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Abstract

In personalized medicine, two important tasks are predicting disease risk and selecting

appropriate treatments for individuals based on their baseline information. The disserta-

tion focuses on providing improved risk prediction for ordinal outcome data and propos-

ing score-based test to identify informative markers for treatment selection. In Chapter

1, we take up the first problem and propose a disease risk prediction model for ordi-

nal outcomes. Traditional ordinal outcome models leave out intermediate models which

may lead to suboptimal prediction performance; they also don’t allow for non-linear co-

variate effects. To overcome these, a continuation ratio kernel machine (CRKM) model

is proposed both to let the data reveal the underlying model and to capture potential

non-linearity effect among predictors, so that the prediction accuracy is maximized. In

Chapter 2, we seek to develop a kernel machine (KM) score test that can efficiently iden-

tify markers that are predictive of treatment difference. This new approach overcomes the

shortcomings of the standard Wald test, which is scale-dependent and only take into ac-

count linear effect among predictors. To do this, we propose a model-free score test statis-

tics and implement the KM framework. Simulations and real data applications demon-

strated the advantage of our methods over the Wald test. In Chapter 3, based on the pro-

cedure proposed in Chapter 2, we further add sparsity assumption on the predictors to

take into account the real world problem of sparse signal. We incorporate the generalized

higher criticism (GHC) to threshold the signals in a group and maintain a high detect-

ing power. A comprehensive comparison of the procedures in Chapter 2 and Chapter 3
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demonstrated the advantages and disadvantages of difference procedures under different

scenarios.
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1.1 Introduction

Ordinal outcome data, such as pain scales, disease severity, and quality of life scales, arise

frequently in medical research. To derive classification rules for an ordinal outcome y with

a p× 1 predictor vector x, one may employ regression models relating x to y and classify

future subjects into different categories based on their predicted P (y = c | x). Naive anal-

ysis strategies, such as dichotomizing y into a binary variable and fitting multinomial

regression models, are not efficient as they do not take into account the ordinal property

of the outcome. Commonly used traditional methods for modeling ordinal response data

include the cumulative proportional odds model, the forward and backward continua-

tion ratio (CR) models and the corresponding proportional odds version of the CR (pCR)

model (Ananth and Kleinbaum, 1997). The forward full CR (fCR) model assumes that

logitP (y = c | y ≥ c,x) = γ
(c)
0 + xTβ(c), c = 1, . . . , C − 1 (1.1)

where y is assumed to take C ordered categories, {1, ..., C}, γ(c)
0 and β(c) are unknown

regression parameters that are allowed to vary across continuation ratios. When the co-

variate effects β(c) are assumed to be constant across c, (1.1) reduces to the pCR model

logitP (y = c | y ≥ c,x) = γ
(c)
0 + xTβ, c = 1, . . . , C − 1 (1.2)

When choosing between these two models, we come across the trade-off between the

model complexity and the efficiency in estimating the model parameters. With the fCR

model, we might suffer from loss of efficiency due to estimating too many parameters if

the true model is a sub-model of (1.1), especially when the dimension of x is not small.

On the other hand, the pCR model might lead to poor prediction performance if the true

covariate effects do vary across continuation ratios. However, for many applications, it is

reasonable to expect that a compromise between the fCR model and the pCR model might
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be optimal. That is, β(c) = β(c+1) for some c but not all and thus it is possible to improve

the estimation by leveraging the sparsity on β(c) − β(c−1). Regularization methods can

be easily adapted to incorporate sparsity for CR models. Under the pCR model, Archer

and Williams (2012) imposed L1 penalty to incorporate the sparsity of the elements of β.

For the fCR model, to leverage the additional sparsity on β(c) − β(c−1), one may impose

a “fused lasso” type of penalty (Tibshirani et al., 2005), which penalizes the L1-norm of

both β(c) and β(c) − β(c−1).

In the presence of non-linear covariate effects, these existing methods based on linear-

ity assumptions may lead to classification rules with unsatisfactory performance. On the

other hand, fully non-parametric methods are often not feasible due to the curse of di-

mensionality. Alternatively, one may account for non-linearity by including interaction

or non-linear basis functions. However, in practice, there is typically no prior informa-

tion on which non-linear basis should be used and including a large number of non-

informative basis could result in significant overfitting. In recent years, kernel machine

(KM) regression has been advocated as a powerful tool to incorporate complex covari-

ate effects (Bishop et al., 2006; Schölkopf and Smola, 2001). The KM regression methods

flexibly account for linear/non-linear effects, without necessitating explicit specification

of the non-linear basis. For ordinal outcomes, some KM based algorithms have also been

proposed. For example, in Cardoso and Da Costa (2007), the problem of classifying or-

dered classes is reduced to two-class problems and mapped into support vector machines

(SVMs) and neural networks. In Chu and Keerthi (2005), SVM is used to optimize multi-

ple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Kernel

Discriminant Analysis was extended using a rank constraint to solve the ordinal regres-

sion problem in Sun et al. (2010). However, none of these existing methods provide a

good solution to leverage the potential similarity between sequential logits or to select

optimal kernels.

In this paper, we propose a sparse CR KM (sCRKM ) regression method for ordinal out-
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comes where we use the KM framework to incorporate non-linear effects and impose

sparsity on the differences in the covariate effects between sequential categories to con-

trol for overfitting. To improve estimation and computational efficiency, we propose the

use of the kernel principal component analysis (PCA) (Mika et al., 1999; Schölkopf et al.,

1998) to transform the dual representation of the optimization problem back to the primal

form with basis functions estimated from the PCA and reduce the number of parameters

by thresholding the estimated eigenvalues. One key challenge in KM regression is the se-

lection of appropriate kernel functions. Here, we propose a data driven rule for selecting

an optimal kernel by minimizing a cross-validated prediction error measure. Simulation

results suggest that the proposed procedures work well with relatively little price paid

for the additional kernel selection. The rest of the paper is organized as the following. We

introduce the logistic CR KM model in section 1.2.1 and detail the estimation procedures

under the sparsity assumption in section 1.2.2. We also describe the model evaluation

criteria in section 1.2.3 and propose a data driven rule for selecting an optimal kernel in

section 1.2.4. Simulation and real data analysis results are given in section 3.3 and 3.4.

1.2 Continuation Ratio Kernel Machine Regression

Suppose data for analysis consist of n independent and identically distributed random

vectors, {(yi,xT
i )

T, i = 1, . . . , n}. The forward fCR KM (fCRKM ) model assumes that

P (yi = c | yi ≥ c,xi) = g
{
γ

(c)
0 + h(c)(xi)

}
, for c = 1, . . . , C − 1, (1.3)

where g(x) = ex/(1 + ex), h(c)(·) is an unknown centered smooth function that belongs

to a Reproducible Kernel Hilbert Space (RKHS) Hk, with the Hilbert space generated by

a given positive definite kernel function k(·, ·; ρ), and ρ is some tuning parameter asso-

ciated with the kernel function (Cristianini and Shawe-Taylor, 2000). The kernel func-

tion k(x1,x2; ρ) measures the similarity between x1 and x2 and different choices of k
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lead to different RKHS. Some of the popular kernel functions include the gaussian kernel

k(x1,x2; ρ) = exp{−‖x1 − x2‖2
2/2ρ

2}, which can be used to capture complex smooth non-

linear effects; the linear kernel k(x1,x2; ρ) = ρ + xT
1x2, which corresponds to h(x) being

linear in x; and the quadratic kernel k(x1,x2; ρ) = (xT
1x2 + ρ)2, which allows for 2-way

interactive effects. Here, we use ‖ · ‖p to denote the Lp norm and ‖ · ‖F to denote Fubini’s

norm for matrices. From here onward, for notational ease, we suppress ρ from the kernel

function k.

By Mercer’s Theorem (Cristianini and Shawe-Taylor, 2000), any h(x) ∈ Hk has a primal

representation with respect to the eigensystem of k. Specifically, under the probability

measure of x, k has eigenvalues {λl, l = 1, ...,J } with λ1 ≥ λ2 ≥ · · · ≥ λJ and the

corresponding eigenfunctions {φl, l = 1, ...,J } such that k(x1,x2) =
∑J

l=1 λlφl(x1)φl(x2),

where J could be infinity and λl > 0 for any l < ∞. The basis functions, {ψl(x) =
√
λlφl(x), l = 1, ...,J }, span the RKHSHk. Hence all h(c) ∈ Hk has a primal representation,

h(c)(x) =
∑J

l=1 β
(c)
l ψl(x), and (1.3) is equivalent to

P (yi = c | yi ≥ c,xi) = g

{
γ

(c)
0 +

J∑
l=1

β
(c)
l ψl(xi)

}
, for c = 1, . . . , C − 1. (1.4)

Assuming β
(c)
l = β

(c′)
l for all l, c, c′ leads to a pCR KM (pCRKM ) model. Throughout, we

assume that x is bounded and k is smooth, leading to bounded {ψl(x)} on the support of

x.

1.2.1 Inference under the full model

To make inference about the model parameters with observed data, we may maximize the

following penalized likelihood with respect to {(γ(c)
0 , h(c)), c = 1, ..., C − 1} with penalty

5



accounting for the smoothness of h(c):

n∑
i=1

C−1∑
c=1

`c

{
yi, γ

(c)
0 , h(c)(xi)

}
− τ2

C−1∑
c=1

‖h(c)‖2
Hk

(1.5)

where τ2 ≥ 0 is a tuning parameter controlling the amount of penalty,

`c(yi, γ
(c)
0 , h

(c)
i ) = I(yi ≥ c)

[
D

(c)
i log{g(γ

(c)
0 + h

(c)
i )}+ (1−D(c)

i ) log{1− g(γ
(c)
0 + h

(c)
i )}

]

and D
(c)
i = I(yi = c). From the primal representation of h(c), maximizing (1.5) is equiv-

alent to maximizing the following penalized likelihood with respect to {(γ(c)
0 ,β(c)), c =

1, ..., C − 1}:

C−1∑
c=1

[
n∑
i=1

`c

{
yi, γ

(c)
0 , ψT

i β
(c)
}
− τ2‖β(c)‖2

2

]
(1.6)

Thus, if the basis functions {ψl} were known, we can directly estimate h(c) in the primal

form. Unfortunately, in practice the true basis are typically unknown as they involve the

unknown distribution of x. On the other hand, by the representer theorem (Kimeldorf

and Wahba, 1970), it is not difficult to show that the maximizer in (1.5) always takes

the dual representation with h(c)(xi) = kT
iα

(c), where ki = [k(xi,x1), . . . , k(xi,xn)]T and

α(c) is an n × 1 vector of unknown weights to be estimated as model parameters. This

representation reduces (1.6) to an explicit optimization problem in the dual form:

C−1∑
c=1

[
n∑
i=1

`c

{
yi, γ

(c)
0 ,kT

iα
(c)
}
− τ2α

(c)TKnα
(c)

]
(1.7)

where Kn = n−1[k(xi,xj)]n×n. Note that unlike the hinge loss in SVM, the logistic loss

function is smooth, and consequently the resulting estimate of α(c) based on (1.7) is not

sparse.
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Maximization of (1.7), however, could be both numerically and statistically unstable

due to the large number of (n + 1)(C − 1) parameters to be estimated, especially when

the sample size n is not small. On the other hand, if the eigenvalues of k decay

quickly, then we may reduce the complexity by approximating k by a truncated kernel

k(r)(x1,x2) =
∑r

l=1 λlφl(x1)φl(x2), for some r such that
∑J

l=r+1 λl = o(
∑J

l=1 λl). The error

En = ‖Kn − K(r)
n ‖ can be bounded by O{λr +

∑∞
l=r+1 λl}, where K(r)

n is the kernel matrix

constructed from kernel k(r) (Braun et al., 2005, Theorem 3.7). In many practical situations

with fast decaying eigenvalues for k, r is typically fairly small and we can effectively ap-

proximateHk by a finite dimensional spaceHk(r) . Although k(r) is generally not attainable

directly in practice, we may approximate the space spanned by k(r) through kernel PCA

by applying a singular value decomposition to Kn: Kn = Φ̃Λ̂Φ̃T, where Φ̃ = (u1, . . . , un),

Λ̂ = diag{a1, . . . , an}, a1 ≥ . . . ≥ an ≥ 0 are the eigenvalues of Kn and {u1, . . . ,un} are

the corresponding eigenvectors. By the relative-absolute bound for the estimated princi-

pal values in kernel PCA, the principal values al converge to the eigenvalues λl and the

projection error {
∑n

l=rn+1 al}2 can be bounded by O[{
∑J

l=rn+1 λl}2 + En]. Thus, with prop-

erly chosen rn and sufficiently fast decay rate for {λl}, Kn can be approximated well by

K̃(rn)
n = Φ̃(rn)Λ̃(rn)Φ̃

T

(rn) = Ψ̃(rn)Ψ̃
T

(rn), where Φ̃(rn) = [u1, ...,urn ], Λ̃(rn) = diag{a1, ..., arn},

and Ψ̃(rn) = Φ̃(rn)diag{a1/2
1 , ..., a

1/2
rn }. Replacing Kn with K̃(rn)

n and applying a variable

transformation β̃(c)
(rn) = Ψ̃T

(rn)α
(c), the maximization of (1.7) can be approximately solved

by maximizing

L̂0(θ; τ2) =
C−1∑
c=1

[
n∑
i=1

`c

{
yi, γ

(c)
0 , ψ̃T

i β
(c)
(rn)

}
− τ2‖β(c)

(rn)‖
2
2

]
(1.8)

with respect to θ = {γ(c)
0 ,β

(c)
(rn), c = 1, ..., C−1}, where ψ̃i is the ith row of Ψ̃(rn). In practice,

we may choose rn = min{r :
∑r

l=1 al/
∑n

l=1 al ≥ η} for some η close to 1.

Let θ̃ = {γ̃(c)
0 , β̃

(c)
(rn), c = 1, ..., C − 1} denote the estimator from the maximization of (1.8).

Then for a future subject with x, the probability π+(c | x) = P (y = c | y ≥ c,x) can be

7



estimated as

π̃+(c | x) = g
{
γ̃

(c)
0 + Ψ̃(rn)(x)Tβ̃

(c)
(rn)

}
Ψ̃(rn)(x) = n−1diag(a

−1/2
1 , ..., a

−1/2
rn )Φ̃T

(rn) [k(x,x1), ..., k(x,xn)]T, by the Nystrom method

(Rasmussen, 2004). Subsequently, π(c | x) = P (y = c | x) can be estimated as

π̃(c | x) = π̃+(1 | x)I(c=1)

{
π̃+(c | x)

c−1∏
c′=1

{1− π̃+(c′ | x)}

}I(c≥2)

A future subject with x can then be classified as ỹ(x) = argmaxc π̃(c | x).

1.2.2 Estimation Under the sCRKM Assumption

When the effects of x may differ across some continuation ratios but not all, one may im-

prove the efficiency in estimating h(c) by imposing sparsity on {h(c+1)−h(c), c = 1, ..., C−2}

in (1.3), or equivalently on {β(c+1) − β(c), c = 1, ..., C − 2} in (1.4). To leverage the spar-

sity in estimation under the sCRKM assumption, we propose to modify (1.8) and instead

maximize the penalized likelihood,

L̂(θ; τ1, τ2) = L̂0(θ; τ2)− τ1

C−2∑
c=1

‖β(c+1)
(rn) − β

(c)
(rn)‖2

‖β̃(c+1)
(rn) − β̃

(c)
(rn)‖2

(1.9)

where τ1 is another tuning parameter controlling the amount of penalty for the differences

between adjacent h(c)’s. The adaptive penalty is imposed here to ensure the consistency

in identifying the set of unique h(c)’s.

To carry out the maximization of (1.9) in practice, we first obtain a quadratic expansion of

the log-likelihood L̂0(θ; τ2) around the initial estimator θ̃:

n−1L̂0(θ; τ2) ≈ n−1L̂0(θ̃, τ2)− 1

2
(θ − θ̃)TÃ(θ − θ̃),

where Ã = n−1∂L̂0(θ; τ2)/∂θ∂θT|θ=θ̃. Subsequently, we approximate the maximizer of
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(1.9) by

θ̂ = argmin
θ

[
1

2
(θ − θ̃)TÃ(θ − θ̃) + n−1τ1

C−2∑
c=1

‖β(c+1)
(rn) − β

(c)
(rn)‖2

‖β̃(c+1)
(rn) − β̃

(c)
(rn)‖2

]
(1.10)

Such a quadratic approximation has been previously proposed to ease the computation

for maximizing LASSO penalized likelihood functions and was shown to perform well

in general (Wang and Leng, 2007). Followed by a sequence of variable transformations,

we reformulate our optimization problem into a standard group lasso penalized maxi-

mization problem (Yuan and Lin, 2006; Wang and Leng, 2008). The detailed algorithm is

in Web Appendix A. We tune the 3-tuple parameters (ρ, τ1 and τ2) by varying ρ within

a range of values. For any given ρ, we first get τ2(ρ) by GCV criterion in the ridge re-

gression. Subsequently, we select ρ and τ1 by optimizing the AIC. The detailed tuning

procedure is in Web Appendix B.

With θ̂ = {γ̂(c)
0 , β̂

(c)
(rn), c = 1, ..., C − 1} obtained from (1.10), h(c)(x) can be estimated as

ĥ(c)(x) = Ψ̃(rn)(x)Tβ̂
(c)
(rn)

We also obtain the corresponding π̂+(c | x) and π̂(c | x) by replacing θ̃ in π̃+(c | x) and

π̃(c | x) respectively. Then subjects with x can be classified as ŷ(x) = argmaxc π̂(c | x).

We expect that the proposed sparse estimator θ̂ and the resulting classification ŷ will out-

perform the corresponding estimators and classifications derived from the fCRKM model

based on θ̃ and the reduced pCRKM model when the underlying model has h(c) = h(c+1)

for some c but not all. When J = ∞, the convergence rate of ĥ(c) would depend

on the decay rate of the eigenvalues {λl}. On the other hand, for many practical set-

tings, Hk with the optimal ρ can be approximated well with a finite dimensional space

Hkr with a fixed r. In Web Appendix C, we show that when Hk is finite dimensional,

‖ĥ(c) − h(c)‖ = Op(n
− 1

2 ). Furthermore, we establish the model selection consistency in the

sense that P (ĥ(c) = ĥ(c+1))→ 1 if h(c) = h(c+1).
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1.2.3 Model Evaluation

To evaluate the prediction performances of different methods for future observations

(y0,x0) , we consider three prediction error measures: the overall mis-classification er-

ror (OME) P (ŷ(x0) 6= y0), the absolute prediction error (APE) E|ŷ(x0) − y0| and the av-

erage size of prediction sets (LPS) to be defined below. The OME puts equal weights

to any error as long as ŷ(x0) 6= y0 and APE weights the error by the absolute distance

between ŷ(x0) and y0. When comparing classification rules, one often sees a trade-off

between these two error measures as they are capturing slightly different aspects of the

prediction performance. In addition to these measures of accuracy based on ŷ(x0), we

also examine the performance by taking the uncertainty in the classification into ac-

count. Specifically, for a given x0 with predicted probabilities {π̂(c | x0), c = 1, ..., C},

instead of classifying the subject according to ŷ(x0) = argmaxc π̂(c | x0), we construct

a prediction set (PS) P̂α0(x
0) = {c : π̂(c | x0) ≥ ℘}, consisting of all categories

whose predicted probabilities exceed ℘, where ℘ is chosen as the largest value such that

these prediction sets of all samples achieve a desired coverage level 100(1 − α0)%, i.e.

P{y0 ∈ P̂α0(x
0)} ≥ 1 − α0(Faulkenberry, 1973; Jeske and Harvallie, 1988; Lawless and

Fredette, 2005; Cai et al., 2008). The average size of the PS,

LPS = E‖P̂α0(x
0)‖ =

C∑
c=1

P
{
c ∈ P̂α0(x

0)
}
,

can be also used to quantify the prediction performance based on those estimated π̂(c | x0)

derived from each model. The ℘ and LPS can be calculated from the constructed PS’ for

all the samples in the testing set. Using the same argument as given in Cai et al. (2008),

we may show that LPS is minimized by the true model and hence is a useful measure as

a basis for model selection. The use of LPS allows us to achieve two goals: (i) to obtain a

set of potential classifications P̂α0(x) rather than ŷ(x0) to account for the uncertainty in

the classification; and (ii) to provide a more comprehensive evaluation for the prediction
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performance of π̂(c | x0) that accounts for the uncertainty.

1.2.4 Data Driven Rule for Kernel Selection

The choice of kernels is critical in the prediction performance, since different kernels have

different features in terms of accounting for the non-linearity properties of the data. For

example, the fCRKM with linear kernel is equivalent to the linear CR model in (1.1). The

quadratic kernel is useful for capturing two-way interactions among predictors; while

the gaussian kernel performs well in capturing smooth and complex effects. Unfortu-

nately, in practice, with a given dataset, it is typically unclear which kernel would be

the most appropriate. Here we propose to select an optimal kernel via K-fold cross-

validation to minimize the LPS. To carry out the K-fold cross-validation for kernel se-

lection, we randomly split the training data into K disjoint subset of about equal sizes

and label them as Sk, k = 1, · · · , K. For each k, we use all observations which are not in

Sk to fit our proposed procedures with several candidate kernels and obtain the corre-

sponding estimate θ̂. Then we use samples in Sk to calculate their predicted probabilities

π̂(c | x), c = 1, · · · , C. After obtaining the predicted probabilities for all the samples from

cross-validation, P̂α0(x) and LPS can be computed for each of the kernels. The kernel with

the smallest LPS will be selected as the optimal kernel and the corresponding estimate θ̂

would then be used for prediction in the validation set. In regards to the choice of K, it

is imperative that the size of the training set is large enough to accurately estimate the

sCRKM model parameters. We recommend K = 10 as previously suggested in Breiman

and Spector (1992).
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1.3 Numerical Studies

1.3.1 Simulation Study

We conducted extensive simulations to evaluate the finite sample performance of our pro-

posed methods and compared with three existing methods: the “one-against-one” SVM

method (Hsu and Lin, 2002), the L1 penalized pCR method (Archer and Williams, 2012),

denoted by pCRL1 and the classification tree for ordinal outcomes (CART) (Galimberti

et al., 2012). For the “one-against-one” SVM, C(C − 1)/2 binary classifiers are trained by

SVM, and the appropriate class is found by a voting scheme.

We simulated 5 category ordinal outcome Y with continuous covariates under the CRKM

model in (1.3). The 20× 1 predictor vector X was generated from MVN(0, 3.6+6.4I20×20).

We generate Y | X based on two types of h(c)(X): (i) linear in X; and (ii) linear

effects plus two-way interactions between Xj and Xj+1. The regression coefficients

β(c), c = 1, · · · , C − 1 were set to be between 0 and 0.4 and the intercept parameters

{γ(c)
0 , c = 1, · · · , C − 1} were selected such that there were approximately the same

number of observations in each of the five classes. For each setting, we considered

three types of h(c)(X): (a) h(1) 6= h(2) 6= h(3) 6= h(4) representing a fCRKM model; (b)

h(1) = h(2) 6= h(3) = h(4) representing a model between a fCRKM model and a pCRKM model;

and (c) h(1) = h(2) = h(3) = h(4) representing a pCRKM model. For each simulated data, we

let n = 500 in the training set to estimate all model parameters including kernel selection.

Then to evaluate the performances of different procedures, we generate independent test

sets of sample size 5000 to approximate the expected accuracy of the trained models.

For each scenario, we generate 50 datasets to compare the performance of SVM, pCRL1 ,

CART, and the three models: sCRKM , fCRKM and pCRKM under the different choices

of kernels. Three kernels, including linear, quadratic and gaussian, are considered as

candidates for kernel selection. Our recommended procedure would be sCRKM with

adaptive kernel selection, denoted by sCRS
KM . Parameter tuning is performed based on
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the whole training set, and the selected parameters are fixed and used for the CV as well

as building and evaluating the prediction model. We also compare the performance of

our proposed procedures with data driven selection of the kernel versus those obtained

under the true optimal kernel (linear for setting i and quadratic for setting ii) in each

setting to examine the price paid for selecting the kernel.

In Table 2.1, we present results comparing different procedures when the data are gen-

erated from setting i with linear effects. Results for setting ii with interactive effects are

given in Table 1.2. Table 1.3 shows the percentage of times different kernels being selected

as the optimal kernel based on proposed data driven rule for kernel selection. Under

both settings, applying our sCRKM method always results in similar performance as the

true model when the underlying model is either (a) the fCRKM model; or (c) the pCRKM

model. This indicates that little penalty is paid for letting the data determine the under-

lying sparsity of h(c+1) − h(c). When the underlying model is in between the two, sCRKM

performs the best. When the effects are linear, our proposed procedures with adaptive

kernel selection perform similarly to those based on linear kernel. In the settings with

interaction effects, sCRS
KM outperforms sCRKM with linear kernel by capturing non-linear

effects. For example, when h(1) = h(2) 6= h(3) = h(4), the average prediction set size LPS

was 2.9 for sCRS
KM and, 4.49 for sCRKM with linear kernel. In this setting, sCRS

KM also outper-

forms both the fCRKM and the pCRKM models regardless how kernel was selected for these

models. The prediction accuracy from sCRS
KM was also similar to sCRKM with quadratic

kernel, which is the optimal kernel in this setting, indicating little loss of accuracy for

the additional adaptive kernel selection. In general, the kernel selection procedure makes

sensible choices of the kernels. When the underlying effects are linear, the linear kernel

is selected 100% of the times; when the underlying model involves interactions, either

quadratic or gaussian kernels are selected but not the linear kernel. This suggests that

the use of cross-validation can overcome the overfitting issue. Under setting ii with inter-
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Table 1.1: Average prediction performances with respect to average size of the predic-
tion set (LPS), the overall mis-classification error (OME), and the absolute prediction error
(APE), for setting i with linear effects.

(a) h(1) 6= h(2) 6= h(3) 6= h(4)

kernel choice LPS OME APE
Linear fCRKM 1.82(0.04) 0.33(0.01) 0.44(0.01)

sCRKM 1.83(0.04) 0.33(0.01) 0.44(0.01)
pCRKM 2.29(0.03) 0.46(0.01) 0.53(0.01)

Data Driven fCRKM 1.82(0.04) 0.33(0.01) 0.44(0.01)
sCRS

KM 1.83(0.04) 0.33(0.01) 0.44(0.01)
pCRKM 2.29(0.03) 0.46(0.01) 0.53(0.01)

- SVM 2.00(0.04) 0.34(0.01) 0.46(0.01)
CART - 0.56(0.02) 0.80(0.02)
pCRL1 2.33(0.04) 0.47(0.01) 0.55(0.01)
(b) h(1) = h(2) 6= h(3) = h(4)

Linear fCRKM 1.90(0.05) 0.36(0.01) 0.44(0.02)
sCRKM 1.85(0.04) 0.35(0.01) 0.42(0.02)
pCRKM 2.21(0.03) 0.44(0.01) 0.51(0.01)

Data Driven fCRKM 1.90(0.05) 0.36(0.01) 0.44(0.02)
sCRS

KM 1.85(0.04) 0.35(0.01) 0.42(0.02)
pCRKM 2.21(0.03) 0.44(0.01) 0.51(0.01)

- SVM 2.04(0.04) 0.38(0.01) 0.47(0.01)
CART - 0.55(0.02) 0.76(0.03)
pCRL1 2.19(0.03) 0.44(0.01) 0.51(0.01)
(c) h(1) = h(2) = h(3) = h(4)

Linear fCRKM 1.93(0.03) 0.39(0.01) 0.43(0.01)
sCRKM 1.86(0.03) 0.37(0.01) 0.39(0.01)
pCRKM 1.85(0.03) 0.36(0.01) 0.39(0.01)

Data Driven fCRKM 1.93(0.03) 0.39(0.01) 0.43(0.01)
sCRS

KM 1.86(0.03) 0.37(0.01) 0.39(0.01)
pCRKM 1.85(0.03) 0.36(0.01) 0.39(0.01)

- SVM 2.03(0.04) 0.42(0.01) 0.46(0.01)
CART - 0.55(0.01) 0.68(0.02)
pCRL1 1.82(0.03) 0.36(0.01) 0.38(0.01)
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Table 1.2: Average prediction performances with respect to average size of the predic-
tion set (LPS), the overall mis-classification error (OME), and the absolute prediction error
(APE), for setting ii with interactive effects.

(a) h(1) 6= h(2) 6= h(3) 6= h(4)

kernel choice LPS OME APE
Linear fCRKM 4.47(0.10) 0.75(0.03) 1.53(0.15)

sCRKM 4.45(0.11) 0.75(0.03) 1.55(0.16)
pCRKM 4.44(0.05) 0.76(0.02) 1.65(0.17)

Data Driven fCRKM 1.99(0.07) 0.36(0.02) 0.52(0.02)
sCRS

KM 2.03(0.09) 0.37(0.02) 0.52(0.02)
pCRKM 2.70(0.14) 0.53(0.02) 0.67(0.05)

Quadratic fCRKM 1.93(0.05) 0.35(0.01) 0.51(0.02)
sCRKM 1.95(0.05) 0.35(0.01) 0.51(0.02)
pCRKM 2.84(0.06) 0.55(0.01) 0.72(0.02)

- SVM 2.32(0.06) 0.44(0.01) 0.63(0.02)
CART - 0.66(0.03) 1.02(0.04)
pCRL1 4.05(0.14) 0.79(0.02) 1.72(0.30)
(b) h(1) = h(2) 6= h(3) = h(4)

Linear fCRKM 4.50(0.10) 0.75(0.03) 1.42(0.16)
sCRKM 4.49(0.10) 0.75(0.03) 1.44(0.18)
pCRKM 4.46(0.04) 0.75(0.03) 1.53(0.19)

Data Driven fCRKM 2.19(0.07) 0.43(0.02) 0.55(0.02)
sCRS

KM 2.09(0.10) 0.41(0.02) 0.52(0.02)
pCRKM 2.44(0.07) 0.50(0.01) 0.59(0.03)

Quadratic fCRKM 2.14(0.04) 0.42(0.01) 0.54(0.02)
sCRKM 2.00(0.05) 0.39(0.01) 0.50(0.02)
pCRKM 2.50(0.06) 0.51(0.01) 0.61(0.02)

- SVM 2.48(0.05) 0.51(0.01) 0.68(0.02)
CART - 0.64(0.02) 0.92(0.04)
pCRL1 4.06(0.18) 0.79(0.02) 1.54(0.34)
(c) h(1) = h(2) = h(3) = h(4)

Linear fCRKM 4.45(0.09) 0.77(0.02) 1.52(0.13)
sCRKM 4.44(0.09) 0.77(0.02) 1.55(0.15)
pCRKM 4.44(0.05) 0.77(0.02) 1.63(0.18)

Data Driven fCRKM 2.53(0.07) 0.49(0.01) 0.62(0.03)
sCRS

KM 2.34(0.10) 0.46(0.02) 0.57(0.04)
pCRKM 2.05(0.08) 0.40(0.02) 0.46(0.02)

Quadratic fCRKM 2.48(0.05) 0.48(0.01) 0.60(0.02)
sCRKM 2.26(0.06) 0.45(0.01) 0.55(0.02)
pCRKM 2.03(0.08) 0.40(0.02) 0.46(0.03)

- SVM 2.76(0.05) 0.56(0.01) 0.80(0.03)
CART - 0.64(0.04) 0.87(0.04)
pCRL1 4.09(0.18) 0.79(0.02) 1.64(0.31)
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Table 1.3: % of times different kernels being selected as the optimal kernel based on pro-
posed data driven rule for kernel selection.

setting i with linear effects setting ii with interaction effects
Linear Guassian Quadratic Linear Guassian Quadratic

h(1) 6= h(2) 6= h(3) 6= h(4) 100 0 0 0 54 46
h(1) = h(2) 6= h(3) = h(4) 100 0 0 0 50 50
h(1) = h(2) = h(3) = h(4) 100 0 0 0 40 60

active effects, the procedures with gaussian kernel appear to perform similarly to those

with the quadratic kernel with respect to prediction accuracy. This is not surprising since

the gaussian kernel is a universal kernel such that its corresponding RKHS is rich enough

to approximate any target function (Steinwart, 2002) and hence could capture quadratic

effects reasonably well.

Comparing to the three existing methods, our proposed procedures also show great ad-

vantage. Across all settings, our proposed sCRS
KM method outperforms the SVM. For ex-

ample, in setting ii, when h(1) 6= h(2) 6= h(3) 6= h(4), SVM has an average LPS of 2.32 vs 2.03

from sCRS
KM ; when h(1) = h(2) = h(3) = h(4), SVM has an average LPS of 2.76 vs 2.34 from

sCRS
KM . This is in part due to the fact that SVM doesn’t consider the ordinal property of

the outcome or the underlying sparsity of h(c+1) − h(c). The pCRL1 performs similarly to

pCRKM with linear kernel because it only considers linear effect of the predictors. How-

ever, when the true underlying effects are non-linear as in setting ii, the pCRL1 performs

poorly as expected. The CART method generally provides less accurate prediction com-

pared to both SVM and sCRKM in both linear and non-linear settings. These comparisons

imply the precision gain of our method due to imposing sparsity on the differences in

the covariate effects of the sequential categories and incorporating potential non-linear

effects via kernel selection.
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1.3.2 Data Example: Genetic Risk Prediction of Shared Autoimmunity

Autoimmune diseases (ADs), roughly defined as conditions where the immune system

attacks self tissues and organs, affect 1 out of 31 individuals in the United States (Jacobson

et al., 1997). Although ADs encompass a broad range of clinical manifestations, e.g. joint

swelling, skin rash, and vasculitis. Recent studies have uncovered shared genetic risk

factors across different ADs (Criswell et al., 2005). Epidemiologic studies corroborate with

findings from genetic studies demonstrating that autoimmune diseases co-occur within

individuals and families (Somers et al., 2006).

The presence of autoantibodies defines the majority of autoimmune diseases. Cyclic Cit-

rullinated Peptide (CCP) antibodies are associated with rheumatoid arthritis (RA), and

assays employing CCP to measure antibodies recognizing citrullinated antigens are used

as a diagnostic test for RA (Lee and Schur, 2003). Among RA patients, different levels

of CCP also indicate different subtypes of RA and are associated with different disease

progressions (Kroot et al., 2000). Positive CCP indicates increased likelihood of erosive

disease in RA, and high level of CCP may be useful to identify patients with aggressive

disease. Given the shared genetic risk factors across autoimmune diseases, we would

expect that subjects with one autoimmune disease, would be at higher risk for other au-

toimmune diseases. For example, CCP may be positive in patients with other autoim-

mune diseases such as systemic lupus erythematosus (SLE) (Harel and Shoenfeld, 2006).

So patients with other autoimmune diseases or with genetic profiles that are indicative

of elevated risk of other autoimmune diseases may have worse RA disease progression,

which is partially reflected in the CCP levels.

To study the relationship between CCP levels and measurements of autoimmunity, we

applied our methods to a dataset of 1265 rheumatoid arthritis (RA) patients of European

decsent nested in an EMR cohort at Partner’s Healthcare (Liao et al., 2010). In this RA

cohort, all subjects were genotyped for 67 single nucleotide polymorphisms (SNPs) with

published associations with RA, Systemic lupus erythematosus (SLE), and celiac disease,
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and an aggregate genetic risk score (GRS) is calculated for each of the three diseases based

on the number of SNPs for the particular diseases (Liao et al., 2013). These three GRSs

represent genetic markers of autoimmunity. In addition to genetic information, billing

codes of four ADs, RA, JRA and Psoriatic arthritis (PsA), as well as radiology findings of

erosions are also available as predictors. For the CCP levels, we categorized into 4 ordinal

categories with the total numbers of patients being 353, 266, 312 and 334, in categories

1, 2, 3 and 4, respectively. To construct and evaluate various prediction methods, we

randomly split the data into two independent sets (evenly split within each category)

with 633 subjects in the training set and 632 subjects in the validation set.

Applying our proposed procedure to the training data, our adaptive kernel selection rule

selected the RBF kernel out of the linear, quadratic and RBF kernels, suggesting the pres-

ence of non-linear effects. Prediction models using SVM, pCRL1 and CART were also

developed for comparison, and the results are shown in Table 1.4. When applying the

proposed prediction rules to the validation set, the sCRS
KM method results in the smallest

LPS (2.58), comparing to the SVM model (3.44) and the pCRL1 model (3.43). As expected,

if we enforce the sCRKM with quadratic kernel or linear kernel, the procedure yields a

larger LPS (3 and 2.9), highlighting the advantage of kernel selection. With respect to the

OME and APE, the sCRS
KM model also outperforms the three existing methods. The sCRS

KM

has OME of 0.59, versus 0.67 from SVM, 0.66 from pCRL1 and 0.67 from CART; has APE

of 1.02, versus 1.18 from SVM, 1.27 from pCRL1 and 1.22 from CART. In order to evaluate

whether the differences in the prediction is significant, we applied the bootstrap proce-

dure to the validation data to estimate the standard errors for the estimated LPS, OME,

and APE, as well as the differences between sCRS
KM and other methods with respect to

these prediction errors. As shown in Table 1.4, sCRS
KM leads to significantly lower predic-

tion errors with p-values < 0.001. Therefore, our sCRS
KM method leads to a more accurate

model for predicting anti-CCP levels compared with existing methods.
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Table 1.4: Prediction performances with respect to average size of the prediction set (LPS),
the overall mis-classification error (OME), and the absolute prediction error (APE); dif-
ferences in performances between sCRKM and existing methods with standard deviations
(SD)

Methods Prediction measurements Differences between sCRKM and other(SD)
for comparison LPS OME APE LPS OME APE

sCRKM 2.58(0.09) 0.59(0.02) 1.02(0.04) - - -
SVM 3.5(0.05) 0.67(0.02) 1.18(0.04) -0.92(0.09) -0.09(0.02) -0.16(0.04)

pCRL1 3.43(0.05) 0.66(0.02) 1.27(0.04) -0.85(0.10) -0.07(0.02) -0.25(0.04)
CART - 0.67(0.02) 1.22(0.04) - -0.08(0.02) -0.20(0.04)

1.4 Discussion

In this paper, we proposed the sCRKM procedure to construct optimal classification rules

for ordinal outcomes. Our proposed method has advantage over existing methods by

incorporating potentially non-linear effects while allowing for adaptive selection of op-

timal kernels. When there is sparsity for the differences in the covariate effects between

two sequential categories, our method will also automatically assign the same coefficients

to the sequential categories to achieve an optimal balance between model complexity and

prediction accuracy. Our numerical studies suggest that when the underlying model is

either the fCRKM model or the reduced pCRKM model, our proposed sCRKM method per-

forms similarly to fitting the corresponding model. In the case that the underlying model

is in between the full and reduced model, the sCRKM method performs better than fitting

either the fCRKM or the pCRKM model. The proposed data driven rule for kernel selection

also enables us to choose an optimal kernel for a given dataset. When we select how many

components to use in the singular value decomposition of Kn, we choose rn as the largest

r such that the estimated proportion of variation explained by the first rn eigenfunctions,

defined as {
∑rn

l=1 al}
{
∑n

l=1 al}
, is at least η ∈ (0, 1]. This selection rule is similar to those considered in

the standard PCA literature (Park, 1981). Alternatively, one may treat rn as an additional

tuning parameter and select the appropriate rn from a certain range to make sure the final
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AIC reaches its optimal.

1.5 Appendix A: Algorithm details

To numerically obtain θ̂ in (9), we first perform a variable transformation by let-

ting δ(c) to represent the differences between adjacent categories: δ(c) = β
(c+1)
(rn) −

β
(c)
(rn), for c = 1, . . . , C − 2. Let Θ = (γ

(1)
0 , · · · , γ(C−1)

0 ,β
(1)
(rn), δ

(1), . . . , δ(C−2)) be our new

parameters after transformation, which relates to the original parameter vector θ =

(γ
(1)
0 , ..., γ

(C−1)
0 ,β

(1)
(rn),β

(2)
(rn), ...,β

(C−2)
(rn) ,β

(C−1)
(rn) )T through θ = MΘ, where

M =



IC−1 0 0 0 0 · · · 0

0 Ir 0 0 0 · · · 0

0 Ir Ir 0 0 · · · 0

0 Ir Ir Ir 0 · · · 0

...
...

...
...

...
...

0 Ir Ir Ir Ir · · · Ir


Let X̃ = ÃTM and Ỹ = ÃTθ̃, where Ã = ÃÃT. Therefore, (9) is transformed into a linear

adaptive group LASSO (gLASSO) problem:

Θ̂ = argmin
Θ

[
1

2
‖X̃Θ− Ỹ‖2

2 + τ1

C−2∑
c=1

‖Θ(c)‖2

‖Θ̃(c)‖2

]
(1.11)

where Θ̃ = M−1θ̃.
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1.6 Appendix B: Parameter tuning

There are three tuning parameters involved in our proposed procedure, ρ, τ1 and τ2, where

ρ is the parameter for kernel k(·, ·; ρ), τ2 is the tuning parameter for the ridge penalty,

and τ1 is the gLASSO penalty parameter controlling the amount of penalty for the dif-

ferences between adjacent categories. Commonly used methods for selecting tuning pa-

rameters for ridge regression and gLASSO penalties include AIC, BIC, cross-validation,

and generalized cross validation (GCV) (Golub et al., 1979; Hastie et al., 2005; Yuan and

Lin, 2006; Wang and Leng, 2008). For each given ρ, we obtain an optimal τ2 based on

the GCV criterion (Golub et al., 1979), denoted by τ2(ρ). Then with each given ρ and

τ2(ρ), we obtain the corresponding synthetic data {X̃, Ỹ, δ̃(c)} for fitting the gLASSO pe-

nalized least square in (1.11). The tuning parameters τ1 and ρ are then selected via the

AIC criterion. The degree of freedom in the AIC criterion is estimated analogous to

those proposed in Yuan and Lin (2006) and Wang and Leng (2008). Specifically, we define

DF(ρ, τ1) =
∑C−1

c=1 I{‖δ̂(c)(ρ, τ1)‖ > 0} +
∑C−1

c=1
‖δ̂(c)(ρ,τ1)‖2
‖δ̃(c)(ρ)‖2

(dc(ρ) − 1), where dc(ρ) is the ef-

fective number of parameters in the cth group from the ridge regression, calculated as the

sum of the diagonal elements of Hessian matrix Ã(ρ) that correspond to the cth group. We

then select the optimal (ρ, τ1) as the minimizer of AIC(ρ, τ1) = −2loglik(ρ, τ1)+2DF(ρ, τ1).

1.7 Appendix C: Asymptotic Properties of ĥ(c)(·)

Here, when Hk is finite dimensional, we aim to establish the root-n convergence rate of

ĥ(c)(x) and model selection consistency in the sense that P{ĥ(c)(x) = ĥ(c+1)(x)} → 1 when

h(c) = h(c+1). To this end, we first note that we can write our penalized likelihood (7) in

the same form as in Minnier (2012). It is the summation of C − 1 independent terms, each

of which takes the form:

n∑
i=1

I(yi ≥ c)
[
D

(c)
i log{g(γ

(c)
0 + ψ̃T

i β
(c)
(rn))}+ (1−D(c)

i ) log{1− g(γ
(c)
0 + ψ̃T

i β
(c)
(rn))}

]
− τ2‖β(c)

(rn)‖
2
2
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Therefore, using the same arguments as given in Minnier (2012), we have

Lemma 1. P (rn = r)→ 1 and ‖Ψ̃(x)−Ψ(x)‖2 + n−
1
2‖Ψ̃−Ψ‖F + ‖θ̃ − θ‖2 = Op(n

− 1
2 ).

It also directly implies that h̃(c)(x) − h(c)(x) = Op(n
− 1

2 ) and we may need establish the

convergences conditioning on rn = r. In view of this together with the parametrization

in (1.11), it suffices to show that δ̂(c) − δ(c) = Op(n
− 1

2 ), if c ∈ A; and P (δ̂(c) = 0) → 1,

if c /∈ A, where A = {c : δ(c) 6= 0}. These are parallel to Theorem 1 and 2 in (Wang

and Leng, 2008) where they show the estimation consistency and selection consistency

of the adaptive group lasso estimator. The main difference between our problem and

the setting considered in Wang and Leng (2008) is that our X̃ and Ỹ are not directly

observed data but are estimated quantities with X̃ = ÃTM, Ỹ = ÃTθ̃, where Ã = ÃÃT,

so we need to take into account the randomness in X̃ and Ỹ. In their proof, the main

arguments rely on two convergences: n−1XTX→ E(XiX
T
i ) in probability and n−

1
2 XT(Y−

Xδ) = Op(1). In our case, the corresponding convergences we need to establish are the

probability convergence of MTÃM and MTÃ[n
1
2 (θ̃ − θ)] = Op(1). By the Lemma, n

1
2 (θ̃ −

θ) = OP (1), and since M is a constant, it is suffice to show that Ã = diag{Ã(1), ..., Ã(C−1)}

converges to A = diag{A(1), ...,A(C−1)} in probability, where

Ã(c) =n−1

n∑
i=1

I(yi ≥ c)
[
ψ̃
i
ψ̃

T

i
g(ψ̃

T

i
β̃

(c)

(r)
)(1− g(ψ̃

T

i
β̃

(c)

(r)
))
]

A(c) =E
{
I(yi ≥ c)

[
ψ
i
ψT

i
g(ψT

i
β(c)

(r)
)(1− g(ψT

i
β(c)

(r)
))
]}

ψ
i

= [1, ψT
i ]

T, β(c)

(r)
= [γ

(c)
0 ,β

(c)
(r)

T

]T; ψ̃
i

= [1, ψ̃T
i ]

T, and β̃
(c)

(r)
= [γ̃

(c)
0 ,β

(c)
(r)

T

]T.

Since ‖Ã − A‖2
F =

∑C−1
c=1 ‖Ã(c) − A(c)‖2

F , so if we can show the convergence of each of the

C−1 blocks, we will have convergence for the entire matrix Ã. Let Ã?(c) = n−1
∑n

i=1 I(yi ≥

c)
[
ψ
i
ψT

i
g(ψT

i
β(c)

(r)
)(1− g(ψT

i
β(c)

(r)
))
]
, we have ‖Ã(c)−A(c)‖2

F = ‖Ã(c)−Ã?(c) +Ã?(c)−A(c)‖2
F ≤

‖Ã(c)− Ã?(c)‖2
F + ‖Ã?(c)−A(c)‖2

F . Note that since Ã?(c) → A(c) with probability 1 by Law of

Large Numbers, so we only need to show ‖Ã(c) − A?(c)‖2
F → 0. To simplify notation, we

drop (c) superscripts and the (r) subscripts. We first split Ã− Ã? into summation of three
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parts:

Ã− Ã? = n−1

n∑
i=1

I(yi ≥ c)
[
(ψ̃

i
− ψi)ψ̃

T

i
g(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]

(P1)

+ n−1

n∑
i=1

I(yi ≥ c)
[
ψ
i
(ψ̃

i
−ψ

i
)Tg(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]

(P2)

+ n−1

n∑
i=1

I(yi ≥ c)
[
ψ
i
ψT

i
(g(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))− g(ψT

i
β)(1− g(ψT

i
β)))

]
(P3)

Assume that ‖ψ
i
‖2 ≤ R and apply the Lemma, (P1) can be bounded since

∥∥∥∥∥n−1

n∑
i=1

I(yi ≥ c)
[
(ψ̃

i
−ψ

i
)ψ̃

T

i
g(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]∥∥∥∥∥

F

≤n−1
[
Rn

1
2‖Ψ̃−Ψ‖F + ‖Ψ̃−Ψ‖2

F

]
= R ·Op(n

−1) +Op(n
−2)

The term (P2) can also be bounded similarly with

n−1

∥∥∥∥∥
n∑
i=1

I(yi ≥ c)
[
ψ
i
(ψ̃

i
−ψ

i
)Tg(ψ̃

T

i
β̃)(1− g(ψ̃

T

i
β̃))
]∥∥∥∥∥

F

≤ n−1/2R‖Ψ̃−Ψ‖F = R ·Op(n
−1)

Since ‖β̃ − β‖2 = Op(n
−1/2), ‖Ψ̃−Ψ‖F = Op(1), ‖ψ

i
‖2 ≤ R and ‖β‖2 <∞, we can easily

obtain (P3) = Op(n
− 1

2 ). Therefore ‖Ã− Ã∗‖F → 0 in probability and hence ‖Ã−A‖F → 0

in probability. This, together with the same arguments as given in (Wang and Leng, 2008),

implies that ‖δ̂(c) − δ(c)‖2 = Op(n
− 1

2 ) when c ∈ A and P (δ̂(c) = 0)→ 1 when c /∈ A.
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2.1 Introduction

The effectiveness and potential risk of a treatment often varies by patient subgroups

(Duffy and Crown, 2008; La Thangue and Kerr, 2011). For instance, ER negative breast

cancer patients benefit substantially from chemotherapy while ER positive patients do not

benefit as compared to receiving tamoxifen alone (IBCSG, 2002). A gene-expression pro-

file appears to highly predictive of whether chemotherapy is beneficial for treating breast

cancer patients and is now being further investigated by the TAILORx study (Sparano,

2006; Zujewski and Kamin, 2008). The adverse risk of Abacavir for treating HIV infected

patients is strongly associated with the presence of the HLA-B*5701 allele and thus Aba-

cavir was recommended only for patients not carrying this allele (Mallal et al., 2008).

Recently, the US Preventive Services Task Force issued new guidelines recommending

against routine mammography screening for women under 50 (Nelson et al., 2009). On

the other hand, such guidelines may not be appropriate for populations at increased risk

and refinement of such recommendations warrants further research.

Many factors including genetics predisposition and environmental influences may play

a role in a patient’s treatment response. Incorporating information on clinical, biologi-

cal and genomic markers into personalized prediction of treatment response holds great

potential for identifying subgroups of patients who are most likely to benefit or are at

high risk for toxicity from a particular therapy. Interventions can then be targeted to

well-defined groups that are likely to benefit and at low risk of adverse event.

In recent years, a wide range of statistical methods have been proposed for developing

individualized treatment rules (ITRs) based on a set of baseline predictors (Qian and Mur-

phy, 2011; Cai et al., 2011a; Foster et al., 2011; Zhao et al., 2012; Zhang et al., 2012; Zhao

et al., 2013). When the number of candidate predictors for deriving ITRs is not small, it

is important to only include informative markers since including a large number of unre-

lated markers may tamper the accuracy of the resulting ITR and lead to unnecessary cost

associated with measuring the markers. Variable selection procedures have also been de-

veloped for both prediction and decision making (Gunter et al., 2011; Lu et al., 2013; Imai

et al., 2013). However, when a large number of candidate markers are available, variable

25



selection procedures may not work well in identifying informative markers since many

of such procedures are not consistent in variable selection and it is generally difficult to

identify an appropriate tuning parameter to ensure selection consistency. For such set-

tings, it would be desirable to perform testing on candidate markers and only develop

ITRs using markers that are deemed predictive of treatment response.

Standard testing procedures for ITRs consider models that include interactions between

the treatment group and the variables of interest and perform a Wald-type test on the

interaction term. Rosenblum and van der Laan (2009) showed that even when the model

is misspecified, the Wald test still obtains the correct size, if we use the sandwich estimator

for the standard error. Despite the robustness property, such an approach suffers from

two major limitations. First, the interaction term may not entirely capture markers’ ability

in predicting subject specific treatment effect (TE). When TE of interest is the treatment

difference and the outcome Y is binary, the conditional TE given baseline predictor X,

P (Y = 1 | T = 1,X) − P (Y = 1 | T = 0,X), may depend on both the main effect and

the interaction. For example, when P (Y = 1 | T,X) = g(α + βT + γT
0X + TγT

1X) and

g(·) is a distribution function, the conditional TE g{α + β + (γ1 + γ0)TX} − g(α + γT
0X) is

a function of both the main effect γ0 and the interaction effect γ1. Second, the standard

Wald test restricts attention to linear marker effects. When the markers affect the outcome

non-linearly or interactively, the Wald test may have little power in detecting the signal.

In this paper, we propose a kernel machine (KM) based score test for identifying markers

predictive of TE. The proposed KM testing procedure can effectively incorporate non-

linear effects and capture predictors that are predictive of treatment difference. We focus

on the treatment difference scale because the value function of an ITR, IX : X→ {0, 1}, in

improving expected population outcome is directly captured by the treatment difference:

E{IXY
(1) + (1− IX)Y (0)} = E{IX(Y (1) − Y (0))}+ E(Y (0)).

The remaining of the paper is organized as follows. We introduce the KM test for ITR

in section 2.2.1. We describe the resampling procedure for approximating the null dis-

tribution in section 2.2.2. Additional considerations including combining information

from multiple tuning parameters and dimension reduction via kernel principal compo-

nent analysis (PCA) are given in section 2.2.3. In section 3.3, we present simulation results
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suggesting that the proposed procedures out-performs the traditional Wald test in vari-

ous settings. The proposed procedures are applied to two randomized clinical trials in

2.3.2 and 2.3.3. We conclude with some remarks in section 2.4.

2.2 Treatment Selection Model

2.2.1 Score Statistic for Identifying Important Baseline Predictors for

Treatment Selection

Suppose data for analysis comes from a randomized clinical trial (RCT), and consist of

independent and identically distributed random variables {(Yi, Ti,XT
i )

T, i = 1, . . . , n},

where Y is the disease outcome, T is a binary treatment indicator (1 for new treatment

and 0 for standard treatment), and X represents baseline predictors. Let Y (1) and Y (0) be

the counterfactual outcomes under the new and standard treatment, respectively.

To determine whether X is useful for guiding treatment selection, we quantify the TE of

X based on the conditional treatment difference

∆(X) = µ1(X)− µ0(X),

where µk(X) = E(Y (k)|X). Thus X is not informative for treatment selection if µ1(X) −

µ0(X) is a constant. Thus, we aim to develop efficient testing procedures for the null

hypothesis

H0 : µ1(X)− µ0(X) = ∆0, (2.1)

where the constant ∆0 = E{µ1(X)− µ0(X)} = µ1 − µ0 and µk = E(Y (k)). It is not difficult

to see that under H0,

Rψ = cov
{
Y (1) − Y (0),ψ(X)

}
= E

{
(Y (1) − Y (0) −∆0)ψ(X)

}
= 0, for any ψ(·).

27



and thus we propose to test (3.3) by constructing a test statistic summarizing the overall

magnitude of Rψ. To this end, we first obtain an empirical estimate of Rψ based on the

observed RCT data. Specifically, by employing an inverse probability weighting (IPW)

(Rotnitzky and Robins, 2005) estimator for the counterfactuals, we estimate Rψ as

R̂ψ = n−1

n∑
i=1

δ̂iψ(Xi) = n−1∆̂TΨ (2.2)

where Ψ = [ψ(X1), . . . ,ψ(Xn)]T, ∆̂ =
[
δ̂1, . . . , δ̂n

]T
, Ȳk = n−1

k

∑
{Ti=k} Yi, nk =

∑n
i=1 I(Ti =

k),

δ̂i =
(Yi − Ȳ1)I(Ti = 1)

π̂1

− (Yi − Ȳ0)I(Ti = 0)

π̂0

, and π̂k =
nk
n

(2.3)

In order to test whether (2.2) is close to 0, the standard score-type test statistic takes the

form of R̂T
ψΣ̂−1

R̂ψ
R̂ψ and is approximately χ2

q , where Σ̂R̂ψ
is the variance-covariance matrix

estimate of R̂ψ and q is the dimension of ψ(X). However, such a test may suffer from

power loss when ψ(X) are correlated. In addition, the χ2
q distribution may not approxi-

mate the null distribution well especially when the covariance matrix is near singular. We

instead summarize the overall effect of X based on the L2 norm of (2.2) and propose the

test statistic:

Q̂ψ = ||n
1
2 R̂ψ||2 = n−1∆̂T(ΨΨT)∆̂ (2.4)

This type of score test statistic has been shown to be a powerful alternative to the standard

score test and can be viewed as a variance component test under various settings (Liu

et al., 2007; Kwee et al., 2008; Wu et al., 2010; Cai et al., 2011b).

The choice of the basis functions ψ(·) has a significant impact on the power of the resulting

test. If the basis functions efficiently capture the non-linear characteristic of the data, one

may achieve great power gain comparing to using the original data. However, in practice,

it is often difficult to explicitly specifyψ(·) to optimize power since prior knowledge of the

underlying functional form is generally not available. We propose to overcome this dif-
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ficulty by implicitly specifying the basis functions using the Reproducible Kernel Hilbert

Space (RKHS). Let Hk be a RKHS generated by a given positive definite kernel function

k(·, ·; ρ), and ρ is some tuning parameter associated with the kernel function (Cristianini

and Shawe-Taylor, 2000), where the kernel function k(x1,x2; ρ) measures the similarity

between x1 and x2 and different choices of k lead to different RKHS. Some of the pop-

ular kernel functions include the gaussian kernel k(x1,x2; ρ) = exp{−‖x1 − x2‖2
2/2ρ

2},

which can be used to capture complex smooth non-linear effects; the linear kernel

k(x1,x2; ρ) = ρ + xT
1x2 which corresponds to h(x) being linear in x; and the quadratic

kernel k(x1,x2; ρ) = (xT
1x2 + ρ)2, which allows for 2-way interactive effects. By Mercer’s

Theorem (Cristianini and Shawe-Taylor, 2000), any h(x) ∈ Hk has a primal representation

with respect to the eigensystem of k. Specifically, under the probability measure of x, k

has eigenvalues {λl, l = 1, ...,J } with λ1 ≥ λ2 ≥ · · ·λJ and the corresponding eigenfunc-

tions {φl, l = 1, ...,J } such that k(x1,x2) =
∑J

l=1 λlφl(x1)φl(x2), where J could be infinity

and λl > 0 for any l < ∞. The basis functions, {ψl(x) =
√
λlφl(x), l = 1, ...,J }, span

the RKHS Hk. These basis functions can potentially be used in (2.2). We note that the

kernel functions may depend on the tuning parameter ρ. For the ease of presentation, we

suppress ρ from k although procedures for incorporating different choices of ρ in testing

will be detailed in Section 2.2.3.

However, the basis functions {ψl(·)} depend on the unknown distribution of x and thus

is not directly available. To estimate {ψl(·)}, we apply a singular value decomposition to

the observed kernel matrix Kn = [k(xi,xj)]n×n:

Kn = Φ̂Λ̂Φ̂T = Ψ̂Ψ̂T, where Ψ̂ = Φ̂diag{λ1/2
1 , · · · , λ1/2

n },

where Λ̂ = diag{a1, . . . , an}, a1 ≥ . . . ≥ an ≥ 0 are the eigenvalues of Kn and

Φ̂ = (φ̂1, . . . , φ̂n) are the corresponding eigenvectors. It has been shown that Ψ̂ is ef-

fectively estimating the basis functions evaluated at the sample points, Ψ = [ψj(Xi)]n×n

(Koltchinskii and Giné, 2000; Braun et al., 2005). Replacing Ψ in (2.4) by Ψ̂ constructed
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from the RKHS framework, our KM score test statistic for ITR takes the form

Q̂ψ =
1

n
∆̂TΨ̂Ψ̂T∆̂ =

1

n
∆̂TKn∆̂. (2.5)

We next detail procedures for approximating the null distribution of the statistic Q̂ψ.

2.2.2 Approximating the Null Distribution by Resampling Procedure

To approximate the distribution of (2.5) under H0, we write in Appendix that

Q̂ψ = n−1

∫ ∫
k(x,x′)dΘ̂(x)dΘ̂(x′) (2.6)

where Θ̂(x) = n−
1
2

∑n
i=1 θi(x) + oP (1), and θi(x) are the influence functions:

θi(x) =

{
(Yi − µ1)I(Ti = 1)

π1

− (Yi − µ0)I(Ti = 0)

π0

}
{I(Xi ≤ x)−F(x)} (2.7)

where πk = P (T = k) and F(x) = P (X ≤ x). We show in ?? that n−
1
2 Θ̂(x) converges

weakly to zero-mean Gaussian process G(x) and hence

Q̂ψ = n−1

∫ ∫
k(x,x′)dΘ̂(x)dΘ̂(x′)→

∫
k(x,x′)dG(x)dG(x′), in distribution.

The limiting null distribution of Q̂ψ takes a complex form, making explicit estimation in-

feasible. We propose to approximate the null distribution of Q̂ψ via perturbation resam-

pling, which has been used successfully in the literature to approximate the distribution

of a wide range of regular estimators (Park and Wei, 2003; Cai et al., 2005; Tian et al.,

2007). Specifically, for a large number B, we generate independent standard normal ran-

dom variables, {V(b) = (V
(b)

1 , ..., V
(b)
n ), b = 1, ...B}, independent of the observed data. For

b = 1, ..., B, let

Θ̂(b)(x) = n−
1
2

n∑
i=1

θ̂i(x)V
(b)
i ,

be the bth perturbed realization of Θ̂(x), where θ̂i(x) = δ̂i{I(Xi ≤ x)− F̂(x)} and F̂(x) =
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∑n
l=1 I(Xl ≤ x). Subsequently, we obtain the perturbed counterpart of Q̂ψ as

Q̂
(b)
ψ =

∫ ∫
k(x,x′)dΘ̂(b)(x)dΘ̂(b)(x′)

=n−2

n∑
i=1

n∑
j=1

δ̂iδ̂jV
(b)
i V

(b)
j

[
k(xi, xj)− n−1

n∑
l=1

{k(xl, xj) + k(xi, xl)}+ n−2

n∑
l=1

n∑
l′=1

k(xl, xl′)

]

=(∆̂�V(b))TK∗(∆̂�V(b)) (2.8)

where K∗ = K − eT
nK − KTen + eT

nKen, en = n−11n×1, and for any vectors a and b, a � b

denotes element-wise product. The null distribution of Q̂ψ can be approximated by the

empirical distribution of {Q̂(b)
ψ , b = 1, · · · , B}. For an observed Q̂ψ, the p-value can be

estimated as 1
B

∑B
b=1 I(Q̂

(b)
ψ > Q̂ψ).

2.2.3 Additional Consideration: Scale Parameters and Kernel PCA

Kernels with Scale Parameters Some kernels, such as the Gaussian kernel, involves

a scale parameter ρ which has a great impact on the complexity of the resulting RKHS

and hence the power of the test. Unfortunately, the parameter ρ is not identifiable un-

der H0. For the problem of a nuisance parameter ρ disappearing under H0, Davies

(1977) proposed a score test by treating the score statistic as a stochastic process in-

dexed by ρ. Here, we take a similar approach by considering the minimum p-value

as the composite test statistic that combines information from multiple choices of ρ.

Specifically, let {ρm,m = 1, ...,M} be the list of candidate scale parameters. Let Q̂ψ,m

and Q̂ψ,m = {Q̂(1)
ψ,m, · · · , Q̂

(B)
ψ,m}T denote the observed and perturbed test statistic corre-

sponding to kernel k(·, ·, ρm), respectively, where the same set of perturbation variables

{V(b) = (V
(b)

1 , ..., V
(b)
n ), b = 1, ...B} are used across all M scale parameters. Let Ŝm denote

the empirical survival distribution of {Q̂(b)
ψ,m, b = 1, · · · , B}. Then we define minimum

p-value across testing with M scale parameters as

p̂min = min{p̂m,m = 1, ...,M}, where p̂m = Ŝm{Q̂ψ,m}. (2.9)
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Although p̂m is expected to be approximately uniform under H0, the minimum p-value

statistic p̂min is no longer uniformly distributed. Nevertheless, the null distribution of

p̂min can be easily approximated using the perturbed realizations {Q̂ψ,m,m = 1, ...,M}.

Specifically, the empirical distribution of {p̂(b)
min, b = 1, ..., B} can be used to approximate

the null distribution of p̂min, where p̂(b)
min = min{p̂(b)

m ,m = 1, ...,M} and p̂
(b)
m = Ŝm{Q̂(b)

ψ,m}.

Kernel PCA When the kernel spaceHk is high dimensional, testing and estimation pro-

cedures based on such a space may not be efficient due to the high degrees of freedom

(Braun et al., 2005; Cai et al., 2011b). In addition, the null distribution of the test statistic

tends to be more difficult to approximate in finite sample, leading to slightly inaccurate

type I error (Cai et al., 2011b). One approach to improving the power and maintaining

proper size is to effectively reduce the dimensionality. When the eigenvalues of k de-

cay quickly, Hk can be well approximated by the RKHS spanned by a truncated kernel

k(rn)(x1,x2) =
∑rn

l=1 λlφl(x1)φl(x2), for some rn such that
∑J

l=rn+1 λl = o(
∑J

l=1 λl). The

error En = ‖Kn −K(rn)
n ‖ can be bounded by O{λr +

∑∞
l=rn+1 λl}, where K(rn)

n is the kernel

matrix constructed from kernel k(rn) (Braun et al., 2005, Theorem 3.7). In many practical

situations with fast decaying eigenvalues for k, rn is typically fairly small and we can ef-

fectively approximate Hk by a finite dimensional space. Although K(rn)
n is generally not

attainable directly in practice, we may use kernel PCA to approximate K(rn)
n as

K̃(rn)
n = [φ̂1, ..., φ̂rn ]diag{a1, ..., arn}[φ̂1, ..., φ̂rn ]T = [ψ̂1, ..., ψ̂rn ][ψ̂1, ..., ψ̂rn ]T.

Replacing Kn by K̃(rn)
n in (2.5), we obtain the kernel PCA approximated test statistic

Q̂PCA = n−1∆̂TK̃(rn)
n ∆̂ =

rn∑
l=1

‖∆̂Tψ̂l‖2
2, (2.10)

Obviously, Q̂PCA reduces to Q̂ψ when rn = n.

32



Range of ρ It is also important to choose the appropriate range of {ρm,m = 1, ...,M},

since the range will affect the size and power of the procedures. We use a data adap-

tive approach to select the range by taking into account the eigenvalues decay rate of the

kernel for a given ρ, α(ρ), where we assume that λj(ρ) = O{j−α(ρ)}. We estimate the de-

cay rate as the slope from fitting a robust linear regression log{aj(ρ)} = α log(j) + ε with

j = 1, ..., rn. The range of ρ is chosen such that the corresponding estimated α(ρ) is be-

tween 1.2 and 2 and the vector {ρm,m = 1, ...,M} is equally spaced on the logarithm scale

within this range. When we select how many components to use in the singular value de-

composition of Kn, we choose rn as the smallest r such that the estimated proportion

of variation explained by the first r eigenfunctions, defined as {
∑rn

l=1 al}/{
∑n

l=1 al}, is at

least 0.99.

2.3 Numerical Studies

2.3.1 Simulation Study

We performed extensive simulation study to compare the performances of our proposed

procedure to the Wald test with sandwich estimator for covariance matrix. We carried out

our procedure with three kernels (i) linear (kL), (ii) quadratic (kQ) and (iii) gaussian kernel

(kG). For conciseness, we only present results from the kernel PCA procedure where we

select the first rn eigenvectors that account for 99% of total variation. We studied both

continuous and binary outcomes. The predictor Xp×1 was generated from multivariate

normal with mean zero, variance 4 and correlation ρ, where we let p = 5 and 20, and

ρ = 0.2 and 0.5. We considered a total sample size of n = 500 and 1000. The treatment

indicator T is generated from Bernoulli(0.5).

For continuous outcome, we generate Y from the regression model Y = −35+T+h0(X)+

h1(X)T + X1X2ε, where ε follows a standard normal. Three different settings were con-
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sidered for the predictor effect functions h0(X) and h1(X):

(ii) Null: h0(X) = 0; h1(X) = 0

(ii) Linear Effects: h0(X) = X3/2; h1(X) = (X1 +X2 +X5)/3

(iii) Nonlinear Effects: h0(X) = X3/2; h1(X) = (X2
1 +X2

5 +X1X5 +X1 +X5)/2

For binary outcome, we generated Y from a logistic regression model logit{p(Y =

1|X, T )} = 0.3T + h0(X) + h1(X)T . Three settings were considered for h0(X) and h1(X):

(i) Null: h0(X) = 0; h1(X) = 0

(ii) Linear Effects: h0(X) = X3/2; h1(X) = (X1 +X2 +X5)/5

(iii) Nonlinear Effects: h0(X) = X1; h1(X) = X2
5/4 +X3 ×X5/2 + Φ(3X3)×X5/3

where Φ is the cumulative distribution function of standard normal.

In Table 1, we present results for continuous Y when the test is performed at type I error

rate of 0.05. Under H0, the empirical size of all procedures are reasonably close to the

nominal level of 0.05. The proposed test with kQ tend to be be slightly conservative when

p = 20 and ρ = 0.2 due to the high dimensionality of the associated RKHS. Under the

alternative with linear effects, our procedure with linear kernel has similar performance

as the Wald test when the correlation among predictors is small and p = 5. However, as

p and the correlation among predictors increase, our proposed procedure with kL outper-

forms the Wald test. For example, when ρ = 0.5 and p = 20, the Wald test has power of

0.357 for n = 500 and 0.562 for n = 1000; while our proposed method with with kL has

power of 0.499 for n = 500 and 0.709 for n = 1000. The power loss in the Wald can in

part be attributed to the use of a p degree of freedom (DF) when the effective DF in the

presence of high correlation could be much lower than p. On the contrary, our proposed

test leverages the correlation, resulting a lower effective DF. When the effects are linear,

our proposed test with kQ suffers some power loss when n = 500 but has comparable

power when n = 1000. On the other hand, our KM score test with kG out performs all
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other tests even when the effects are linear. This is not surprising since when the scale pa-

rameter ρ is large, the RKHS associated with k(·, ·; ρ) approximates the linear space (Cai

et al., 2011b) while allowing ρ to vary enables us to choose different basis functions to

more efficiently capture the effects. When the underlying effects are non-linear, both the

wald test and the KM score test with kL perform poorly with low power, as expected. The

KM score tests with both kQ and kG have substantially higher power across all settings. It

is interesting to note that although the underlying effects are quadratic, the KM test with

kG has comparable or higher power when p is small. For the larger p of 20, the test with

kQ substantially outperforms kG. One possible explanation is that the RKHS with kG may

not be an efficient approximation to capture h1(X)− h0(X) when compared to that based

on kQ.

The results for binary outcome are presented in Table 2. All procedures maintain the type

I error reasonably well although in this setting the Wald test has a slightly conservative

size when p = 20. Unlike the setting with continuous outcome, our test is no longer ex-

pected to perform similarly to the Wald test even when the effects are linear since the

two tests are capturing different aspects of the TE. When p = 5, the proposed test and

the Wald test perform similarly. However, when p = 20, the KM score test with kL sub-

stantially outperform the Wald test. For example, when p = 20, ρ = 0.5 and n = 500,

the empirical power is 0.796 for the KM score test and only 0.444 for the Wald test. In

this setting, the KM test with kQ and kG also perform quite comparably to the test with

linear kernel, demonstrating the robustness of the test with non-linear kernels. When the

underlying effects are non-linear, the KM test with kQ generally perform better than the

tests assuming linear effects. Since the non-linear signals are mostly quadratic, the KM

test with kQ is generally more powerful than those from kG although the procedures have

similar performances when p = 5.
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Table 2.1: Sizes and powers for different methods, under various sample size, number of
predictors, and correlation among predictors, with continuous outcome

size nonlinear linear
method n=500 n=1000 n=500 n=1000 n=500 n=1000

ρ = 0.2 p=5 Wald 0.058 0.048 0.313 0.522 0.557 0.816
kL 0.051 0.051 0.364 0.591 0.523 0.793
kQ 0.040 0.041 0.805 0.982 0.500 0.704
kG 0.036 0.036 0.998 1.000 0.621 0.910

p=20 Wald 0.051 0.046 0.275 0.401 0.458 0.693
kL 0.041 0.046 0.328 0.525 0.530 0.755
kQ 0.028 0.035 0.648 0.923 0.443 0.754
kG 0.038 0.048 0.401 0.789 0.505 0.771

ρ = 0.5 p=5 Wald 0.056 0.050 0.275 0.383 0.454 0.658
kL 0.055 0.048 0.314 0.492 0.510 0.712
kQ 0.042 0.042 0.878 0.988 0.390 0.584
kG 0.042 0.040 0.999 1.000 0.618 0.917

p=20 Wald 0.039 0.041 0.215 0.319 0.357 0.562
kL 0.052 0.046 0.311 0.460 0.499 0.709
kQ 0.045 0.039 0.818 0.969 0.390 0.623
kG 0.049 0.045 0.723 0.992 0.541 0.790

Table 2.2: Sizes and powers for different methods, under various sample size, number of
predictors, and correlation among predictors, with binary outcome

size nonlinear linear
method n=500 n=1000 n=500 n=1000 n=500 n=1000

ρ = 0.2 p=5 Wald 0.043 0.048 0.369 0.676 0.811 0.990
kL 0.050 0.056 0.397 0.639 0.832 0.991
kQ 0.046 0.053 0.755 0.986 0.826 0.988
kG 0.054 0.056 0.729 0.992 0.800 0.991

p=20 Wald 0.028 0.033 0.134 0.346 0.427 0.889
kL 0.049 0.047 0.304 0.539 0.690 0.946
kQ 0.048 0.046 0.584 0.873 0.643 0.938
kG 0.050 0.055 0.338 0.576 0.690 0.944

ρ = 0.5 p=5 Wald 0.047 0.049 0.726 0.974 0.844 0.994
kL 0.047 0.053 0.903 0.998 0.859 0.994
kQ 0.050 0.050 0.981 1.000 0.846 0.986
kG 0.058 0.044 0.944 1.000 0.890 0.993

p=20 Wald 0.026 0.037 0.320 0.802 0.444 0.911
kL 0.054 0.049 0.863 0.997 0.796 0.977
kQ 0.050 0.056 0.932 0.999 0.755 0.973
kG 0.052 0.050 0.865 0.994 0.834 0.989
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2.3.2 Example: Predictors Useful for Individualized Treatment of HIV

Infected Patients

We apply our method to data from AIDS Clinical Trials Group Protocal 175 (ACTG175),

which is a double-blind study that evaluated treatment with either a single nucleoside or

two nucleosides in adults infected with human immunodeficiency virus type 1 (HIV-1)

(Hammer et al., 1996). The dataset contains 2139 HIV-infected subjects, where subjects

were randomized to four different treatment groups: zidovudine (ZDV) monotherapy,

ZDV+didanosine (ddI), ZDV+zalcitabine and ddI monotherapy. Following the primary

goal of the original study, we compare ZDV monotherapy (T = 0) to combination thera-

pies (T = 1) and aim to identify baseline predictors that are associated with differential

TE. We considered the long term immune response, defined as 96 (± 5) week CD4 counts,

CD496, as the continuous outcome which was also used in Tsiatis et al. (2008). To test

for predictors for ITR, we included 12 baseline covariates separated into 3 groups: (i)

demographic information including age, weight, race and gender; (ii) risk factors includ-

ing hemophilia status, homosexual activity, antiretroviral history, symptomatic status and

history of intravenous drug use; and (iii) functional markers including Karnofsky score,

baseline CD4 and baseline CD8 count. The goal is to test whether any group of covariates

significantly affects the absolute risk reduction by different treatments, so the variables

in the significant group can be used to guide treatment selection in the future. We ap-

ply the Wald test, our KM score test with kL, kQ and kG to each of the covariates group.

The results for the response being the continuous CD496 as defined are shown in Table

2.3(a). Our proposed method detected functional markers as being significantly predic-

tive of treatment response with p-value about 0.01 and the demographic variables as be-

ing marginally significant with p-value 0.07 when the gaussian kernel is employed. On

the other hand, the Wald test identified none of the predictor groups as significant.
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Table 2.3: P-value for testing the overall effects of different groups of baseline predictors
from the Wald test and the proposed KM score test with three kernels: kL, kQ and kG.

(a) Treatment Effect on week 96 CD4 counts ACTG175
demographic risk factors functional markers

Wald 0.18 0.96 0.27
kL 0.24 0.99 0.02
kQ 0.25 0.99 0.01
kG 0.07 0.72 0.01

(b) Treatment Effect on PGA Response with BEST Study

ICE PE HLT CLT CH
Wald 0.22 0.12 0.41 0.33 0.20
kL 0.19 0.04 0.51 0.38 0.18
kQ 0.05 0.09 0.13 0.06 0.23
kG 0.18 0.01 0.08 0.19 0.23

2.3.3 Example: Predictors Useful for Treatment of Patients with Ad-

vanced Chronic Heart Failure

We also illustrate the proposed procedures using the Beta-Blocker Evaluation of Survival

Trial (BEST), which is a randomized clinical trial to investigate if Bucindolol, a beta-

blocker, would benefit patients with advanced chronic heart failure (CHF) (of Survival

Trial Investigators et al., 2001). The 2-year BEST study had 2708 participants random-

ized to receive either Bucindolol or Placebo with equal probability. We considered the

Physician’s Global Assessment (PGA) as the primary response of interest. The PGA takes

seven ordinal levels (1-3: different levels of worsening, 4:no change, 5-7: different levels

of improvement) and we defined a binary outcome Y if the PGA ≥ 4, reflecting some

improvement. For baseline predictors, we considered four groups with grouping infor-

mation provided in the original study database: (i) Ischemic CHF Etiology (ICE; 6 co-

variates), including prior myocardio infarction, stenosis, coronary artery disease etiology

and so on; (ii) Physical Exam (PE; 14 covariates), including heart rate, blood pressure,

weight, height etc; (iii) Hematology Lab Test (HLT; 4 covariates): hematocrit, hemoglobin,

platelet, and white blood count; (iv) Chemistry Lab Test (CLT; 19 covariates), including
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Clucose, Sodium, Calcium etc; and (v) Cardiac History (CH; 9 covariates), including Du-

ration of CHF, Peripheral Vascular disease etc. The goal is to test whether any of these

groups are significantly associated with treatment difference with respect to the binary

outcome Y reflecting improvement in PGA.

Results given in Table 2.3(b) suggest that Physical Exam may be a strong predictor of

treatment difference with p-value 0.01 from the KM score test with kG. Results of the KM

test with kL and kQ are consistent with p-values 0.04 and 0.09, respectively. There is also

suggestive evidence that Ischemic and CHF etiology may be associated with treatment

response with a marginally significant p-value from the KM test with kQ although the

test is not significant for other kernels. Again, the Wald test failed to reject for any of the

predictor groups.

2.4 Discussion

In this paper, we proposed a KM based score test to identify informative baseline pre-

dictors that can be useful for individualized treatment selection. Our method is robust

due to the model-free construction of the statistic. Our proposed KM test is also generally

more powerful than the existing Wald test. Numerical studies suggest that our proposed

procedures could substantially outperform the Wald test, especially when testing for a

moderate number of predictors that are correlated with each other and/or when the un-

derlying effects are non-linear. Different kernel functions may be preferable for different

types of signals. Via the resampling approach, it is not difficult to construct an omnibus

test that combines information from multiple kernels, using procedures such as minimum

p-value as those illustrated in section 2.2.3.
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2.5 Appendix: Convergence of the Proposed Test Statistic

We can write the statistic (2.5) in terms of stochastic process:

Q̂ψ = n−1∆̂TKn∆̂ =

∫ ∫
k(x,x′)dΘ̂(x)dΘ̂(x′) (2.11)

where Θ̂(x) = n−
1
2

∑n
i=1

(Yi−Ȳ1)I(Ti=1)
π̂1

I(xi ≤ x)− n− 1
2

∑n
i=1

(Yi−Ȳ0)I(Ti=0)
π̂0

I(xi ≤ x).

In order to derive the influence function of Θ̂(x), we write the first part of Θ̂(x) in the

following way:

n−
1
2

n∑
i=1

(Yi − Ȳ1)I(Ti = 1)

π̂1

I(Xi ≤ x)

=n−
1
2

n∑
i=1

(Yi − µ1)I(Ti = 1)I(Xi ≤ x)

π1

− n
1
2

(Ȳ1 − µ1)

π1

[
n−1

n∑
i=1

I(Ti = 1)I(Xi ≤ x)

]
+ oP (1)

=n−
1
2

n∑
i=1

(Yi − µ1)I(Ti = 1)

π1

[
I(Xi ≤ x)− n−1

n∑
i=1

I(Ti = 1)I(Xi ≤ x)

]
+ oP (1)

=n−
1
2

n∑
i=1

(Yi − µ1)I(Ti = 1)

π1

[I(Xi ≤ x)−F(x)] + oP (1)

where F(x) = P (Xi ≤ x). Since by a uniform law of large numbers (ULLN) (Pollard,

1990), n−1
∑n

i=1
I(Ti=1)I(Xi≤x)

π1
converges in probability to its limit, F(x), uniformly in x.

Therefore,

Θ̂(x) = n−
1
2

n∑
i=1

θi(x) + oP (1), (2.12)

where
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θi =
(Yi − µ1)I(Ti = 1)

π1

[I(Xi ≤ x)−F(x)]− (Yi − µ0)I(Ti = 1)

π0

[I(Xi ≤ x)−F(x)]

=

[
(Yi − µ1)I(Ti = 1)

π1

− (Yi − µ0)I(Ti = 1)

π0

]
[I(Xi ≤ x)−F(x)] (2.13)

It’s not hard to show thatEθi(x) = 0. In addition, it follows from a functional central limit

theorem (Pollard, 1990) that Θ̂(x) converges jointly to a zero mean Gaussian processG(x).

By Lemma A.3 of Bilias et al. (1997) and the strong representation theorem, we have

(2.11)→
∫ ∫

k(x,x′)dG(x)dG(x′)
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3.1 Introduction

When several treatment options are available it is important to select an optimal treatment

for patients, since the effectiveness of interventions often varies by patient subgroups. For

example, the Trial Assigning Individualized Options for Treatment [Rx] (TAILORx) trial

(Sparano, 2006; Zujewski and Kamin, 2008) was developed to integrate the most mod-

ern diagnostic tests into clinical decision-making in order to individualize cancer treat-

ments, in which a gene-expression profile appears to be highly predictive of whether

chemotherapy is beneficial for treating breast cancer patients. The US Preventive Ser-

vices Task Force issued new guidelines recommending against routine mammography

screening for women under 50 (Nelson et al., 2009). Thus, better understanding of an

individual’s genomic and other biological characteristic enables more effective response

to human variability with improved specificity. Recent advancement of science and tech-

nology has led to the discovery of many biological and genetic markers associated with

disease outcomes and treatment responses. These new markers combined with tradi-

tional clinical assessments hold great potential for identifying subgroups of patients who

are most likely to benefit or are at high risk for toxicity from a particular therapy and thus

may lead to personalized or tailored medicine.

Motivated by the heterogeneous nature of treatment, a wide range of statistical meth-

ods have been developed for individualized treatment rules (ITRs), which is a decision

rule that recommends treatments based on an individual’s baseline characteristics (Qian

and Murphy, 2011; Song and Pepe, 2004; Cai et al., 2011a; Foster et al., 2011; Zhao et al.,

2012; Zhang et al., 2012; Zhao et al., 2013). While constructing ITRs, it is important to

include only the important markers, since including unrelated predictors will decrease

efficiency of the ITRs, while missing important predictors might result in loss of accu-

racy. Many variable selection procedures have been developed for identifying important

baseline predictors for treatment selection, including penalized procedures, detecting im-

portant interactive effect and many more (Gunter et al., 2011; Lu et al., 2013; Imai et al.,
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2013; Janes et al., 2011). However, many of the variable selection approaches are not con-

sistent in variable selection especially when the number of predictors is big. Instead, one

can test for a group of markers’ overall effect on treatment effect difference or split the

whole set of baseline predictors into meaningful sub-groups, and test for the influence of

each group on the effectiveness of treatment. For example, when genome-wide single-

nucleotide polymorphism (SNP) data is collected in a clinical trial, and we are interested

in whether this genetic information can be used to guide treatment selection, it will be

difficult to apply variable selection procedures appropriately in such a high-dimensional

setting. We can define sub-groups of SNPs within the same gene, and apply a test for

the effect of each gene on the treatment effect difference. We can further construct ITRs

based on the important genes. For future applications, we only need to obtain patients’

genetic information for the important genes used in the ITRs, so the cost will be reduced.

Therefore, it is important to develop a global statistical test to identify informative groups

of baseline predictors for treatment selection.

Standard testing procedure for identifying important predictors assume a generalized lin-

ear model (GLM) for the data that includes the interaction between treatment and base-

line predictors of interest, and a Wald test can be applied to test for the significance of the

interaction. Such a procedure suffers from two major limitations. First, if we are inter-

ested in the treatment effect difference scale, in the case of linear outcome and the identity

link function in the GLM, the effect of baseline predictors on the treatment effect differ-

ence is complete captured by the coefficient for the interaction term. However, in the case

of binary outcome within non-linear link function, the effect of baseline predictors on the

treatment effect difference has a complex form depending on the form of the link func-

tion and main effects of baseline predictors as well as interactive effect between treatment

and baseline predictors. Therefore, the interaction term may not entirely capture mark-

ers’ ability in predicting subject specific treatment effect. Second, we might encounter the

situation where only a small number of baseline predictors in the group affect the effec-
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tiveness of treatment, in which case the Wald test will lose power due to the sparsity of

the signal.

The sparsity problem is often encountered in genetic association studies. For example, it

has been shown in the analysis of GWAS that there may not be enough power to test single

SNPs for marginal associations (Manolio et al., 2009). As a result, region-based analyses

have become more popular in genetic association studies (Li and Leal, 2008). Genes, gene

networks, and pathways are examples of SNP-sets that contain sparse subsets of SNPs

that can contribute to disease risk. Due to the complexity of human disease, methodology

that does not require strong marginal SNP effects but is capable of aggregating these small

and sparse SNP effects together into a detectable signal is needed. The higher criticism

(HC) has been used in SNP-set tests that combine information over all the marginal test

statistics, and is ideal for detecting a sparse few disease-associated SNPs out of a much

larger pool of unassociated SNPs than comparable methods (Arias-Castro et al., 2011; Wu

et al., 2014). The generalized higher criticism (GHC) (Barnett et al., 2015) further takes into

account the correlation among predictors and proposes an approach to calculate p-values

analytically.

Inspired by the drawbacks of Wald test and the properties of GHC, we propose a scale-

independent score test (GHC-ST) to identify important baseline predictors for guiding

treatment selection, in which we incorporate the GHC to improve power for detecting

groups containing a sparse few signals. When the predictors are correlated, because

the Wald test considers each predictor’s relationship with treatment effect conditional

on the other predictors, signal can be masked by multicollinearity. By instead relying on

marginal predictor effects, GHC avoids this problem and can even boost signal by allow-

ing the noise predictors to inherit marginal effects. Simulation results suggest that the

proposed procedure out-performs the traditional Wald test in various settings when the

signal is sparse. The rest of the paper is organized as follows. We introduce the Wald

test and the scale-independent score statistic for identifying important groups of baseline
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predictors in section 3.2.1 and 3.2.2, we implement GHC in this context in section 3.2.3,

and we proposed a omnibus test combing the ST and GHC-ST in section 3.2.4. Simulation

and real data analysis results are in section 3.3 and 3.4, respectively.

3.2 Identifying Informative Baseline Predictors for Treat-

ment selection

3.2.1 Wald Test for Identifying Informative Baseline Predictors for

Treatment Selection

Suppose data for analysis comes from a randomized clinical trial (RCT), and consist of

independent and identically distributed random variables {(Yi, Ti,XT
i )

T, i = 1, . . . , n},

where Y is the disease outcome, T is a binary treatment indicator (1 for new treatment

and 0 for standard treatment), and X represents p-dimensional baseline predictors. let

α0 be the intercept, β0 be the coefficient of the main effect of treatment T , β1 be the

p-dimensional coefficient for the main effect of baseline predictions, and β2 be the p-

dimensional coefficient for the interaction between treatment and baseline predictors. The

following regression model with link function g() is assumed for the data:

E(Y |T,X) = g(α0 + β0T + βT

1X + TβT

2X). (3.1)

The goal is to examine whether X is informative for guiding treatment selection, or in

other words, whether the difference between two treatments’ effects differs with different

levels of baseline predictors. We can check for such a dependency by examining the inter-

active effect between X and T , which leads to the following hypothesis testing problem:

H0 : β2 = 0,

46



and a traditional Wald test can be applied for such testing. We first get the MLE of β =

(α0, β0,β1,β2) and its variance-covariance matrix Σβ: β̂ = argmaxβ ̂̀(β; X, T ) and Σ̂β ={
∂2

∂β2
̂̀(β̂; X, T, Y )

}−1

, where ̂̀(β; X, T, Y ) = n−1
∑n

i=1 log f(xi, ti, yi|β) is the likelihood for

the observed data. The Wald test statistic for β2 takes the form β̂T
2Σ̂
−1
β2
β̂2, where β̂2 is the

sub-vector of β̂ corresponding to the interaction term and Σ̂β2 is the sub-matrix of Σ̂β

corresponding to β2. The statistic follows a χ2
p distribution under the null hypothesis.

3.2.2 Score Test for Identifying Important Baseline Predictors for Treat-

ment Selection

As was discussed in the introduction, when we are interested in treatment effect differ-

ence scale and g is nonlinear, the interaction in (3.1) may not entirely capture markers’

ability in predicting subject-specific treatment effect. So we want to quantify the treat-

ment effect of X based on conditional treatment difference ∆(X) = µ1(X)−µ0(X), where

µk(X) = E(Y (k)|X), k = 0, 1, and Y (1) and Y (0) are the counterfactual outcomes under

new and standard treatment, and examine whether this quantity is X-dependent. Thus

we proposed the following hypothesis testing statement:

H0 : µ1(X)− µ0(X) = ∆0, (3.2)

where µk = Eµk(X), k = 1, 2, ∆0 = µ1 − µ0, since if X is not informative for treatment

selection, the treatment difference is a constant with respect to X. It’s not hard to see that

under (3.2), the covariance between X and treatment difference is 0:

γ = cov
{
Y (1) − Y (0),X

}
= E

{
(Y (1) − Y (0) −∆0)X

}
= 0,

and γ is a p dimensional vector with each element being the covariance between treatment

T and each of the p baseline predictors. Since γ is intuitively a measure of the dependency
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between treatment difference and X, we proposed to focus on the following hypothesis

testing problem:

H0 : γ = 0 (3.3)

And we aim to find a sample estimate of γ, γ̂ and a test statistic summarizing the over-

all magnitude of γ̂. We first obtain an empirical estimate of γ based on the observed

RCT data. Specifically, by employing an inverse probability weighting (IPW) estimator

(Rotnitzky and Robins, 2005) for the counterfactuals, we estimate γ as

γ̂ = n−1

n∑
i=1

δ̂iXi (3.4)

where δ̂i = (Yi−Ȳ1)I(Ti=1)
π̂1

− (Yi−Ȳ0)I(Ti=0)
π̂0

, Ȳk = n−1
k

∑
{Ti=k} Yi, nk =

∑n
i=1 I(Ti = k), and

π̂ = nk

n
, k = 1, 2.

The large sample property of γ̂ can be obtained through the influence functions:

n
1
2 γ̂ = n−

1
2

n∑
i=1

θi(X) + op(1),

where θi(X) =
{

(Yi−µ1)I(Ti=1)
π1

− (Yi−µ0)I(Ti=1)
π0

}
{Xi − E(X)}. By law of large numbers, it is

straightforward to get the convergence property: n
1
2γ → N(0,Σγ̂), where

Σγ̂ =Var{θi(X)} = Eθi(X)θi(X)T

An empirical estimate of Σγ̂ is:

Σ̂γ̂ = n−1

n∑
i=1

θ̂i(X)θ̂i(X)T, (3.5)

where θ̂i(X) = δ̂i(Xi − X̄), X̄ = n−1
∑n

i=1 Xi.
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We can then summarize the overall effect of X based on L2 norm of (3.4) and propose

the test statistic Q̂ = ||n 1
2 γ̂||22. In order to obtain the p-value for Q̂, we propose to ap-

proximate the null distribution of Q̂ via perturbation resampling, which has been used

successfully in the literature to approximate the distribution of a wide range of regu-

lar estimators (Park and Wei, 2003; Cai et al., 2005; Tian et al., 2007). Specifically, for a

large number B (=1000), we generate independent standard normal random variables,

{V(b) = (V
(b)

1 , ..., V
(b)
n ), b = 1, ..., B}, independent of the observed data. For b = 1, ..., B, let

γ̂(b) = n−1

n∑
i=1

θ̂i(X)V
(b)
i ,

be the bth perturbed realization of γ̂, and calculate the L2 norm Q̂(b) = ||n 1
2 γ̂(b)||22, b =

1, ..., B. For an observed Q̂, the p-value can be estimated as 1
B

∑B
b=1 I(Q̂(b) > Q̂). We call

the testing procedure based on Q̂ the score test (ST).

3.2.3 Sparsity Assumption and Incorporating Generalized Higher Crit-

icism

In many real world problems, only a sparse few of the group of baseline predictors are

informative. We can take this into account by equivalently assuming only a small number

of elements in γ are non-zero, and formulate the following hypothesis testing problem:

H0 : γ = 0

H1 : γ 6= 0, γ is sparse (3.6)

Under hypothesis testing statement (3.6), the Wald test and the ST might result in reduced

power due to the sparsity, since their test statistic allow for the noise to drown the signal.

Therefore, we propose implementing statistical testing procedure that detects sparse sig-

nals. The higher criticism (HC) (Donoho and Jin, 2004) combines information over all the
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marginal test statistics within a set, and is ideal for detecting a sparse few signals out of

a much larger pool of candidate variables, and has been shown to be powerful for high

sparsity situations. The HC has been successfully applied in SNP-set test where there are

a sparse few disease associated SNPs out of a much larger pool of unassociated SNPs,

and achieves greater power than comparable methods (Arias-Castro et al., 2011). In our

case, γ̂ is an asymptotic multivariate normal random variable, with a mean vector 0 un-

der H0, variance-covariance matrix estimate (3.5), and sparse under H1. If we assume the

p elements in γ̂ are independent, let Φ̄(z) be the survival function of the standard normal

distribution and S(z) =
∑p

j=1 I{|γj |≥z}, the HC test statistic is

ZHC = sup
z>0

(
S(z)− 2pΦ̄(z)

[2pΦ̄(z){1− 2Φ̄(z)}]1/2

)
(3.7)

If we allow p → ∞, ZHC converges to a Gumbel distribution with a very slow rate

of O{(log p)−1/2}. HC is original designed for high dimensional settings with indepen-

dence variables, and for the case where there exists non-identity correlations among γ̂i,

i = 1, · · · , p, an innovated higher criticism test statistic (iHC) is proposed to use trans-

formed γ̂? = U−1γ̂ ∼ MVN(0, Ip), where UUT = Σ̂ is the Cholesky decomposition and

Σ̂ is the variance covariance matrix estimate of γ̂? (Hall et al., 2010).

Barnett et al. (2015) discussed about the drawbacks of the original HC and iHC approach.

The slow rate of convergence of the HC statistic causes the size of the test to be drasti-

cally incorrect when using the asymptotic distribution to calculate p-values for p as large

as a million (Barnett and Lin, 2013). When correlation exists among covariates, the iHC

also has the drawback of having to first transform the marginal test statistics from γ̂ into

γ̂?. In the presence of even moderately small correlation, this can lead to significant loss

of power due to the noise diluting the sparse signals after being mixed in the transfor-

mation. In addition, for stronger correlations the matrix inverse operation can be quite

unstable. Barnett et al. (2015) used the original statistic γ̂ and analytically calculate the
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variance covariant matrix of S(t), and proposed the generalized higher criticism (GHC)

test statistic as

ZGHC = sup
z>0

(
S(z)− 2pΦ̄(z)

V̂ arS(z)1/2

)
(3.8)

where V̂ arS(z) is the sample estimate for the variance of S(z) under H0. A p-value calcu-

lation for GHC in finite p settings that does not rely on asymptotic is also proposed.

The conditions of the GHC is met in our previous section with the asymptotic normal

property of γ̂ as well as the sample estimate for the variance-covariance matrix (3.5), and

the p-value calculation procedure in Barnett et al. (2015) is applied. We call this test GHC-

ST. By implementing the GHC procedure, we expect to observe improved power over the

Wald test and the ST in the situations where only a small number of baseline predictors

are informative.

3.2.4 The Omnibus Test

As is demonstrated in section 3.2.2 and 3.2.3, the strengths and weakness of ST are very

different from those of GHC-ST, making the two tests natural complements. This moti-

vates the combining of the two tests into a robust omnibus test. Letting τ̂G be the p-value

of the GHC-ST test and letting τ̂S be the p-value of the ST test, we define the omnibus test

statistic to be τ̂OMNI = min{τ̂G, τ̂S}. We reject H0 for small values of τ̂OMNI .

The dependence between τ̂G and τ̂S is not trivial to characterize, and so the analytic dis-

tribution of τ̂OMNI under H0 is difficult to obtain. Instead we opt to approximate its dis-

tribution through simulation of the joint null distributions of τ̂S and τ̂G by a perturbation

resampling procedure. We perturb the γ̂ as described in (3.2.3), and carry out both ST

and GHC-ST on γ̂(b) and result in τ̂ (b)
S and τ̂

(b)
G , b = 1, ..., B. The null distribution of τ̂OMNI

is approximated by τ̂ (b)
OMNI , where τ̂ (b)

OMNI = min{τ̂ (b)
G , τ̂

(b)
S }, b = 1, ..., B, and the p-value of

τ̂OMNI can be estimated as 1
B

∑B
b=1 I(τ̂

(b)
OMNI ≤ τ̂OMNI).
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3.3 Simulation Study

We carried out a simulation study to compare the performances of the Wald test, the

ST, our proposed GHC-ST method and the Omnibus test, under settings with different

sparsity of signals, and correlation structures among predictors. The treatment indicator

T is generated from Bernoulli(0.5), and the baseline predictor Xp×1 was generated from

MVN(0, Σp×p). Σp×p takes two types of structure: (i) AR-1 correlation: ΣAR−1
i,j = 4ρ|i−j|; (ii)

block exchangeable (assuming the first p1 predictors are informative):

ΣBlock =

 4ρ1 + 4(1− ρ1)Ip1 ρ2

ρ2 4ρ3 + 4(1− ρ3)Ip−p1

 ,
where ρ1 measures the correlation among informative predictors, ρ3 measures the corre-

lation among noise predictors, and ρ2 measures the correlation of each pair of informative

predictor and noise predictor. We studied both continuous and binary outcome, and we

considered a total sample size of n = 1000. The results are based on 1000 simulations for

power calculation, and 5000 simulations for size calculation.

First, the AR-1 correlation structure is adopted. For continuous outcome, Y is generated

from the regression model Y = 2T + h0(X) + h1(X)T + ε, where ε follows a standard nor-

mal distribution. We considered the H0 setting and 7 H1 settings for the predictor effect

functions h0(X) and h1(X):

Null: h0(X) = 0; h1(X) = 0

Alternative: h0(X) = X1/20; h1(X) =
1
√
p1

p1∑
i=1

Xi/10, ; p1 = 1, ..., 7

For the alternative settings, we fix the total number of predictor to be 35, the overall signal

strength (L2 norm of the coefficient vector), and and examine how the relative power of
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different methods vary with diluted interactive signal.

For binary outcome, Y is generated from logistic regression model logit{P (Y = 1)} =

0.3T + h0(X) + h1(X)T . Again, we considered the H0 setting and 7 H1 settings:

Null: h0(X) = 0; h1(X) = 0

Alternative: h0(X) = X1/5; h1(X) =
1
√
p1

p1∑
i=1

Xi/5, ; p1 = 1, ..., 7

And we carried out simulations for ρ = 0.2 and ρ = 0.5.

Secondly, the block exchangeable correlation structure and the binary outcome is

adopted. We fix the total number of predictors to be 30, and h0(X) = X1/2.5; h1(X) =

1√
2
(X1/2.5 + X2/2.5). We carried out four combinations of ρ1, ρ3 = 0 or 0.4, and var-

ied ρ2 for non-negative multiples of 0.05 or 0.01 that result in positive definite variance-

covariance matrix ΣBlock.

In table 3.1 and table 3.2, we present sizes for Wald test, ST, GHC-ST and the Omnibus

test. Under H0, the empirical sizes of all procedures are reasonably close to the nominal

level of 0.05. We also carried out size simulation with sample size n = 500 (results not

shown), in which case the ST, GHC-ST and Omnibus test maintain the correct size, but

the Wald test has very conservative size due to the poor model fitting. It demonstrated

the disadvantage of Wald test when we have a bigger number of predictors.

The power curves under the AR-1 correlation structure is shown in figure 3.1. We observe

that the GHC-ST performed better than the ST when the number of informative predic-

tors is small; while when the number of informative predictors increases though keeping

the overall signal strength unchanged, the ST outperformed GHC-ST, with a cross-over

point depending on ρ. Also notice that after the cross-over point, the power difference

between ST and GHC-ST increases as p1 increases. This is because the ST is more and

more powerful with decreasing of sparsity, so the ST which includes information from all
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Table 3.1: Sizes for Wald test, ST, GHC-ST and Omnibus test with continuous outcome,
under different correlation and total number of predictors

correlation method p=5 p=10 p=15 p=20 p=25 p=30 p=35
ρ = 0.5 Wald 0.05 0.06 0.05 0.06 0.05 0.05 0.05

ST 0.05 0.05 0.05 0.05 0.06 0.05 0.05
GHC-ST 0.05 0.05 0.06 0.05 0.06 0.05 0.05
Omnibus 0.05 0.05 0.05 0.05 0.06 0.05 0.05

ρ = 0.2 Wald 0.05 0.05 0.05 0.05 0.05 0.06 0.06
ST 0.05 0.05 0.05 0.04 0.05 0.04 0.04
GHC-ST 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Omnibus 0.05 0.05 0.06 0.05 0.05 0.05 0.05

Table 3.2: Sizes for Wald test, ST, GHC-ST, and Omnibus test with binary outcome, under
different correlation and number of predictors

correlation method p=5 p=10 p=15 p=20 p=25 p=30 p=35
ρ = 0.5 Wald 0.04 0.04 0.05 0.04 0.04 0.04 0.04

ST 0.05 0.05 0.05 0.05 0.05 0.05 0.05
GHC-ST 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Omnibus 0.05 0.05 0.05 0.05 0.05 0.05 0.05

ρ = 0.2 Wald 0.05 0.05 0.05 0.04 0.04 0.04 0.04
ST 0.05 0.05 0.06 0.04 0.05 0.04 0.05
GHC-ST 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Omnibus 0.05 0.05 0.06 0.05 0.05 0.05 0.05
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the predictors start to gain power. The omnibus test is able to take advantage of the more

powerful test, and the power stays close to the more powerful test regardless of p1. The

Wald test has the lowest power, which might be due to the big number of predictors as

well as the high correlation among the predictors.

Figure 3.2 shows under block exchangeable correlation structure, the power changes with

ρ2, with fixed ρ1 and ρ3. We observed similar power curve pattern as Figure 3.1. There

is a significant power increase with increasing ρ2 for the ST; while the GHC-ST is rela-

tively robust in terms of correlation between informative and noise predictors. It shows

that when there is high correlation between informative predictors and noise predictors,

the exchangeable correlation structure allow the informative predictors to share signal

with the noise predictors. Since the ST statistic takes into account signal from all the pre-

dictors, the power of ST is very sensitive to how significantly the informative predictors

contribute to the primary source of variability in the full set of predictors. If the noise

drives this variability, as is the case when signals are sparse, ρ2 is low, and ρ3 is large, then

the power of ST is greatly diminished. In this case, as ρ2 increases the informative predic-

tors are allowed a greater share in this primary direction of variability, the gains in power

are drastic. The power of GHC-ST is robust to these artifacts of the correlation structure

because GHC-ST thresholds only the largest components of γ̂. This means that even if

the noise predictors drive the variability, their corresponding components of γ̂ will still

be small and so they will be ignored after thresholding.

We expect GHC-ST to be more powerful than ST when signals is sparse. Intuition that the

higher criticism is powerful for sparse signals is borne out of the traditional treatments

of the higher criticism, which only considered low correlation settings (Donoho and Jin,

2004; Arias-Castro et al., 2011). However, we have observed that in some sparse cases

ST outperforms GHC-ST. The reason for this counterintuitive result is due to the strong

correlation structures we consider. When the signals are sparse, the noise can inherit a

marginal association with outcome if it is strongly correlated with a signal. As a result,
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Figure 3.1: Power of four methods, with 30 predictors and fixed overall effect size spread
over different numbers of predictors
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a sparse signal can appear dense in the presence of some stronger correlation structures,

leading to an improvement in the power of ST, even boosting it over that of GHC-ST in

some cases. The power of GHC-ST is higher with ρ1 = 0.4 when compared to ρ1 = 0,

which is caused by the sharing of the signals across informative predictors, boosting the

marginal test statistics of the informative predictors.

3.4 Data Example: Detecting Informative Baseline Predic-

tors for HIV Treatment Selection

We apply our method to data from AIDS Clinical Trials Group Study 175 (ACTG 175),

which is a double-blind study that evaluated treatment with either a single nucleoside or

two nucleosides in adults infected with human immunodeficiency virus type 1 (HIV-1)

(Hammer et al., 1996). The dataset contains 2139 HIV-infected subjects, where subjects

were randomized to four different treatment groups: zidovudine (ZDV) monotherapy,

ZDV+didanosine (ddI), ZDV+zalcitabine and ddI monotherapy. Following the primary

goal of the original study, we compare ZDV mono therapy (T = 0) to combination ther-

apies (T = 1), and aim to identify baseline predictors that associated with differential

treatment effectiveness.

In the study, the primary endpoint was time to the first ≥ 50% decline in CD4 count,

and AIDS-defining event or death. The results from survival analysis on the primary

endpoint, as well as other analysis such as adverse events, responses of CD4 Cell counts

showed the combination therapies slows the progression of HIV disease and is superior to

ZDV mono therapy. There has been subsequent discussion about the efficacy of the com-

bination therapies for HIV (Laskey and Siliciano, 2014; Salam and Pozniak, 2014). With

the development of personalized medicine, people focus more on the individualization

of different treatments by integrating individual’ clinical and genetic information, rather

than using the “average” clinical trial result to assign treatment. Thus, from the ACTG175

58



study data, people are interested in building ITR for HIV based on the baseline informa-

tion measured in the study. For example, based on the 12 baseline covariates provided

in the study, which include five continuous variables: age (years), weight(kg), Karnof-

sky score(scale of 0-100), CD4 count (cells/mm3) at baseline and CD8 count (cells/mm3)

at baseline, and seven binary covariates: hemophilia (hemo; 0=no, 1=yes), homosexual

activity (homo; 0=no, 1=yes), history of intravenous drug use (intra; 0=no, 1=yes), race

(0=white, 1=non-white), gender (0=female, 1=male), antiretroviral history (anti; 0=naive,

1=experienced), and symptomatic status (symp; 0=asymptomatic, 1=symptomatic), Geng

et al. (2014); Ma et al. (2015) derived the optimal treatment regime to maximize the mean

log survival time and to select important predictors that are needed for deriving the op-

timal treatment regime. Lu et al. (2011) aimed to find the optimal treatment to maximize

the expected CD4 count at 20± 5 weeks post-baseline by applying their proposed method

to identify variables that are involved in the decision rule as well as building the optimal

treatment strategy. Their analysis didn’t identify any important baseline covariate that is

informative for treatment selection between the ZDV mono therapy and the combination

therapies.

We apply our methods to the ACTG 175 data, trying to test whether the 12 baseline covari-

ates as listed above as a group can be used for treatment selection. We can subsequently

use the 12 baseline covariates to build ITR if any significant signal is detected. Follow-

ing Tsiatis et al. (2008), Zhang et al. (2008) and Lu et al. (2013), we chose the CD4 count

(cells/mm3) at 96 ± 5 weeks post-baseline as the primary continuous response Y con. We

also defined a responder versus non-responder binary outcome by defining Y bin = 1, if

the CD4 count at 96 ± 5 weeks is bigger than 500 cells/mm3 and at least 50 cells/mm3

increase existing comparing 96 ± 5 weeks to the baseline and Y bin = 0 otherwise. We

first did Wald test for interaction between each of the 12 variables and the treatment. In

particular, in model 3.1, we let the baseline predictor variable X to contain each of the

12 variables one at a time and carry out the Wald test. The p-values resulted from single
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variable test are in table 3.3.

The signal variable effect Wald tests show that only weight and CD8 count at baseline

have significant effect on the treatment effect difference, in both continuous outcome case

and the binary outcome case. We then applied the Wald test, ST, and GHC-ST to the 12

covariates as a group. When we treated the CD4 count at 96 ± 5 weeks as continuous

outcome, the Wald test of 12 covariates as a group resulted in a p-value of 0.55, the ST

had a p-value of 0.09, and the GHC-ST had a p-value of 0.01. When we threshold the

outcome and use the binary outcome Y bin, the Wald test resulted in a p-value of 0.38,

while the ST had a p-value of 0.06 and the GHC-ST had a p-value of 0.05. The results

well demonstrated that when we have sparse signals among a bigger number of total

predictors, the Wald test has low power in detecting the signal, well the ST and GHC-ST

can better detect the signal by either implicitly leverage the effective degree of freedom

or by thresholding the signal and excluding the noise. Comparing ST to GHC-ST, the

GHC-ST came up with a slightly more significant result, which marginally showed the

advantage of applying the GHC procedure in the testing.

Table 3.3: P-values of Wald test for interaction between each baseline covariate and treat-
ment

age weight race gender hemo homo anti symp intra Karnofsky CD4 CD8
Y con 0.85 0.02 0.98 0.85 0.87 0.99 0.99 0.88 0.95 0.17 0.63 0.02
Y bin 0.99 0.07 0.42 0.74 0.35 0.48 0.47 0.52 0.35 0.12 0.59 0.01

3.5 Discussion

In this paper, we proposed a scale-independent score test procedure to identify infor-

mative baseline predictors for treatment selection. We also incorporated GHC to detect

sparse signals. Our method has advantage over the existing Wald test through the model-

free construction of the statistic and thresholding signals via the GHC procedure. Our
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numerical studies suggest that our proposed method maintains a more accurate size com-

paring to the Wald test, and also, under situations with sparse signal or strong correlation

among predictors, our proposed procedure achieves a much larger power comparing to

the Wald test.
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ARIAS-CASTRO, E., CANDÈS, E. J., PLAN, Y. ET AL. (2011). Global testing under sparse

alternatives: Anova, multiple comparisons and the higher criticism. The Annals of Statis-

tics 39 2533–2556.

BARNETT, I. and LIN, X. (2013). Analytic p-value calculation for the higher criticism test

in finite p problems. Manuscript .

BARNETT, I., MUKHERJEE, R. and LIN, X. (2015). The generalized higher criticism for

testing snp-sets in genetic association testing. Manuscript .

BILIAS, Y., GU, M., YING, Z. ET AL. (1997). Towards a general asymptotic theory for cox

model with staggered entry. The Annals of Statistics 25 662–682.

BISHOP, C. M. ET AL. (2006). Pattern recognition and machine learning, vol. 1. springer New

York.

BRAUN, M. L. ET AL. (2005). Spectral properties of the kernel matrix and their relation to kernel

62



methods in machine learning. Ph.D. thesis, PhD thesis, Friedrich-Wilhelms-Universität

Bonn, 2005.

BREIMAN, L. and SPECTOR, P. (1992). Submodel selection and evaluation in regression:

the x-random case. International Statistical Review/Revue Internationale de Statistique 60

291–319.

CAI, T., TIAN, L., SOLOMON, S. D. and WEI, L. (2008). Predicting future responses based

on possibly mis-specified working models. Biometrika 95 75–92.

CAI, T., TIAN, L. and WEI, L. (2005). Semiparametric box–cox power transformation

models for censored survival observations. Biometrika 92 619–632.

CAI, T., TIAN, L., WONG, P. H. and WEI, L. (2011a). Analysis of randomized compara-

tive clinical trial data for personalized treatment selections. Biostatistics 12 270–282.

CAI, T., TONINI, G. and LIN, X. (2011b). Kernel machine approach to testing the signifi-

cance of multiple genetic markers for risk prediction. Biometrics 67 975–986.

CARDOSO, J. S. and DA COSTA, J. F. P. (2007). Learning to classify ordinal data: The data

replication method. Journal of Machine Learning Research 8 6.

CHU, W. and KEERTHI, S. S. (2005). New approaches to support vector ordinal regres-

sion. In Proceedings of the 22nd international conference on Machine learning. ACM.

CRISTIANINI, N. and SHAWE-TAYLOR, J. (2000). An introduction to support vector machines

and other kernel-based learning methods. Cambridge university press.

CRISWELL, L. A., PFEIFFER, K. A., LUM, R. F., GONZALES, B., NOVITZKE, J., KERN,

M., MOSER, K. L., BEGOVICH, A. B., CARLTON, V. E., LI, W. ET AL. (2005). Analysis

of families in the multiple autoimmune disease genetics consortium (madgc) collection:

the ptpn22 620w allele associates with multiple autoimmune phenotypes. The American

Journal of Human Genetics 76 561–571.

63



DAVIES, R. B. (1977). Hypothesis testing when a nuisance parameter is present only

under the alternative. Biometrika 64 247–254.

DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous

mixtures. Annals of Statistics 962–994.

DUFFY, M. J. and CROWN, J. (2008). A personalized approach to cancer treatment: how

biomarkers can help. Clinical chemistry 54 1770–1779.

FAULKENBERRY, G. D. (1973). A method of obtaining prediction intervals. Journal of the

American Statistical Association 68 433–435.

FOSTER, J. C., TAYLOR, J. M. and RUBERG, S. J. (2011). Subgroup identification from

randomized clinical trial data. Statistics in medicine 30 2867–2880.

GALIMBERTI, G., SOFFRITTI, G. and DI MASO, M. (2012). Classification trees for ordinal

responses in r: The rpartscore package. Journal of Statistical Software 47 1–25.

GENG, Y., ZHANG, H. H. and LU, W. (2014). On optimal treatment regimes selection for

mean survival time. Statistics in medicine .

GOLUB, G. H., HEATH, M. and WAHBA, G. (1979). Generalized cross-validation as a

method for choosing a good ridge parameter. Technometrics 21 215–223.

GUNTER, L., ZHU, J. and MURPHY, S. (2011). Variable selection for qualitative interac-

tions. Statistical methodology 8 42–55.

HALL, P., JIN, J. ET AL. (2010). Innovated higher criticism for detecting sparse signals in

correlated noise. The Annals of Statistics 38 1686–1732.

HAMMER, S. M., KATZENSTEIN, D. A., HUGHES, M. D., GUNDACKER, H., SCHOOLEY,

R. T., HAUBRICH, R. H., HENRY, W. K., LEDERMAN, M. M., PHAIR, J. P., NIU, M.

ET AL. (1996). A trial comparing nucleoside monotherapy with combination therapy

64



in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic millimeter. New

England Journal of Medicine 335 1081–1090.

HAREL, M. and SHOENFELD, Y. (2006). Predicting and preventing autoimmunity, myth

or reality? Annals of the New York Academy of Sciences 1069 322–345.

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. and FRANKLIN, J. (2005). The elements of

statistical learning: data mining, inference and prediction. The Mathematical Intelligencer

27 83–85.

HSU, C.-W. and LIN, C.-J. (2002). A comparison of methods for multiclass support vector

machines. Neural Networks, IEEE Transactions on 13 415–425.

IMAI, K., RATKOVIC, M. ET AL. (2013). Estimating treatment effect heterogeneity in ran-

domized program evaluation. The Annals of Applied Statistics 7 443–470.

JACOBSON, D. L., GANGE, S. J., ROSE, N. R. and GRAHAM, N. M. (1997). Epidemiology

and estimated population burden of selected autoimmune diseases in the united states.

Clinical immunology and immunopathology 84 223–243.

JANES, H., PEPE, M. S., BOSSUYT, P. M. and BARLOW, W. E. (2011). Measuring the

performance of markers for guiding treatment decisions. Annals of internal medicine 154

253–259.

JESKE, D. R. and HARVALLIE, D. A. (1988). Prediction-interval procedures and (fixed-

effects) confidence-interval procedures for mixed linear models. Communications in

Statistics-Theory and Methods 17 1053–1087.

KIMELDORF, G. S. and WAHBA, G. (1970). A correspondence between bayesian esti-

mation on stochastic processes and smoothing by splines. The Annals of Mathematical

Statistics 41 495–502.

65
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