.

‖D[∇





v+(t)
√
z

v−(t)
√
z̄



]‖2L2(NR) ≤ CR−4‖v‖2L2(NR)(4.9)

and

‖





v+(t)
√
z

v−(t)
√
z̄



 ‖2L2
1(NR) ≤ CR−2‖v‖2L2(NR).(4.10)

So we have

‖vR,K‖2L2
2(N 2R

3
) ≤ ‖D[∇vR,K ]‖2L2(NR) + C

1

R2
‖vR,K‖2L2

1(NR)(4.11)

≤ ‖D[∇





v+(t) 1√
z

v−(t) 1√
z̄



]‖2L2(NR) + C
1

R2
‖vR,K‖2L2

1(NR)

≤ CR−4‖v‖2L2(NR)

for some C > 0. By taking the limit K → ∞, we prove this proposition. �
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In the next section, we will derive some regularity properties about the leading

coefficients.

4.2. Regularity properties and the asymptotic behavior of the L2-harmonic

sections on the tubular neighborhood. In this subsection, we will derive some

regularity theorem for those u ∈ L2(NR;S ⊗ I) and Du = 0. These estimates

are similar to the doubling estimates appearing in [11]. Recall that, by standard

regularity theorem, u is a smooth section on any compact subset of NR. We write

u =
∑

l,k

eilt





e(k−
1
2
)θU+

k,l

e(k+
1
2
)θU−

k,l





where





U+

U−





k,l

=





u+
k,lIk− 1

2
,l(r)− u−

k,llI−k+ 1
2
,l(r)

−u+
k,llIk+ 1

2
,l(r) + u−

k,lI−k− 1
2
,l(r)





for l 6= 0 and





U+

U−





k,0

=





u+
k,0r

k− 1
2

u−
k,0r

−k− 1
2



 .

Since u ∈ L2, so we have

u+
k,l = 0 for k ≤ −1;

u−
k,l = 0 for k ≥ 1.

Moreover, let

Ek,l = {eilt




u+
k,le

i 1
2
θIk− 1

2
,l(r)− u−

k,le
i 1
2
θlI−k+ 1

2
,l(r)

−u+
k,le

−i 1
2
θlIk+ 1

2
,l(r) + u−

k,le
−i 1

2
θI−k− 1

2
,l(r)



 ∈ L2},

then Ek,l ⊥ Ek′,l′ for any two (k, l) 6= (k′, l′).
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By using these observation, we can prove the following proposition.

Proposition 4.5. Let u ∈ L2(NR;S ⊗ I) ∩ ker(D) with the corresponding Fourier

coefficients {u±
k,l}. Then the KR-leading coefficients {u±

l } is in l2k for any k ∈ N.

Moreover, we have

‖(lku±
l )l∈Z‖22 ≤ 3

(2k + 1)!

R2k+1
‖u‖2L2 .(4.12)

Proof. First of all, let Pk,l : L
2 ∩ ker(D) → Ek,l to be the orthonormal projection.

We have

P0,l(u) = eilt





û+
0,l

e|l|r√
z
+ û−

0,l
e−|l|r√

z

−sign(l)û+
0,l

e|l|r√
z̄
+ sign(l)û−

0,l
e−|l|r√

z̄





for any l.

Now recall that (u+
l , u

−
l ) = (û+

0,l,−sign(l)û+
0,l) for |l| > 1

2R
and (u+

l , u
−
l ) = (û+

0,l,−sign(l)û+
0,l)+

(û−
0,l, sign(l)û

−
0,l) for |l| ≤ 1

2R
.

We can compute directly to get

‖u‖2L2(NR) ≥
∑

l

|P0,l(u)|2

≥
∑

l

|û+
0,l|2

∫ R

0

e2|l|rdr +
∑

|û−
0,l|2

∫ R

0

e−2|l|rdr

≥
∑

l

|u+
0,l|2(

∫ R

0

(e2|l|rdr)

≥
∑

k

∑

l

|u+
0,l|2

(2l)2kR2k+1

(2k + 1)!
.
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Meanwhile, the second line of this inequality also tells us that

‖u‖2L2(NR) ≥
∑

|û−
0,l|2

∫ R

0

e−2|l|rdr

≥
∑

|l|≤ 1
2R

e−1|û−
0,l|2R

≥
∑

|l|≤ 1
2R

e−1|û−
0,l|2|l|2kR2k+1.

So we prove (4.12).

�

By using this proposition, we can prove (4.3) and (4.4) in the following way.

Corollary 4.6. Suppose that





u+(t) 1√
z

u−(t) 1√
z̄



 is the KR-dominant term of a L2-harmonic

section u as we showed in proposition 4.4, then

‖D





u+(t) 1√
z

u−(t) 1√
z̄



 ‖2L2(NR) ≤ CR−2‖u‖2L2(NR)

and

‖





u+(t) 1√
z

u−(t) 1√
z̄



 ‖2L2(NR) ≤ C‖u‖2L2(NR)

for some constant C > 0.

Proof. We can compute directly that

D





u+(t) 1√
z

u−(t) 1√
z̄



 =





u̇+(t) 1√
z

u̇−(t) 1√
z̄



 .

Then by proposition 4.5, we can prove this corollary immediately. �

4.3. Regularity properties and the asymptotic behavior of the L2
1-harmonic

sections on the tubular neighborhood. Suppose that v ∈ L2
1(NR;S ⊗ I) and
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Dv = 0, then we can write

v =
∑

l,k

eilt





e(k−
1
2
)θV +

k,l

e(k+
1
2
)θV −

k,l





where





V +

V −





k,l

=





v+k,lIk− 1
2
,l(r)− v−k,llI−k+ 1

2
,l(r)

−v+k,llIk+ 1
2
,l(r) + v−k,lI−k− 1

2
,l(r)





for l 6= 0 and





V +

V −





k,0

=





v+k,0r
k− 1

2

v−k,0r
−k− 1

2



 .

Since v ∈ L2
1, so we have

v+k,l = 0 for k ≤ 0;

v−k,l = 0 for k ≥ 0.

Proposition 4.7. Let v ∈ L2
1(NR;S⊗I)∩ker(D) with the corresponding coefficient

{v±k,l}. Then the leading coefficients {(v±l )} defined in definition 4.3 is in l2k for any

k ∈ N ∪ {0}. Moreover, we have

‖(lkv±l )l∈Z‖22 ≤
(2k + 3)!

R2k+3
‖v‖2L2(4.13)

Proof. We use the notations defined in proposition 4.5.

P−1,l =





−v−−1,llI 3
2
,l(r)

v−−1,lI 1
2
,l(r)



 , P1,l =





v+1,lI 1
2
,l(r)

−v+1,llI 3
2
,l(r)



 .
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for l 6= 0 and

P−1,0 =





0

v−−1,0r
1
2



 , P1,0 =





v+1,0r
1
2

0



 .

Since I 1
2
,l =

sinh(lr)
l
√
r

, we have

‖v‖2L2 ≥
∑

l 6=0

(|v+1,l|2 + |v−−1,l|2)
∫ R

0

sinh2(lr)

l2
dr + (|v+1,0|2 + |v−−1,0|2)

∫ R

0

r2dr

≥
∑

l

(|v+1,l|2 + |v−−1,l|2)
∞
∑

k=0

l2kR2k+3

(k + 3)!

=
∑

l

|v±l |2
∞
∑

k=0

l2kR2k+3

(2k + 3)!
.

Therefore we prove this proposition. �

We also have the following corollary which is similar to the corollary 4.6. We omit

the proof for this corollary.

Corollary 4.8. Suppose





v+(t)
√
z

v−(t)
√
z̄



 is the dominant term of a L2
1-harmonic sec-

tion v as we showed in proposition 4.4, then we have

a.

‖D





v+(t)
√
z

v−(t)
√
z̄



 ‖2L2(NR) ≤ CR−2‖v‖2L2(NR)

and

‖





v+(t)
√
z

v−(t)
√
z̄



 ‖2L2(NR) ≤ C‖v‖2L2(NR)
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for some constant C > 0.

b.

‖D[∇





v+(t)
√
z

v−(t)
√
z̄



]‖2L2(NR) ≤ CR−4‖v‖2L2(NR)

and

‖





v+(t)
√
z

v−(t)
√
z̄



 ‖2L2
1(NR) ≤ CR−1‖v‖2L2(NR)

for some constant C > 0.

Finally, we can prove the following theorem by using proposition 4.7 now.

Theorem 4.9. For any v ∈ L2
1(NR) ∩ ker(D), we have

‖v‖2L2(Nr)
≤ r3

C

R3
‖v‖2L2(NR).

Moreover, we can also prove that

‖vt‖2L2(Nr)
≤ r3

C

R5
‖v‖2L2(NR).

for some constant C > 0 and all r ≤ R
2
.

Proof. To prove the first statement, we use the lemma 2.6 to get

‖v‖2L2(Nr)
≤ Cr2‖∇v‖2L2(Nr)

for all v ∈ L2
1(NR) and r < R.
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By the lemma 2.6, proposition 4.7 and proposition 4.4 b, we have

∫

Nr

|v|2 ≤ Cr2
∫

Nr

|∇v|2 ≤ 2Cr2
∫

Nr

|∇





v+(t)
√
z

v−(t)
√
z̄



 |2 + |∇vR|2

≤ 2C
r3

R3
‖v‖2L2(NR) + 2Cr4‖vR‖2L2

2(NR)

≤ 4C
r3

R3
‖v‖2L2(NR)

for some C > 0.

To prove the second statement, we notice that by applying lemma 2.6 on vt,

∫

Nr

|vt|2 ≤ r2
∫

Nr

|∇vt|2 ≤ 2r2
∫

Nr

|∇





v+t (t)
√
z

v−t (t)
√
z̄



 |2 + |∇(vR)t|2.

By using the proposition 4.7, we have

r2
∫

Nr

|∇





v+t (t)
√
z

v−t (t)
√
z̄



 |2 ≤ 2
r3

R5
‖v‖2L2(NR).

So we have

∫

Nr

|vt|2 ≤ 2
r3

R5
‖v‖2L2(NR) + 2r2‖vR‖2L2

2(Nr)
.

Then by the first statement proved above and proposition 4.4 b,

‖vR‖2L2
2(Nr)

≤ C

R4
‖v‖2L2(N2r)

≤ C
r3

R7
‖v‖2L2(NR).

So we prove the second statement. �

Remark 4.10. By using this theorem, proposition 2.3 and lemma 2.6, we can prove

that for any v ∈ L2
1(NR) ∩ ker(D), we have

‖v‖2L2
−1(Nr)

≤ r5
C

R3
‖v‖2L2(NR).
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Moreover, we can also prove that

‖vt‖2L2
−1(Nr)

≤ r5
C

R5
‖v‖2L2(NR).

for some constant C > 0.

5. Variational formula and perturbation of curves

We introduce some tools needed for the proof of the main theorem here.

5.1. Variational formula. We should review the following fact about the Sobolev

inequality and introduce a modified Poincare inequality first.

Let u ∈ L2(M − Σ;S ⊗ I). We have |u| ∈ L2(M − Σ;R). Since Σ is a measure

zero subset of M , we can extend |u| as a L2 section on M . Moreover, suppose u is in

L2
1(M − Σ;S ⊗ I), we will have |u| ∈ L2

1(M ;R).

Now, by Sobolev inequality, we have

‖u‖L6(M ;R) ≤ C‖u‖L2
1(M ;R)(5.1)

for some constant C > 0. Another important tool we need is a modified type of

Poincare inequality.

Lemma 5.1. Let u ∈ L2
1 and u ⊥ ker(D), then we have

‖u‖L2 ≤ C‖Du‖L2(5.2)

for some C depending only on the volume of M .

Proof. The lemma can be showed immediately by proving the Dirac operator has

empty radius spectrum and empty continuous spectrum and has nonnegative 1st

eigenvalue. See [6] for the proof. �

Now, we define the following functional:
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Definition 5.2. Let f ∈ L2
−1, we define the functional

Ef(u) =

∫

M−Σ

|Du|2 + 〈u, f〉

for all u ∈ L2
1.

Since D is self-adjoint, the Euler-Lagrange equation of Ef will be

D2u = f(5.3)

We can prove the following proposition:

Proposition 5.3. For any f ∈ L2
−1, the corresponding functional Ef is bounded from

below and for any u ∈ L2
1, we have

Ef(u) ≥ α‖Du‖2L2 − β(5.4)

for some α > 0, β ∈ R (This property is usually called coercive). Moreover, if we

consider the admissible set of Ef to be all sections in L2
1 ∩ ker(D)⊥, then Ef(u) has a

unique minimizer.

Proof. We separate the proof into 3 parts.

Step 1. First of all, we define the following smooth functions on M :

χ1 =







1 on M −NR
2

0 on NR
3

and χ2 = 1− χ1.

Then we claim the following statement: There exist δ,K0 > 0 such that

Ef(u) ≥ δ

∫

M−Σ

|D(χ1u)|2 +
∫

M−Σ

〈χ1u, f〉 −K0.(5.5)
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Assuming this clam is true, then by proposition 2.3, we have

∫

M−Σ

〈χ1u, f〉 =
∫

M−Σ

〈χ1u, f0〉+ 〈∇(χ1u), f1〉

for some (f0, f1) ∈ L2(M − Σ;S ⊗ I) × L2(M − Σ;S ⊗ I ⊗ T ∗M). So by Cauchy’s

inequality, we have

Ef(u) ≥ δ

∫

M−Σ

|D(χ1u)|2 +
∫

M−Σ

〈χ1u, f〉 −K0

≥ δ‖D(χ1u)‖2L2 − ε‖∇(χ1u)‖2L2 − 1

4ε
‖f1‖2L2 +

∫

M−Σ

〈χ1u, f0〉 −K0.

Meanwhile, since χ1u = 0 on NR
3
, we have

‖∇(χ1u)‖2L2 ≤ ‖D(χ1u)‖2L2 + sup |R|‖u‖2L2

by Schrodinger-Lichnerowicz formula. Therefore for any ε ≤ δ
2
we have

Ef(u) ≥
δ

2
‖D(χ1u)‖2L2 − ε‖R‖2L∞‖χ1u‖2L2 − 1

4ε
‖f1‖2L2 +

∫

M−Σ

〈χ1u, f0〉 −K0

≥ δ

2
‖D(χ1u)‖2L2 − (1 + ‖R‖2L∞)ε‖χ1u‖2L2 − 1

4ε
‖f‖2L2

−1
−K0.

Now since χ1u = 0 on {r ≤ R
3
}, by regularity theory of the elliptic operator, we

have

‖χ1u‖L2 ≤ C‖D(χ1u)‖L2 .

So by taking ε small enough, we have

Ef(u) ≥
δ

4
‖D(χ1u)‖2 −

1

4ε
‖f‖2−1 −K0(5.6)

Therefore, by setting α = δ
4
and β = 1

4ε
‖f‖2

L2
−1

+K0, we can prove that Ef is bounded

from below and coercive.
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Step 2. We prove the claim (5.5) now. By using Schrodinger-Lichinerowicz for-

mula, we have

Ef(u) ≥
∫

M−Σ

|∇u|2 − 2

∫

M−Σ

|R||u|2 + γ

∫

M−Σ

R|u|2 +
∫

M−Σ

〈(1− χ1)u, f〉+ 〈χ1u, f〉

(5.7)

for any γ ≤ 1, where R is the scalar curvature on M . Since we have product metric

on NR, so R = 0 on NR. Therefore there is a constant C > 0 such that

∫

M−Σ

|R||u|2 ≤ C

∫

M−Σ

|χ1u|2.

Now for any ε > 0, by using Holder inequality and Sobolev inequality, we have

C

∫

M−Σ

|χ1u|2 ≤ C(

∫

M−Σ

|χ1u|6)
1
3 (V ol(M))

2
3

≤ ε(

∫

M−Σ

|χ1u|6)
1
3 + Cε(V ol(M))

2
3

≤ ε‖χ1u‖2L2
1
−Kε

for some constant Kε > 0 depending on ε.

Meanwhile, we have

∫

M−Σ

|∇u|2 ≥ 1

2

∫

M−Σ

|∇(χ1u)|2 − C

∫

M−Σ

|σ(χ1)u|2.

Since σ(χ1) is supported on M −NR
2
, by proposition 2.6, we have

∫

M−Σ

|σ(χ1)u|2 ≤ C

∫

NR

|∇u|2.

Therefore we have

∫

M−Σ

|∇u|2 ≥ 1

2

∫

M−Σ

|∇(χ1u)|2 − C

∫

NR

|∇u|2.(5.8)
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Similarly, since (1− χ1) is also supported on M −NR
2
, we have

‖(1− χ1)u‖L2 ≤ C

∫

NR

|∇u|2

which implies

|
∫

M−Σ

〈(1− χ1)u, f〉| ≤ ε‖(1− χ1)u‖L2 + Cε‖f‖L2
−1

≤ Cε

∫

NR

|∇u|2 +K ′
ε(5.9)

for some constant K ′
ε depending on ε.

Therefore by (5.8) and (5.9) there exists δ > 0 small enough such that

∫

M−Σ

|∇u|2 +
∫

M−Σ

〈(1− χ1)u, f〉 ≥ 3δ

∫

M−Σ

|∇(χ1u)|2 −K ′
ε.

Now, by taking ε ≤ δ and γ = 2δ, we can estimate (5.7) as follows

Ef(u) ≥ 3δ

∫

M−Σ

|∇(χ1u)|2 + 2δ

∫

M−Σ

R|u|2 − ε‖χ1u‖2L2 −Kε −K ′
ε +

∫

M−Σ

〈χ1u, f〉

≥ 2δ

∫

M−Σ

|D(χ1u)|2 − 2ε‖χ1u‖2L2 −Kε −K ′
ε −

1

4ε
‖f‖2L2

−1
+

∫

M−Σ

〈χ1u, f〉.

Again, by regularity theory of Dirac operator

‖χ1u‖L2 ≤ C‖D(χ1u)‖L2 ,

we can take ε small such that

ε‖χ1u‖2L2 ≤ δ

2
‖D(χ1u)‖2L2 .

So we have

Ef(u) ≥ δ

∫

M−Σ

|D(χ1u)|2 +
∫

M−Σ

〈χ1u, f〉 −Kε −K ′
ε −

1

4ε
‖f‖2L2

−1
.

Let Kε +K ′
ε +

1
4ε
‖f‖2

L2
−1

= K0, then we proved our claim.
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Step 3. Now we should prove that Ef has a unique minimizer in L2
1 ∩ ker(D)⊥.

Suppose we have a sequence {un} ⊂ L2
1 ∩ ker(D)⊥ such that

lim
n→∞

Ef(un) = inf
u∈L2

1

Ef(u).

Let us call infu∈L2
1
Ef(u) = m. Then there exists n0 ∈ N such that

Ef(un) ≤ m+ 1

for all n > n0. So

α‖Dun‖2L2 − β ≤ Ef(un) ≤ m+ 1

for all n > n0. This inequality implies the sequence {‖Dun‖L2}n>n0 is bounded. By

lemma 5.1, we have {‖un‖L2
1
} is bounded. So a subsequence of {un} has a weak limit,

say u, which is a minimizer of Ef.

Finally, we prove the uniqueness. Suppose we have ua, ub are two minimizers in

L2
1 ∩ ker(D)⊥, then

Ef(
ua + ub

2
) =

∫

1

4
(|Dua +Dub|2) +

1

2
〈ua, f〉+

1

2
〈ub, f〉

≤
∫

1

2
|Dua|2 +

1

2
|Dub|2 +

1

2
〈ua, f〉+

1

2
〈ub, f〉

= m

by Cauchy’s inequality. The equality holds if and only if Dua = Dub, which implies

ua = ub by lemma 5.1.

�

With this proposition in mind, we have the following proposition.

Proposition 5.4. Suppose that f ∈ L2
−1(M −Σ;S ⊗I) and f|Nr = 0 for some r > 0.

Then there exists a h ∈ L2(M − Σ;S ⊗ I) such that Dh = f and
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a. ‖h‖L2 ≤ C‖f‖L2
−1

for some universal constant C > 0;

b. h|Nr ∈ Kr;

c. The Kr-leading term of h, h±, will satisfies

r‖h±‖2L2 , r3‖(h±)t‖2L2 , r5‖(h±)tt‖2L2 ≤ C‖f‖2L2
−1

for some universal constant C > 0.

Proof. First of all, we define ul ∈ L2(M − Σ;S ⊗ I) to be

ul = eilt





e−|l|r√
z

sign(l) e
−|l|r√
z̄





on NR and Dul = 0. Then we have

‖ul‖L2 ≤ 2C

|l| 12
.

Meanwhile, by using proposition 5.3, there exists a ĥ ∈ L2
1 such that D2ĥ = f.

Taking h̃ = Dĥ, we have Dh̃ = f. Now, since h̃ ∈ range(D), it will perpendicular

to ker(D|L2) by proposition 2.4. So it will perpendicular to ul. Suppose that the

Fourier coefficients of h̃ are h±
k,l.

Therefore we can define

ûl ≡
ĥ−
0,l

|ĥ−
0,l|

ul

where ĥ+
0,l = (h+

0,l − sign(l)h−
0,l) and ĥ−

0,l = (h+
0,l + sign(l)h−

0,l). So we also have

‖ûl‖L2 ≤ 2C.

Meanwhile, we have

∫

M−Σ

〈h̃, ûl〉 = 0 = |ĥ−
0,l|

∫ r

0

e−2|l|rdr +

∫

M−Nr

〈h̃, ûl〉



38

So we have

|ĥ−
0,l| ≤

4C|l| 12
1− e−2|l|r ‖Pl(h̃)‖L2

where Pl is the orthogonal projection from L2 to span{ul}. Suppose y is a L2 section

such that Dy = 0 and

y =
∑

|l|> 1
2R

û−
0,lul

on Nr. Then we have

‖y‖L2 ≤ C‖r 1
2y|Σ‖L2

−1/2
=

∑

|l|> 1
2r

|ĥ−
0,l|2
|l| ≤

∑

|l|> 1
2r

4C

(1− e−2|l|r)2
‖Pl(h̃)‖2L2

≤ 4C

(1− e−2)2

∑

l

‖Pl(h̃)‖2L2 ≤ C‖h̃‖2L2 .

Now we define h = h̃− y, which satisfies Dh = 0 and h ∈ Kr. Moreover, we have

‖h‖L2 ≤ C‖h̃‖L2 .

Notice that by lemma 5.1, we have by Cauchy inequality

‖ĥ‖2L2 ≤ C‖h̃‖2L2 ≤ C‖ĥ‖L2
1
‖f‖L2

−1
≤ ε‖ĥ‖L2

1
+

C

4ε
‖f‖L2

−1

So by choosing ε small enough, we have

‖h̃‖L2 ≤ C‖f‖L2
−1
.

So we prove a and b. For c, we can get it immediately by using proposition 4.5.

Therefore we finish our proof. �

5.2. Perturbation of Σ: local trivialization. In this subsection, we define some

notations and explain the local trivialization of E . First of all, let NR be the tubular
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neighborhood of Σ ∈ A. There exists a neighborhood of Σ in A, say VΣ, such that

Σ′ ⊂ NR
2
for all Σ′ ∈ VΣ. Therefore, we can parametrize the elements in VΣ by

{η : S1 → C|η ∈ C1 and ‖η‖C1 ≤ CR} for some CR depending on R. We map η to

{(η(t), t)} = Σ′ ⊂ NR.

Here we choose a variable r < R
4
. This variable will also be used in the rest of

this paper. Also, we fix a T > 1 which will be specified in the following subsections.

Finally, we define a smooth, real valued function χ : M → [0, 1] such that

χ(r) =







1 on N r

T

0 on M −Nr

(We will omit the label (r) later, but keep in mind that this function depends on r).

Now, for each (η, r), we define the following map

φ(r) :M − Σ → M − Σ′;

(z, t) 7→ (z + χ(r)(z)η(t), t)(5.10)

with Σ′ = {(η(t), t)}. This map is a diffeomorphism if ‖η‖C1 ≤ Cr for some constant

Cr depending on r.

Recall that the fiber of E over (g,Σ′, e) ∈ X ×AH is the space L2
1(M −Σ′;Sg,Σ′,e),

which can be identified to L2
1(M − Σ;Sφ(r)∗g,Σ,e) ≃ L2

1(M − Σ;Sg,Σ,e). Therefore, for

an element (g,Σ) ∈ X × AH , there exists N ⊂ X × AH , a neighborhood of (g,Σ),

such that the bundle E|N ≃ π1(N ) × Bε × L2
1 where L2

1 ≃ L2
1(M − Σ;Sg,Σ,e) and

Bε = {η : S1 → C|η ∈ C1 and ‖η‖C1 ≤ ε} for some small ε > 0.

By the same token, we have the local trivialization of F near (g,Σ, e) to be π1(N )×
Bε × L2. The Dirac operator D : E → F will be a family of first order differential

operator mapping from Bε×L2
1 to Bε×L2. Therefore, the tangent space of M will be

contained in V × L2
1 where V = {η : S1 → C|η ∈ C1}. By proposition 2.4, we know
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the perturbation along L2
1 is finite dimensional. We will prove that the perturbation

along V is also finite dimensional in section 7.

5.3. Perturbation of Σ: estimates. In this subsection, I will say more about the

estimates we get when the curve Σ be perturbed. Recall that we assume the product

metric defined on NR, which is gNR
= dr2 + r2dθ + dt2. In the following subsections,

we choose a positive constant r < R
4
. The precise value of r can be assumed to be

decrease between each successive appearance. Also, we fix a T > 1 which will be

specified in the following subsections.

Suppose there exists a pair (χ, η) where η ∈ C∞(S1;C) and

χ =







1 on N r

T

0 on M −Nr

.

For any pair (χ, η), we can define the following corresponding one parameter family

of diffeomorphism

φs :M − Σ → M − Σs;

(z, t) 7→ (z + sχ(z)η(t), t)(5.11)

with s ≤ c0 for some small c0 and Σs = {(sη(t), t)}. Now we fix a s ≤ c0 and use

(u, τ) to denote the coordinate on φs(NR) in the following paragraphs.

If we write down the relationship of ∂t, ∂z and ∂z̄ and the pull-back tangent vectors

(φs)
∗(∂τ ), (φs)

∗(∂u) and (φs)
∗(∂ū),



















∂t = (φs)
∗(∂τ

∂t
∂τ +

∂u
∂t
∂u +

∂ū
∂t
∂ū)

∂z = (φs)
∗(∂u

∂z
∂u +

∂ū
∂z
∂ū)

∂z̄ = (φs)
∗(∂u

∂z̄
∂u +

∂ū
∂z̄
∂ū)

,



41

we will have











(φs)
∗(∂τ )

(φs)
∗(∂u)

(φs)
∗(∂ū)











= M











(∂t)

(∂z)

(∂z̄)











where

M =
1

1 + s(χzη + χz̄η̄)











1 + s(χzη + χz̄η̄) 0 0

−sχη̇ − s2χχz̄(η̇η̄ − ˙̄ηη) 1 + sχz̄η̄ −sχz̄η

−sχ ˙̄η − s2χχz(η ˙̄η − η̇η̄) −sχzη̄ 1 + sχzη











.

Since we are not going to change our metric and spinor bundle over M here,

so the spin representation κ : TM → Cl(TM) will always send ∂τ , ∂u, ∂ū to e1 =




−i 0

0 i



 , e2 =





0 0

−1 0



 , e3 =





0 1

0 0



 respectively. Therefore, the Dirac

operator Ds defined on φs(NR) will be

Ds =e1 · ∂τ + e2 · ∂u + e3 · ∂ū

+
1

2

3
∑

i=1

ei
∑

k,l

ωkl(ei)ekel

In the following sections, we will identify all these perturbed curves to Σ by using

the pull-back operator (φs)
∗. So we have to write down explicitly

Dsχη = (φs)
∗ ◦Ds =e1 · (φs)

∗(∂τ ) + e2 · (φs)
∗(∂u) + e3 · (φs)

∗(∂ū)

+
1

2

3
∑

i=1

ei
∑

k,l

(φs)
∗(ωkl(ei))ekel.

We can see that, after some standard computation,

(φs)
∗(ωkl(ei)) = M(ω(ei))M−1 + (dM)M−1 = (dM)M−1.(5.12)
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Here we write down precisely the O(s) order term of
∑3

i=1 ei
∑

k,l(φs)
∗(ωkl(ei))ekel,

which can denote by

− [(dM)11(e1)Id+ (dM)11(e2)e2 + (dM)11(e3)e3]

+ [−(dM)12(e1)e2 − (dM)13(e1)e3 + (dM)23(e1)e1e2e3 + (dM)32(e1)e1e3e2]

= D(s(χzη + χz̄η̄)Id) +D(





0 iχη̇

−iχ ˙̄η 0



) = Fs.

So the term 1
2

∑3
i=1 ei

∑

k,l(φs)
∗(ωkl(ei))ekel can be expressed as

1

2

3
∑

i=1

ei
∑

k,l

(φs)
∗(ωkl(ei))ekel = Fs +As(5.13)

where Fs is the O(s)-zero order differential operator described as above and As is

the remainder which is an O(s2)-order operator.

Meanwhile, suppose that we have the following assumptions: There exist κ0 such

that

‖η‖L2(S1) ≤ κ0r
2,(5.14)

‖ηt‖L2(S1) ≤ κ0r,(5.15)

‖ηtt‖L2(S1) ≤ κ0,(5.16)

We can see that these inequalities will imply that there exists κ1 = O(κ0) such that

max{|χz||η|, |χz̄||η|, |ηt|} ≤ γTκ1r
1
2(5.17)

‖χzηt‖L2 , ‖χz̄ηt‖L2 ≤ γTκ1(5.18)

‖χzzη‖L2 , ‖χzz̄η‖L2 , ‖χz̄z̄η‖L2 ≤ γ2
Tκ1.(5.19)

where we use the notion γT = ( T
T−1

).
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Here we prove these implications. Firstly, notice that by Sobolev inequality, we

have η is continuous. So

|η|2(t) ≤ 1

2π

∫ 2π

0

|η|2 +
∫ 2π

0

∂t(|η|2)

≤ 1

2π
‖η‖2L2 + 2‖η‖L2‖ηt‖L2

≤ 1

2π
κ2
0r

4 + 2κ2
0r

3

≤ (
1

2π
+ 2)κ2

0r
3.

Meanwhile, we have |χz|, |χz̄| ≤ CγT
1
r
. Therefore

|(χi)z||ηi|, |(χi)z̄||ηi| ≤ Cκ0r
1
2 .

This implies (5.17). The inequality (5.18) can be proved by the fact |χz|, |χz̄| ≤ CγT
1
r

and (5.15) and (5.19) can be proved by the fact |χzz|, |χz̄z|, |χz̄z̄| ≤ Cγ2
T

1
r2

and (5.14).

Under these assumptions, for any s, we have

| 1

1 + s(χzη + χz̄η̄)
− 1| ≤ 2γTκ1s.

So we can write 1
1+s(χzη+χz̄ η̄)

= 1 + ̺sχη for some |̺sχη| ≤ 2γTκ1s.

For the perturbed Dirac operator Dsχη, we have the following proposition.

Proposition 5.5. There exists κ1 = O(κ0) depending on κ0 with the following

significance. The perturbed Dirac operatorDsχη satisfies (5.14) - (5.19) can be written

as follows:

Dsχη = (1 + ̺sχη)D + s(χzη + χz̄η̄)(e1∂t) + Θs +Rs +As + Fs(5.20)

where

• Θs = [e1(sχη̇∂z + sχ ˙̄η∂z̄) + e2(sχz̄η̄∂z − sχzη̄∂z̄) + e3(−sχz̄η∂z + sχzη∂z̄)] is a
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first order differential operator.

• Rs : L2
1 → L2 is a O(s2)-first order differential operator supported on Nr − N r

T

with its operator norm ‖Rs‖ ≤ γ2
Tκ

2
1s

2.

• As is a O(s)-zero order differential operator supported on Nr−N r

T
. Moreover, let

us denote by ~n = ∂r the vector field defined on NR, then

∫

{r=r0}
|As|2i~ndV ol(M) ≤ γ2

Tκ
4
1rs

4(5.21)

for all r0 ≤ r.

• Fs is a O(s)-zero order differential operator where

Fs = D(s(χzη + χz̄η̄)Id) +D(





0 siχη̇

−siχ ˙̄η 0



).(5.22)

Proof. By using the conventions defined above, we have

M = (1 + ̺sχη)[











1 + s(χzη + χz̄η̄) 0 0

0 1 0

0 0 1











+











0 0 0

−sχη̇ sχz̄η̄ −sχz̄η

−sχ ˙̄η −sχzη̄ sχzη











(5.23)

+











0 0 0

−s2χχz̄(η̇η̄ − ˙̄ηη)0 0 0

−s2χχz(η ˙̄η − η̇η̄) 0 0











].

Therefore by (5.12) we can write

Dsχη =(1 + ̺sχη)(D + s(χzη + χz̄η̄)(e1∂t))(5.24)

+ (1 + ̺sχη)[e1(sχη̇∂z + sχ ˙̄η∂z̄) + e2(sχz̄η̄∂z − sχzη̄∂z̄)

+ e3(−sχz̄η∂z + sχzη∂z̄)]

+ R̂s +As + Fs
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where we define

R̂s =
−1

1 + s(χzη + χz̄η̄)
[e2(s

2χχz̄(η̇η̄ − ˙̄ηη)∂t) + e3(s
2χχz(η ˙̄η − η̇η̄)∂t)](5.25)

to be a first order differential operator with ‖R̂s‖ ≤ γ2
Tκ

2
1s

2.

Finally, we denote

Θs =[e1(sχη̇∂z + sχ ˙̄η∂z̄)

+ e2(sχz̄η̄∂z − sχzη̄∂z̄)

+ e3(−sχz̄η∂z + sχzη∂z̄)]

and

δR(1)
s = ̺sχη[e1(sχη̇∂z + sχ ˙̄η∂z̄)

+ e2(sχz̄η̄∂z − sχzη̄∂z̄)

+ e3(−sχz̄η∂z + sχzη∂z̄)]

where δR(1)
s is a O(s2)-first order differential operator. We should also notice that

(1 + ̺sχη)(sχzη + χz̄η̄)(e1∂t) = s(χzη + χz̄η̄)(e1∂t) + δR(2)
s where δR(2)

s is also a

O(s2)-first order differential operator. So we can rewrite

Dsχη = (1 + ̺sχη)D + s(χzη + χz̄η̄)(e1∂t) + Θs +Rs +As + Fs

where Rs = R̂s + δR(1)
s + δR(2)

s .
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To prove the estimate (5.21) of As, we should notice that the term (dM)M−1

involves at most the second derivative of χ and η, which can be estimated by (5.16),

(5.18) and (5.19). So we get (5.21) immediately.

�

By using the conventions of this proposition, we can prove the following proposition.

Proposition 5.6. Let ψ ∈ L2
1 be a harmonic section. Then

‖Rs(ψ)‖L2 ≤ Cγ
3
2
T κ

2
1r

2s2

for some constant C depending on the ‖ψ‖L2
1
. In fact, this estimate is true for any

ψ ∈ L2
1 which can be expressed as ψ =

√
rv(t, θ, r) with v being a C1-bounded section.

Proof. By proposition 4.4 b., we have ψ =
√
rv(t, θ, r) with v being a C1-bounded

section. We write down the definition of Rs

Rs =
−1

1 + s(χzη + χz̄η̄)
[e2(s

2χχz̄(η̇η̄ − ˙̄ηη)∂t) + e3(s
2χχz(η ˙̄η − η̇η̄)∂t)]

+ ̺sχη[e1(sχη̇∂z + sχ ˙̄η∂z̄) + e2(sχz̄η̄∂z − sχzη̄∂z̄) + e3(−sχz̄η∂z + sχzη∂z̄)]

+ ̺sχη(sχzη + χz̄η̄)(e1∂t).

Then by using (5.14), (5.15), (5.16), (5.17), (5.18) and (5.19) we will notice that every

term of Rs can be written as the type s2αβ∂i where ‖α‖L∞ ≤ γTκ1r
1
2 and

∫

r=r0

|β|2i~ndV ol(M) ≤ γTκ
2
1r

2.

So we have

‖Rs(ψ)‖L2 ≤ s2‖v‖C1γ
3
2
T κ

2
1r

2.

�
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5.4. Composition of the perturbations: estimates. In this subsection, we dis-

cuss the composition of perturbations and its corresponding Dirac operator. These

computations will be used in the following subsections.

Let r < R
4
, T > P > 1 be fixed for a moment. We assume that there is a sequence

{(χi, ηi)} satisfying the following two properties:

1. χi is a smooth function satisfying

χi =







1 on N r

Ti+1

0 on M −N r

Ti

.

for all i ∈ N ∪ {0}.

2. There exists κ2 > 0 such that

‖ηi‖L2(S1) ≤ κ2
r2

T 2i
,(5.26)

‖(ηi)t‖L2(S1) ≤ κ2
r

T i
,(5.27)

‖(ηi)tt‖L2(S1) ≤ κ2, .(5.28)

for all i ∈ N.

Similar to the argument of (5.16), (5.18) and (5.19), we have the following impli-

cations

max{|(χi)z||ηi|, |(χi)z̄||ηi|, |(ηi)t|} ≤ γTκ3
r
1
2

T
i
2

,(5.29)

‖(χi)zηi‖L2 , ‖(χi)z̄ηi‖L2 ≤ γTκ3,(5.30)

‖(χi)zzηi‖L2 , ‖(χi)zz̄ηi‖L2 , ‖(χi)z̄z̄ηi‖L2 ≤ γ2
Tκ3(5.31)

for some κ3 = O(κ2).
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Furthermore, we denote ηi =
∑i

j=1 χjηj.

As we have showed in previous subsection, we can define the following family of

diffeomorphisms

φi
s :M − Σ → M − Σs;

(z, t) 7→ (z + s(ηi(t)(t)), t)(5.32)

with s ≤ c0 for some small c0 and Σs = {(s(ηi(t)), t)}. Now fix a s, we use (u, τ) to

denote the coordinate on φi
s(NR).

The Dirac operator Dsηi define on M − Σ will be

Ds(ηi) = (φs)
i ◦Ds =e1 · (φs)

i(∂τ ) + e2 · (φs)
i(∂u) + e3 · (φs)

i(∂ū)

+
1

2

3
∑

i=1

ei
∑

k<l

(φs)
i(ωkl(ei))ekel.

In this subsection, we prove the following proposition.

Proposition 5.7. There exists a κ3 = O(κ2) depending on κ2 with the following

significance. The perturbed Dirac operatorDs(ηi) which satisfies the hypothesis (5.26)

- (5.31) can be written as follows:

Dsηi+1 = (1 + ̺i+1)Dsηi + s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t(5.33)

+ Θi+1
s +Ri+1

s + Âi+1
s + F i+1

s

where

• Θi+1
s , the (χ, η) = (χi+1, ηi+1) version of Θ0

s, is a first order differential operator

of order O(s).

• Ri+1
s : L2

1 → L2 is a O(s2)-first order differential operator supported on



49

N r

Ti
−N r

Ti+1
with its operator norm bounded in the following way:

‖Ri+1
s ‖ ≤ γ2

Tκ
2
3s

2.

• Âi+1
s is a O(s)-zero order differential operator. Moreover, let us denote by ~n = ∂r

the vector field defined on NR, then

∫

{r=r0}
|Âi+1

s |2i~ndV ol(M) ≤ γ4
Tκ

4
3(
(i+ 1)r

T i+1
)s4.(5.34)

for all r0 ≤ r
T i .

• F i+1
s is a O(s)-zero order differential operator where

F i+1
s = D(s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)Id) +D(





0 siχi+1η̇i+1

−siχi+1 ˙̄ηi+1 0



).

(5.35)

Proof. We can also define the matrix Mi to be











(φi
s)

∗(∂τ )

(φi
s)

∗(∂u)

(φi
s)

∗(∂ū)











= Mi











(∂t)

(∂z)

(∂z̄)











.

Notice that the support of (χi)z and (χj)z̄ are disjoint for all i 6= j. Therefore we

can write Mi+1 as follows

Mi+1 =
1

1 + s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)
Mi +N i+1(5.36)



50

where N i+1 is a (χi+1, ηi+1) version of M:

N i+1 =
1

1 + s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)
·





































s((χi+1)zηi+1 + (χi+1)z̄η̄i+1) 0 0

−sχi+1η̇i+1

−s2χi+1(χi+1)z̄(η̇i+1η̄i+1 − ˙̄ηi+1ηi+1) s(χi+1)z̄η̄i+1 −s(χi+1)z̄ηi+1

−sχi+1 ˙̄ηi+1

−s2χi+1(χi+1)z(ηi+1 ˙̄ηi+1 − η̇i+1η̄i+1) −s(χi+1)zη̄i+1 s(χi+1)zηi+1





































.

Let us define 1
1+s((χi)zηi+(χi)z̄ η̄i)

= 1+̺i. Define Θi+1
s and Ri+1

s to be the (χi+1, ηi+1)

version of Θs and Rs. Then we have

Dsηi+1 = (1 + ̺i+1)(Dsηi − A
i
s) + s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t

+Θi+1
s +Ri+1

s + A
i+1
s

= (1 + ̺i+1)Dsηi + s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t

+Θi+1
s +Ri+1

s + [Ai+1
s − (1 + ̺i+1)Ai

s]

where A
i+1
s =

∑3
j=1 ej

∑

k<l(ω
(i+1)
kl (ej))ekel with ω(i+1) being the pull back of Levi-

Civita connection (φi+1
s )∗(ω). Using these conventions, we have

|Ai+1
s − (1 + ̺i+1)Ai

s| = |(dMi+1)(Mi+1)−1 − (dMi)(Mi)−1 − ̺i+1(dMi)(Mi)−1|.

Now by using (5.35) and (5.36), we can see that F i+1
s is the O(s) order term of the

(dMi+1)(Mi+1)−1− (dMi)(Mi))−1. Therefore by using (5.26), (5.27) and (5.29), we
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have

∫

r=r0

|(dMi+1)(Mi+1)−1 − (dMi)(Mi)−1 −F i+1
s |2i~ndV ol(M) ≤ Cγ4

T (
r

T i+1
)κ4

0s
4

for some universal constant C. Therefore we can choose κ3 = O(κ2) large enough

such that the right hand side of this equation is smaller than 1
4
γ4
T (

r
T i+1 )κ

4
3s

4.

Meanwhile, we have

∫

r=r0

|(dMj+1)(Mj+1)−1 − (dMj)(Mj)−1|2i~ndV ol(M) ≤ Cγ2
Tκ

2
3s

2(5.37)

for all j, so we have

∫

r=r0

|(dMj)(Mj)−1|2i~ndV ol(M) ≤ γ2
T (i+ 1)κ2

3s
2.

Now recall that |̺i+1| ≤ γT sκ3(
r

T i+1 )
1
2 . So we have

∫

r=r0

|̺i+1(dMj)(Mj)−1|2i~ndV ol(M) ≤ γ4
T (i+ 1)(

r

T i+1
)κ4

3s
4.(5.38)

Therefore by taking

Âi+1
s = A

i+1
s − (1 + ̺i+1)Ai

s −F i+1
s ,

we prove this proposition. �

Similarly, we have a i-th version of proposition 5.6 as follows

Proposition 5.8. Let ψ ∈ L2
1 be a harmonic section. Then

‖Ri+1
s (ψ)‖L2 ≤ Cγ

3
2
T κ

2
3(

r

T i+1
)2s2.

for some constant C depending on the ‖ψ‖L2
1
. In fact, this estimate is true for any

ψ ∈ L2
1 which can be expressed as ψ =

√
rv(t, θ, r) where v is a C1-bounded section.



52

5.5. Variational formula for the perturbed Dirac operators. In subsection

5.1, we prove that there exists a unique minimizer for Ef in L2 ∩ ker(D). The ar-

gument in subsection 5.1 also works not only for D but also for the perturbed Dirac

operator Dsχη, Dsηj appearing in subsection 5.3 and 5.4. However, using the varia-

tional method to find the solution Dsηjus = f wouldn’t give us enough information

about us changing by varying s. Therefore, we should say more about this in this

subsection.

Proposition 5.9. For any j > 0 fixed. Suppose f ∈ L2
−1 and u0 ∈ L2 be a harmonic

section satisfies

Du0 = f,

then there exist u = u0 + us and c0 > 0 such that

Dsηju = f

and ‖us‖L2 ≤ C(‖u0‖L2 + ‖f‖L2
−1
)s for s ∈ [0, c0] and C being a universal constant C.

Furthermore, the existence of u0 can be given by proposition 5.4.

Proof. Suppose Dsηj is a perturbed Dirac operator and f ∈ L2
−1. We want to solve

u ∈ L2 satisfies

Dsηju = f.

We solve this equation iteratively. Firstly, we know that the perturbed Dirac op-

erator Dsηj can be written as D + δjs where δjs : L
2 → L2

−1 is a first order differential

operator with its operator norm ‖δjs‖ ≤ Cs for some C > 0. Meanwhile, by proposi-

tion 5.4, there exists u0 ∈ L2 such that

Du0 = f.



53

So we have

Dsηju0 = f− δs(u0).

Since ‖u0‖L2 ≤ C‖f‖L2
−1
, we have ‖δjs(u0)‖L2

−1
≤ Cs‖f‖L2

−1
. By taking s small enough,

we have ‖δjs(u0)‖L2
−1

≤ 1
2
‖f‖L2

−1
.

Now we solve v1 ∈ L2 such that

Dv1 = δjs(u0)

by using proposition 5.3. Then we have Dsηj(u0+v1) = f+δjs(v1) where ‖δjs(v1)‖L2
−1

≤
1
2
‖δjs(u0)‖ ≤ 1

4
‖f‖L2

−1
.

If we call δjs(u0) = z0, −δjs(v1) = z1 and u0 + v1 = u1, we can see the patten of

induction. Suppose that we have

Dsηjui = f− zi

with ‖zi‖L2
−1

≤ 1
2i+1‖f‖L2

−1
, then we can solve vi+1 ∈ L2 which satisfies

Dvi+1 = zi

by proposition 5.3. Therefore we have

Dsηj(ui + vi+1) = f+ δjs(vi+1).

where ‖δjs(vi+1)‖L2
−1

≤ 1
2
‖zi‖ ≤ 1

2i+2‖f‖L2
−1
. By taking ui+vi+1 = ui+1 and−δjs(vi+1) =

zi+1, we finish our argument of induction.

Finally, we take the limit i → ∞, then we have ui+1 → u in L2-sense which will

satisfy

Dsηj(u) = f.
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Moreover, since u− u0 =
∑∞

i=1 vi and vi = ±δjs(vi−1), we have
∑∞

i vi is a O(s)-order

L2 section. We call
∑∞

i vi = us.

Therefore, we construct a solution u0 + us satisfies

Dsηj(u0 + us) = f.(5.39)

�

Here we have the following remark for this proposition.

Remark 5.10. In our proof, since we can always write δjs =
∑∞

i=1 s
iδji where the

operation norm of δji is bounded uniformly. So u can be written as
∑∞

i=0 s
iu(i). where

‖∑∞
i=m siu(i)‖2 → 0 as m → ∞.

6. The General Σ embedding in M

Now we try to derive the same results as we did in previous section, but this time

we don’t need to assume that Σ has a product type tubular neighborhood.

6.1. Asymptotic behavior of the L2
1-harmonic section. Let g be a smooth met-

ric and Σ ⊂ M be a C1 curve embedded in M . We can define the tubular neigh-

borhood of Σ by sending the elements in the normal bundle {v ∈ νΣ||v| ≤ R} to

M by the exponential map. We can parametrize this neighborhood by cylinderical

coordinate (r, θ, t) and g = dr2 + r2dθ2 + dt2 + O(r2). In the following section, we

will use Dprod to denote the Dirac operator of product metric.

The argument in section 5 can be modified for the general metric if we can prove

the following lemma

Lemma 6.1. For any R > 0 fixed. Let v ∈ L2
1(NR;S ⊗ I) such that D(v) = 0, then

there exists v∗ ∈ L2
1(NR;S ⊗ I) such that Dprodv

∗ = 0 and

v = v∗ + v∗R,0(6.1)
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satisfies the following estimate:

‖v∗R,0‖L2
1(Nr) ≤ O(r

3
2 ).(6.2)

Proof. We divide our proof into two parts.

Step 1. Here we set up the strategy of the proof. First of all, it is clearly that we

can write D = Dprod + O(r2)L1 + O(r)L2 where L1 is a bounded first order differ-

ential operator and L2 is a zero order operator which is composed by some Clifford

multiplication.

Secondly, the argument in Lemma 2.6 still works for the elements in L2
1(Nr;S⊗I).

So by using the equation

Dprodv = O(r2)L1(v) +O(r)L0(v),

we have ‖O(r2)L1(v)+O(r)L0(v)‖L2(Na) ≤ O(a2) for all a < R. Let us call this term

f . So we have

Dprodv = f

for some f satisfies ‖f‖L2(Na) ≤ O(a2)for all a < R.

Here we need to use the regularity theorem in [3].

Theorem 6.2. Let R be the Atiyah-Patodi-Singer boundary condition for the spinor

bundle S on the manifold X with boundary Y , then we have for any v ∈ L2
1(X;S)

we have

‖v‖L2
1(X) ≤ C(‖R(v|Y )‖L2

1
2

(Y ) + ‖v‖L2(X) + ‖Dprodv‖L2(X))

for some constant C.
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In our case, Σ can be regarded as a degenerated boundary. We take X = M −Nr

and Y = ∂Nr, then we have

‖v‖L2
1(M−Nr) ≤ C(‖R(v|Y )‖L2

1
2

(∂Nr) + ‖v‖L2(M−Nr) + ‖Dprodv‖L2(M−Nr)).

Now, if we take r goes to 0, the boundary term ‖R(v|Y )‖L2
1
2

(∂Nr) will vanish by lemma

2.6. So we have

‖v‖L2
1(M−Σ) ≤ C(‖v‖L2(M−Σ) + ‖Dprodv‖L2(M−Σ)).(6.3)

Therefore, if we can prove that there exists a v∗ ∈ L2
1 such that Dprodv

∗ = 0 and

[

∫

{r=r0}
|v− v∗|2i~ndV ol(M)]

1
2 = o(r

1
2
0 )

then we can prove the lemma by using (6.3).

Step 2. Now we prove the existence of v∗ ∈ L2
1. To prove this part, we write down

the Fourier expression of v on NR as we have done in section 3.

v(t, r, θ) =
∑

l,k

eilt





ei(k−
1
2
)θV +

k,l

ei(k+
1
2
)θV −

k,l



 .

The equation Dv = 0 will give us the equation

d

dr
V −
k,l + αV +

k,l +
l

(1 +O(r2))
V + + P+

k,l(f) = 0;

d

dr
V +
k,l − βV +

k,l +
l

(1 +O(r2))
V − + P−

k,l(f) = 0

where P+ is the projection mapping to the first component of the Fourier expansion.

α, β have the form
(k+ 1

2
)+O(r2)

r(1+O(r2))
.
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Now we can find the two nonzero functions ρ±k (r) by solving the following ODE:

d

dr
ρ+k,l = αρ+k,l;

d

dr
ρ−k,l = −βρ−k,l.

So we have C1r
(k+ 1

2
) < ρ+k,l < C2r

(k+ 1
2
) and C1r

−(k+ 1
2
) < ρ−k,l < C2r

−(k+ 1
2
) for some

C2 > C1 > 0.

Therefore we have

d

dr
(ρ+k,lV

−
k,l) = −ρ+k,l

l

(1 +O(r2))
V +
k,l − ρ+k,lP

+
k,l(v);(6.4)

d

dr
(ρ−k,lV

+
k,l) = −ρ−k,l

l

(1 +O(r2))
V −
k,l − ρ−k,lP

−
k,l(v);(6.5)

for all k, l.

Suppose k ≥ 0, the integral of (6.4) shows that

|ρ+k,lV −
k,l(b)− ρ+V −

k,l(a)| ≤
∫ b

a

ρ+k,l(|V +
k,l|+ |P+

k,l(v)|) ≤ (b2k+2 − a2k+2)
1
2 (

∫ b

a

O(1))
1
2

≤ C(b2k+2 − a2k+2)
1
2 (b− a)

1
2 .(6.6)

By using this inequality we have

lim
r→0

ρ+k,lV
−
k,l(r) = c

for some c ∈ C. |V +
k,l| > |c|

2
r−k− 1

2 ≥ |c|
2
r−

1
2 which contradicts the lemma 2.6 if c 6= 0.

So we have limr→0 ρ
+
k,lV

−
k,l(r) = 0.

Now, by taking a → 0 in (6.6), we have

C1b
k+ 1

2 |V −
k,l|(b) ≤ |ρ+k,lV −

k,l|(b) ≤ bk+
3
2 .



58

So we have

|V −
k,l|(r) ≤ nk,lO(r)(6.7)

for all k ≥ 0 with some number
∑

k,l |nk,l|2 < ∞. Similarly, by using the same

argument, we can also prove that

|V +
k,l|(r) ≤ nk,lO(r).(6.8)

for all k ≤ 0.

For the case k = −1, by (6.7) we have limr→0 ρ
+
k,lV

−
k,l = c for some c ∈ C. So we

have

V −
−1,l(r) = v−1,lr

1
2 + o(r

1
2 ).

Similarly, we have

V +
1,l(r) = v1,lr

1
2 + o(r

1
2 ).

For the case k < −1, if we have

lim sup
r→0

|ρ+k,lV −
k,l|(r) = c < ∞

then we have |V −
k,l|(r) ≤ cr−k− 1

2 ≤ cr
3
2 . On the other hand, if we have

lim sup
r→0

|ρ+k,lV −
k,l|(r) = ∞,

then we have k < −2 by (6.6) and (6.8). Moreover, (6.6) implies that

|ρ+k,lV −
k,l(b)− ρ+k,lV

−
k,l(a)| ≤ Cρ+k,l(a)a

2.
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So

|
ρ+k,l(b)

aρ+k,l(a)
V −
k,l(b)− a−2V −

k,l(a)| ≤ nk,lO(1).

Therefore we have

lim sup
a→0

|a2V −
k,l(a)| ≤ nk,lO(1)

which implies

|V −
k,l|(r) ≤ nk,lO(r2).

So we can conclude that

|V −
k,l|(r) ≤ nk,lO(r

3
2 )

for all k < −1. We finish our proof.

�

Remark 6.3. By the same token, we can also show that the element in ker(D|L2)

has similar decomposition. To be more precisely, for any u ∈ ker(D|L2), there is a

decomposition u = u∗ + u∗R,0 such that Dprod(u
∗) = 0 and |u∗R,0| = o( 1√

r
).

6.2. Modify the propositions in section 5. . Now we modify the results we get

in section 5 without the assumption of having Euclidean tubular neighborhood.

First of all, we should set up several notations. Let NR to be the tubular neigh-

borhood of Σ, we should now use Dprod to denote the Dirac operator with respect to

Euclidean metric on NR. We define D(n) = χnDprod+(1−χn)D, where χn is defined

in section 5.4. So we have

D(n) = Dprod on N r

Tn+1
.
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Moreover, we have the following proposition. Here we take ∂1 = ∂r, ∂2 = ∂θ and

∂3 = ∂t.

Proposition 6.4. Let [D(n) −D] = δ(n), we have

δ(n) = δ
(n)
1 + δ

(n)
0

where

• δ
(n)
1 is a first order differential operator supported on N r

Tn
such that

δ
(n)
1 =

∑

ai∂i with |a1| ≤ O(r2) and |a2|, |a3| ≤ O(r).

• δ
(n)
0 is a zero order differential operator supported on N r

Tn
such that

|δ(n)0 | = O(r).

Meanwhile, we can write a new version of propositions in section 5 as follows.

We follow the setting in section 5. Suppose (η1, χ1) satisfies (5.14), (5.15), (5.16).

We also define

φs(t, z, z̄) = (t, z + sη1(t), z̄ + sη̄1(t))

and

Dsηi =
3

∑

i=1

ei · (φs)
∗(ei) +

3
∑

i=1

ei

3
∑

j,k=1

(φs)
∗(wjk)ejek.

Then we have the following proposition

Proposition 6.5. The perturbed Dirac operator can be written as

Dsη1 = (1 + ρ1)D(1) + s((χ1)zη1 + (χ1)z̄η̄1)(e1∂t) + Θs +Rs +As + Fs + δ(1).
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where

• Θs = [e1(sχη̇∂z + sχ ˙̄η∂z̄)+ e2(sχz̄η̄∂z − sχzη̄∂z̄)+ e3(−sχz̄η∂z + sχzη∂z̄)] is a first

order differential operator.

• Rs : L2
1 → L2 is a O(s2)-first order differential operator supported on Nr − N r

T

with its operator norm from ‖Rs‖ ≤ γ2
Tκ

2
1s

2. Moreover, for any ψ ∈ L2
1 ∩ ker(D)

we have

‖Rs(ψ)‖L2 ≤ Cγ
3
2
T κ

2
1r

2s2

for some constant C depending on ‖ψ‖L2
1
.

• As is a O(s)-zero order differential operator supported on Nr−N r

T
. Moreover, let

us denote ~n = ∂r be the vector field defined on NR, then

∫

{r=r0}
|As|2i~ndV ol(M) ≤ γ4

Tκ
4
1rs

4(6.9)

for all r0 ≤ r.

• Fs is a O(s)-zero order differential operator where

Fs = D(s(χzη + χz̄η̄)Id) +D(





0 siχη̇

−siχ ˙̄η 0



).(6.10)

• δ(1) can be written as δ(1) = δ
(1)
0 + δ

(1)
1 where δ

(1)
1 is a first order operator with

δ
(1)
1 =

∑

ai∂i with |ai| ≤ O(r2) and |a2|, |a3| ≤ O(r)

and δ
(1)
0 is a zero order operator with

|δ(1)0 | = O(r).

Moreover, δ(1) is supported on NR.
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Similarly, we have a new version of proposition 5.7. Suppose that we have a

sequence of pairs, {(χi, ηi)}, which is defined in subsection 5.3. Moreover, we suppose

ηi satisfies (5.26),(5.27) and (5.28) and we write ηi =
∑i

j=0 s
j+1χjηj. Then we have

Proposition 6.6. There exists κ3 = O(κ2) depending on κ2 with the following sig-

nificance. The perturbed Dirac operator Ds(ηi) which satisfies the hypothesis (5.26),

(5.27), (5.28), (5.29), (5.30), (5.31) can be written as follows:

Dsηi+1 = (1 + ̺i+1)D
(i+1)

sηi
+ s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t

(6.11)

+ Θi+1
s +Ri+1

s + Âi+1
s + F i+1

s + δ(i+1)

where

• Θi+1
s , the (χ, η) = (χi+1, ηi+1) version of Θ0

s, is a first order differential operator

of order O(s).

• Ri+1
s : L2

1 → L2 is a O(s2)-first order differential operator supported on

N r

Ti
−N r

Ti+1
with its operator norm

‖Ri+1
s ‖ ≤ γ2

Tκ
2
3s

2.

• Âi+1
s is a O(s)-zero order differential operator. Moreover, let us denote ~n = ∂r

be the vector field defined on NR, then

∫

{r=r0}
|Âi+1

s |2i~ndV ol(M) ≤ γ4
Tκ

4
3(
(i+ 1)r

T i+1
)s4.(6.12)

for all r0 ≤ r
T i .

• F i+1
s is a O(s)-zero order differential operator where

F i+1
s = D(s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)Id) +D(





0 siχi+1η̇i+1

−siχi+1 ˙̄ηi+1 0



).

(6.13)
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• δ(i+1) can be written as δ(i+1) = δ
(i+1)
0 + δ

(i+1)
1 where δ

(i+1)
1 is a first order

operator with

δ
(i+1)
1 =

∑

ai∂i with |ai| ≤ O(r2) and |a2|, |a3| ≤ O(r)

and δ
(i+1)
0 is a zero order operator with

|δ(i+1)
0 | = O(r).

Moreover, δ(i+1) is supported on N R

Ti
.

7. Fredholm property

7.1. Basic setting. In this section, we develop an important theorem which in-

dicates that the the perturbation along V is finite dimensional as I mentioned in

section 5.2. The operator, Td+,d− , we construct in this section can be regarded as the

linear approximation of the moduli space M we defined in our main theorem. We

roughly sketch the idea of construction this operator in the following subsections first.

First of all, we consider the idea which comes from [2]. Let N be a tubular neigh-

borhood of Σ equipped with the Euclidean metric. By the computation in subsection

4.1, we know that for any u in the ker(D|L2(N ;S⊗I)) can be written as

u =
∑

l

eilt[û+
0,l





e|l|r√
z

−sign(l) e
|l|r√
z̄



+ û−
0,l





e−|l|r√
z

sign(l) e
−|l|r√
z̄



]

+ higher order terms.

We define B mapping from ker(D|L2(N ;S⊗I)) to L2(S1;C2) by B(u) = (
∑

l û
+
0,le

i|l|t +
∑

l û
−
0,le

−i|l|t,−∑

l sign(l)û
+
0,le

i|l|t +
∑

l sign(l)û
−
0,le

−i|l|t).
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Secondly, we define the following spaces

Exp+ = {(
∑

l

ule
i|l|t,

∑

l

−sign(l)ule
i|l|t)|(ul) ∈ l2} and

Exp− = {(
∑

l

ule
−i|l|t,

∑

l

sign(l)ule
−i|l|t)|(ul) ∈ l2},

then we have the corresponding projections π± : L2(S1;C2) → Exp±.

Proposition 7.1. Define the maps p± = π± ◦B in the following diagram.

Exp+

ker(D|L2(M−Σ;S⊗I))
B
>

p+
>

L2(S1;C2)

∧
π+

Exp−
∨
π−p−

>

We will have

a. p−|ker(p+) : ker(p
+) → Exp− is a Fredholm operator.

b. p+|ker(p−) : ker(p
−) → Exp+ is a compact operator.

Proof. a. First of all, for any r > 0 small enough we have

∫

M−Nr

|Du|2 =
∫

M−Nr

|∇u|2 +
∫

∂Nr

〈u, ∂ru〉i∂rdV ol +

∫

M−Nr

〈Ru, u〉

by Schrodinger-Lichinerowicz formula. Now by taking the limit r → 0 and u ∈
ker(p+), we have

0 =

∫

M−Σ

|∇u|2 −
∑

l

|l||û−
0,l|2 +

∫

M−Σ

R|u|2.

So

‖u‖2L2
1(M−Σ) ≤

∑

l

|l||û−
0,l|2 + C‖u‖2L2(M−Σ)
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for some constant C = sup |R|. If u ∈ ker(p−|ker(p+)), then
∑

l |l||û−
0,l|2 = 0, which

implies that

‖u‖2L2
1(M−Σ) ≤ C‖u‖2L2(M−Σ).

So the kernel of p−|ker(p+) will be finite dimensional.

To prove that p−|ker(p+) has finite dimensional cokernel, we can prove the following

statement instead: There exists n > 0 with the following significance. For any
∑

l û
−
0,le

ilt ∈ Exp− such that û−
0,l = 0 for all l satisfying |l| ≤ n, there exists u ∈

ker(D|L2) such that ‖B(u)− (û−
0,l)‖L2 ≤ 1

2
‖(û−

0,l)‖L2 .

Suppose this claim is true. We let W := {∑l e
iltû−

0,l|û−
0,l = 0 for all |l| > n}.

We prove that range(p−|ker(p+)) + W = Exp− as the follows. Suppose not, there

exists v ∈ L2(S1;C) such that v /∈ range(p−|ker(p+)) +W. Then we can assume that

v ⊥ (range(p−|ker(p+)) + W). So by using the claim in previous paragraph, for any
∑

l e
iltû−

0,l ∈ Exp− with ‖∑l e
iltû−

0,l‖L2 = 1, we have

〈v,
∑

l

eiltû−
0,l〉 = 〈v,

∑

|l|≤n

eiltû−
0,l〉+ 〈v,

∑

|l|>n

eiltû−
0,l〉

= 〈v,
∑

|l|≤n

eiltû−
0,l〉+ 〈v, B(u)〉+X

= X

where |X| ≤ 1
2
‖v‖L2 , which is a contradiction. Therefore we have

dim(coker(p−|ker(p+))) ≤ 2n+ 1.
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Here we suppose ‖(û−
0,l)‖l2 = 1 without loss of generality. To prove this claim, we

can consider the following section

u0 = χ
∑

|l|≥n

eiltu−
0,l[





e−i 1
2
θI− 1

2
,l(r)

−lei
1
2
θI 1

2
,l(r)



+ sign(l)





−le−i 1
2
θI 1

2
,l(r)

ei
1
2
θI− 1

2
,l(r)



]

= χ
∑

|l|≥n

eiltû−
0,l





e−|l|r√
z

sign(l) e
−|l|r√
z̄





(χ is the smooth function defined in subsection 5.3). So by this setting, we have

‖D(u0)‖L2 ≤ C
e−nR

R
.

By proposition 5.4, there exists u∗ such that D(u∗) = D(u0). Moreover, we have

‖B(u∗)‖L2 ≤ C e−nR

R
. So by taking u = u0 − u∗, we finish the proof of this claim.

b. By the similar argument, we have

∑

l

|l||û+
0,l|2 ≤ C‖u‖2L2(M−Σ)

So any bounded sequence {u(n)} such that {p+(u(n)) = (û
(n)+
0,l )} converges, we have

∑

l

|û+
0,l|2 +

∑

l

|l||û+
0,l|2 ≤ C.

This implies that there exists a convergent subsequence of {u(n)} which converges to

some u and limn→∞ p+(u(n)) = p+(u). Therefore p+|ker(p−) is compact. �

We should remember that under a small perturbation of the metric and Σ, the

dimension of cokernel of p+|ker(p−) will be a upper semi-continuous function. I will

leave this proof in appendix 10.2.

With this proposition in mind, we can derive the linearization for our moduli space

in the following subsection.
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7.2. Linearization. Here we derive the linearization ofM along V (defined in section

5.2). Suppose that we have a L2
1-harmonic spinor

ψ =





d+(t)
√
z

d−(t)
√
z̄



+ higher order terms.

Now we perturbed the metric on a subset which is supported away from Σ, then we

have a corresponding family of Dirac operators D(s). So

D(s)ψ = sf+ o(s).

for some f ∈ L2 and f is compactly supported away from Σ. By proposition 5.4, there

exists h ∈ L2 such that D(s)h = f. So we have

D(s)(ψ − sh) = o(s).

So ψ− sh is a first order approximation of harmonic spinor. However, this section is

just in L2, which means that it has the leading order term of the order O( 1√
r
).

Now, we consider the perturbation of Σ in a tubular neighborhood, say Σs =

{(t, sη(t))} for some C1 function η : S1 → C. Then we can write down the following

Taylor expansion

ψ(t, z − sη(t))− sh(z − sη) = ψ(z)− [





d+η

2
√
z

d−η̄

2
√
z̄



+





h+√
z

h−√
z̄



]s+O(s2).

Our goal is to make this section in L2
1, so we need to kill the O( 1√

r
) terms. To achieve

this goal, the perturbation η must satisfies

d+η = −2h+,

d−η̄ = −2h−.
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However, this equation is not solvable. It even doesn’t have finite dimensional cok-

ernel. So we need to add an auxiliary part to this equation. Since the choice of h is

not unique, by using the proposition 7.1, we can rewrite our linearization equation

as follows

d+η + c+ = −2h+,

d−η̄ + c− = −2h−

where (c±) ∈ Exp−. Our goal in the next section is to prove that operator is Fred-

holm.

7.3. Fredholmness of finite Fourier mode case. The linearization in previous

subsection can be written as follows

d+η + c+ = −2h+,

d−η̄ + c− = −2h−.

with the following constraint:

|d+|2 + |d−|2 6= 0.(7.1)

This constraint comes from the assumption that |ψ|(p)
dist(p,Σ)

1
2
> 0 for all p near Σ. Now,

this equation implies

d̄−c+ − d+c̄− = −2d̄−h+ + 2d+h̄−.(7.2)

Moreover, there is the following relationship between c+ and c−: if we write c+ =
∑

ple
ilt, then we have c− =

∑

sign(l)ple
ilt. Namely, the c− is determined by c+.

Therefore, we can define the following operator

Td+,d−(c
+) = d̄−c+ − d+c̄−
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In this section, we will use the following notation.

Definition 7.2. Let g =
∑

l gle
ilt ∈ L2, we write gaps =

∑

l sign(l)gle
ilt.

So we can rewrite our operator in the following way:

Td+,d−(c) = d̄−c− d+caps

with Td+,d− : L2 → L2. Here we should explain the meaning of L2. We can easily

see that, Td+,d− is not a C−linear operator, since the conjugate term caps involved.

However, it is still a R−linear operator. Therefore we define our index under the real

vector space, even though the underlying space has some complex structure.

So in our case, we should define the inner product to be

(f, g) := Re(

∫

S1

f · ḡdt)

for all f, g ∈ C∞(S1;C). We can see that, under this definition, the L2−bounded

space will coincident with the one equipped with the usual inner product over C.

We will prove the following property:

Proposition 7.3. Td+,d− is a Fredholm operator and index(Td+,d−) = 0 when both

d+ and d− have only finite many Fourier modes:

d+ =
M
∑

−M

d+l e
ilt; d− =

M
∑

−M

d−l e
ilt

for some M ∈ N.

In this section, we will assume that d± have only finite many Fourier modes and

prove the proposition 7.3. Then we will prove the general case in the next subsection.

Before we prove this property, we should define some notations.
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Definition 7.4. Let a = (x, y) ∈ C × C, we define the spouse of a, denoted by â,

to be (ȳ,−x̄) ∈ C× C. We can easily see that ˆ̂a = −a.

Similarly, for any p-tuple of complex pairs, we have the following definition.

Definition 7.5. Suppose we have A = (a1, a2, ..., ap−1, ap) ∈ (C×C)p for some p ∈ N,

we define the spouse of A, denoted by Â, to be (âp, âp−1, ..., â2, â1) ∈ (C× C)p.

Now we write our proof of proposition 7.3 in the following 8 steps.

Step 1. In this and the next step, we will prove that Td+,d− has finite dimensional

kernel. Firstly, we notice that the n-th Fourier coefficient of (d̄−c − d+caps) can be

expressed as

(d̄−c− d+caps)n =
M
∑

l=−M

d̄−−lpn−l + sign(l − n)d+l p̄l−n.

If we take n > M , then we have sign(l − n) = −1 for all l = −M, ...,M . So we have

(d̄−c− d+caps)n =
M
∑

l=−M

d̄−−lpn−l − d+l p̄l−n(7.3)

for n > M .

Similarly

(d̄−c− d+caps)n =
M
∑

l=−M

d̄−−lpn−l + d+l p̄l−n

for n < −M .

If we take n = −n′ and then take the conjugation on the both side of this equation,

we will have the following equation:

(d−c̄− d̄+caps)n′ =
M
∑

l=−M

d̄+−lpn′−l + d−l p̄l−n′ .(7.4)

for n′ > M .
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To show that the kernel of Td+,d− is finite dimensional, here is the idea: we claim

that every element in ker(Td+,d−) can be determined by their Fourier coefficients

from −2M to 2M . Therefore the dimension of ker(Td+,d−) cannot exceed 4M + 2.

To prove this statement, suppose there are two elements c1 and c2 in ker(Td+,d−) who

have same Fourier coefficients from −2M to 2M . Then c1 − c2 is also in ker(Td+,d−).

Therefore, our claim is true iff any c ∈ ker(Td+,d−) which has zero Fourier coefficients

from −2M to 2M is identically zero.

Step 2. Now we prove this claim. Suppose that c ∈ ker(Td+,d−) has zero Fourier

coefficients from −2M to 2M . Because c ∈ ker(Td+,d−), we have

M
∑

l=−M

d̄−−lpn−l − d+l p̄l−n = 0

M
∑

l=−M

d̄+−lpn−l + d−l p̄l−n = 0

for n > M , we can rewrite this equation by pairing (pj, p̄−j) := vj and (d̄−−j,−d+j ) :=

dj for all j ∈ Z. Now we have

M
∑

l=−M

〈dl, v̄n−l〉 = 0

M
∑

l=−M

〈d̂−l, v̄n−l〉 = 0

with the bracket 〈·, ·〉 denoting the usual inner product over C. Here we can use the

following convention: Let U = (ui),W = (wi) ∈ (C × C)Z, we define a new bracket

〈〈·, ·〉〉 to be

〈〈U,W 〉〉n =
∑

i∈Z
〈ui, wn−i〉.



72

So our equation can be written as

〈〈D, V̄ 〉〉n = 0

〈〈D̂, V̄ 〉〉n = 0

where D = (dl) and V = (vl) and n > M .

Now we apply the following squeezing lemma.

Lemma 7.6. Given A = (aj)j=1,2,...,p ∈ (C×C)p. If V = (vj)j∈Z ∈ (C×C)Z satisfies

〈〈A, V̄ 〉〉m = 0; 〈〈Â, V̄ 〉〉m = 0

for all m > 0. Then there is B = (0, ..., 0, b1, ...bq) ∈ (C×C)p with and det





bq

b̂1



 6=

0 such that

〈〈B, V̄ 〉〉m = 0; 〈〈B∗, V̄ 〉〉m = 0,

where B∗ = (0, ..., 0, b̂q, ..., b̂1), for all m > 0.

Proof. If det





ap

â1



 6= 0, then we can just take A = B. The lemma holds trivially.

Suppose now det





ap

â1



 = 0. Then we have αap = â1 for some α ∈ C− {0}. So

we have

〈〈Â, V̄ 〉〉m − α〈〈A, V̄ 〉〉m = 〈〈Â− αA, V̄ 〉〉m = 0.

We also have

〈〈A, V̄ 〉〉m + ᾱ〈〈D̂, V̄ 〉〉m = 〈〈A+ ᾱÂ, V̄ 〉〉m = 0.
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Denote

B′
1 = (Â− αA) = (âp − αa1, âp−1 − αa2, ...., â2 − αap−1, 0).

Notice that: Since αap = â1, we have âp −αa1 = âp + |α|2âp = (1+ |α|2)âp 6= 0. This

implies B′
1 6= 0.

Now let B1 = (0, âp − αa1, âp−1 − αa2, ...., â2 − αap−1). We can easily verify that

〈〈Â− αA, V̄ 〉〉m+1 = 〈〈B1, V̄ 〉〉m = 0.

for all m > 0.

Since (Â− αA) = (A+ ᾱÂ)∧, the second equation gives us

〈〈A− ᾱÂ, V̄ 〉〉m = 〈〈B∗
1 , V̄ 〉〉m = 0.

for all m > 0.

Now by repeating this process inductively, we prove this lemma. �

Back to our problem, we have the equations

〈〈D, V̄ 〉〉n = 0

〈〈D̂, V̄ 〉〉n = 0

for n > M . Now we can apply lemma 7.6 on A = (d−M , d−(M−1), ..., dM), m = n−M .

So there exists B ∈ (C× C)p such that det





bq

b̂1



 6= 0 and

〈〈B, V̄ 〉〉n = 0

〈〈B∗, V̄ 〉〉n = 0
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for all n > M . Together with the condition vl = 0 for l = 0, 1, ..., 2M , we have

〈〈B, V̄ 〉〉M+1 = 〈bq, v2M+1〉 = b+q p(2M+1) + b−q p̄−(2M+1) = 0

〈〈B∗, V̄ 〉〉M+1 = 〈b̂1, v2M+1〉 = b̂−1 p(2M+1) + b̄+1 p̄−(2M+1) = 0,

which implies v2M+1 = 0 because det





bq

b̂1



 6= 0. Now we can solve vk inductively:

Suppose v1, v2, ..., vM+k are all zero for some k > M + 1. Then the equation tells us

that

〈〈B, V̄ 〉〉k+1 = 〈bq, vM+k+1〉 = b+q p(M+k+1) + b−q p̄−(M+k+1) = 0

〈〈B∗, V̄ 〉〉k+1 = 〈b̂1, vM+k+1〉 = b̂−1 p(M+k+1) + b̄+1 p̄−(M+k+1) = 0.

So we have vM+k+1 = 0. Therefore we have vl = 0 for all l which implies c ≡ 0.

Step 3. We still have several parts to prove. To show that Td+,d− is a Fredholm

operator, we can either prove Td+,d− has finite dimensional cokernel, or we can prove

the following properties instead:

1. ker(T ∗
d+,d−) is finite dimensional,

2. range(Td+,d−) is closed,

3. range(T ∗
d+,d−) is closed.

We prove these properties step by step.

Step 4. Here we prove ker(T ∗
d+,d−) is finite dimensional. Here T ∗

d+,d− is the adjoint

operator of Td+,d− . We can get the following computation by definition: Let c =
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∑

ple
ilt, k =

∑

qle
ilt ∈ L2

(Td+,d−(c), k) = Re(

∫

S1

Td+,d−(c) · k̄dt).

=
1

2
(

∫

S1

Td+,d−(c) · k̄dt+
∫

S1

k · Td+,d−(c)dt)

=
∑

n∈Z

M
∑

l=−M

(d̄−lpn−l + sign(l − n)d+l p̄l−n)q̄n

+
∑

n∈Z

M
∑

l=−M

qn(d
−
−lp̄n−l − sign(l − n)d̄+l pl−n)

=
∑

n∈Z
(

M
∑

l=−M

d−−lqn+l + sign(n)d+l q̄−n+l)p̄n

+
∑

n∈Z
pn(

M
∑

l=−M

(d−−lqn+l + sign(n)d+l q̄−n+l)

= (c, T ∗
d+,d−(k)).

We get the last equality by taking

T ∗
d+,d−(k) =

∑

n∈Z
(

M
∑

i=−M

d−−lqn+l + sign(n)d+l q̄−n+l)e
int.

Now we can apply the argument in step 1 and 2 on T ∗
d+,d− , then we will get

dim(ker(T ∗
d+,d−)) < ∞.

Step 5. Properties 2 and 3 in step 3 are similar. Here we only prove property 2.

Readers can prove the property 3 by applying the same argument again.

Before we prove the property 2. we need the following lemma.

Lemma 7.7. Let Pk : L
2 → L2 is the projection defined by

Pk :
∑

fne
int 7−→

∑

|n|≤k

fne
int.
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Then we have

Td+,d− |(I−P2M )(L2) : (I − P2M)(L2) → (I − PM)(L2)

is injective.

Proof. Let f ∈ (I − P2M)(L2), clearly T (f) ∈ (I − PM)(L2), so we should prove this

map is one to one.

Suppose f =
∑

fke
ikt ∈ (I − PM)(L2), by solving the equation given by lemma

7.6, we have

〈〈B, V̄ 〉〉M+1 = 〈bq, v2M+1〉 = b+q p(2M+1) + b−q p̄−(2M+1) = fM+1

〈〈B∗, V̄ 〉〉M+1 = 〈b̂1, v2M+1〉 = b̂−1 p(2M+1) + b̄+1 p̄−(2M+1) = f̄−(M+1).

So we can solve v(2M+1) = (p2M+1, p̄−(2M+1)), which is unique.

Now suppose v(2M+1), ..., vM+k are uniquely determined (where k > M + 1) , we

consider the equation

〈〈B, V̄ 〉〉k+1 = 〈bq, vM+k+1〉

= b+q p(M+k+1) + b−q p̄−(M+k+1) + Fk(v(2M+1), ..., vM+k) = fk+1

〈〈B∗, V̄ 〉〉k+1 = 〈b̂1, vM+k+1〉

= b̂−1 p(M+k+1) + b̄+1 p̄−(M+k+1) +Gk(v(2M+1), ..., vM+k) = f̄−(k+1).

where Fk(v(2M+1), ..., vM+k) = fk+1 andGk(v(2M+1), ..., vM+k) are determined by {v(2M+1), ..., vM+k}.
So we can solve v(M+k+1) uniquely.

Therefore, the map Td+,d− |(I−P2M )(L2) is an injective map from (I − P2M)(L2) to

(I − PM)(L2). �
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If we decompose L2 = P2M(L2) ⊕ (I − P2M)(L2), we have Td+,d−(P2M(L2)) ⊂
P3M(L2) and Td+,d−((I − P2M)(L2)) ⊂ (I − PM)(L2).

Step 6. We will prove the property 2 in Step 3 in the following 2 steps. Suppose

now we have ck ∈ L2, k ∈ N such that {Td+,d−(c
k)} converges to some f ∈ L2. Let

{vkp} be the corresponding pairing l2-coefficients of ck. Here we can assume that

ck ⊥ ker(Td+,d−) without loss of generality. We have to show that there exist c such

that Td+,d−(c) = f .

First of all, suppose that ck is bounded by some constant K. We choose a subse-

quence, which denote by ck again, such that {vkp}k∈N converge for all p ≤ 3J with

some J > M . Let us say

vkp → vp

for p ≤ 3J and here we choose J large enough such that vp 6= 0. Now by lemma 7.7,

we have a unique solution c such that

Td+,d−(c) = f

where the corresponding l2-coefficients of c are vp for p ≤ 3M . So we only need to

show that c is in L2.

Now for any r ∈ N, we have

∑

i≤r

‖vi‖2l2 ≤
∑

i≤r

‖vki − vi‖2l2 +
∑

i≤r

‖vki ‖2l2

≤
∑

i≤r

‖vki − vi‖2l2 +K

and we the first term converges to 0 as k → ∞. Therefore we have

∑

i≤r

‖vi‖2l2 ≤ 1 +K
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for any r > 0. So c ∈ L2.

Step 7. Suppose that ck is unbounded, say ‖ck‖L2 → ∞ (by taking subsequence

if it is necessary). we can take ċk = ck
‖ck‖L2

which satisfies Td+,d−(ċ
k) → 0. We should

prove that this case will lead a contradiction. This is the part that condition (7.1)

involved.

To begin with, we should define the following notations.

Definition 7.8. We define the number τ = inf{
√

|d+|2 + |d−|2}. We also define the

following sets as

1. Ω1 = {|d+| = |d−|} ⊂ S1,

2. Ω1,ε = {||d−| − |d+|| ≤ ετ},
3. Ω+

ε = {|d+| > |d−|+ ετ},
4. Ω−

ε = {|d−| > |d+|+ ετ}.
So we have S1 = Ω1,ε ∪ Ω+

ε ∪ Ω−
ε .

Now we fix an ε ≤ 1
6
which will be specified later. We define χ1,ε to be a nonnegative

real valued function defined on S1 which has value 1 in Ω1, ε
2
and 0 in Ω+

ε ∪Ω−
ε . Also,

define χ2,ε to be 1 in Ω+
ε and 0 on {|d+| ≤ |d−|+ ε

2
τ}. Define χ3,ε to be 1 in Ω−

ε and

0 on {|d+| ≥ |d−|+ ε
2
τ}. Moreover, suppose that

χ1,ε + χ2,ε + χ3,ε ≡ 1.

Step 8. In this Step, we will modify our statement in step 7 by some observation

and define some notations which will be used later. First of all, for any L ∈ N let

PL : L2 → L2 be a projection which maps
∑

l∈Z qle
ilt to

∑

|l|≤L qle
ilt. Now suppose

we have a sequence {ck} with all have L2 norms equalling 1 and Td+,d−(c
k) converges

to 0 in L2 sense. For any i ∈ Z fixed, suppose that the limit sup of {|cki |} is nonzero,

than we can using the argument in step 6 by taking J > i to achieve a contradiction.
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By using this observation, for any L ∈ N given, we can add the additional assump-

tion into our statement: PL(c
k) = 0 for any k. This number L will be specified later

which is determined by ε and χi,ε. Here we should restate our statement as following:

Lemma 7.9. There exists L ∈ N depending only on d±, such that for any sequence

{ck}k∈N ⊂ L2 satisfying

‖ck‖L2 = 1, PL(c
k) = 0 for all k ∈ N,

we have infk∈N{‖Td+,d−(c
k)‖L2} > C0, where C0 depending only on the C1-norm of

d± and τ .

We still have several constants to define. We consider the function Q = d+

d̄−
defined

on Ω1,ε. Extend this function as a C1 function defined on S1. Then we can approx-

imate it by its first N1 Fourier modes, S, such that the L2-norm and L∞-norm of

|Q− S| are O(ε).

Since χ1,ε + χ2,ε + χ3,ε ≡ 1, we have

1 = ‖ck‖L2 ≤ ‖χ1,εc
k‖L2 + ‖χ2,εc

k‖L2 + ‖χ3,εc
k‖L2 .

Therefore, there exists i ∈ {1, 2, 3} such that ‖χi,εc
k‖L2 ≥ 1

3
infinite many times.

We take this subsequence and renumber them consecutively from 1. Since χ1,ε is a

smooth function, we approximate χ1,ε by its first N2 Fourier mode, denoted by ζ1,ε,

such that ‖χ1,ε − ζ1,ε‖L2 ≤ ε < 1
6
and sup |χ1,ε − ζ1,ε| ≤ ε, so by Cauchy’e inequality,

we have ‖ζi,εck‖L2 ≥ 1
6
. Now we shall start our proof of lemma 7.9 case by case.

Proof. Case 1. If i = 1, we have

ζ1,εTd+,d−(c
k) = ζ1,εf

k.
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where lim sup ‖ζ1,εfk‖2 ≤ ε Now we can write

ζ1,εTd+,d−(c
k) = Td+,d−(ζ1,εc

k) + (ζ1,εTd+,d−(c
k)− Td+,d−(ζ1,εc

k)).

We can write the second term as [Td+,d− , ζ1,ε](c
k). Let ζ1,ε =

∑

l∈Z ςle
ilt, then we can

get

[Td+,d− , ζ1,ε](c
k) = ζ1,ε((c

k)aps)− (ζ1,εc
k)aps

=
∑

n∈Z
[(

∑

|j|≤N1

ςjsign(n− j)pkn−j)− (
∑

|j|≤N1

sign(n)ςjpn−j)]e
int

=
∑

|n|≤N1

±2(
∑

|j|≤N1

ςjpn−j)e
int.

So this term will be 0 by taking L > 2N1.

Therefore we have

Td+,d−(ζ1,εc
k) = ζ1,εf

k

= d̄−ζ1,εc
k − d+(ζ1,εck)aps

dived both side by d̄−, then we have

ζ1,εc
k − d+

d̄−
(ζ1,εck)aps =

ζ1,εf
k

d̄−
.

Notice that |d̄−| ≥ τ(1− ε) on Ω1,ε, so the right hand side still converges to 0 in L2

sense. Moreover, because d+

d̄−
= Q on Ω1,ε and |ζ1,ε| ≤ ε outside Ω1,ε, so we have

ζ1,εc
k −Q(ζ1,εck)aps =

ζ1,εf
k

d̄−
+OL2(τε)
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(This OL2(ε) term has its L2 norm of order O(ε)). Write Q = S +(Q−S) where the

L2-norm and L∞-norm of Q− S are O(ε). So we have

ζ1,εc
k − S(ζ1,εck)aps =

ζ1,εf
k

d̄−
+OL2(ε).

Finally, let P± : l2 → l2 be the projections map
∑

l ple
ilt to

∑

l>0 ple
ilt and

∑

l<0 ple
ilt respectively. Here we denote ζ1,εc

k = Ak and (ζ1,εck)aps = Bk for a while.

We have

P±Ak + P±SBk =
ζ1,εf

k

d̄−
+OL2(ε).

We notice that

P±(Ak) = P∓(Bk),

and

[P+, S]Bk = (P+SBk − SP+Bk)

=
∑

n>0

(
∑

|j|≤N2

SjBn−je
int)−

∑

n≥j

(
∑

|j|≤N2

SjBn−je
int)

∑

|n|≤N2

∑

|j|≤N2

|SjBn−j|eint

the last term will be 0 when we take L > 2N1 + 2N2.

Therefore we have

P+Ak + SP+Bk = OL2(ε) + P+(
ζ1,εf

k

d̄−
),

P+Bk − SP+Ak = OL2(ε) + P−(
ζ1,εfk

d̄−
)
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Since ‖Ak‖L2 ≥ 1
6
, we can suppose that either ‖P+Ak‖L2 > 1

12
or ‖P−Ak‖L2 > 1

12
.

Suppose that ‖P+Ak‖L2 > 1
12

then we will have

P+Ak + SP+Bk − S(P+Bk − S̄P+Ak) = (1 + |S|2)P+Ak

= OL2(ε) + P+(
ζ1,εf

k

d̄−
) + S̄P−(

ζ1,εf
k

d̄−
)

Therefore we have

1

12
≤ ‖P+Ak‖L2 ≤ ‖(1 + |S|2)P+Ak‖L2 ≤ O(ε) + ‖P+fk‖L2 +

1

τ
(‖S̄P−fk‖L2)

≤ O(ε) +
1

τ
4‖fk‖L2

for ε arbitrary. so we have

‖fk‖L2 ≥ τ

13

for all k.

Case 2. If i = 2, we have

ζ2,εTd+,d−(c
k) = Td+,d−(ζ2,εc

k) = ζ2,εf
k

= d̄−(ζ2,εc
k) + d+(ζ2,εck)− = ζ2,εf

k

dived both side by d+ and notice that |d−
d+
| ≤ 1− τ

2
ε on Ω+

ε , so we have

‖ζ2,εf
k

d+
‖L2(Ω+

ε ) = ‖ d̄
−

d+
(ζ2,εc

k) + (ζ2,εck)−‖L2(Ω+
ε )

≥ ‖(ζ2,εck)−‖L2(Ω+
ε ) − (1− τ

2
ε)‖(ζ2,εck)‖L2(Ω+

ε )

=
τ

2
ε‖ζ2,εck)‖L2(Ω+

ε ).
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Therefore we have

τ

2
ε(
1

3
−O(ε)) ≤ τ

2
ε‖ζ2,εck)‖L2(Ω+

ε )

≤ ‖ζ2,εf
k

d+
‖L2(Ω+

ε ) ≤
2

τ
‖fk‖L2 .

Then we fix a small ε such that the left end is a positive constant. We get

‖fk‖L2 ≥ Cτ 2

where C is a constant depending only on C1-norm of d±. �

Remark 7.10. We should notice that this lower bounded C0 can be chosen as a con-

tinuous function C0(τ, ‖d+‖C1 , ‖d−‖C1). Moreover, if we have a sequence of {d±,(k)}
such that the corresponding τ (k), ‖d±,(k)‖C1 are bounded and do not accumulate at

0, then inf{C0(τ
(k), ‖d+,(k)‖C1 , ‖d−,(k)‖C1)} > 0.

So far we have proved that Td+,d− is a Fredholm operator. However, we haven’t

show that the index is a constant when we change (d+, d−). To prove this part, we

consider both (d+1 , d
−
1 ) and (d+2 , d

−
2 ) have nonzero Fourier coefficients from −M to M .

According to the lemma 7.7, we have Td+i ,d−i
|(I−P2M )(l∞) : (I − P2M)(L2) → (I −

PM)(L2) is injective for i = 1, 2. Therefore, we have the quotient map:

T̄d+i ,d−i
: L2/((I − P2M)(L2)) → L2/Td+i ,d−i

((I − P2M)(L2))

with index(T̄d+i ,d−i
) = index(Td+i ,d−i

) for i = 1, 2. However, both L2/((I − P2M)(L2))

and L2/Td+i ,d−i
((I − PM)(L2)) are finite dimensional spaces. So

index(T̄td+1 +(1−t)d+2 ,td−1 +(1−t)d−2
)

is a constant for all t ∈ [0, 1].
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7.4. General cases. Now we turn to the proof of the general case. We will prove

the following theorem

Theorem 7.11. Let

Td+,d−(c) = d̄−c− d+caps

be the operator from L2 to L2, with the following constraint:

|d+|2 + |d−|2 6= 0.(7.5)

Moreover, suppose that

‖d+‖C1 , ‖d−‖C1 < ∞.

Then we have Td+,d− is a Fredholm operator and the index will be 0.

Step 1. To prove this theorem, notice that we can approximate the operator Td+,d−

by a sequence of Fredholm operators {Td+,(k),d−,(k)}k∈N, where d±,(k) are the first k

Fourier modes of d±. Since that the Fredholm operators form an open set inside

the Hom(L2), this is insufficient to say that Td+,d− itself is a Fredholm operator.

However, recall that we have the following well-known equivalent statement for the

Fredholm operators [8].

Lemma 7.12. Let X be a Hilbert space and F ∈ Hom(X). Then F is a Fredholm

operator iff there is an inverse S ∈ Hom(X) such that

SF = FS = I mod(Com(X))

where Com(X) is the subspace(ideal) consisted by all compact operators mapping from

X to itself.
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Now since Td+,(k),d−,(k) is a Fredholm operator for all k ∈ N by proposition 7.3, there

exists a sequence of right inverse {Sk} such that

Td+,(k),d−,(k)Sk = I mod(Com(X)).

Suppose that ‖Sk‖ is bounded uniformly by a number K. For any ε > 0, there exists

a constant N > 0 such that ‖Td+,d− − Td+,(k),d−,(k)‖ ≤ ε for all k ≥ N . So we have

Td+,d−S
N = Td+,(N),d−,(N)SN +O(ε)SN = I +O(ε)SN mod(Com(X)).

Since ‖O(ε)SN‖ ≤ O(ε)K, we can choose ε small enough such that ‖O(ε)SN‖ ≤ 1
2
.

Therefore we have I + O(ε)SN
r invertible. Let V be the inverse of I + O(ε)SN , we

have

Td+,d−S
NV = I mod(Com(X)).

So Td+,d− have the inverse SNV modular the ideal of compact operators. Therefore

it is a Fredholm operator.

Step 2. In step 1, we prove that if there is an uniform bound for {‖Sk‖}, then
theorem 7.11 will be immediately true. To prove this claim, we should know how to

construct these inverses Sk. In the following paragraphs, we use T k to denote the

operator Td+,(k),d−,(k) and T to denote Td+,d− .

A standard way to construct Sk is to use the decomposition L2 = N(T k) ⊕
N(T k)⊥ = R(T k) ⊕ N(T k∗). By the standard Fredholm alternative, we have T :

N(T k)⊥ → R(T k) is a bijection. Therefore by open mapping theorem (see [10]),

there is a bounded inverse map Ŝk : R(T k) → N(T k)⊥. Now, we define Sk to be

Ŝk ◦ PR(T k).

Here we should imitate this idea to construct Sk. Here we know that T k :

(I − PL)(L
2) → T k((I − PL)(L

2)) ⊂ (I − PL−k)(L
2) is a bijection, where L is the
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number given by lemma 7.9. Moreover, we can prove that T k((I − P2k)(L
2)) is a

closed subspace by using the argument in step 6,7,8 in section 7.3. Therefore we

have an bounded inverse R̂k : T k((I − PL)(L
2)) → (I − PL)(L

2). Meanwhile, the

remark 7.10 tells us that R̂k have a uniform bounded norm. Now we set our Sk to

be R̂k ◦ PT k((I−PL)(L2)). So {‖Sk‖} has a uniform bound.

Step 3. Finally, we shall prove that Sk is actually an inverse of T k, modular

the ideal of compact operators. To prove this, just recall that both (I − PL)(L
2)

and T ((I − PL)(L
2)) are finite codimensional. We denote (I − PL)(L

2) = A and

T ((I − PL)(L
2)) = B for a while, so L2 = A⊕ A⊥ = B ⊕ B⊥

(T kSk − I)(v) = 0 for any v ∈ B.

So for any bounded sequence {vk = (vk1 , v
k
2) ∈ B ⊕ B⊥ = L2}, we have

(T kSk − I)(vk) = (T kSk − I)(vk2)

where {vk2} lies in a finite dimensional space B⊥. We can get a convergence subse-

quence of {vk2} easily. This implies

(T kSk − I) = 0 mod(Com(X)).

Similarly, we have (SkT k−I) = 0 mod(Com(X)), too. Therefore we finish our proof.

Remember that d± are the leading coefficients of a L2
1 harmonic section, so by

proposition 4.7, it is smooth. Meanwhile, notice that Td+,d− maps from L2
k to L2

k for

any k ∈ N. We can easily show that all these maps are Fredholm by using the same

argument.

Especially, we have
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Corollary 7.13. The map Td+,d− : L2
2 → L2

2 is a Fredholm operator.

In the following sections, we will assume that the domain of Td+,d− is L2
2(S

1;C).

7.5. Relation between T and the original equation. Recall that by the argu-

ment in subsection 7.2, we want to solve the equation

d+η + c = −2h+,

d−η̄ + caps = −2h−

which will give us the equation Td+,d−(c) = −2(d̄−h+ − d+h̄−). Here we define the

map J by J (h+, h−) = −2(d̄−h+ − d+h̄−) and the map O, which maps from ker(T )

to L2(S1;C), by

O(c) = − d̄+c+ d−caps

|d+|2 + |d−|2 .

This map will give us η when h± = 0.

Now by using the notations in section 7.1, we can always be decomposed the

pair (u+, u−) ∈ L2(S1;C) × L2(S1;C) as π+(u+, u−) + π−(u+, u−). By using this

proposition and the Fredholmness of Td+,d− , we can find a finite dimensional vector

space H0 ⊂ Exp+ such that range(Td+,d−)⊕ J (H0) = L2

8. Proof of the main theorem: Part I

In this section, we will prove the theorem 1.4 in the version without showing f is

C1. In the next section, we will prove that f is a C1 map. The argument in this

section assumes that the metric g defined on a tubular neighborhood is Euclidean.

The general case is more complicated but with the similar argument, see appendix

10.1 for the detail.
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8.1. Definition of K1 and K0. Here we define the finite dimensional spaces K1 and

K0. By the discussion in section 5.2, we know that the vector bundle E and F can

be locally trivialized as π1(N )× Bε × L2
1 and π1(N )× Bε × L2 respectively.

Use H1 to denote the space O(ker(Td+,d−)). We define the vector spaces as follows

K1 = H1 × ker(D|L2
1
);

K0 = H0.

where B is defined in proposition 7.1.

Since Td+,d− is a Fredholm operator, O(ker(Td+,d−)) is finite dimensional. Mean-

while, by proposition 2.4, ker(D|L2
1
) is also finite dimensional. So K1 is finite dimen-

sional.

In fact, the map O is injective on ker(Td+,d−) since the equation







d̄+c+ d−caps = 0,

d̄−c− d+caps = 0

implies c = 0. So dim(O(ker(Td+,d−))) = dim(ker(Td+,d−)) = dim(H1). Meanwhile,

by definition of H0, we have dim(H0) = dim(coker(Td+,d−)).

8.2. Basic setting. Before we start our argument, we define the following notations

first.

Firstly, in the following paragraphs, we fix r < R
4
, T > 1 for a moment. The

precise values of r and T will be specified later. Moreover, let us assume that

‖T −1
d1,d−

|range(T −1

d+,d−
)‖ ≤ 1.

Secondly, we suppose that there exists c0 > 0 which is the upper bound for s. The

precise value of c0 can be assumed to decreased between each successive appearance.

Now we define the following notations.
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Definition 8.1. For any A ⊂ M , we call a section u : [0, c0] × A → S ⊗ I is in

Cω([0, c0];L
2
i (A;S ⊗ I) if and only if ‖u(s, ·)‖L2

i (A;S⊗I) < ∞ for all s ∈ [0, c0] and

u(·, x) : [0, c0] → (S ⊗ I)x varies analytically on [0, c0] (The remainder of Taylor

series will converge to zero in L2-sense).

Definition 8.2. For any i ∈ N κ > 0, we define

Aκ
i+1 = {f ∈ Cω([0, c0];L

2
−1(M −NR;S ⊗ I))|‖f(s, ·)‖L2

−1
≤ κ

T
5i
2

};
(8.1)

Bκ
i+1 = {f ∈ Cω([0, c0];L

2(N r

Ti
−N r

Ti+1
;S ⊗ I))|‖f(s, ·)‖L2

−1
≤ κ

T
5i
2

};
(8.2)

Cκ
i+1 = {f ∈ Cω([0, c0];L

2(N r

Ti
;S ⊗ I))|‖f(s, ·)‖2L2(Nr1−Nr2 )

≤ κ(r1
3 − r2

3)(
r

T i
)
1
4

(8.3)

for all r2 < r1 ≤
r

T i
}.

Thirdly, suppose that we perturb the metrics g on the region M −NR analytically

with the parameter s. Let us call this family of perturbed metric gs. We use the

notation Dpert = D + T s to denote the Dirac operator perturb by metric. The

operator T s : L2 → L2
−1 will be a 1st order differential operator with its operator

norm ‖T s‖ ≤ Cs.

Therefore we have

Dpertψ = sf0

for some f0 = T s(ψ) ∈ Cω([0, c0];L
2).

To prove theorem 1.4, we need to prove the following claim: There exists ε > 0

with the following significance. For any ξ ∈ O(ker(Td=,d−)) with ‖ξ‖L2
2
= ε there
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exist ηs ∈ Cω([0, c0];C
1(S1;C)) and ks ∈ {u ∈ L2|B(u) ∈ H0} such that

Dpert,ηs(ψ + sks) = 0(8.4)

for all s ∈ [0, c0] with the constraint ηs = sξ + η⊥s where ηs ⊥ O(ker(Td+,d−)).

Moreover, we have to show these data (ηs, ks) will be homeomorphic to a open set

in R
k with k = dim(ker(D|L2

1
)). By using this claim, we can define the map f by

f(gs, sξ, ψ̂) = B(sks) for any ψ̂ ∈ dim(ker(D|L2
1
)) with ‖ψ̂‖2 small. Then, I should

prove that this map is C1.

So I separate my proof into 3 parts. In this section, I will prove that there exists

(ηs, ks) satisfying (8.4). In the next section, I will prove the set of data (ηs, ks)

satisfying (8.4) will be homeomorphic to a open set in R
k with k = dim(ker(D|L2

1
))

and f is a C1-map.

Remark 8.3. In fact, the ξ we choose in our claim can be a smooth map ξ : [0, c0] →
O(ker(Td=,d−)) with ‖ξ‖L2

2
= ε and ψ can be replaced by a smooth family ψ(s) ∈

ker(D|L2
1
). The argument in the rest of this section will still hold under this setting.

8.3. Part I of the proof: First order approximation of ηs and ks. Now we are

ready to prove our claim. I separate this proof into 10 steps.

Firstly, we define the following smooth function:

χ∗ =







0 on NR
2

1 on M −NR

.

Step 1. In this and the next step, we will denote by κ0 a O(1) constant. The

precise value of κ0 can be assumed to increase between each successive appearance.

By using proposition 5.3, there exists h0 ∈ L2 such that

Dh0 = f0.
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So we have

Dpert(ψ − sh0) = −sT s(h0).

Since T s is a first order differential operator, we have

‖T s(h0)‖L2
−1

≤ Cs‖h0‖L2 ≤ Cs‖f0‖L2
−1
.

This implies

sT s(h0) ∈ s2A
κ0
2
1

by taking κ0 ≥ 2C‖f0‖L2
−1

large enough.

Step 2. In this step we construct the data of perturbation η0 and prove η0 will

satisfy the condition (5.26), (5.27), (5.28) and (5.29).

Since f0 = 0 on Nr, we have Dh0 = 0 on Nr. So by proposition 4.4, we can write

h0 =





h+
0√
z

h−
0√
z̄



+ hR,0.

on Nr. By theorem 7.11, there exists (η0, c0) such that







2h+
0 + d+η0+ c0 = k+

0

2h−
0 + d−η̄0+ caps0 = k−

0

where (k+
0 , k

−
0 ) ∈ H0. So there is a corresponding c0 which satisfies Dc0 = 0 on M−Σ

and

c0 =





c0
2
√
z

c
aps
0

2
√
z̄



+ cR,0.
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Since we have h0 satisfies Dh0 = f0 which is given by proposition 5.3, so

r‖h±
0 ‖2L2 , r3‖(h±

0 )t‖2L2 , r5‖(h±
0 )tt‖2L2 ≤ C‖h0‖2L2(NR

2
) ≤ C‖f0‖2L2

−1

by part c of proposition 5.4. By taking κ0 ≥ 2 C

r
5
2
‖f0‖L2

−1
, we have

‖h±
0 ‖2L2 ≤ κ0

2
r2, ‖(h±

0 )t‖2L2 ≤ κ0

2
r,(8.5)

‖(h±
0 )tt‖2L2 ≤ κ0

2
, ‖h0‖L2 ≤ κ0.

Moreover, since Td+,d−(c0) = d̄−h+ − d+h̄− mod(J (H0)), we can choose c0 such that

‖c0‖2L2 ≤ κ0

2
r2, ‖(c0)t‖2L2 ≤ κ0

2
r,(8.6)

‖(c0)tt‖2L2 ≤ κ0

2
, ‖c0‖L2 ≤ κ0.

So η0 =
d̄+

(|d+|2+|d−|2)(k
+
0 − 2h+

0 − c0) +
d−

(|d+|2+|d−|2)(k
−
0 − 2h−

0 − caps0 ) will satisfy (5.14),

(5.15) and (5.16), so it satisfies (5.17), (5.18) and (5.19).

We should notice that the condition κ0 ≥ 2 C

r
5
2
‖f0‖L2

−1
will give us a constraint

for gs. In the following paragraphs, we should always assume ‖f0‖L2
−1

≤ r
5
2 . This

assumption will give us some restriction to define N in theorem 1.4. We will discuss

this part in section 8.5.

By this setting, we will also have

‖k±
0 ‖2L2 ≤ κ0

2
r2, ‖(k±

0 )t‖2L2 ≤ κ0

2
r, ‖(k±

0 )tt‖2L2 ≤ κ0

2
.(8.7)

Furthermore, since

‖T s(c0)‖L2
−1

≤ Cs‖c0‖L2 ≤ s
κ0

2

so we have sT s(c0) ∈ s2A
κ0
2
1 .

Finally, notice that we still have some options for the choice the c0. We can choose

another c0 by adding an element in ker(T ). So we can choose c0 such that the
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corresponding η0 satisfies η0 = ξ + η⊥0 where η⊥0 ⊥ O(ker(T )). Moreover, we should

assume ξ also satisfy (5.14), (5.15) and (5.16). So (8.6) still holds in this case.

Before we move on to the next step, I would like to make some remarks here.

Remark 8.4. We know that η0 satisfies (5.14), (5.15) and (5.16). By using the same

argument in the proof of (5.17), we have

‖η0‖C1 ≤ C(‖η0‖2L2
1
+ ‖η0‖L2‖η0‖L2) ≤ Cκ2

0r

Meanwhile, we can estimate the following Holder seminorm (I follow the standard

way to estimate the Holder norms, reader can see [7] for the detail):

[|ηt|]0, 1
4
= sup

a 6=b

|ηt|(a)− |ηt|(b)
|a− b| 14

.

When |a− b| ≤ r, we have

[|ηt|]0, 1
4
≤ sup

a 6=b

| 1

|a− b| 14

∫ b

a

∂t|ηt|(s)ds| ≤ sup ‖ηtt‖|a− b| 14 ≤ Cκ0r
1
4 ;

when |a− b| > r, we have

[|ηt|]0, 1
4
≤ C sup |ηt|

1

r
1
4

≤ Cκ0r
1
4 .

So we have the Holder estimate

‖η0‖
C1, 14

≤ Cκ0r
1
4 .(8.8)

Remark 8.5. We should also notice that the choice of (η0, k
±
0 ) is unique. More pre-

cisely, for any ξ ∈ O(ker(T )), the choice of η⊥0 will be unique.

Step 3. Now we can fix κ0 forever. In this and the next steps, we will determine

another constant κ1 = O(κ0). The precise value of κ1 can be assumed to increase

between each successive appearance. First of all, since η0 satisfies (5.17) to (5.19),

we should assume κ1 is the constant appearing in these estimates in the beginning.
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On NR we can define

hb0 = χ0





h+
0√
z

h−
0√
z̄



 ; cb0 = χ0





c0
2
√
z

c
aps
0

2
√
z̄



 ; kb0 = χ0





−i
k+0√
z

i
k−0√
z̄



 .

We also define h
g
0 = h0 − hb0 and c

g
0 = c0 − cb0.

So we have

Dpert(ψ + sc0 − sh0) = sT s(c0 − h0)

= Dpert(ψ + scg0 − shg0) +Dpert(sc
b
0 − shb0)

= Dpert(ψ + scg0 − shg0) +D|NR
(scb0 − shb0).

Notice that

D|NR
(−scb0 − shb0) = sD|NR

(χ0





−c0−2h+
0

2
√
z

−c
aps
0 −2h−

0

2
√
z̄



)

= sχ0





i
ċ0+2ḣ+

0

2
√
z

−i
ċ
aps
0 +2ḣ−

0

2
√
z̄



+ sσ(χ0)c
b
0 − sσ(χ0)h

b
0

= sχ0





−i ḋ
+η0+d+η̇0√

z

i ḋ
−η̄0+d− ˙̄η0√

z̄



+ sσ(χ0)c
b
0 − sσ(χ0)h

b
0

− skb0 − sσ(χ0)k
b
0 − sD|NR

(kb0)

= sχ0





−i ḋ
+η0√
z

i ḋ
−η̄0√
z̄



+ sχ0





−id
+η̇0√
z

id
− ˙̄η0√
z̄



+ sσ(χ0)c
b
0 − sσ(χ0)h

b
0

− sσ(χ0)k
b
0 − sD|NR

(kb0).
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where we have

sσ(χ0)c
b
0 − sσ(χ0)h

b
0 − sσ(χ0)k

b
0 = s





χz̄
c
aps
0 −h−

0√
z̄

−χz
c0−h+

0√
z



 = s





−χz̄η̄0
d−√
z̄

χzη0
d+√
z





We can check that

sχ0





−id
+η̇0√
z

id
− ˙̄η0√
z̄



+ sσ(χ0)c
b
0 − sσ(χ0)h

b
0 − sσ(χ0)k

b
0 = Θ0

s(ψ).

So

D|NR
(−scb0 − shb0) = sχ0





−i ḋ
+η0√
z

i ḋ
−η̄0√
z̄



+Θ0
s(ψ)−Dpert(sk

b
0).(8.9)

Meanwhile, we define

e0 = χ0





−iḋ−η̄0
√
z̄

−iḋ+η0
√
z





which satisfies D(se0) = χ0





−i ḋ
+η0√
z

i ḋ
−η̄0√
z̄



+ se1∂te0 + sD(χ0)(
e0
χ0
). So we can simplify

(8.9) as follows

D|NR
(−scb0 − shb0) = D(se0)− se1∂te0 +Θ0

s(ψ)− sD(χ0)(
e0

χ0

)−Dpert(sk
b
0).(8.10)

Recall that the Dirac operator Dsχ0η0 can be written as

Dsχ0η0 = (1 + ̺0)D + s((χ0)zη0 + (χ0)z̄η̄0)e1∂t +Θ0
s +A0

s + F0
s +R0

s

= (1 + ̺0)D + s((χ0)zη0 + (χ0)z̄η̄0)e1∂t + Θ̂0
s +W0

s +A0
s + F0

s +R0
s
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where

Θ̂0
s = e1(sχ0η̇0∂z + sχ0 ˙̄η0∂z̄),

W0
s = e2(s(χ0)z̄η̄0∂z − s(χ0)zη̄0∂z̄) + e3(−s(χ0)z̄η0∂z + s(χ0)zη0∂z̄).

We use the following notations to simplify the upcoming equation:

W0
s (se0) + ̺0(e2∂z + e3∂z̄)(se0) = s2B1;(8.11)

−W0
s (sc

g
0 − shg0)− ̺0(e2∂z + e3∂z̄)(sc

g
0 − shg0) = s2B2;(8.12)

W0
s (se

′
0) + ̺0(e2∂z + e3∂z̄)(se

′
0) = s2B3;(8.13)

s((χ0)zη0 + (χ0)z̄η̄0)e1∂tψ = sC0;(8.14)

−sD(χ0)(
e0

χ0

) + (̺0 − 1)e1∂t(se0) + s((χ0)zη0 + (χ0)z̄η̄0)e1∂t(se0) = sC1;(8.15)

−̺0e1∂t(sc
g
0 − shg0)− s((χ0)zη0 + (χ0)z̄η̄0)e1∂t(sc

g
0 − shg0) = sC2;(8.16)

̺0e1∂t(se
′
0) + s((χ0)zη0 + (χ0)z̄η̄0)e1∂t(se

′
0) = sC3;(8.17)

Θ̂0
s(se0) = s2Q1;(8.18)

−Θ̂0
s(sc

g
0 − shg0) = s2Q2(8.19)

Θ̂0
s(se

′
0) = s2Q3.(8.20)

where

e′0 = −(χzη + χz̄η̄)ψ −





0 iχη̇

−iχ ˙̄η 0



ψ

which has the property

D(se′0) = −F0
s (ψ).
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Now by using the fact that Dψ = 0, (8.10) yields

D|NR
(−scb0 − shb0) = D(se0)− se1∂te0 +Dsχ0η0(ψ)− (A0

s + F0
s +R0

s)(ψ) + sC1 − skb0

= Dsχ0η0(se0) +Dsχ0η0(ψ)− (A0
s + F0

s +R0
s)(ψ + se0)

+ s2B1 + sC0 + sC1 − s2Q1 −Dpert(sk
b
0).

Therefore we have

Dpert(ψ + sc0 − sh0) = sT s(c0 − h0)

= Dpert(ψ + scg0 − shg0 + se′0) +Dsχ0η0(ψ + se0)−F0
s (se0)

− (A0
s +R0

s)(ψ + se0) + s2B1 + s(C0 + C1)− s2Q1 −Dpert(sk
b
0).

So

Dsχ0η0,pert(ψ + scg0 − shg0 + se0) = (A0
s +R0

s + F0
s )(se0 + se′0 + scg0 − shg0)

(8.21)

+ (A0
s +R0

s)(ψ) + sT s(c0 − h0)

− s2(
3

∑

i=1

Bi)− s(
3

∑

i=0

Ci) + s2(
3

∑

i=1

Qi)−Dpert(sk
b
0).(8.22)

Here we show that

A0
s(ψ) + (A0

s + F0
s )(se0 + se′0 + scg0 − shg0)− s(

3
∑

i=0

Ci) ∈ sCκ1
1 ,(8.23)

R0
s(ψ + se0 + se′0 + scg0 − shg0)− s2(

3
∑

i=1

Bi) ∈ s2Bκ1
1 ,(8.24)

sT s(c0 − h0) ∈ s2Aκ0
1 .(8.25)

We already show that sT s(h0) ∈ A
κ0
2
1 in step 1 and sT s(c0) ∈ A

κ0
2
1 in step 2, so

we only need to prove (8.23) and (8.24). By the definition of C1, C2, C3, proposition
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4.4 and Sobolev embedding, we can see that sC3 ∈ sCκ1
i for some κ1. Meanwhile, by

proposition 5.5, we have A0
s(ψ + se0 + se′0 + scg0 − shg0) ∈ sCκ1

1 . So we prove (8.23).

Finally, by proposition 5.5, we have

‖R0
s(se0 + se′0 + scg0 − shg0)‖L2 ≤ γ2

Tκ
2
1s

3‖ψ + se0 + scg0 − shg0‖L2

≤ γ2
Tκ

2
1s

3r
3
2 ≤ κ1r

3
2 s2

for any s ≤ 1
γ2
T κ1

. Meanwhile, by proposition 5.6, we have

‖R0
s(ψ)‖L2 ≤ Cγ3

Tκ
3
1r

2s2 ≤ κ1r
3
2 s2

for any r ≤ 1
C2γ6

T κ4
1
. So we prove (8.24).

Step 4. In this step we prove that there exists e′ ∈ L2
1 such that Dsχ0η0(s

2e′i) =

s2Qi + s3B + s2C for some B ∈ Bκ1
1 and C ∈ Cκ1

1 where i = 1, 2, 3.

Here we have to prove the following lemma.

Lemma 8.6. Let Q be either of the type s2χ0





q+(t)√
z

q−(t)√
z̄



 or of the type s2χ0





q+(t)√
z̄

q−(t)√
z





where ‖q±‖L2 ≤ κ1r, ‖(q±)t‖L2 ≤ κ1. Then there exists a L2
1 section e′ which can be

written as

e′ =
∑

i≥2

siχi
0





e+i (t)
√
z̄

e−i (t)
√
z





for the first type and

e′ =
∑

i≥0

siχi
0





e+i (t)
√
z

e−i (t)
√
z̄





for the second such that Dsχ0η0(s
2e′) = s2Q+s2B+s2C for some B ∈ Bκ1

1 and C ∈ Cκ1
1

for all s ≤ 1

2γ2
T κ1r

1
2
. Furthermore, we have ‖e′‖L2

1
≤ 2κ1.
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Proof. First of all, let Q is of the first type. We start with the element

e′0 = χ0





q−
√
z̄

q+
√
z



 .

Under a straight-forward direct computation, we have

D(s2e′0) = s2Q+ s2B + s2C

with B ∈ B
sγ2

T κ2
1

1 and C ∈ Csκ1
1 . Recall that by proposition 5.5, we have

Dsχ0η0 = (1 + ̺0)D + s((χ0)zη0 + (χ0)z̄η̄0)e1∂t +Θ0
s +A0

s + F0
s +R0

s.

By the argument proving the results (8.23) and (8.24), we have

s((χ0)zη0 + (χ0)z̄η̄0)e1∂t(s
2e′0) + (A0

s + F0
s )(s

2e′0) ∈ s2C
sκ2

1
1

̺0D(s2e′0) +R0
s(s

2e′0) ∈ s2B
s2γ2

T κ3
1

1 .

Meanwhile, recall that Θ0
s = [e1(sχη̇∂z+sχ ˙̄η∂z̄)+e2(sχz̄η̄∂z−sχzη̄∂z̄)+e3(−sχz̄η∂z+

sχzη∂z̄)]. Here we recall the decomposition

Θ0
s = Θ̂0

s +W0
s .

Notice that W0
s is a O(sκ1)-first order differential operator with its support on Nr −

N r

T
, which implies W0

s (s
2e′0) ∈ s2B

sγ2
T κ2

1
1 . So we have

Θ0
s(s

2e′0) = Θ̂0
s(s

2e0) + s3B

for some B ∈ B
sγ2

T κ2
1

1 . Moreover, since

Θ0
s(s

2e′0) = χ0Θ
0
s(s

2 e
′
0

χ0

) + Θ0
s(χ0)s

2 e
′
0

χ0
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and the second term is in s2B
sγ2

T κ2
1

1 , so we have

Θ0
s(s

2e′0) = χ0Θ
0
s(s

2 e
′
0

χ0

) + s2B

for some B ∈ B
sγ2

T κ2
1

1 .

Now we call Q1 = χ0Θ
0
s(

e′0
χ0
), which can be simplified as

Q1 = sχ2
0





q+1 (t)√
z̄

q−1 (t)√
z





where

q+1 = −i(χ0 ˙̄η0)q
+

q−1 = −i(χ0η̇0)q
−.

By using the fact ‖q±‖L2 ≤ κ1r, ‖(q±)t‖L2 ≤ κ1, fundamental theorem of calculus

and Holder’s inequality, we have ‖q±‖L∞ ≤ Cκ1r
1
2 . Therefore by using (5.16), (5.17),

we have ‖q±1 ‖L2 ≤ κ2
1r

3
2 , ‖(q±1 )t‖L2 ≤ κ2

1r
1
2 . So we have

Dsχ0η0(s
2e′0) = s2Q1 + s2B0 + s2C0(8.26)

for some B0 ∈ B
sγ2

T κ2
1r

1 and C0 ∈ Csκ1r
1
2

1 .

Here we define a L2(S1;C)-module V which is generalized by

{





zaz̄b

0



 ,





0

zaz̄b



 |(a, b) ∈ (Z+
1

2
)× Z or (a, b) ∈ Z× (Z+

1

2
), a+ b =

1

2
}.

Now, we define a linear map J by the following rule:

J





q+zaz̄b

q−zbz̄a



 =





−iη̇0q
+zbz̄a

i ˙̄η0q
−zaz̄b



+
b

a+ 1





−i ˙̄η0q
+zb−1z̄a+1

iη̇0q
−za+1z̄b−1




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This map is not will defined on the entire V since it makes no sense when a = −1.

However, if we start with x =





q+zaz̄b

q−zbz̄a



 with (a, b) = (1
2
, 0) or (a, b) = (0, 1

2
), we

can always define Jn(x) for any n. Here we call the term x =





q+zaz̄b

q−zbz̄a



 is of the

type (a, b). To prove that Jn(x) is well-defined for all n when x is of the type (1
2
, 0) or

(0, 1
2
), we should prove that there is no term in Jn(x) which is of the type (−1, 3

2
) or

(3
2
,−1). We show this fact inductively. When n = 0, this statement is obvious true.

Suppose there exists a smallest n ∈ N such that Jn(x) has a component of the type

(−1, 3
2
) or (3

2
,−1). For the first case that the component appearing in Jn(x) is of

the type (−1, 3
2
), it must generated from a component in Jn−1(x) of the type (3

2
,−1),

which is a contradiction. For the second case that the component appearing in Jn(x)

is of the type (3
2
,−1), either this component comes from a component in Jn−1(x)

of the type (−1, 3
2
), which is a contradiction again, or it comes from a component

in Jn−1(x) of the type (5
2
,−2). The later case is also impossible because we start

from the term of the type (1
2
, 0) or (0, 1

2
) and each time we apply J on it will only

change (a, b) by (±1,±1). So there must be a number m < n − 1 such that Jm(x)

contains a component of the type (−1, 3
2
) or (3

2
,−1), which leads a contradiction.

Therefore all the component in Jn(x) are not of the type (−1, 3
2
), which means Jn(x)

is well-defined for all n.

Now we define e′k inductively by

e′k = sχk+1
0 J(

(e′k−1 − e′k−2)

χk
0

) + e′k−1.

By induction hypothesis, suppose that ek ∈ L2
1 such that

Dsχ0η0(s
2e′k) = s2Qk+1 + s2Bk + s2Ck
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where Bk ∈ B
∑k

j=0 s
k+1(k+1)γ2

T κ2
1r

1 , Ck ∈ C
∑k

j=0 s
k+1(k+1)κ1r

1
2

1 . The first term on the right,

Qk+1, can be written as

Qk+1 = χk+1
0 Θ̂0

s(
e′k − e′k−1

χk+1
0

).

By taking s < 1

κ1r
1
2
, we can see that the sequence {ek} will converge in L2

1 sense to

some e′. Meanwhile, we can see that

Dsχ0η0(s
2e′k+1) = χk+2

0 Θ̂0
s(s

2 (e
′
k+1 − e′k)

χk+2
0

) + s2δBk+1 + s2δCk+1 + s2Bk + s2Ck.

where δBk+1 ∈ B
sk+2(k+2)γ2

T κ2
1

1 and δCk+1 ∈ C
sk+2(k+2)κ1

1 . We define inductively that

Bk+1 = δBk+1 + Bk, Ck+1 = δCk+1 + Ck and

χk+2
0 Θ̂0

s(
(e′k+1 − e′k)

χk+2
0

) = Qk+2.

Furthermore, if we take s small enough such that
∑∞

j=0 s
k+1(k + 1) = s

(1−s)2
≤ 1

γ2
T κ1

e.g. s ≤ 3−
√
5

2
1

γ2
T κ1

, then we have Bk → B ∈ Bκ1
1 and Ck → C ∈ Cκ1

1 .

Therefore, by taking k → ∞, we finish our proof by induction.

To get the L2
1-estimate of e′, we notice that

‖e′k+1 − e′k‖L2
1
= ‖sk+1χk+2

0 Jk(
e′0
χ0

)‖L2
1
≤ 1

2k
κ1

by using the fact ‖q±k+1‖L2 ≤ κk+1
1 r

4
and ‖(q±k+1)t‖ ≤ κk+2

1 . So we have ‖e′‖L2
1
≤ 2κ1 �

Now we apply this lemma to the Q1, Q2 and Q3 in (8.18), (8.19) and (8.20), we

can find e′1 and e′2 such that

Dsχ0η0(s
2e′i) = s2Qi + s2B + sC for i = 1, 2.
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For Q3, we notice that

s2Q3 = Θ̂0
s(sχzη + sχz̄η̄)ψ + Θ̂0

s





0 iχη̇

−iχ ˙̄η 0



ψ.

the first term is in sCκ1
1 and the second term is the first type of lemma 8.6. So there

exists e′3 such that

Dsχ0η0(s
2e′3) = s2Q3 + s2B + sC.

Finally, we can prove that Dpert(sk
b
0) = Dsχ0η0,pert(sk

b
0,s) for some k̂b0,s ∈ L2 by

proposition 5.9. Furthermore, we can decompose k̂b0,s = kb0,s+sk⊥0,s where B(kb0,s) ∈ H0

and B(k⊥0,s) ∈ H
⊥
0 . Again, by proposition 5.4, we have the following estimates for

B(k⊥0,s):

‖B(k⊥0,s)‖2L2 ≤ κ0

2
r2, ‖(B(k⊥0,s))t‖2L2 ≤ κ0

2
r, ‖(B(k⊥0,s))tt‖2L2 ≤ κ0

2
.(8.27)

Therefore we can rewrite (8.22) as

Dsχ0η0,pert(ψ − scg0 − shg0 − seg0 + skb0,s + sk⊥0,s) = s2A+ s2B + sC(8.28)

where eg0 = e0 + e′0 + s
∑3

i=1 e
′
i, A ∈ Aκ0

1 , B ∈ Bκ1
1 and C ∈ Cκ1

1 . We give −scg0 − shg0 −
seg0 + skb0,s a name k0.

Now we can fix κ1 forever.

8.4. Part I of the proof: Iteration of (ηi, (c
g
i , h

g
i , e

g
i , k

b
i,s, k

⊥
i,s), fi, ). In this subsec-

tion we will construct an iterative process by determining the following two constants

1 > r and P ∈ (T
1
8 + 1, T

1
5 ) where T > 512 is any fix number. We will also use an-

other constant ε > 0 which depends only on r. In addition, we will also give the

upper bound for c0. We divide our argument into the following 6 steps.
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Step 1. Suppose we have ψi = ψ + ski ∈ L2 satisfies

Dsηi,pert(ψi + s2k⊥i,s) = sfi(8.29)

where ηi =
∑i

j=0 χjηj. Moreover, we assume the following conditions:

Inductive Assumptions(8.30)

1. sfi can be decomposed as

sfi = s2fi,A + s2f′i,B + sfi,C

where fi,A ∈ AP iκ0
i , f′i,B ∈ BP iκ1

i and fi,C ∈ CP iκ1
i .

2. The sequence {(χj, ηj)}1<j≤i satisfies (5.26), (5.27), (5.28) with κ2 = εP jκ0.

3. We have ki =
∑i

j=0(−scgj − shgj − segj + kbj,s) and {ki} converges in L2 sense.

In fact,
∑i

j=0(−scgj − shgj − segj ) converges in L2
1-sense.

In order to do the iteration, we need to construct the following data

(ηi+1, (c
g
i+1, h

g
i+1, e

g
i+1, k

b
i+1,s, k

⊥
i+1,s), fi+1)

∈ L2(S1;C)× (L2
1)

3 × (L2)2 × (s2AP iκ0
i+1 + s2BP iκ0

i+1 + sCP iκ0
i+1 )

form all previous data {(ηj, (cgj , hgj , egj , , kbj,s, k⊥j,s), fj)}j≤i. We will show that all con-

ditions in (8.30) will be satisfied inductively.
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Step 2. In this step, we will construct hi+1 and determine the constant c0 in terms

of ε, r and T . First of all, since fi,C ∈ CP iκ1
i so we have

χi+1fi,C ∈ CT
1
8 P iκ1

i+1

and

(1− χi+1)fi,C ∈ BP iκ1
i .

Now we can rewrite

sfi = s2fi,A + sfi,B + sǫi(8.31)

where fi,A ∈ AP iκ0
i , fi,B = sf′i,B + (1− χi+1)fi,C and ǫi := χi+1fi,C ∈ CT

1
8 P iκ1

i+1 .

Before we start to solve hi+1, we need to show that fi,B ∈ εr
5
2

4T
5
2
BP iκ0

i .

Firstly, by taking s small enough we will have sf′i,B ∈ εr
5
2

8T
5
2
BP iκ0

i . This fact can be

achieved if we assume c0 ≤ εr
5
2

8T
5
2
(κ0

κ1
).

Secondly, by lemma 2.6, for any ζ ∈ L2
1 and ‖ζ‖L2

1
= 1, we have

|
∫

〈ζ, (1− χi+1)fi,C〉| = |
∫

〈(1− χi+1)ζ, fi,C〉|

≤ C
r

T i
‖fi,C‖L2

≤ C(
r

T i
)
5
2P iκ1(

r

T i
)
1
8

≤ ε

8
P iκ0(

r

T i+1
)
5
2

by taking r small enough. Therefore we have ‖(1 − χi+1)fi,C‖L2
−1

≤ εP iκ0

8T
5(i+1)

2

, which

implies that fi,B ∈ ε

4T
5
2
BP iκ0

i .
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Suppose (8.29) and (8.31) are true for i. We can solve

Dsηihi+1,A = sfi,A

Dsηihi+1,B = fi,B

by using proposition 5.9. Since fi,A|N R
Ti+1

= 0 and fi,B|N R
Ti+1

= 0, we have

(
r

T i+1
)‖h±

i+1,A‖2L2 ,(
r

T i+1
)3‖(h±

i+1,A)t‖2L2 ,

(
r

T i+1
)5‖(h±

i+1,A)tt‖2L2 ≤ ‖hi+1,A‖2L2 ≤ s2‖fi,A‖2L2
−1

≤ s2
P 2iκ2

0

T 5i
.

This implies that

‖h±
i+1,A‖L2 ≤ εP iκ0

4T 2(i+1)
, ‖(h±

i+1,A)t‖L2 ≤ εP iκ0

4T i+1
,(8.32)

‖(h±
i+1,A)tt‖L2 ≤ εP iκ0

4
, ‖hi+1,A‖L2 ≤ εP iκ0

4T
5(i+1)

2

by taking c0 ≤ ε
4
( r
T
)
5
2 .

Meanwhile, we have

‖h±
i+1,B‖L2 ≤ εP iκ0

4T 2(i+1)
, ‖(h±

i+1,B)t‖L2 ≤ εP iκ0

4T (i+1)
,(8.33)

‖(h±
i+1,B)tt‖L2 ≤ εP iκ0

4
, ‖hi+1,B‖L2 ≤ εP iκ0

4T
5(i+1)

2

.

So we put these data together, denote hi+1 = h±i+1,A + h±i+1,B − sk⊥i,s. Then we have

Dsηi,pert(ψi − shi+1) = sT s(hi+1).

sT s(hi+1) is of order O(s2), which can be written as a term sT s(hi+1) ∈ A
P i+1 κ0

2
i+1 .
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Step 3. Now we find ηi+1 ∈ O(ker(T ))⊥, ci+1 and its corresponding L2-harmonic

section ci+1 such that







2h+
i+1 + d+ηi+1+ ci+1 = k+

i+1

2h−
i+1 + d−η̄i+1+ capsi+1 = k−

i+1

for some (k+
i+1, k

−
i+1) ∈ H0 and

‖k±
i+1‖2L2 ≤ εP iκ0

2T 2(i+1)
, ‖(k±

i+1)t‖2L2 ≤ εP iκ0

2T i+1
, ‖(k±

i+1)tt‖2L2 ≤ εP iκ0

2
.(8.34)

By using proposition 5.9, there exists ci+1 where Dsηici+1 = 0 and

ci+1 =





ci+1

2
√
z

c
aps
i+1

2
√
z̄



+ cR,i+1 + csi+1.

Moreover, since ci+1 satisfies Td+,d−(ci+1) = d̄−(k+
i+1 − 2h+

i+1) − d+(k−
i+1 − 2h−

i+1), we

have

‖ci+1‖2L2 ≤ εP iκ0

2T 2(i+1)
, ‖(ci+1)t‖2L2 ≤ εP iκ0

2T i+1
,(8.35)

‖(ci+1)tt‖2L2 ≤ εP iκ0

2
, ‖ci+1‖L2 ≤ εP iκ0.

According to these estimates, we can show that sT s(ci+1) ∈ A
P i+1 κ0

2
i+1 .

Meanwhile we can easily check that ηi+1 satisfies i + 1-th version of (5.26), (5.27)

and (5.28) with (κ2, κ3) = (εP iκ0, εP
iκ1) and so does it satisfies the condition (5.29),

(5.30) and (5.31). So the inductive assumption 2 in (8.30) is ture. Also, we have the

κ3 = εP iκ1 version of proposition 5.7 and proposition 5.8. Therefore we have

∫

{r=r0}
|Âi+1

s |2i~ndV ol(M) ≤ γ4
T ε

4P 4iκ4
1(

r

T i+1
)
15
16 s4 ≤ ε2P 2iκ2

1(
r

T i+1
)
1
2 s2.(8.36)

by taking P ≤ T
1
5 and s small enough.
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Remark 8.7. Here we show the estimate of the Holder norm of ηi. By the argument

similar to remark 8.4, we have the following Holder estimate

‖η⊥i ‖C1, 14
≤ Cκ0P

i(
r

T i
)
1
4 ≤ Cκ0T

i
5 (

r

T i
)
1
4 ≤ Cκ0

r
1
4

T
i
20

.(8.37)

for all i.

Step 4. In this step and the next step, we construct fi+1 and prove the inductive

assumption 1 in (8.30). Firstly, since Dsηici+1 = 0 we have

Dsηi,pert(ψ − sci+1 − shi+1) = sT s
0 (−ci+1 − hi+1).

Secondly, recall that we can write

Dsηi+sχi+1ηi+1
= (1 + ̺sχi+1ηi+1

)Dsηi + s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t

+Θi+1
s +Ri+1

s + Âi+1
s + F i+1

s .

Now by proposition 5.9, we can decompose hi+1 = h
g
i+1 + hbi+1 + hsi+1 and ci+1 =

c
g
i+1 + cbi+1 + csi+1 as follows: recall that hi+1 = h0i+1 + hsi+1 and ci+1 = c0i+1 + csi+1 such

that

Dh0i+1 = sfi,A + fi,B;

Dc0i+1 = 0.

Since sfi,A + fi,B = 0 on N r

Ti+1
, we have

h0i+1 =





h+
i+1√
z

h−
i+1√
z̄



+ hR,i+1; c0i+1 =





ci+1

2
√
z

c
aps
i+1

2
√
z̄



+ cR,i+1.
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So we define

hbi+1 = χi+1





h+
i+1√
z

h−
i+1√
z̄



 ; cbi+1 = χi+1





ci+1

2
√
z

c
aps
i+1

2
√
z̄



 ; kbi+1 = χi+1





k+i+1√
z

k−i+1√
z̄



 .

Now we compute

Dsηi |N r

Ti+1
(s(cbi+1 + csi+1) + s(hbi+1 + hsi+1))(8.38)

=Ds(cbi+1 + hbi+1) + (Dsηi −D)s(cbi+1 + hbi+1) +Dsηis(c
s
i+1 + hsi+1)

=Ds(cbi+1 + hbi+1) + (Dsηi −D)s(cgi+1 + h
g
i+1)

For the first term on the right hand side of (8.38), we can follow the argument in step

3 in subsection 8.3 to get

ei+1 = χi+1





−iḋ−η̄i+1

√
z̄

−iḋ+ηi+1

√
z





such that

Ds(−cbi+1 − hbi+1) = Θi+1
s (ψ) +D(sei+1)− se1∂t(ei+1)− sD(χi+1)(

ei+1

χi+1

)−D(skbi+1).

For the second term on the right hand side of (8.38), since

(Dsηi −D)|N r
Ti+1

=
i

∑

j=0

Θj
s +Ai

s(8.39)

= s(
i

∑

j=0

η̇j∂z +
i

∑

j=0

˙̄ηj∂z̄) +Ai
s,

we have

(Dsηi −D)s(hgi+1 + c
g
i+1) = s

i
∑

j=0

Θj
s(h

g
i+1 + c

g
i+1) + sAi

s(h
g
i+1 + c

g
i+1).
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Therefore we can derive from (8.35) the following equality

Dsηi |N r

Ti+1
(−s(cbi+1 + csi+1)− s(hbi+1 + hsi+1))

(8.40)

=Θi+1
s (ψ) +D(sei+1)− se1∂t(ei+1)− sD(χi+1)(

ei+1

χi+1

)

+ s

i
∑

j=0

Θj
s(h

g
i+1 − c

g
i+1) + sAi

s(h
g
i+1 − c

g
i+1)−Dpert(sk

b
i+1).

Recall that the Dirac operator Dsηi+1 can be written as

Dsηi+1 = (1 + ̺i+1)Dsηi + s((χi+1)zηi+1 + (χi+1)z̄η̄0)e1∂t

+Θi+1
s + Âi+1

s +Ri+1
s + F i+1

s

= (1 + ̺i+1)Dsηi + s((χi+1)zηi+1 + (χi+1)z̄η̄0)e1∂t

+ Θ̂i+1
s +W i+1

s + Âi+1
s +Ri+1

s + F i+1
s

where

Θ̂i+1
s =e1(sχi+1η̇i+1∂z + sχi+1 ˙̄ηi+1∂z̄),

W i+1
s =e2(s(χi+1)z̄η̄i+1∂z − s(χi+1)zη̄i+1∂z̄)

+ e3(−s(χi+1)z̄ηi+1∂z + s(χi+1)zηi+1∂z̄).
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We use the following notations to simplify the upcoming equation:

W i+1
s (ψi − ψ) = s2B0;(8.41)

W i+1
s (sei+1) + ̺i+1(e2∂z + e3∂z̄)(sei+1) = s2B1;(8.42)

−W i+1
s (scgi+1 − shgi+1)− ̺i+1(e2∂z + e3∂z̄)(sc

g
i+1 − shgi+1) = s2B2;(8.43)

s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂tψi + sAi
s(sc

g
i+1 − shgi+1) = sC0;(8.44)

−sD(χi+1)(
ei+1

χi+1

) + (̺i+1 − 1)e1∂t(sei+1)

+s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t(sei+1) + sAi
s(sei+1) = sC1;(8.45)

−̺0e1∂t(sc
g
0 − shg0)− s((χi+1)zηi+1 + (χi+1)z̄η̄i+1)e1∂t(sc

g
i+1 − shgi+1) = sC2;(8.46)

Θ̂i+1
s (ψi − ψ) +

i
∑

j=0

Θj
s(sc

g
i+1 − shgi+1) = s2Q0;(8.47)

Θ̂i+1
s (sei+1) +

i
∑

j=0

Θj
s(sei+1) = s2Q1;(8.48)

−Θ̂i+1
s (scgi+1 − shgi+1) = s2Q2.(8.49)
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Put all these data together, (8.40) yields

Dsηi,pert(ψi − sci+1 − hi+1) = sT s(−ci+1 − hi+1) + sǫi

= Dsηi(ψi − scgi+1 − shgi+1) + (Dsηi+1 −Dsηi)ψi

+Dsηi+1(sei+1)− (Âi+1
s +Ri+1

s )(ψi + sei+1)

+ s2(B0 + B1) + s(C0 + C1) + s(Q0 +Q1)

−Dpert(sk
b
i+1)

= Dsηi(ψi − scgi+1 − shgi+1) + (Dsηi+1 −Dsηi)ψi

+Dsηi+1(sei+1) + (Dsηi+1 −Dsηi)(sc
g
i+1 − shgi+1)

− (Âi+1
s +Ri+1

s )(ψi + scgi+1 − shgi+1 + sei+1)

+ s2(
2

∑

j=0

Bj) + s(
2

∑

j=0

Cj) + s(
2

∑

j=0

Qj)

−Dpert(sk
b
i+1).

Therefore, we have

Dsηi+1,pert(ψi − scgi+1 − shgi+1 + sei+1) =sT s(ci+1 − hi+1) + sǫi

− (Âi+1
s +Ri+1

s )(ψi − scgi+1 − shgi+1 + sei+1)

− s2(
2

∑

j=0

Bj)− s(
2

∑

j=0

Cj)− s(
2

∑

j=0

Qj)(8.50)

−Dpert(sk
b
i+1).
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Now we prove that

Âi+1
s (ψi − scgi+1 − shgi+1 + sei+1) + s(

2
∑

j=0

Cj) + sǫi+1 ∈ sC
((1+Cε)P i)κ0

i+1 ;(8.51)

Ri+1
s (ψi − scgi+1 − shgi+1 + sei+1) + s2(

2
∑

j=0

Bj) ∈ s2BCεP iκ0
i+1 ;(8.52)

sT s
0 (−ci+1 − hi+1) ∈ s2AP i+1κ0

i+1 .(8.53)

We already prove (8.53) in step 2 and step 3. By using κ3 = εP iκ1 version of

(5.34), we can prove that

‖Âi+1
s (ψi + scgi+1 − shgi+1 + sei+1)‖L2(Nr−Ns) ≤ εP iκ1(r

3 − s3).

Meanwhile, by (κ2, κ3) = (εP iκ0, εP
iκ1) version of (5.26) - (5.31), we have s(

∑2
j=0 Cj) ∈

sCCεP iκ1
i+1 . So we get (8.51).

Finally, by using (κ2, κ3) = (εP iκ0, εP
iκ1) version of proposition 5.8, we have

‖Ri+1
s (ψi + scgi+1 − shgi+1 + sei+1)‖L2 ≤ Cγ

3
2
T ε

2P 2iκ2
1(

r

T i+1
)2

≤ Cγ
3
2
T εP

iκ1r
1
2

T
i+1
2

εP iκ1(
r

T i+1
)
3
2

≤ εP iκ1(
r

T i+1
)
3
2

by taking P ≤
√
T and ε ≤ 1

Cγ
3
2
T κ1r

1
2

. So we have Ri+1
s (ψi + scgi+1 − shgi+1 + sei+1) ∈

s2BCεP iκ1
i+1 . Meanwhile, by (κ2, κ3) = (εP iκ0, εP

iκ1) version of (5.26) - (5.31) again,

we have s(
∑2

j=0 Bj) ∈ s2BCεP iκ1
i+1 . So we prove (8.52).

Step 5. In this step, we state the following lemma which is the i + 1-th version

of lemma 8.6 in previous subsection. The proof of this lemma can follow from the

argument of lemma 8.6 directly. So we omit the proof.
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Lemma 8.8. Suppose Q be either the following 4 types:

s2χi+1





q+(t)√
z

q−(t)√
z̄



 , s2χi+1





q+(t)√
z̄

q−(t)√
z



 , s2





q+(t)√
z

q−(t)√
z̄



 or s2





q+(t)√
z̄

q−(t)√
z





where ‖q±‖L2 ≤ κ3
r

T i+1 , ‖(q±)t‖L2 ≤ κ3. Then there exists a L2
1 section e′ which can

be written as

e′ =
∑

j≥0

sjχj+1
i+1





e+j (t)
√
z̄

e−j (t)
√
z



 ,
∑

j≥0

sjχj+1
i+1





e+j (t)
√
z

e−j (t)
√
z̄





,
∑

j≥0

sjχj
i+1





e+j (t)
√
z̄

e−j (t)
√
z



 or
∑

j≥0

sjχj
i+1





e+j (t)
√
z

e−j (t)
√
z̄





for the each type respectively such that Dsηi+1(s2e′) = s2Q + s2B + sC for some

B ∈ Bκ3
i+1 and C ∈ Cκ3

i+1 for all s ≤ T
i+1
2

2γ2
T κ3r

1
2
. Furthermore, we have ‖e′‖L2

1
≤ 2κ3.

By using this lemma, we can show that there exist e′i+1,j, j = 0, 1, 2, such that

Dsηi+1,pert(s
2e′i+1,j) = s2Qj + s2Bj + sCj.

Meanwhile, by the proposition 5.9 and proposition 5.4, we can show that there exist

kbi+1,s and k⊥i+1,s satisfying Dsηi+1,pert(k
b
i+1,s + sk⊥i+1,s) = Dpertk

b
i+1, B(kbi+1,s) ∈ H0 and

‖B(k⊥i+1,s)‖2L2 ≤ εP iκ0

2T 2(i+1)
, ‖(B(k⊥i+1,s))t‖2L2 ≤ εP iκ0

2T i+1
, ‖(B(k⊥i+1,s))tt‖2L2 ≤ εP iκ0

2
.

(8.54)

Therefore we can rewrite

Dsηi+1,pert(ψi − scgi+1 − shgi+1 + segi+1 + skbi+1,s + s2k⊥i+1,s) = s2A+ s2B + sC ≡ fi+1.

(8.55)
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with e
g
i+1=ei+1

+
∑

j e
′
i+1,j and A ∈ A

(1+Cε)P iκ1

i+1 , B ∈ BCεP iκ1
i+1 and C ∈ CCεP iκ1

i+1 . So by

taking ε ≤ P−1
C

, we prove the inductive assumption 1 in (8.30).

Step 6. Finally, we should prove the inductive assumption 3 in (8.30). To prove

this part, we notice that both h
g
i+1 and c

g
i+1 vanish on Σ, therefore we can do the

integration by parts to get

‖hgi+1‖2L2
1
≤ ‖Dsηih

g
i+1‖2L2 + C‖hgi+1‖2L2

for some constant C depending on the curvature of M . Now by the fact Dsηihi+1 = 0

on N r

Ti+1
and corollary 4.6, we have

‖Dsηih
g
i+1‖L2 ≤ |σ(χi+1)|‖hi+1‖L2 + ‖Dsηi





h+
i+1

√
z

h−
i+1

√
z̄



 ‖L2(N r

Ti
) ≤ C

P i+1κ1

T 4(i+1)

and by (8.32) and (8.33) and corollary 4.6, we have

‖hgi+1‖L2 ≤ C‖hi+1‖L2 ≤ C
P i+1

T i+1
κ1.

So we have

‖hgi+1‖L2
1
≤ C

P i+1κ1

T (i+1)
.

Similarly, we have

‖cgi+1‖L2
1
≤ C

P i+1κ1

T i+1
.

For the L2-part, we have

‖kbi+1,s‖L2 ≤ C‖kbi+1‖L2 ≤ C
P iκ0

T 2(i+1)
;

‖k⊥i+1,s‖L2 ≤ C‖kbi+1‖L2 ≤ C
P iκ0

T 2(i+1)
.
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So k⊥i+1,s → 0 in L2-sense. Therefore we finish the proof of the inductive assumption

3 in (8.30).

By induction, we get a sequence ψi ∈ L2 and a family of perturbations ηi =
∑i

j=0 χjηj such that

Dsηi,pert(ψi + s2k⊥i+1,s) → 0

as i → ∞ in L2
−1 sense. Moreover, since ‖ψi+1 −ψi‖L2 ≤ Cκ3(

P
T
)i for some C > 0, so

we have ψi → ψs in L2 sense. Meanwhile, since ‖ηi‖L2
1
≤ Cκ3(

P
T
)i for some C > 0,

we have
∑

ηi → ηs in L2
1 sense.

To prove that ηi converges to a C1 circle, we only need to use the Holder estimates

in remarks 8.4 and 8.7. We have

‖ηi‖
C1, 14

≤ Cκ0(
r
1
4

T
i
20

).

for all i. Therefore, by Arzela-Ascoli theorem, there is a subsequence of the partial

sum {ηi} converging in C1 sense. So the limit, η, will be a C1 circle.

In the case that B(ψs) = 0, ψ will vanish on Σ and Dsη,pert(ψs) = 0. So ψ ∈ L2
1.

Remark 8.9. Suppose we consider a smaller neighborhood of ((g,Σ, e), ψ) to param-

etrize. This means we can take r, c0 smaller. In this case, the constant ε can be

chosen smaller, too. We can see that

1

r
1
4

‖
∞
∑

j=1

ηj‖C1 → 0

as r goes to 0. Similarly, we have ks − k0 is O(ε). So all these terms we derived in

this iteration process is o(s)-order.

8.5. Part I of the proof: The set π1(N ). Here we should say more about the

neighborhood N . We define the topology on Y as follows. Let ((g,Σ, e), ψ) ∈ M, we
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use refine the notation used in section 5.2 in the following way:

VΣ,r,C = {η : S1 → C|‖η‖C1 ≤ C; (η(t), t) ∈ Nr}

and define

Vg,r,C′ = {ĝ ∈ X |‖ĝ − g‖C2 ≤ C ′; dist(Σ, supp(ĝ − g)) ≤ r}.

So we can generate the topology on Y by the family of open sets {Vg,r,C′ ×VΣ,r,C}
for r < R, C,C ′ ∈ R

+.

Now we define our N =
⋃

r>r Vg,r,Cr5/2 × VΣ,r,C for some C small enough. Reader

can double check the argument in step 2 of section 8.3: By taking N in this way, we

have all elements in π1(N ) will follows the argument in this section.

Remark 8.10. It seems to be impossible to takeN to be
⋃

r>0 Vg,r,Cr5/2×VΣ,r,C because

the map f will not differentiable on this set. However, the choice of r can be arbitrary

small.

9. Proof of the main theorem: Part II

In this section, we prove two statements. Firstly, we have to show that the choice

of (ηs, ψs) have dimension equaling dim(ker(D|L2
1
)). Secondly, we have to show that

the function f we defined in previous section is C1.

9.1. Part II of the proof: parametrization of (ηs, ψs). First of all, by the ar-

gument in the previous section. After we fix a ξ ∈ H1, we have the choice of ηs is

unique. Also, we have B(ψs) is unique.

According to this observation, we can prove the following proposition instead.

Proposition 9.1. For any two solutions (ηs, ψs) and (ηs, ψ
∗
s) satisfying D(ψ0−ψ∗

0) =

0, then ψs − ψ∗
s = 0.
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Proof. We can write Dsηs,pert = D + P (s) where P (s) is an analytic operator with

respect to s. Meanwhile, since we have ψs − ψ∗
s ∈ Cω([0, c0];L

2
1), so we have

Dsηs,pert(ψs − ψ∗
s) = D(ψs − ψ∗)− P (s)(ψs − ψ∗) = 0

So inductively, we have (ψs − ψ∗) = O(sk) for all k. This implies (ψs − ψ∗) = 0. �

By this proposition, we know that we can parametrize the data ψs by elements in

ker(D|L2
1
). Therefore, we can define a map K : sψ̂ 7→ ψs where ψ̂ ∈ ker(D|L2

1
) and

‖ψ̂‖L2
1
= 1.

9.2. Part II of the proof: C1 regularity of f . Since the function f is defined on

a infinity dimensional space, so the definition of C1 will be in the sense of Frechet

C1. Here we recall the definition of Frechet C1.

Definition 9.2. Let B1, B2 are two Banach space. F : B1 → B2 be a bounded

operator. Then F is differentiable at p if and only if there exists a bounded linear

operator dpF : B1 → B2 such that

‖F (x)− dpF (x)− F (p)‖B2 = o(‖x‖B1).

In addition, if F is differentiable everywhere and dpF vary continuous. Then we call

F a C1 map.

Now let F maps from R
n × B to R

m. Suppose we have

∂

∂xi

F (p) := hi(p) is continuous near 0.(9.1)

The family of directional derivatives {DvF := jv(p)|v ∈ B, ‖v‖ = 1}(9.2)

is equicontinuous near 0,

{DvF = kp(v)|p ∈ R
n × B} is equicontinuous on(9.3)

{v ∈ B|‖v‖ = 1}.
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Then we can define the linear operator as follows:

Lp(x, v) =
n

∑

i=1

∂

∂xi

F (p)xi +D v
‖v‖

F (p)v(9.4)

To prove this is the linear approximation, we need to do more. However, this is the

only possible linear operator tangential to F at 0.

Now, suppose we already show that these linear operators are the differential of

F . To show F is actually C1, it is sufficient to show that Lp varies continuously.

So the condition (9.1) and (9.2) are exactly what we need to show.

Here I divide my proof into two parts. In first part, I will assume that f is

differentiable at every point and then showing that f is C1. In the second part, I will

prove that f is differentiable.

Step 1. Since kbs is analytic, the family of directional derivatives of f is actually

equicontinuous at any point except p = 0 with any direction fixed. Therefore we only

need to show the conditions (9.1) and (9.2) hold near 0.

Since we have

skbs =
∞
∑

i=0

skbi,s =
∞
∑

i=0

skbi +O(s2).(9.5)

We can further simplify this equation by using the conclusion in remark 8.9.

skbs = skb0 + o(s)(9.6)

Now, recall the way we construct k±
0 in Step 1 and Step 2 in section 8.3. In the case

that we have no perturbation for g, k±
0 = 0. That is to say, skbs = o(s). Therefore

we have the directional derivatives of f along H1 will be 0. Meanwhile, it is obvious

that they are continuous by using (9.6).

To prove (9.2), we use (9.6) again. Here we can check that if we perturb the

metric along the opposite direction, then the corresponding kb0 will only change the

sign. So the directional derivatives along π1(N ) also exist and are continuous at 0.
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Furthermore, since the estimates showed in section 8 are independent of the choice

of gs, so it also doesn’t depend on v. Therefore we have {jv(p)} is equicontinuous at

0.

So we finish our argument in this step.

Step 2. In this step, we need to show that f is differentiable. By definition 9.2,

we need to show that for any p = (y, w) ∈ R
n × B,

‖f(y + x, w + v)− L(y,w)(x, v)− f(y, w)‖ ≤ o(
√

‖x‖2 + ‖v‖2
C2)(9.7)

where x, y ∈ K1 and w, v+w ∈ π1(N ). All we need to show is the ”small o” in (9.7)

will converge to zero uniformly. Namely, we are going to prove (9.3) here. Now, since

we already prove that the directional derivatives of f are all continuous, so we can

obtain (9.7) by showing that {kp(v)} is equicontinuous.

By using the conclusion in 8.5, we suppose that ‖∂sgs‖C2 = Cr
5
2 , then the direc-

tional derivative of f along v = ∂sg
s

‖∂sgs‖ at gs0 will be 1

Cr
5
2

∂
∂s
(B(skbs))|s=s0 . Now we can

prove (9.3) by using the fact that kbs is analytic and the estimates (8.7) and (8.33).

Therefore, we complete the proof of this part.

9.3. Summary of the proof. Let me summarize what we proved in this section:

For any ((g,Σ, e), ψ), there exist a neighborhood of y = (g,Σ, e), N ⊂ Y , finite

dimensional ball B ∈ K1 and finite dimensional vector space K0 all defined as above

such that M will locally homeomorphic to the kernel of f where

f(gs, sξ, sψ̂) = B(K (sψ̂))

Moreover, f is a C1 function.

We complete our proof.
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10. Appendix

10.1. Remark of the proof when the metric is not Euclidean around Σ.

Here I will sketch the proof for the metric which is not Euclidean near Σ. The idea is

to replace the propositions 5.5 and 5.7 by propositions 6.4 and 6.5 in the arguments

containing section 8.

First of all, let me summarize what I have done in section 8. We start with a

perturbation gs and which will give us an extra term f0 such that Dpertψ = f0. Then

in the next step we construct a triple (h0, c0, η0) such that Dh0 = f0, Dc0 = 0 and

”eliminate” the 1√
r
part in h0 by (c0, η0). Then we repeat this process. Each time we

will produce a new f which can be decomposed into 3 parts, which belongs to A, B

and C defined in definition 8.2 (We omit all subscripts here).

Now, we restart the process of producing (h0, c0, η0) for the general case, but this

time we replace the Dirac operator D by D(1) defined in section 6.2. So D(1)h0 = f0

and D(1)c0 = 0. By using the same argument, we will still generate f1. The only

difference will be an extra term in C, which is something we can deal with. This part

is generated by the operator δ(1) defined in proposition 6.3.

Now we do this process step by step. We replace D by D(i) in i-th step, then we

will get the same result. So the whole argument works for the general case.

10.2. Upper semi-continuity of dim(coker(p−|ker(p+))). In this final part, I will

answer the question about the upper semi-continuity of dim(coker(p−|ker(p+))).

Since p−|ker(p+) is a Fredholm operator, we can decompose Exp− = range(p+)⊕W

where W is finite dimensional. Now, for any c± ∈ range(p−), there exists c ∈
ker(D|L2) such that B(c) = c±. Suppose we have a perturbed Dirac operator Dpert.

We can follow the argument in the proof of proposition 5.9 to get a c′ such that

Dpert(c
′) = 0 and ‖B(c− c′)‖ ≤ ε‖B(c)‖.



122

To prove coker(p−|ker(p+)) is upper semi-continuous, we need to show that the

dimension of cokernel under a small perturbation will be less or equal than the di-

mension of W. We can prove this fact by showing that range(p−pert) +W = Exp−.

Suppose this is not the case, then we can find v ∈ Exp−, ‖v‖ = 1 such that v ⊥ W

and v ⊥ range(p−pert). So we have

〈v,B(c′)〉 = 0 = 〈v, B(c′)〉+O(ε)

This means that, if we decompose v = v0 + v1 where v0 ∈ range(p−) and v1 = W,

then we have ‖v0‖ ≤ O(ε) and v1 = 0. Therefore, we have ‖v‖ = O(ε), which is a

contradiction.

Therefore we prove the upper semi-continuity of dim(coker(p−|ker(p+))).
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