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Investigating and exploiting metabolic vulnerabilities in cancer 

Abstract 

Fuel metabolism in healthy cells is not sufficient to sustain the biosynthetic and 

energetic demands of cancer. For a normal cell to transform to a rapidly dividing tumor 

cell, metabolism must be dramatically altered in a process called metabolic 

reprogramming, characterized by increased nutrient uptake and re-purposing. As we 

move toward a future of personalized medicine, there is new opportunity in targeting the 

metabolic requirements specific to an individual’s tumor. To this end, it is critical to 

understand molecular drivers that cancer cells hijack to modify metabolism.  

 In this dissertation, I describe three studies on enzymes and metabolic pathways 

that shed light on molecular regulation of metabolic reprogramming in cancer. First, we 

screened for substrates of SIRT4, a mitochondrial sirtuin that promotes metabolic 

homeostasis and suppresses cancer by mechanisms not well understood. We used 

proteomics to identify hyperacetylated mitochondrial proteins in SIRT4 knockout mouse 

tissues compared to wildtype. We find SIRT4 binds and inhibits pyruvate carboxylase, an 

enzyme important for refueling the TCA cycle in cancer, indicating SIRT4 may target 

this node in tumor metabolism.  Second, we reveal a role for prolyl hyrdoxylase domain 

(PHD) 3 in coordinating cancer cell addition to fat catabolism. In biochemical and 

cellular studies, we find PHD3 hydroxylates and activates acetyl-CoA carboxylase 

(ACC2) to repress fatty acid oxidation (FAO). Loss of this regulatory axis in leukemia 

enables greater utilization of fatty acids as fuel, and also serves as a liability by rendering 
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cells susceptible to FAO inhibition. Finally, we used metabolomics to define alterations 

caused by the diabetes drugs metformin and phenformin to better understand their anti-

cancer properties. We analyzed the drugs’ effects on cells undergoing neoplastic 

transformation and on cancer stem cells (CSCs), a small population that possesses 

predominant tumor-initiation capacity and is selectively inhibited by metformin. We 

show metformin and phenformin induce changes that oppose cancer cell survival by 

eliciting a nutrient crisis during transformation and depleting nucleotide triphosphates in 

CSCs. In sum, these findings contribute to the future potential to impede nutrient 

switches in cancer, thus turning the metabolic dependencies of cancer cells into metabolic 

vulnerabilities. 
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CHAPTER I 

Introduction1 

It is more relevant than ever to understand how metabolism influences tumor 

growth. Metabolic dependencies of cancer cells are increasingly being realized as 

promising candidates for therapeutic interventions in cancer[1-3]. A vast number of 

studies validate the notion that metabolic dysfunction is not just a consequence of cancer 

growth but rather a driving factor in tumor progression[4, 5]. Indeed, altered metabolism 

enables tumor cells to fuel a number of processes, such as amassing a pool of 

biosynthetic precursors, constructing signaling molecules, generating metabolites for 

post-translational or epigenetic modifications, and maintaining pH and redox 

homeostasis[6, 7]. Furthermore, metabolic dysfunction has positioned itself at the 

forefront of cancer research with the recognition of the undeniable connection between 

increased cancer incidence and the background of obesity and metabolic disease, 

pathologies that have reached epidemic proportions in the United States and much of the 

world[8-11]. It is critical to fully understand the altered metabolism of tumor cells and 

the pathways that might promote or oppose this metabolic dysfunction. 

Central to metabolic regulation in cancer are cellular decisions coordinating fuel 

preference and utilization.  Our cells may be simultaneously exposed to multiple 

nutrients, and the choice of which fuel to take up and how to use it directs the function of 

the cell, for example driving growth, energy production, differentiation or stress 

response[12]. Because altered nutrient consumption and utilization are hallmarks of 

                                                
1 This chapter contains modified portions of a review article written by Natalie German 
that has been submitted for publication in Current Biology. 
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cancer, it is vital to characterize the regulatory nodes that coordinate fuel preference and 

fate, and to understand how these pathways might contribute to cancer.  

Research in the field of cell metabolism has highlighted families of proteins that 

sense the nutrient state and instigate appropriate metabolic responses. Our cells have 

evolved diverse enzymes capable of detecting nutrient availability and bioenergetic status 

and consequently adjusting cellular behavior to promote growth, survival or to deal with 

stress[13, 14]. Many of these enzymes modulate cell metabolism through post-

translational modification of metabolic enzymes, transcription factors or components of 

signaling pathways. When metabolite-sensing enzymes are dysfunctional, downstream 

effector proteins can be inappropriately modified, leading to the altered metabolism that 

characterizes cancer cells[15].  

With this landscape in mind, the overarching goal of this thesis was to understand 

how nutrient sensing pathways in the cell control fuel utilization and furthermore to 

assess the relevance of these regulatory nodes in cancer. Through studies such as this, our 

expanding knowledge of how tumor cells use fuel can propel future development of 

targeted cancer treatments.  To discover novel regulatory nodes in cell metabolism, I first 

focused on two distinct families of regulatory enzymes that are well poised to play 

pivotal roles in tumor metabolism: sirtuins and prolyl hydroxylase domain (PHD) 

enzymes. The seven mammalian sirtuins (SIRT1-7) and the three PHDs (PHD1-3) have 

the unique ability to integrate cellular stress response with coordination of metabolic 

fitness and homeostasis[16-18]. The role of sirtuins and PHDs as post-translational 

modifying enzymes may have originated to allow survival under stress, and many of 

these roles have now been linked to growth regulation in the harsh conditions 
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experienced by cancer cells[19-21]. In recent years, a number of studies have shown that 

sirtuins and PHDs not only coordinate cancer cell growth and survival, but also the 

metabolic state of a tumor[18, 22, 23]. There is growing interest in pinpointing metabolic 

regulatory nodes that can be targeted in cancer treatment and determining whether 

enzymes such as sirtuins and PHDs may be promising biomarkers or therapeutic targets 

in cancer. 

Additionally in this thesis, I explored the action of a small molecule modulator of 

metabolism, metformin, to gain insight to the anti-cancer benefits of interfering with cell 

metabolism. Metformin is the world’s most commonly used diabetes drug that is 

prescribed 120 million times each year[24]. Multiple retrospective studies have made the 

perplexing discovery that, compared to diabetic patients treated by other therapeutics, 

those patients treated with metformin went on to have lower incidences of cancer. 

Biochemical, cellular and animal studies have supported this finding, showing metformin 

does indeed have anti-cancer properties. However the direct or indirect mechanisms by 

which metformin inhibits cancer onset are not entirely clear. Efforts are underway to 

characterize the metabolic alterations caused by metformin with the hope of making a 

stronger, more specific drug with even greater anti-cancer effects. 

Sirtuin activity is linked to the metabolic state 
 

SIRT1-7 are a family of deacylases and ADP-ribosyltransferases that have been 

strongly linked to cancer metabolism. All sirtuins share a conserved catalytic core 

domain but vary in subcellular localization and preferred substrates (Figure 1.1 a)[25]. 

These differences lead to variations in the ultimate metabolic effect that is coordinated by 

each sirtuin[19]. SIRT1, 6 and 7 are primarily nuclear and regulate transcription factors 

3



Figure 1.1  | Sirtuin family members and catalytic activities. a, SIRT1-7 domains and 
conservation. Sirtuins share a conserved catalytic core featuring an active site histidine 
residue that serves as a proton acceptor. SIRT3-5 have a mitochondrial targeting sequence 
(MTS) that is cleaved upon mitochondrial import. b, During lysine deacylation, sirtuins 
direct NAD+ to nucleophilically attack the acylated lysine residue, leading to removal of 
an acyl modification. NAD+ is cleaved in the process, forming nicotinamide and 
2’-O-acyl ADP-ribose. Sirtuins can potentially remove diverse acyl modifications (inset) 
from lysine residues. c, During ADP-ribosylation, sirtuins use NAD+ to nucleophilically 
attack an arginine (shown) or cysteine residue. NAD+ is cleaved, resulting in release of 
nicotinamide and transfer of the ADP-ribose portion of NAD+ to the substrate residue.

b

c

ADP
O

OH OH

N

NH2

O

+ N

NH2

O

ADP
O

OH

OH

O

R

O

NAD+ acyl-lysine
residue

SIRT

2’-O-acyl-
ADP ribose

deacylated
lysine residuenicotinamide

R

O

NH

N
C

O

+NH 3

N
C

O

SIRTADP
O

OH OH

N

NH

O

+

NAD+

N

NH2

O

nicotinamide

+

ADP
O

OH OH

HN
NH2+

HN

N
C

HN
NH2

H2N

N
C

O

arginine
residue

ADP-ribosylated
residue

Acyl groups

acetyl

malonyl succinyl

myristoyl palmitoyl

O

Lys

HO

O
Lys

O

HO

O

Lys

O

propionyl butyryl
Lys

O

Lys

O

Lys

O

6
Lys

O

7

+ +

+ +

a

SIRT1

SIRT2

SIRT3

N-terminus
Conserved

core C-terminus
Catalytic histidine

1

1

SIRT4

SIRT6

SIRT5

SIRT7

His

254 495 747*

His
*

His
*

His
*

His
*

His
*

His
*

MTS

1 100 314 410

1 45 257 355

1 51 301 310

1 47 308 314

1 137 373 399

1 40 294 352

MTS

MTS

O

4



and histone modifications to coordinate gene expression programs that direct the cellular 

metabolic state[26]. Cytosolic functions of SIRT1 have also been identified. SIRT2 is 

largely cytosolic and coordinates microtubule dynamics as well as the activity of 

transcription factors residing outside the nucleus[27, 28]. Localization of SIRT3, 4 and 5 

in the mitochondrial matrix enables these sirtuins to directly alter the activity of many 

metabolic enzymes[29]. 

Sirtuins catalyze NAD+-dependent deacylation or ADP-ribosylation reactions 

with varying degrees of substrate versatility[30]. Although most well-studied as lysine 

deacetylases, certain sirtuins can also remove other acyl modifications from lysine 

residues including propionyl, butyryl, malonyl, succinyl and the lengthy fatty-acid 

derived myristoyl and palmitoyl groups among others[31]. SIRT5, for example, is a 

strong desuccinylase, and SIRT4 was recently reported to function as a lipoamidase by 

removing lipoyl or biotinyl modifications from lysine residues[32]. Through these 

processes, sirtuins have been shown to alter substrate activity, localization, stability and 

protein-protein interactions[33].   

Regardless of which type of substrate moiety is modified by sirtuins, a similar 

NAD+-dependent reaction mechanism proceeds. During sirtuin-catalyzed deacylation 

(Figure 1.1 b), nicotinamide adenine dinucleotide (NAD+) nucleophilically attacks an 

acyl group of a substrate lysine. The resulting intermediate is cleaved to form 2’-O-acyl-

ADP ribose (OAADPR) and nicotinamide, and the acyl group is removed from the lysine 

residue in the process. In sirtuin-catalyzed ADP-ribosylation (Figure 1.1 c), NAD+ 

similarly attacks a substrate arginine or cysteine residue. The ADP-ribose portion of 

NAD+ is transferred to the substrate residue, yielding nicotinamide as a side product[34, 
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35]. At high concentrations, nicotinamide represses sirtuin function via feedback 

inhibition[36].  

Sirtuins are unique sensors of the metabolic state because their NAD+-dependent 

enzymatic activity intrinsically couples their function with the metabolic status of the cell 

or organism[37-41]. According to the metabolic state of the cell, the ratio of NAD toggles 

between varying amounts of NAD+ and NADH[42]. NADH is a high energy, reduced 

form of NAD that can donate electrons to the electron transport chain or convert pyruvate 

to lactate. NAD+ is the lower energy, oxidized counterpart required to fuel glycolysis. 

When the cell uses oxidative metabolism, NADH generated by the TCA cycle and 

glycolysis donates electrons to complex I of the electron transport chain. This contributes 

to a proton gradient that will ultimately produce ATP. Upon electron transfer, NADH is 

oxidized back to NAD+. In highly glycolytic cells, NAD+ can alternatively be regenerated 

from NADH via lactate dehydrogenase (LDH) activity in order to sustain glycolysis. 

Thus, the NAD+/NADH ratio provides one readout of the cellular metabolic state.  

Due to their dependency on NAD+, it is not surprising that certain sirtuins are 

reported to have increased activity in response to high NAD+ concentrations[43]. For 

example, SIRT1 in skeletal muscle and brain is activated by exercise, fasting and calorie 

restriction, conditions with a high NAD+/NADH ratio[44-46]. In contrast, low NAD+ 

levels are observed with obesity and old age, two factors that confer increased risk for 

many cancers and are also linked to decreased sirtuin activity[47, 48]. Along these lines, 

growing evidence suggest loss of sirtuin function plays a role in obesity- and age-

associated cancers[8, 49]. Tissue or subcellular variations in NAD+ and NADH levels 

may lead to differential alterations of sirtuin activities[42]. The existence of distinct 
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cellular pools of NAD+ is supported by work showing that mitochondrial NAD+ is 

maintained at physiological levels even though cytosolic and nuclear NAD+ pools are 

depleted upon genotoxic stress[38]. 

It is important to point out that sirtuin activity is not solely dependent on NAD+ 

levels. Transcriptional regulation, post-translational modification and allosteric regulation 

are all important physiological regulators of sirtuin activity[50]. In the case of SIRT4, 

activity does not simply parallel the cellular NAD+ level. SIRT4 plays a key role in 

inhibiting fat catabolism when mice are well fed, despite the low levels of NAD+ 

expected under this condition[51]. SIRT4 mRNA and protein are also more abundant in 

mouse tissues under fed versus fasted conditions[52, 53]. It will be important for future 

studies to reveal further mechanisms by which sirtuin activity is regulated.   

Sirtuins and connections to cancer 
 

The associations between cancer metabolism and sirtuins often fall into one of 

two themes. First, loss of sirtuin activity may result in increased susceptibility to cancer 

onset. Second, an already established tumor that expresses high levels of some sirtuins 

may have survival advantages that endow resistance to chemotherapeutics. 

Loss of sirtuin activity has been shown to contribute to cancer onset in some 

cases. The link between sirtuin loss and tumor emergence is evidenced by several models 

where SIRT1, SIRT2, SIRT3, SIRT4 or SIRT6 knockout (KO) mice are more prone to 

cancer incidence[17, 54]. In humans, SIRT3 protein and mRNA levels are strongly 

decreased in breast and ovarian cancer[55]. SIRT4 expression is decreased in lung, 

breast, bladder and gastric cancer and specific leukemia subtypes[56, 57]. SIRT6 levels 

are reduced in colon carcinoma and pancreatic cancer[58]. The metabolic state 
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maintained by sirtuins can be particularly incompatible with the onset of cancer, as 

discussed further below.  

On the other hand, in established tumors it is possible sirtuins have pro-

tumorigenic roles by promoting survival under the stress conditions that dominate the 

cancer cell state. For example, high SIRT1 expression is observed in drug-resistant 

cancers[59]. In fact, maintaining SIRT1 expression appears so vital for cancer cells that 

there are no reported deletions of SIRT1 in cancer and only extremely rare instances of 

SIRT1 mutation[17]. Thus while SIRT1 may counter the onset of cancer, an established 

tumor can greatly benefit from ramping up SIRT1 expression and inducing pro-survival 

pathways[60]. Additionally, the mitochondrial sirtuin SIRT3 promotes survival of oral 

squamous cell carcinoma (OSCC)[61]. While sirtuins in many cases can suppress cancer 

formation, sirtuins can also benefit the growth of some established tumors depending on 

the cancer type, stage and accompanying mutations. A more comprehensive 

understanding of sirtuin functions and relevant targets in cancer may shed light on the 

pro- or anti-tumorigenic roles of different sirtuins in particular tumor types. 

 
PHD activity is linked to oxygen and the metabolic state 

Much like sirtuins, PHDs are perfectly poised to elicit metabolic alterations in 

response to changing nutrient availability or stress. PHDs are a family of oxygen- and α-

ketoglutarate dependent dioxygenases that hydroxylate proline residues of target 

proteins[62, 63]. The most well studied PHD substrate is hypoxia inducible factor (HIF) 

α, a key mediator of survival under hypoxia (discussed further below). Other non-HIF 

substrates are increasingly being identified, as well[64]. The cellular regulation achieved 

by PHDs illustrates that although hydroxylation is among the smallest post-translational 
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modifications, it can lead to substantial consequences.  Prolyl-hydroxylation results in a 

region of high electronegativity that alters the pucker of the substrate proline and 

consequently can modulate protein-protein interactions, stability, activity and 

localization[63, 65]. 

There are three main mammalian PHDs (also called egg laying defective nine, or 

Egln, proteins in reference to their originally described function in egg laying by C. 

elegans) (Figure 1.2 a)[64]. While all PHDs share a conserved catalytic domain and a 

modestly conserved middle region, differences exist in localization signals, substrate 

preference and co-factor affinity. The biological relevance of these differences is only 

beginning to be realized and raises the possibility that each PHD could achieve unique 

metabolic regulation. PHD1 and 2 contain long, dissimilar N-terminal regions[66]. This 

region of PHD1 and 2 includes nuclear localization and nuclear export signals, 

respectively[67]. All three PHDs show some distribution between the nucleus and 

cytosol[68]. Interestingly, the rat homolog of PHD3 contains a mitochondrial targeting 

sequence[69]. Mouse and human PHD3 do not contain this sequence and to date no 

evidence exists of their localization in the mitochondria. PHD expression is ubiquitous 

throughout most tissues, but some tissues have a greater abundance of one PHD, 

highlighting the possibility of tissue-specific roles of each family member. Among the 

isozymes, cardiac muscle has highest expression of PHD3 and the testis has highest 

expression of PHD1[70].  

The requirement of oxygen for catalysis positions PHDs as perfect mediators of 

the cellular and metabolic response to changing oxygen levels[21]. During catalysis, 

PHDs transfer one atom of molecular oxygen to a proline residue of a substrate protein, 
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Figure 1.2  | PHD family members and catalytic activity. a, PHD1, 2 and 3 domains 
and conservation. PHD1 and 2 contain N-terminal regions of low conservation with 
nuclear localization (NLS) and nuclear export signals (NES), respectively. The 
C-terminal conserved catalytic domain contains a His-Asp-His catalytic triad to coordi-
nate reduced iron (Fe2+).  b, To catalyze prolyl hydroxylation, PHDs form a complex with 
Fe2+, dioxygen and ɑ-ketoglutarate. One oxygen atom contributes to decarboxylation of 
ɑ-ketoglutarate, yielding succinate and CO2. The second oxygen atom is transferred to a 
proline residue of a substrate protein, yielding hydroxyproline. PHD activity is inhibited 
by reactive oxygen species (ROS) that oxidize iron, TCA cycle intermediates including 
succinate and fumarate that occupy the ɑ-ketoglutarate binding site, and other doubly 
charged metal cations that take the place of Fe2+. PHD activity is increased by (R)-2-
hydroxyglutarate (R-2HG).  
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resulting in prolyl-hydroxylation (Figure 1.2 b). The other oxygen atom is transferred to 

α-ketoglutarate which is subsequently decarboxylated to form carbon dioxide and 

succinate[62]. Because the PHD catalytic mechanism requires molecular oxygen, a drop 

in intracellular oxygen levels can decrease PHD activity[71]. PHD1 and 2 are quite 

sensitive to subtle changes in cellular oxygen levels due to their weak affinity for oxygen. 

The Km for oxygen is only slightly higher the normal oxygen concentration in the cell. 

This suggests PHD1 and 2 normally operate at sub-optimal conditions and any drop in 

oxygen can make these PHDs much less active[72]. PHD3 remains active during a lower 

range of oxygen concentrations and is less sensitive to drops in oxygen tension[73]. Thus, 

a question in the field is whether PHD3 might instead be sensitive to fluctuations in 

levels of another PHD co-substrate, such as α-ketoglutarate, perhaps enabling differential 

metabolic regulation based on the cellular nutrient state[74].  

PHDs are not solely responsive to oxygen. PHDs are versatile metabolic sensors 

because their catalytic activity is additionally dependent on several key molecules that 

can be viewed as indicators of the cellular metabolic state including TCA cycle 

intermediates and reactive oxygen species (ROS)[21]. Thus, PHD activity can be 

modulated even under normoxic conditions. Growing evidence indicates PHDs are 

sensitive to TCA cycle imbalances that can be driven by dysfunctional enzymes in this 

pathway. For example, at high concentrations, succinate and fumarate competitively 

inhibit the PHD binding site that is normally occupied by the structurally similar 

molecule α-ketoglutarate[75, 76]. High levels of the PHD co-substrate α-ketoglutarate 

are suggested to activate PHDs. Addition of cell-permeable α-ketoglutarate was shown to 

restore PHD activity in cancer cells where PHDs were otherwise inhibited due to high 
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succinate levels[77]. Tennant and Gottlieb showed that treating mouse xenografts with 

esterified, cell-permeable α-ketoglutarate inhibited growth in a PHD3-dependent but 

HIF-independent mechanism[74]. This suggests PHD3-responsiveness to α-ketoglutarate 

may have important roles in cancer biology. The related molecule (R)-2-hydroxyglutarate 

(R-2HG) has been suggested to possibly activate PHDs[78]. R-2HG is normally present 

at very low in the cell but is produced in high quantities by mutant isoforms of isocitrate 

dehydrogenase (IDH) 1 and 2, which are observed in several cancers. 

PHD enzymatic activity is also intrinsically sensitive to redox status due to the 

requirement for reduced iron in the catalytic site. The PHD catalytic domain contains a 

conserved triad of two histidines and one aspartate that coordinate non-heme iron[79]. To 

enable oxygen binding at this catalytic site, iron must be maintained in the reduced (Fe2+) 

state, a function achieved by the antioxidants ascorbate (vitamin C) or glutathione[80, 

81]. Due to high levels of ROS, these antioxidant molecules can become depleted leading 

to oxidation of the catalytic iron and inhibition of PHD activity[82]. Additionally, other 

dually charged cations can occupy the iron-binding site at high concentrations and inhibit 

PHDs. For example, treatment of cells with cobalt (II) chloride represses PHD 

activity[83]. In response to changing levels of all these inputs, PHDs have been shown to 

instigate metabolic changes that restore homeostasis and redox balance. 

PHDs and connections to cancer 

PHDs have decreased activity in a number of cancers. In some cases, the stress 

conditions in an established tumor repress PHD activity. In other situations, loss of PHD 

function is an early step in driving cancer development[5]. In the case of established 

cancer, PHD activity can be repressed in regions of a tumor experiencing high ROS or 
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hypoxia due to excessive oxygen consumption or insufficient blood supply[84]. Here, 

inactivation of PHDs contributes to upregulation of HIF and promotes cellular and 

metabolic adaptations that enable cancer cell survival. Alternatively, in a healthy cell loss 

of PHD function can trigger metabolic alterations amenable to transformation. PHDs can 

be repressed by loss of function mutations in the tumor suppressors succinate 

dehydrogenase (SDH)[85] or fumarate hydratase (FH)[86]. Mutation of these TCA cycle 

enzymes leads to a build-up of succinate and fumarate, respectively[18]. Overabundance 

of these metabolites inhibits PHD function and is linked to neoplastic transformation and 

HIF-driven metabolic reprogramming. SDH mutations are commonly observed in the 

neuroendocrine cancers paraganglioma or phaeochromocytoma, and FH mutations cause 

cutaneous and uterine leiomyomatas and aggressive renal cell carcinoma[87].  

PHD3 is repressed in multiple cancers through the additional mechanism of 

epigenetic silencing. In patient samples from colon cancer, angiocytoma, glioblastoma 

and multiple myeloma, as well as in cell lines representing prostate cancer, colon cancer 

and acute myeloid leukemia, PHD3 expression is strongly repressed due to 

hypermethylation of CpG sites in the gene promoter[88-92].  In the leukemia HL60 cell 

line, hypermethylation correlates with complete absence of PHD3 mRNA[89]. This 

mechanism of extensive silencing has not been observed for PHD1 or PHD2 in cancer. 

Studies such as these highlight the need for future research to characterize the roles of 

each PHD in different cancer contexts. 

Altered glycolysis in cancer 
 

In the 1920s, Otto Warburg made one of the earliest observations of altered 

cancer cell metabolism[93]. In studies of rapidly proliferating ascites tumor cells, he 
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measured extraordinarily high glucose uptake and lactate secretion. Whereas these 

metabolic features were known to be typical of oxygen deprived tissues such as 

extremely active muscle, here Warburg observed for the first time that cancer cells 

display increased glycolysis and lactate production even in the presence of ample oxygen. 

This phenomenon became known as the Warburg effect, and it has since been realized as 

a general metabolic shift promoting the survival of multiple tumor types[15]. In many 

cancers, glucose drives biosynthesis and growth; intermediates of glycolysis are directed 

toward pathways that build macromolecules including nucleotides, antioxidants, lipids 

and proteins (Figure 1.3). In addition to biosynthesis, glucose contributes to ATP 

production, generation of signaling molecules and production of lactate[94]. To redirect 

glucose for anabolism rather than for energy production, a major entry site for glucose-

derived pyruvate into the TCA cycle is blocked, effectively boosting the level of 

glycolytic intermediates that remain in the cytosol rather than being siphoned to the 

mitochondria for ATP production[95]. In cancer cells, pyruvate is converted in large 

amounts to lactic acid via lactate dehydrogenase A (LDHA). This reaction generates 

NAD+ to allow continued glycolysis[5] and also creates an acidic environment that is 

proposed to promote tumor cell migration, genetic instability and cancer cell 

stemness[96-99].  

Elevated glycolysis additionally might provide an alternate pathway to maintain 

ATP production, even under hypoxic conditions in cancer cells. Rapidly growing or 

metastatic tumors may lack oxygen due to inadequate blood supply or massive oxygen 

consumption. In the absence of sufficient oxygen, mitochondrial ATP production is 

limited[71]. To circumvent the hypoxia-driven deficiency in mitochondrial function, 
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cycle. HIF further activates LDHA to generate lactate as well as NAD+ required to fuel 
successive rounds of glycolysis. GLUT= glucose transporter, HK= hexokinase, GAPDH= 
glyceraldehyde 3-phosphate dehydrogenase, PGK= phosphoglycerate kinase, PDK= 
pyruvate dehydrogenase kinase, LDHA= lactate dehydrogenase A. 
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glycolysis may be upregulated to generate ATP via substrate level phosphorylation. The 

amount of ATP produced by glycolysis is only a fraction of that generated by the electron 

transport chain; however, greatly induced glycolysis could achieve bioenergetic 

homeostasis when oxygen is limiting[100].  

 
HIF, PHDs and metabolic stress sensing 
 

The well-known PHD target, hypoxia Inducible Factor (HIF), is a master 

transcriptional activator of glycolysis with strong links to cancer. HIF acts as an α/β 

heterodimer[101]. There are three HIFα isoforms, and of these Hif1α and 2α are the 

most well-studied[21]. Increased levels of HIF1α and 2α are observed in many cancers 

and correlate with worse prognosis[102]. While overlap exists in many HIF1α and 2α 

target genes, some genes are exclusively modulated by just one isoform[103]. HIF is 

normally activated under hypoxia to promote expression of multiple glycolytic genes 

(Figure 1.3) and boost other pathways that mediate cell survival under low oxygen. 

However, in many cancers, aberrantly activated HIF facilitates metabolic reprogramming 

and upregulation of glycolysis even when oxygen levels are sufficient[104].  

Physiologically under normoxia, HIF transcriptional activity is limited to a low, 

basal level (Figure 1.4 a). Cytosolic HIFα is hydroxylated by PHDs and subsequently 

ubiquitinated by the von Hippel-Lindau (VHL) E3 ubiqutin ligase, targeting HIFα for 

degradation[105]. In hypoxic tumors or in cancers with disrupted redox status or TCA 

cycling, PHD activity can be inhibited and HIFα is stabilized (Figure 1.4 b). HIFα 

translocates to the nucleus and forms a heterodimer with HIFβ (also called aryl 

hydrocarbon nuclear receptor, ARNT) resulting in a functional transcription factor in 
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Figure 1.4  | PHD-mediated repression of HIF-driven metabolic reprogramming. a, 
PHD1 and 2 are the major HIF hydroxylases. PHD activity limits HIF transcriptional 
activity. Under normoxia and in the presence of the co-substrate α-ketoglutarate, PHDs 
hydroxylate cytosolic HIFα. This promotes ubiquitination of HIFα by VHL, and HIFα is 
subsequently degraded by the proteasome.  b, Loss of PHD activity, such as under 
hypoxia or in the presence of high succinate, fumarate or ROS, stabilizes HIFα. When 
HIFα is not hydroxylated, it readily moves to the nucleus and forms a functional tran-
scription factor in complex with HIFβ and p300 on the promoter of genes containing HIF 
responsive elements (HRE). As a result, HIF-mediated transcriptional programs are 
activated. VHL= von Hippel-Lindau E3 ubiquitin ligase. OH= prolyl hydroxylation. Ub= 
ubiquitination. ROS= reactive oxygen species. 
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complex with the coactivator p300/CBP[70]. This complex binds HIF-responsive 

elements (HRE) in target gene promoters to activate a transcriptional program that boosts 

angiogenesis, erythropoiesis and glycolytic metabolism[72]. Interestingly, PHD2 and 

PHD3 are HIF target genes[79]. It is possible that upregulation of PHDs, particularly 

PHD2, under hypoxia serves to build a pool of PHDs that can rapidly dampen the HIF 

signal as soon as adequate oxygen is achieved. 

Not all PHDs similarly affect HIF. The range of oxygen sensitivity and 

differential substrate preference by each PHD leads to dynamic regulation of HIF. In line 

with great hypoxia-sensitivity, PHD1 and 2 are the major PHDs responsible for HIF 

hydroxylation and destabilization under normoxia [106, 107]. Under hypoxia, 

inactivation of PHD1 and 2 promotes HIF and glycolysis, while surprisingly the 

continued activity of PHD3 was shown to boost HIF function at least in cell culture via 

hydroxylation of the HIF transactivator PKM2[73]. Protein kinase M2 (PKM2) is the less 

active, dimeric isoform of the glycolytic enzyme pyruvate kinase that is frequently 

observed in cancer. PKM2 serves an additional function as a HIF co-activator[108]. 

Thus, by activating PKM2, PHD3 enhances HIF-driven glycolytic metabolism under 

hypoxia.  

Modulation of HIF by sirtuins 
 

Several studies have shown that the stress- and nutrient-sensing pathways that 

coordinate HIF activity also intersect with sirtuins at numerous nodes. Elaborate control 

mechanisms enforced by SIRT1, SIRT3 and SIRT6 counter HIF activity to keep glucose 

metabolism in check[17]. This interplay is in line with the role of these sirtuins as 

promoters of oxidative metabolism and mitochondrial function. Loss of sirtuin function 
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has been shown to shift the cell toward glycolytic metabolism in a process that is 

amenable to transformation. In cancer cell lines and sirtuin KO mouse models, low 

expression of SIRT1, 3 and 6 correlates with increased levels of HIF1 target genes[47, 

55, 109]. 

Under normoxia, the nuclear sirtuin SIRT1 inhibits the basal HIF response by 

promoting stability of the VHL transcript to drive degradation of HIFα[47] and by 

deacetylating and directly inactivating HIF1α in the nucleus[110]. Under hypoxia, the 

gradual drop in NAD+ decreases SIRT1 function and contributes to HIF activation[110], 

which may synergize with intratumoral PHD inhibition to maximize HIF-driven 

glycolysis. Also in the nucleus, SIRT6 represses HIF transcriptional activity to limit 

glycolysis in cancer. To do so, SIRT6 deacetylates histone H3K9 on the promoter of HIF 

target genes, aiding in gene silencing[109]. Additionally, SIRT6 directly interacts with 

and inhibits HIF1α on HRE of glycolytic genes. The authors of this study further show 

that glycolysis is increased upon SIRT6 conditional KO in an APCmin/+ mouse model of 

colon cancer and is linked with increased tumor incidence[58].  

In the mitochondria, SIRT3 represses HIF-driven glycolysis by coordinating a 

multipronged strategy to limit ROS (discussed further below). By decreasing ROS, 

SIRT3 promotes PHD activity and HIF degradation. SIRT3 loss dramatically boosts 

ROS, which is proposed to deactivate PHD family members and consequently stabilize 

HIF1α [55, 111]. Indeed, in mouse embryonic fibroblasts (MEFs), SIRT3 KO and the 

resulting high ROS promote a HIF-mediated transition to the Warburg effect[55]. 

Alternate fuels and the TCA cycle in cancer 
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Although elevated glucose consumption is characteristic of many cancer cells, it 

is increasingly clear that glucose is not the whole story in cancer metabolism. Many 

cancers, for reasons largely not understood, additionally or alternatively display addiction 

to fats or amino acids such as glutamine[112, 113]. Physiologically, changes in cellular 

fuel choice have been shown to direct stress resistance pathways, differentiation, 

proliferation or adaptation to nutrient availability[12]. Ongoing research in cancer 

metabolism focuses on identifying molecular determinants that drive use of one fuel 

versus another, as well as the advantages of using a particular fuel in specific cancer 

contexts.  

One intensely studied use of amino acids and fatty acids in cancer is anaplerosis, 

the process of refilling the TCA cycle. Anaplerotic pathways provide alternative entry 

sites to generate TCA cycle intermediates, which are often used for anabolic and 

bioenergetic purposes in cancer (Figure 1.5). Anaplerosis is required when normal 

mechanisms for driving the TCA cycle are insufficient[94]. In many healthy tissues, 

pyruvate dehydrogenase (PDH) is the major enzyme that channels glucose-derived 

pyruvate into the TCA cycle[114]. PDH converts pyruvate to acetyl-CoA, and then 

acetyl-CoA condenses with oxaloacetate to form citrate. However, PDH activity is often 

limited in cancer[115]. Additionally, roadblocks at other steps in the TCA cycle or 

shunting of metabolites toward biosynthetic pathways can limit production of 

oxaloacetate, which is needed to fuel subsequent rounds of the TCA cycle[115]. In these 

cases, PDH alone cannot sustain TCA cycling. In cancer, the TCA cycle can be refueled 

through at least four major mechanisms: the activity of pyruvate carboxylase, 

glutaminolysis, reverse TCA cycling and fatty acid oxidation.  
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Figure 1.5  | TCA cycle inputs and outputs. TCA cycle flux provides bioenergetic (red) 
and anabolic outputs (green). NADH and FADH2 generated by the TCA cycle can fuel the 
electron transport chain and ATP production.TCA cycle intermediates can be siphoned 
away to generate molecules including fatty acids, cholesterol, amino acids, nucleotides, 
porphyrins and antioxidants such as NADPH.  Normally the TCA cycle is predominantly 
fueled by conversion of pyruvate to acetyl-CoA via PDH. However, alternate anaplerotic 
inputs (purple) are required when TCA cycle intermediates are depleted. Anaplerosis is 
upregulated when TCA cycle enzymes (such as SDH or FH) are inhibited, when pyruvate 
is shunted from the TCA cycle or when TCA cycle intermediates are depeleted for 
anabolic or other purposes. 
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First, the enzyme pyruvate carboxylase (PC) provides an alternate means of 

generating oxaloacetate to refuel the TCA cycle[116]. PC is a mitochondrial biotin-

dependent enzyme that uses bicarbonate to directly convert pyruvate to 

oxaloacetate[117]. PC-derived oxaloacetate is hypothesized to be particularly important 

in SDH- or FH-deficient cancers[87]. In these tumors, SDH or FH deficiency limits 

production of metabolites in the latter half of the TCA cycle, including oxaloacetate. 

Here, PC provides an additional way to generate oxaloacetate for use in the TCA cycle or 

for the synthesis of amino acids and nucleotides.  

Second, many cancers are dependent on glutamine to amass pools of TCA cycle 

intermediates that are used for biosynthesis. Glutamine is the most abundant amino acid 

in serum[118], making it a readily available fuel for many tumors. Glutamine 

consumption is massively upregulated in particular subsets of cancer including 

neuroblastoma and basal, but not luminal, breast cancer[119]. To direct glutamine toward 

the TCA cycle, glutamine can be imported into the mitochondria and deaminated to yield 

glutamate. Glutamate is converted to α-ketoglutarate by glutamate dehydrogenase (GDH) 

or transaminases. Then, α-ketoglutarate can proceed through the TCA cycle. 

Interestingly, evidence suggests PC- and glutamine-driven mechanisms to fuel the TCA 

cycle are generally mutually exclusive[120]. Thus it has been suggested that PC 

expression can be used as a biomarker to sort patients in clinical trials for glutamine 

inhibitors in cancer[121].  

Recent studies have shown glutamine not only fuels typical forward TCA cycling, 

but also reverse TCA cycling. Although the TCA cycle had long been thought to operate 

in one direction, it is now known that glutamine can fuel the TCA cycle in the reverse 
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direction in some cancer cells, particularly in response to redox stress, impaired 

respiration or hypoxia[122-124]. Forward TCA cycling requires acetyl-CoA to condense 

with oxaloacetate and form citrate. Under harsh conditions, such as proliferating cells in 

hypoxia, pyruvate is directed almost entirely toward lactate[125]. Acetyl-CoA may be 

sufficiently depleted such that forward TCA cycling is limited. In this case, an alternate 

pathway is needed to produce citrate. Citrate is especially essential for cancer cells 

because it is a key building block for fatty acid synthesis[125]. In cancer cells, glutamine-

derived α-ketoglutarate can undergo reductive carboxylation catalyzed by NADPH-

dependent isocitrate dehydrogenase (IDH) 1 or 2 to generate citrate[126, 127]. 

Mitochondrial fatty acid import and oxidation in cancer 

In addition to glucose and glutamine, fatty acids have recently been recognized as 

necessary fuels for specific cancer types. While fatty acid synthesis has long been 

considered an essential feature of growing tumor cells, fatty acids must also be broken 

down in subsets of cancer[112]. Fatty acid oxidation (FAO) in the mitochondria 

generates acetyl-CoA to fuel the TCA cycle, as well as FADH and NADH2 to fuel the 

electron transport chain. In particular, prostate cancer, colorectal cancer and acute 

myeloid leukemia (AML) show a strong reliance on FAO[128-130]. This branch of 

tumor metabolism is far less studied than glucose or glutamine. The prevalence of FAO 

in cancer warrants further studies to identify molecular pathways that regulate FAO in 

cancer cells and, furthermore, to understand why fatty acids are the preferred metabolic 

substrate in specific human cancers. 

One key enzyme directing the fate of fatty acids in cancer is carnitine palmitoyl 

transferase 1 (CPT1), located in the outer mitochondrial membrane[131].  CPT1 
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catalyzes the rate-limiting step of mitochondrial FAO[132]. Mechanistically, CPT1 

attaches carnitine to long chain fatty acyl-CoAs to mediate mitochondrial import (Figure 

1.6). A major activator of CPT1 in normal cells is AMP-activated protein kinase, an 

AMP-sensing enzyme that serves as the bioenergetic rheostat of the cell[133]. Upon 

sensing a low cellular energy status, AMPK activates FAO and other cellular strategies to 

boost ATP production. To activate CPT1, AMPK phosphorylates and inhibits acetyl-CoA 

carboxylase 2 (ACC2)[134]. ACC2 is located at the outer mitochondrial membrane and 

converts acetyl-CoA to malonyl-CoA, which allosterically inhibits CPT1. When ACC2 is 

inactivated, CPT1 is turned on and FAO is increased. Of note, short chain fatty acids 

bypass these regulatory steps and diffuse freely into the mitochondria[135]. Once in the 

mitochondria, fatty acids are catabolized via multiple rounds of β-oxidation. The vital 

role of CPT1 in cancer biology is evidenced by its increased expression in specific 

cancers[136-138], as well as by the finding that pharmacological inhibition of CPT1 

suppresses ATP production and induces apoptosis in cancer cell models of 

glioblastoma[139], Burkitt’s lymphoma[140], prostate cancer[137] and AML[129]. 

Further studies are needed to determine the range of molecular alterations upstream of 

CPT1 that can boost FAO in cancer. 

Growing evidence suggests FAO is not upregulated solely as an energy source. 

FAO additionally contributes to generation of NADPH, a molecule with antioxidant 

functions made by channeling fatty acid-derived acetyl-CoA towards citrate-cycling 

reactions involving TCA cycle enzymes[141-144]. Products of FAO are also suggested to 

maintain the quality of the mitochondrial membrane and prevent induction of 

apoptosis[129].  
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Figure 1.6  | Regulation of long chain versus short chain fatty acid oxidation. Long 
chain fatty acids must be processed by multiple regulatory steps (blue arrows) in order to 
be transported to the mitochondrial matrix and undergo fatty acid oxidation. Long chain 
fatty acids are first charged with a high energy CoA group, which is then replaced with 
carnitine to mediate transfer across the outer mitochondrial membrane via the enzyme 
CPT1. CPT1 catalyzes the rate-limiting step of long chain fatty acid oxidation. CPT1 
removes the CoA group from the long chain fatty acyl-CoA and replaces it with carnitine. 
The step is inhibited by malonyl-CoA, the product of ACC2 located at the outer mito-
chondrial membrane. Once past CPT1, the acylcarnitine is then transported across the 
inner mitochondrial membrane via a translocase. CPT2 catalyzes removal of carnitine 
and substitution with CoA. The acyl-CoA is a substrate for fatty acid oxidation in the 
mitochondrial matrix. Short chain fatty acids bypass these regulatory steps (green arrow) 
and diffuse freely into the mitochondria. Once in the mitochondria, fatty acids are catabo-
lized via multiple rounds of β-oxidation. CPT= carnitine palmitoyl transferase, ACC2= 
acetyl-CoA carboxylase 2.  
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Sirtuin coordination of anaplerosis and alternate fuel sources 
 

Several sirtuins activate TCA cycle flux and anaplerosis. Research in this area has 

focused on mechanistic characterization of sirtuin substrates in these metabolic pathways, 

while less is known of the disease relevance of sirtuins and altered anaplerosis. SIRT3 

boosts mitochondrial metabolism by deacetylating and activating enzymes involved the 

TCA cycle, glutaminolysis and fatty acid oxidation[19]. SIRT1 and SIRT6 additionally 

stimulate FAO[19]. Sirtuin-mediated activation of alternate fuel sources might be 

expected to serve as an advantage to cancer cells, although these questions have largely 

been unexplored.  

Driving the TCA cycle in reverse by reductive carboxylation is also a sirtuin-

modulated process[145]. SIRT1 has recently been shown to promote the use of glutamine 

for reverse TCA cycling under extreme cellular conditions[145]. In diverse cancer cell 

lines, prolonged acidosis (pH 6.5), which mimics extensive lactate production, 

upregulates genes important for reverse TCA cycle flux in a SIRT1-dependent manner. 

Mechanistically, under low pH SIRT1 deacetylates HIF1α and 2α. Deacetylation inhibits 

HIF1α but activates HIF2α. By activating HIF2α, SIRT1 triggers expression of key 

target genes including the glutamine transporter SLC1A5, the mitochondrial glutaminase 

isoform 1 (GLS1) and IDH1. Thus, the SIRT1/HIF2α axis promotes a metabolic shift to 

reductive glutamine metabolism in order to maintain levels of TCA cycle intermediates 

under the harsh conditions experienced by cancer cells.  

While other sirtuins boost mitochondrial metabolism, SIRT4 is unique among the 

sirtuins in its ability to limit TCA cycle flux and anaplerosis at multiple key branch points 

(Figure 1.7). First, SIRT4 deacetylates and inhibits malonyl-CoA carboxylase (MCD) to 
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Figure 1.7  | SIRT4 represses TCA cycle anaplerosis at multiple access sites via 
several catalytic activities. SIRT4 limits entry of glutamine into the TCA cycle, in part 
by ADP-ribosylating and inhibiting GDH. SIRT4 blocks long chain fatty acid oxidation 
by deacetylating and inhibiting MCD. This activity of SIRT4 boosts malonyl-CoA levels 
and blocks fatty acid import into the mitochondria. Finally, SIRT4 limits entry of pyru-
vate into the TCA cycle by removing a lipoyl modification from PDH. Consequently 
PDH is repressed. SIRT4 expression is strongly induced in response to various cellular 
stresses including dysfunctional mTORC1 and DNA damage. The connections between 
mTORC, DNA damage and SIRT4 repression of anaplerosis are unclear.
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repress FAO. MCD converts malonyl-CoA to acetyl-CoA, thus relieving repression of 

CPT1. When MCD is deacetylated, malonyl-CoA levels increase and FAO is decreased. 

Second, SIRT4 was recently shown to repress PDH-mediated flux of pyruvate into the 

TCA cycle. SIRT4 removed lipoyl- and biotinyl-modifications from lysine residues of 

PDH. The links between cancer metabolism and the effects of SIRT4 on MCD or PDH 

have not yet been explored. 

Finally, SIRT4 limits glutamine anaplerosis by ADP-ribosylating and inhibiting 

GDH [146].  The ability of SIRT4 to restrict supply of this alternative fuel limits 

tumorigenesis. In cancer cells, DNA damage dramatically induces SIRT4 expression, and 

glutamine anaplerosis is inhibited[56]. Consequently, TCA cycle intermediates are 

depleted and, via mechanisms yet to be elucidated, the cell cycle stalls. This SIRT4-

mediated metabolic pause allows time for DNA repair before the cell proceeds through 

the cell cycle. In the absence of SIRT4, glutamine anaplerosis remains activated even 

during DNA damage. DNA damage persists and cellular proliferation and transformative 

properties are increased, possibly due to newly occurring DNA mutations.  

In related studies, Csibi et al found that mammalian Target of Rapamycin 

Complex 1 (mTORC1), a serine/threonine kinase that drives cellular nutrient uptake and 

proliferation, inhibits SIRT4-mediated repression of anaplerosis. mTORC1 represses 

SIRT4 expression by inhibiting CREB2, a transcription factor that induces SIRT4[57]. 

High mTORC1 signaling drives growth in many cancers[147], and in this study 

mTORC1 was proposed to additionally benefit cancer cell survival by repressing SIRT4 

and activating glutaminolysis. In future studies, it will be interesting to examine whether 

mTOR signaling converges on DNA damage responses via SIRT4.  
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PHD interconnections with the TCA cycle and anaplerosis 

An emerging theme in prolyl hydroxylase research is the ability of PHDs to not 

only sense alterations in TCA cycle flux, as discussed above, but to reciprocally 

coordinate TCA cycling. These studies hint that PHDs are capable of influencing 

metabolic pathways other than glycolysis[18, 148]. For example, PHD3 promotes entry 

of pyruvate into the TCA cycle by maintaining the stability of the pyruvate 

dehydrogenase complex (PDC). Specifically, PHD3 interacts with pyruvate 

dehydrogenase- E1β, and knockdown of PHD3 in breast cancer cells destabilized 

PDC[149]. This regulation is proposed to occur through physical interaction alone and 

does not require PHD3 hydroxylase activity. 

Some corollary evidence suggests PHDs may play a role in FAO in cancer. Under 

hypoxia, FAO and mitochondrial metabolism are decreased in tissues such as the 

myocardia and skeletal muscle to limit ROS production[150].  Huang et al identified 

HIF1 as a key intermediary of FAO repression in hypoxic hepatocellular carcinoma cell 

lines[151]. HIF1 decreases expression of two acyl-CoA dehydrogenases involved in 

catabolism of fatty acids, namely MCAD and LCAD. These findings build upon previous 

studies indicating HIF1 can limit FAO by dampening expression of PPARα or its obligate 

binding partner RXR, key regulators of FAO gene transcription[152]. However, PHDs 

were not implicated as part of this regulatory mechanism. To date, PHDs have not been 

directly linked to altered FAO in the context of cancer, and PHD substrates in FAO 

metabolism have not been described. 

Electron transport chain flux in cancer 
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The electron transport chain (ETC) is among the most fundamental machinery 

required for life. The ETC machinery is our cells’ main producer of ATP via oxidative 

phosphorylation, the main consumer of oxygen and the main generator of ROS[153]. The 

ETC is comprised of a series of mitochondrial inner membrane-bound protein complexes 

that catalyze sequential reduction of electron donor molecules in order to power the 

pumping of protons from the matrix to the mitochondrial intermembrane space (Figure 

1.8)[154]. The resulting electrochemical gradient fuels ATP production by Complex V 

(ATP synthase). The electron donor molecules are NADH and FADH2, generated from 

catabolism of fuels such as glucose, fats or amino acids. A third, electron donor is 

glycerol-3-phosphate, a precursor in the synthesis of triglycerides and 

phospholipids[115]. In mitochondria, electrons are transferred from glycerol 3-phosphate 

to coenzyme Q in the ETC via the mitochondrial isoform of glycerol-3-phosphate 

dehydrogenase (GPDH-M)[155].  Despite its important contribution to cellular energy 

generation, the role of glycerol 3-phosphate in cancer is not well studied. 

Despite its fundamental role in biology, the contribution of the ETC to cancer is 

complex and has been a subject of debate[156]. On one hand it is true that oxidative 

phosphorylation is frequently decreased in cancer cells due to hypoxia, reduced 

expression of electron transport machinery or shunting of metabolites toward anabolic 

pathways rather than bioenergetics[157]. However, there are situations in which some 

cancer cells are critically dependent on ETC function. For example, Vazquez et al 

identified subsets of melanoma that express high levels of PGC1α, the master 

transcriptional activator of mitochondrial biogenesis and oxidative phosphorylation[158]. 

These high PGC1α melanomas display increased resistance to oxidative stress, highly 
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Figure 1.8  | Input and outputs of the electron transport chain.  The ETC is fueled by 
a number of metabolic inputs. NADH and FADH2 are electron donating molecules 
generated by glycolysis, the TCA cycle and FAO. NADH and FADH2 contribute elec-
trons to Complex I and Complex II, respectively. Glycerol 3-phosphate can also contrib-
ute electrons to the ETC upon conversion to the glycolytic intermediate DHAP by 
GPDH-M. To drive ATP production by oxidative phosphorylation, electrons from these 
donor molecules are transported through CoQ and the respiratory chain Complexes 
(shown in yellow) and eventually reach a final acceptor, oxygen.  Electron flow drives 
each complex to pump protons from the matrix to the intermembrane space.  The gradi-
ent is primarily used to generate ATP as protons flow black across the membrane via 
Complex V. Alternatively, protons in the intermembrane space can be transported to the 
matrix by NNT. Proton pumping drives the ability of NNT to convert NADP+ and NADH 
to NAD+ and NADPH, thus modulating cofactor balance. GPDH-M= mitochondrial 
glycerol-3-phosphate dehydrogenase, DHAP=  dihydroxyacetone phosphate, NNT= 
nicotinamide nucleotide transhydrogenase.
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aggressive clinical behavior, and sensitivity to pharmacological inhibition of oxidative 

phosphorylation. Caro et al additionally showed high mitochondrial metabolism and ETC 

function in subsets of diffuse large B cell lymphoma (DLBCL)[142].  

In addition to coordinating cellular bioenergetics, generation of ROS by the 

electron transport machinery links these proteins to cancer. The role of ROS in cancer is 

complex, and high ROS have been linked to cancer incidence in numerous studies[159-

161]. Stalling or inefficiencies in the ETC can increase ROS production. ROS have both 

adverse and beneficial consequences on cancer cells, which may in part be determined by 

the stage of tumor progression or specific cancer-associated mutations[162].  First, at 

excessive levels ROS can damage cellular machinery including proteins, lipids, DNA and 

RNA. By causing genetic damage, ROS may have mutagenic and pro-tumorigenic 

capacities. ROS also serve as important signaling molecules that can drive growth and 

cell division in cancer[163-165].  

While in some contexts ROS boosts cellular transformation and cancer cell 

growth, high ROS in other contexts acts as a pro-apoptotic signal instructing cancer cells 

to die[166, 167]. Accelerated metabolism in cancer often generates high ROS. Because 

ROS can reach toxic concentrations, adaptive mechanisms must be put it place by cancer 

cells to restore redox homeostasis and allow survival. Therefore, many cancer cells 

upregulate antioxidant pathways that endow tumors with additional stress protection. In 

this way, antioxidant programs may actually promote cancer progression of established 

tumors[168-170]. Of note, the proton gradient generated by the ETC itself can directly be 

used in antioxidant strategies. The mitochondrial intermembrane protein called 

nicotinamide nucleotide transhydrogenase (NNT) uses the power provided by the proton 
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gradient to convert NADH and NADP+ to NAD+ and NADPH, the latter of which is used 

to regenerate antioxidants[171]. The distinct roles of ROS in diverse cancer types and 

stages may help explain the different requirements for ETC machinery and oxidative 

phosphorylation in these diverse scenarios.  

Targeting oxidative metabolism: studies of metformin 

Although many tumors display decreased ETC function, a large body of research 

paradoxically indicates that limiting ETC activity in a healthy cell reduces cancer risk. 

For example, low Complex I activity due to mitochondrial DNA mutations or treatment 

with biguanides limits transformation and interferes with tumor cell survival in multiple 

cancer models[172, 173]. Original support for targeting Complex I in cancer treatment 

comes from studies of the biguanide metformin. An impressive number of retrospective, 

epidemiological and laboratory-based studies have revealed that metformin confers 

cancer-preventative properties[174]. There are several hypotheses to explain the effects 

of metformin on cancer. One is that metformin decreases systemic insulin levels and thus 

suppresses insulin-signaling pathways that are linked to cancer onset[175]. These anti-

cancer properties are not achieved by all diabetes drugs; sulfonylureas, which instead 

boost insulin levels as part of diabetes treatment, do not display the same cancer-

preventative properties as metformin[176, 177]. Another hypothesis for metformin’s 

mechanism of action, supported by substantial biochemical data, is that metformin 

directly targets and represses Complex I[178]. Complex I is one site of entry into the 

ETC. By inhibiting Complex I, metformin decreases ATP production, which may cause 

anti-cancer effects on its own or through activation of other downstream pathways, 
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possibly mediated by AMPK[179]. Efforts are underway to determine how metformin 

might alter cell metabolism to impede cancer onset or progression. 

Sirtuin-driven programs for maintaining oxidative metabolism  

Several sirtuins have major roles in maintaining ETC function. In the nucleus, 

Sirt1 promotes oxidative metabolism, mitochondrial biogenesis and ROS defense via 

coordination of key transcriptional regulators of stress resistance including p53, forkhead 

homeobox type O (FOXO) proteins, peroxisome proliferator-activated receptor γ 

coactivator 1α (PGC-1α) and nuclear erythroid factor 2-related factor 2 (NRF2)[54, 180, 

181]. Mitochondrial SIRT3 is also a major driver of oxidative phosphorylation. SIRT3 

coordinates a multi-faceted post-translational program to maintain ETC function. SIRT3 

deacetylates and activates specific subunits in all five ETC complexes to promote 

efficient electron flow. In addition to limiting ROS production, SIRT3 promotes ROS 

clearance through upregulation of antioxidant programs. For example, by deacetylating 

and activating the TCA cycle enzyme IDH2, SIRT3 promotes conversion of isocitrate to 

α-ketoglutarate in a reaction that simultaneously produces the antioxidant NADPH[182]. 

Through multiple mechanisms, SIRT1 and 3 increase mitochondrial oxidative capacity, 

prevent ETC stalling and limit ROS[17, 183-185].  

By favoring mitochondrial metabolism over glycolytic metabolism, it is 

reasonable to hypothesize that, on one hand, SIRT1 and SIRT3 hinder the metabolic 

switch to glycolytic metabolism that is frequently observed with cellular transformation. 

However, functional mitochondria are still vital for established an cancer cell population 

to grow and metastasize[154], and therefore sirtuin-induced upregulation of 
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mitochondrial metabolism may be one reason why sirtuin expression can benefit many 

existing cancers.  

PHDs, HIF and coordination of the ETC 
 

In line with the role of PHD loss and HIF activation in favoring glycolytic 

metabolism, a small number of reports suggest HIF additionally represses oxidative 

phosphorylation in some circumstances. Under hypoxia, HIF acutely represses PGC-1β, a 

key inducer of mitochondrial biogenesis[186]. Surprisingly, metabolic plasticity enables 

some restoration of oxidative metabolism in the presence of prolonged HIF activation. 

While mitochondrial metabolism and oxidative phosphorylation are overall repressed by 

HIF, residual respiration is optimized due to HIF-mediated activation of a specific 

isoform of cytochrome c oxidase, COX4-2, which boosts respiration efficiency[187]. 

Identifying nodes of metabolic reprogramming in cancer 

The primary goal of my dissertation work was to investigate novel regulatory 

nodes that coordinate cell metabolism and explore how these pathways might contribute 

to cancer.  Chapter II of this dissertation describes an unbiased approach to identify new 

functions of SIRT4. Our lab has previously shown that SIRT4 KO mice have increased 

propensity toward lung cancer and that SIRT4 KO cells have increased TCA cycle 

intermediates, but the mechanistic details remain unclear. To this end, we assessed site-

specific acetylation of mitochondrial proteins in wildtype and SIRT4 KO mouse tissues. 

Our approach stems from our finding that SIRT4 has substrate-specific and 

physiologically relevant deacetylase activity on malonyl-CoA carboxylase (MCD), 

suggesting the potential for SIRT4 to modify other mitochondrial targets. (The findings 

about MCD and my contributions to this project are detailed in the Appendix.) For the 
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first time, we detail the mitochondrial acetylome as it is altered by the presence versus 

absence of SIRT4. We find SIRT4 loss leads to hyperacetylation of enzymes in the TCA 

cycle, fatty acid metabolism, the ETC and energy production. We focus on one protein 

that was additionally found to interact with SIRT4, namely pyruvate carboxylase (PC).  

PC-mediated anaplerosis has been shown to be particularly relevant in SDH- and FH-

deficient cancers and in cancers with low levels of glutaminolysis. This chapter provides 

insight into regulation of PC by SIRT4 and highlights a number of other proteins of 

interest in SIRT4 biology. 

 Chapter III describes the discovery of a novel role for PHD3 in repressing fatty 

acid oxidation with great significance in acute myeloid leukemia (AML). The effect of 

PHD3 on fatty acid catabolism is not sensitive to hypoxia and may instead be coordinated 

by the cellular nutrient state. We find PHD3 interacts with and activates acetyl-CoA 

carboxylase 2 (ACC2), a key enzyme limiting mitochondrial fatty acid import. Via site-

specific hydroxylation, PHD3 activates ACC2 and represses FAO. Mechanistically, 

PHD3 hydroxylates ACC2 at proline 450, a residue adjacent to the ATP binding site of 

ACC2. Mutation of this hydroxylation site represses ACC2 activity and blunts the ability 

of ACC2 to bind ATP.  We further show that loss of PHD3 is a common feature of AML, 

leading to unchecked, dramatically increased FAO that fuels cancer cell survival. We 

take advantage of the metabolic reliance of low-PHD3 leukemia cells on fatty acids, and 

show that FAO inhibition kills these cancer cells.  

Chapter IV details a metabolomics-based analysis of the effects of the biguanides 

metformin and phenformin on neoplastic transformation and cancer cell stemness. 

Metformin is correlated with decreased cancer incidence, and efforts have been made by 
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numerous labs to understand the anti-cancer benefits of metformin or its more potent 

relative phenformin. The mechanism of action of biguanides is not entirely clear, but 

these drugs are proposed to work at least in part through Complex I inhibition. In 

collaboration with the Kevin Struhl lab at Harvard Medical School, we used 

metabolomics to assess the alterations caused by metformin and phenformin in cancer. 

Previous studies have examined the effects of these drugs on existing cancer cells. 

However, because we aimed to understand the ability of metformin to inhibit cancer 

onset, we took the novel approach of pre-treating non-tumorigenic cells with metformin 

or phenformin and then inducing cellular transformation. We find both metformin and 

phenformin limit cellular transformation, and we present here the metabolic alterations 

linked with biguanide treatment that appear to be incompatible with transformation. 

Additionally, we studied the metabolic effects of biguanides on cancer stem cells, a small 

population of cells that possess the predominant tumor-initiating capacity and are a major 

cause of therapeutic resistance and relapse[188]. This chapter reveals the metabolic 

effects of biguanides and furthermore highlights metabolic vulnerabilities during 

transformation or in cancer stem cells that could be targeted in future studies.  

Together the studies presented in this dissertation enhance our understanding of 

metabolic regulatory nodes in the cell. Our knowledge of metabolic crux points in cancer 

is generating an increasingly clear view of the metabolic liabilities that can potentially be 

targeted in cancer treatment. For example, metformin is currently the subject of multiple 

ongoing clinical trials in cancer treatment (as of March 2015, www.clinicaltrials.gov lists 

over 100 such trials in its database). Additionally, initial success in using an inhibitor of 

mutant IDH2 to treat AML[189] set a precedent for impeding metabolic pathways in the 
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future. Further research of metabolic regulators such as sirtuins and PHDs will surely aid 

in the pursuit of therapeutics directed toward cancer metabolism. On one hand, studies of 

these enzymes have revealed interconnected metabolic and signaling pathways that drive 

tumor biology and could be specifically targeted in cancer treatment. On the other hand, 

sirtuin or PHD expression could be considered for its utility as a metabolic biomarker to 

designate the most promising therapeutic approach in a new era of metabolically based 

precision medicine.   
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Abstract 

 SIRT4 is a mitochondrial member of the sirtuin family of NAD+-dependent 

deacylases and ADP-ribosyltransferases. Although originally studied as an ADP-

ribosyltransferase, we recently showed SIRT4 acts as a substrate-specific deacetylase of 

malonyl CoA decarboxylase with dramatic impacts on lipid metabolism, onset of obesity 

and exercise capacity. This raises the possibility that SIRT4 may possess deacetylase 

activity toward additional targets. Here we use an immunoaffinity-based label-free 

quantitative LC-MS/MS approach to identify changes in mitochondrial protein 

acetylation between wildtype (WT) and SIRT4 knockout (KO) tissues. This study 

identified 1,259 unique acetylated peptides in brown adipose tissue (BAT) and liver of 

WT and KO mice. In the absence of SIRT4, lysine acetylation was significantly increased 

by at least 1.5-fold in 94 proteins in BAT and 25 proteins in liver. A number of enzymes 

that coordinate the TCA cycle, fatty acid metabolism, the electron transport chain and the 

mitochondrial proton gradient are hyperacetylated in SIRT4 KO tissues. We show one 

candidate substrate, pyruvate carboxylase (PC), interacts with SIRT4 and displays 

elevated acetylation and activity in SIRT4 KO tissues. PC is a mitochondrial biotin-

dependent enzyme that catalyzes conversion of pyruvate to oxaloacetate. Through this 

reaction, PC serves to replenish the TCA cycle, which has been linked to maintaining 

anaplerosis in cancer as well as driving gluconeogenesis in liver and lipogenesis in 

adipose. Altered post-translational modification of PC and other mitochondrial proteins 

potentially targeted by SIRT4 supports the role of SIRT4 as a substrate-specific 

deacetylase capable of fine-tuning cell metabolism. 

Introduction 
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 The sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases 

are master regulators of metabolism in response to nutrient or redox stresses[1]. The 

seven mammalian sirtuins share a conserved catalytic core domain, but have differences 

in localization, substrate preference and the range of enzymatic activities they possess[2, 

3]. Lysine deacetylation is the most common activity of sirtuins, in line with the finding 

that acetylation is an incredibly abundant post-translational modification in the cell[4]. 

Hundreds of mitochondrial proteins are acetylated, including enzymes from all major 

metabolic pathways such as the TCA cycle, oxidative phosphorylation, amino acid 

metabolism and fatty acid oxidation[5]. Modulation of acetylation status is recognized as 

a major regulator of mitochondrial protein activity and metabolism[6]. As deacetylases, 

sirtuins contribute to a reversible mode of regulation for potentially numerous proteins. 

The mitochondrial sirtuin SIRT4 has been implicated in the regulation of 

glutaminolysis, lipid metabolism and the DNA damage response[7]. SIRT4 also has 

tumor suppressor functions at least in part through limiting glutamine utilization[8]. 

Despite the striking phenotypes of SIRT4 KO mice, the enzymatic activity of SIRT4 is 

not completely understood. SIRT4 does not demonstrate broad or robust in vitro 

deacetylase activity on known substrates of other sirtuins and instead was first shown to 

act as a mono-ADP-ribosyltransferase[9]. However, we recently showed SIRT4 does 

indeed possess substrate-specific deacetylase activity toward malonyl coA decarboxylase 

(MCD), a major coordinator of lipid homeostasis[10]. Likewise, a peptide screen of all 7 

sirtuins by Rauh et al found recombinant SIRT4, but not the catalytically inactive H161Y 

SIRT4 point mutant, has NAD+-dependent deacetylase activity toward select peptides in 
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vitro[11]. These findings suggest other substrates of SIRT4 activity remain to be 

discovered.  

Here, we examined SIRT4-dependent changes in protein acetylation to cast light 

on potential novel substrates and functions of SIRT4. We took a global approach by 

assessing SIRT4-dependent acetylation changes in BAT and liver mitochondria from WT 

and SIRT4 KO mice. We used a robust immunoaffinity method to enrich mitochondrial 

acetylated peptides for analysis by LC-MS/MS. We show that a number of enzymes with 

roles in metabolism and bioenergetics are hyperacetylated in the absence of SIRT4, 

pointing to new biologies that may be coordinated by substrate-specific SIRT4 

deacetylase activity.  

Results 

SIRT4 loss alters the mitochondrial acetylome 

 In order to identify mitochondrial proteins that are differentially acetylated in 

response to SIRT4, we performed a large-scale acetylation proteomics survey developed 

by Cell Signaling Technology called an AcetylScan (Figure 2.1 a)[12]. Mitochondria 

were extracted from BAT and liver of ad-libitum fed 6-month-old C57BL/6 female WT 

and SIRT4 KO mouse (n=2). These tissues were of particular interest due to their vital 

roles in regulating the organismal metabolic state. Next, mitochondrial extracts were 

normalized by protein content, trypsin-digested, immunoprecipitated with anti-

acetyllysine antibody loaded on resin, and subjected to LC-MS/MS analysis on an LTQ-

Orbitrap mass spectrometer. Levels of acetylated peptides were normalized by median-

centering. This method identified 1,259 unique acetylated peptides across all samples.   
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Figure 2.1  | AcetylScan to identify differentially acetylated proteins in SIRT4 WT 
and KO BAT and liver. a, An acetylation proteomics study (AcetylScan) was performed 
to identify and quantify site-specific changes in mitochondrial protein acetylation with 
SIRT4 loss. Mitochondria were extracted from fresh SIRT4 WT and KO BAT or liver 
(n=2). Following protein quantification and normalization, lysates were fragmented by 
trypsin digest and the peptides were subjected to immunoprecipitation by resin-bound 
acetyl-lysine (AcK) antibody. Immunopurified peptides were analyzed by LC-MS/MS, 
and relative quantification of site-specific acetylation was determined. b, Venn diagram 
depicting the number of proteins with at least one AcK site signficantly (p-value < 0.05) 
increased in SIRT4 KO BAT (magenta), liver (blue) or both compared to WT. The 
median-centered fold change cut-off was set at 1.5-fold increase. c, Differential mito-
chondrial acetylation as assessed by Western blot. Mitochondria were extracted from snap 
frozen WT and SIRT4 KO liver or BAT and lysed in NP40 buffer containing the deacety-
lase inhibitors nicotinamide and trichostatin A. Equal quantities of mitochondrial lysate 
were analyzed to assess global acetylated lysine changes. d, Table of the proteins found to 
be hyperacetylated in both SIRT4 KO BAT and liver. Fold change is the normalized, 
median-centered fold change over WT.  
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COX5b
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Ac

WT or KO
Liver
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Name Description AcK site
Fold 

change pvalue AcK site
Fold 

change pvalue
TCA cycle and anaplerosis

DLST dihydrolipoamide S-succinyltransferase 268, 274 2.77 0.043 268, 273 2.17 0.008
268, 273 2.38 0.002

227 2.10 <0.001
273 2.09 0.001

Lipid metabolism
HADHA mitochondrial trifunctional protein 406, 411 5.49 0.002 460 1.95 0.028

457 2.47 0.002
129 2.17 <0.001
516 2.02 0.002
759 1.96 0.002
249 1.71 0.016
303 1.66 0.001

HADHSC L-3-hydroxyacyl-Co A dehydrogenase 185 1.83 0.006 206 1.56 <0.001
206 1.79 0.011

Chaperone
HSP60 heat shock protein 1 (chaperonin) 387 1.54 0.010 369 1.78 0.010

Waste and ROS clearance
TXNRD2 thioredoxin reductase 2 precursor 153 1.83 0.004 153 1.52 0.014

Other small molecule metabolism
BPHL biphenyl hydrolase-like (serine hydrolase) 126 1.91 0.041 126 1.82 0.041
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To assess the tissue specificity of SIRT4-directed differential acetylation, we 

compared the acetylation profiles of BAT and liver. The AcetylScan revealed 94 proteins 

were significantly hyperacetylated by at least 1.5-fold in SIRT4 KO BAT, compared to 

25 proteins in SIRT4 KO liver (Figure 2.1 b). Only 6 proteins were shown by the 

AcetylScan to be hyperacetylated in both tissues of SIRT4 KO mice, suggesting 

substantial tissue-dependent differences in SIRT4 activity. The 6 proteins with increased 

acetylation of at least one lysine residue in both SIRT4 KO BAT and liver include DLST, 

a component of the TCA cycle enzyme α-ketoglutarate dehydrogenase, as well as 

HADHA and HADHSC, enzymes required for oxidation of long chain and short chain 

fatty acids, respectively (Figure 2.1 d). Sequences and data on all significantly altered 

acetylated peptides can be found in Supplemental Tables 2.1 and 2.2. 

 To test the finding that SIRT4 loss is linked to particularly strong hyperacetylation 

in BAT compared to liver, we examined mitochondrial acetylation in these tissues by 

Western blot. Similar to previous reports, global levels of mitochondrial acetylation in 

liver were similar between WT and SIRT4 KO lysates[13]. Strikingly, Western blot 

analysis of mitochondrial lysates from WT and SIRT4 KO BAT demonstrated increased 

acetylation in SIRT4 KO BAT (Figure 2.1 c). Of note, nearly all hyperacetylated proteins 

elucidated by this strategy were found to have another acetyllysine site with relatively 

unchanged levels (a non-significant, less than 1.5 fold difference) in SIRT4 KO tissues, 

suggesting altered post-translational modification rather than upregulated translation is 

the reason for differential acetylation. 

Pathway analysis of hyperacetylated proteins in SIRT4 KO BAT point to TCA cycle 

regulation 
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To gain insight to the functional significance of hyperacetylation upon SIRT4 loss 

in BAT, we analyzed the AcetylScan results to assess whether the hyperacetylated 

proteins shared related functions. Rather than representing a broad range of mitochondrial 

programs, the hyperacetylated proteins were predominantly members of mitochondrial 

metabolic pathways (Figure 2.2 a). The majority of the hyperacetylated proteins were 

enzymes in the TCA cycle and anaplerosis, lipid metabolism, the electron transport chain 

(ETC) and mitochondrial proton gradient and, finally, amino acid metabolism. 

Supporting this observation, the individual peptides with the greatest increase in 

acetylation in SIRT4 KO BAT were from proteins in many of these pathways (Figure 2.2 

b).  

Alterations in lipid metabolism and amino acid metabolism enzymes are in line 

with previous reports showing SIRT4 limits fatty acid oxidation and glutaminolysis. 

However, the TCA cycle and anaplerosis stood out for representing the greatest portion 

of hyperacetylated peptides as well as for being little explored in terms of SIRT4 

regulation. 17 enzymes involved in the TCA cycle and anaplerosis were hyperacetylated 

on at least one site in SIRT4 KO BAT (Figure 2.2 c). Of note, only three of these sites 

(ACO2 K138, CS K393 and DLST K373) were also differentially acetylated in a similar 

acetylomics analysis comparing SIRT3 WT and KO tissues[14]. This suggests the 

acetylated residues found in our study may be specific to SIRT4 and not mitochondrial 

sirtuins in general. 

Pyruvate carboxylase interacts with SIRT4 and is hyperacetylated in SIRT4 KO tissues 

The acetylation proteomics suggest SIRT4 may directly bind and alter the 

acetylation status of candidate proteins in the TCA cycle and other metabolic pathways. 
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Figure 2.2  | Top proteins and pathways with increased lysine acetylation in SIRT4 
KO BAT. a, Pie chart depicting the pathways represented by the 94 mitochondrial 
proteins with significantly increased lysine acetylation in SIRT4 KO versus WT BAT. 
Enzymes involved in the TCA cycle and anaplerosis represent the greatest portion. b, 
AcK sites with the greatest increase in SIRT4 KO BAT, based on the median-centered 
normalized fold change values. The acetylated residue is listed in parenthesis. c, TCA 
cycle and anaplerosis enzymes with significantly increased lysine acetylation of at least 
one site in SIRT4 KO BAT. *p < 0.05, **p < 0.01, *** p < 0.001. Error bars indicate 
SEM.
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To prioritize identification of potential substrates, we took an unbiased approach to assess 

SIRT4 interacting proteins using immunoprecipitation and mass spectrometry. Stably 

overexpressed HA-tagged SIRT4 or mitochondrial HA-tagged DsRed control protein was 

immunoprecipitated from HEK-293T cells. Co-immunoprecipitated proteins were 

resolved by SDS-PAGE, Coomassie stained, and analyzed by mass spectrometry. This 

led to the identification of pyruvate carboxylase (PC) as a top mitochondrial protein that 

interacted specifically with SIRT4 but not DsRed control protein (Figure 2.3 a). 

Moreover, SIRT4 KO BAT lysates demonstrated elevated PC acetylation in the 

AcetylScan, leading us to examine the regulation of PC by SIRT4 (Supplemental Table 

2.1). 

PC is a biotin-containing mitochondrial enzyme that catalyzes the conversion of 

pyruvate and bicarbonate to oxaloacetate[15]. PC provides one way to replenish the TCA 

cycle when intermediates have been shunted away for macromolecule synthesis or when 

deficiencies in metabolic enzymes lead to incomplete TCA cycling[16]. By providing 

oxaloacetate, PC in liver also catalyzes the first committed step of gluconeogenesis[17]. 

In brown and white adipose, PC provides oxaloacetate for lipogenesis and to promote 

pyruvate-cycling. Cycling of pyruvate and its TCA cycle derivatives, including 

oxaloacetate, malate, and citrate, between the mitochondria and cytoplasm produces 

cytosolic NADPH, a co-factor important in biosynthetic reactions and antioxidant 

defense programs[18]. Thus, SIRT4 regulation of PC has the potential to coordinate a 

number of metabolic programs. 

To examine the interaction between SIRT4 and PC, we first validated binding by 

immunoprecipitating transiently overexpressed Flag-SIRT4, Flag-SIRT5 or empty vector 
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Figure 2.3  | Pyruvate carboxylase interacts with SIRT4 and is hyperacetlated in 
SIRT4 KO BAT. a, SIRT4 interacting proteins identified by LC-MS/MS following 
co-immunoprecipitation with HA-SIRT4 but not HA-DsRed control protein in 293T cell 
lysates. A portion of the interacting proteins, including PC, show >1.5-fold significantly 
increased acetylation (p < 0.05) of at least one lysine residue in the AcetylScan. b, PC 
interacts with SIRT4. Flag-tagged SIRT4, SIRT5 or empty vector was transiently overex-
pressed in 293T cells. Following immunoprecipitation with anti-Flag resin, the interac-
tion between SIRT4 and PC was detected by Western blot. c, PC is hyper-acetylated at 
K316 and K1090 in SIRT4 KO BAT, as assessed by the AcetylScan. d, PC interacts with 
endogenous SIRT4 and is hyper-acetylated in SIRT4 KO BAT. Mitochondria were 
extracted from WT and SIRT4 KO BAT, then lysed in NP40 buffer. PC was immunopre-
cipitated and analyzed by SDS-PAGE and Western blot with a pan acetyl-lysine antibody. 
e, Conservation of K1090 and K316 in PC. K316 is conserved in mouse, rat and frog but 
not in human. K1090 is conserved in the PC tetramerization domain in several vertebrate 
species, and the residue may be conserved but shifted in drosophila.  K1090 and K316 
are highlighted in red. Other conserved residues are in orange. f, Molecular modeling to 
evaluate the location of K1090 (red) in the tetrameric interface of human PC (PDB: 
3BG3). PC monomers are in yellow, green, cyan and magenta. *p < 0.05, **p < 0.01. 
Error bars indicate SEM.

K1090

K1090

K1090

K1090

f

Homo sapiens SILVKDTQAMK
Bos taurus SILVKDTQAMK
Mus musculus SILVKDTQAMK
Rattus norvegicus SILVKDTQAMK
Xenopus laevis    SVLVKDTQAMK
Gallus gallus SILVRDTQALK

1090

SIFVVDKEASKDrosophila

316
Homo sapiens FLVDRHGKHY
Bos taurus FLVDRHGKHY
Mus musculus FLVDKHGKHY
Rattus norvegicus FLVDKHGKHY
Xenopus laevis    FLVDKHGKHY
Gallus gallus FLVDRDGKHY
Drosophila FLVDQKGNYY

N
or

m
al

iz
ed

 fo
ld

 c
ha

ng
e

KO
:W

T

Input Flag-IP

PC

Flag

Flag-SIRT v   SIRT4 SIRT5 v   SIRT4 SIRT5

b

COX5b

SIRT4

PC

SIRT4

PC

AcK

PC-IP

Input

WT KOc

AcK
 31

6

AcK
 10

90
0.0

0.5

1.0

1.5

2.0
* **

PC AcK status
in BAT

a SIRT4 interacting proteins

Protein name Description
Unique 

peptides
Differential AcK 
in T4-KO, p< 0.05
yes, BAT and liverHSP60 heat shock 60kDa protein 1 (chaperonin) 15

pyruvate carboxylase 7 yes, BAT
SLC27A2 solute carrier family 27 (fatty acid transporter), member 2 3 yes, liver
GTF2i general transcription factor IIi 22 no
HNRNPU heterogenous nuclear ribonuclear protein U 7 no
TUBA4A tubulin, alpha 4 3 no
UBC ubiquitin C 3 no

d

PC

64



 
 

from 293T cells and blotting for endogenous PC (Figure 2.3 b). Here, PC interacted 

specifically with SIRT4. The AcetylScan showed two PC residues were hyperacetylated 

in SIRT4 KO BAT:  K316 and K1090 (Figure 2.3 c). We confirmed the change in 

acetylation by immunoprecipitating PC from WT and SIRT4 KO BAT and 

immunoblotting with a pan-acetyllysine antibody (Figure 2.3 d). This analysis also 

demonstrated that SIRT4 co-immunoprecipitates with PC in WT tissue, confirming the 

endogenous interaction between these proteins. 

We next assessed conservation of the PC acetyllysine residues to gain insight into 

the relevance of these sites (Figure 2.3 e). K316, located in the ATP-grasp region of PC, 

is present in mouse, rat and frog, but is not conserved in human or other vertebrates. 

Residue K316 residue was previously shown to be acetylated in fasted mice[19]. 

Interestingly, K316 in mouse is changed to arginine in human, which mimics a 

constitutively deacetylated lysine. K1090 is located in the PC tetramerization domain and 

conserved in multiple vertebrate species from human to frog. To gain mechanistic insight 

into how acetylation status of K1090 could modulate human PC, we mapped this site in 

the published human PC crystal structure (PDB: 3BG3) (Figure 2.3 f)[20]. Its position in 

the interface between PC monomers suggests it may play a role in formation of the 

functional PC homotetramer. Therefore, SIRT4-mediated coordination of PC K1090 

acetylation status might have strong functional significance.  

SIRT4-mediated regulation of PC activity 

To evaluate the link between SIRT4 and PC activity, we performed an in vitro PC 

activity assay based on the production of 14C-oxaloacetate from 14C-bicarbonate (Figure 

2.4 a). In preliminary studies, PC activity trends toward being increased in SIRT4 KO 
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Figure 2.4  | SIRT4 inhibits PC activity in mouse tissues. a-b, PC activity trends 
towards an increase in SIRT4 KO BAT as measured in a radioactivity-based carbon 
fixation assay with 50 μg mitochondrial extracts. Western blot shows SIRT4 KO, PC 
levels and the Complex III Rieske subunit loading control. n=2 experimental replicates. 
b, Schematic of the spectrophotometric citrate synthase-coupled PC activity assay 
performed with mouse liver mitochondrial lysates. PC converts contain uses ATP and 
bicarbonate to convert pyruvate to oxaloacetate. Exogenous citrate synthase uses acetyl-
CoA in the reaciton mix to convert oxaloacetate to citrate. Free CoA is released in the 
process. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) reacts with the thiol group of free 
CoA and generates TNB2-, a yellow product quantified by absorbance at A= 412nm.  c, 
Optimization of the citrate synthase-coupled PC activity assay. Bovine PC (Sigma) was 
spiked into cuvettes containing the reaction components plus vehicle or the PC inhibitors 
avidin or phenylacetic acid. An additional sample was measured without pyruvate. Activ-
ity was monitored by measuring the absorbance at A= 412nm every 15 s for 9 minutes. d, 
Initial rate of PC activity based on the data shown in (c).  e, PC activity is increased in 
SIRT4 KO liver mitochondrial extracts. Western blot shows SIRT4 KO, PC levels and 
Hsp60 loading control. n=3 biological replicates, each measured in triplicate. f, Sites 
K319, K434 and K1061 in PC trend toward increased acetylation in SIRT4 KO liver, as 
assessed by the AcetylScan. g, Endogenous SIRT4 co-immunoprecipitates with endog-
enous PC that was affinity purified from WT mouse liver using PC-antibody and IgG 
resin. ***p < 0.001. Error bars indicate SEM.
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BAT mitochondrial lysates (Figure 2.4 b). Alternatively, we assessed PC activity using a 

citrate-synthase coupled, absorbance-based enzymatic assay in liver (Figure 2.4 c).  The 

high abundance of PC in liver makes this assay possible, rather than requiring a 

radioactivity-based method. The citrate synthase-coupled assay was optimized using 

commercially available bovine PC in the presence or absence of the PC inhibitors avidin 

and phenylacetic acid as well as in the absence of the substrate pyruvate (Figure 2.4 d-e). 

In SIRT4 KO liver, we observed a significant increase in PC activity (Figure 2.4 f), 

suggesting a model in which SIRT4-mediated deacetylation of PC represses PC activity. 

Of note, three PC lysine residues trend toward being hyperacetylated in SIRT4 KO liver, 

specifically K319 in the ATP-grasp region, K434 in the biotin carboxylation domain and 

K1061 in the PC tetramerization domain (Figure 2.4 g). To test the possibility that SIRT4 

directly binds and represses SIRT4 in liver, we performed immunoprecipitation of PC 

from WT and SIRT4 KO liver and Western blotted for endogenous SIRT4. PC interacted 

with SIRT4 in WT liver (Figure 2.4 h), suggesting SIRT4 could indeed directly modulate 

PC.  

Through inhibition of PC, SIRT4 might be expected to limit PC-mediated 

anaplerotic flux. To assess the role of SIRT4 in regulating flux through PC, we performed 

U-13C-labeled glucose metabolic flux analyses on transformed WT and SIRT4 KO MEFs. 

24 h after incubation with labeled glucose, metabolites were extracted, and we assessed 

the abundance of 3-carbon labeled citrate (generated from flux through PC) as well as 5-

carbon labeled citrate (generated from flux through both PC and PDH)[21] (Figure 2.5). 

A small but significant increase was observed in 5-carbon labeled citrate in KO MEFs, 

indicating activity of PC, PDH or both is increased. However, the low levels of +3 and +5 
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Figure 2.5  | Anaplerotic flux through PC in WT and SIRT4 KO MEFs. a-b, U-13C-
labeled glucose metabolic flux analysis on transformed WT and SIRT4 KO MEFs. 24 h 
after incubation with labeled glucose, metabolites were extracted, analyzed by mass 
spectrometry and normalized to cell number in parallel plates.  3-carbon labeled citrate 
indicates flux of glucose-derived pyruvate through PC (a). 5-carbon labeled citrate 
indicates flux through both PC and PDH. Data are presented as a fraction of total citrate 
(b) (n = 3). **p < 0.01. Error bars indicate SEM.
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citrate are consistent with PC activity not playing a major role in anaplerosis in these 

MEFs. Therefore, we moved to a more suitable cell model to assess the effect of SIRT4 

on PC activity.  

To examine the role of SIRT4 on PC in a relevant cell model, we used the Huh7 

hepatocellular carcinoma cell line, which were reported to display high PC-mediated 

anaplerosis[22]. The dependency on PC rather than glutaminolysis for anaplerosis 

enables these cells to grow normally even in the absence of glutamine (Figure 2.6 a), 

whereas cells with low PC anaplerosis such as 293T experience growth inhibition upon 

glutamine withdrawal (Figure 2.6 b). In Huh7 cells, preliminary PC activity assay results 

show transient SIRT4 overexpression induces a trend toward decreased PC activity 

(Figure 2.6 c). Reduced PC function is known to boost pyruvate and lactate levels[16]. 

Because SIRT4 inhibits PC, we predicted overexpression of SIRT4 would block PC-

mediated anaplerosis and shunt pyruvate toward lactate (Figure 2.6 d). Fitting with this 

hypothesis, we found overexpression of SIRT4, but not the catalytically inactive mutant 

H161Y, increased lactate production in Huh7 cells (Figure 2.6 e). The change in lactate 

was not accompanied by increased glucose uptake (Figure 2.6 f), indicating the increased 

lactate production was indeed due to altered pyruvate flux rather than altered glucose 

metabolism as a whole. Together, these data suggest SIRT4 inhibits PC-flux and 

potentially serves as a central gatekeeper of pyruvate anaplerosis.   

To assess the potential impact of PC repression on whole body metabolism, we 

performed pyruvate tolerance tests (PTT) on WT and SIRT4 KO mice. PTT measures the 

production of glucose following intraperitoneal injection of pyruvate in fasted mice. 

Because this process requires PC flux[17], we hypothesized hyperactive PC in SIRT4 KO 
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Figure 2.6  | SIRT4 regulates metabolic outputs in the PC-dependent Huh7 cell line.  
a, Growth curves of Huh7 cells in media +/- glutamine for 72 h, demonstrating the 
glutamine-independence of this cell line.  b, Growth curves of 293T cells in media +/- 
glutamine for 72 h, demonstrating the high reliance on glutamine of this cell line. c, PC 
activity trends toward a decrease in Huh7 cells transiently overexpressing Flag-SIRT4. 
30 μg mitochondrial extracts were used in the radioactivity-based PC assay. Western blot 
shows Flag-SIRT4, PC and the Complex III Rieske subunit loading control. n=2. d, 
Model of the effect of SIRT4 on PC. SIRT4 inhibits PC, possibly repressing anaplerosis 
and shunting pyruvate toward lactate. e-f, Lactate production (e) and glucose uptake (f) 
in Huh7 cells stably overexpressing vector, SIRT4 or catalytic mutant H161Y SIRT4. 
Prior to the assay, cells were split to a 6 well plate, n=5. The next morning, cells were 
placed in fresh media lacking glutamine. After 6 hr, the media was collected, and glucose 
and lactate were measured on the Nova flux analyzer. Values were normalized to cell 
count. *p < 0.05, ** p < 0.01, ***p < 0.001. Error bars indicate SEM. 
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mice would boost the gluconeogenic output. Upon pyruvate injection, SIRT4 KO mice 

reach higher blood glucose levels than WT (Figure S2.1 a-b). Blood glucose was 

particularly high in SIRT4 KO female mice (Figure S2.1 a). Because hyperglycemia 

following pyruvate injection could also result from alteration of other gluconeogenic 

enzymes or reduced insulin sensitivity, we cannot rule out the possibility that the PTT 

results are due to a defect unrelated to PC.  Of note, however, WT and SIRT4 KO mice 

on a normal chow diet show no difference in glucose tolerance tests or insulin tolerance 

tests (data not shown), supporting the hypothesis that this alteration is specific to 

gluconeogenesis and not a defect in tissue glucose uptake.  

Discussion 

 Contrary to previous reports that SIRT4 is a weak deacetylase, our data suggest 

SIRT4 is a biologically relevant, tissue-specific deacetylase with major impacts on 

cellular metabolism and bioenergetics. The finding that SIRT4 extensively modulates 

acetylation in BAT, combined with our previous report that SIRT4 deacetylates MCD in 

white adipose tissue, points to the presence of a molecular component in adipose that is 

key to SIRT4 activation. It is possible that the high lipid content in adipose boosts SIRT4 

activity, similar to the way in which fatty acids boost SIRT6 activity in vitro. 

Alternatively, as a sensor of nutrient overload and DNA damage, SIRT4 deacetylase 

activity may be instigated by a stress condition that is generally more prevalent in adipose 

than other tissues. 

Future studies are needed to validate and explore the biological relevance of the 

multiple acetylated proteins modulated by SIRT4. Additionally, the role of SIRT4 in liver 

should not be entirely discounted. Although SIRT4 activity appears be greater in BAT, 
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we detected site-specific hyperacetylation in SIRT4 KO liver, particularly in proteins 

regulating the electron transport chain and lipid metabolism (Figure S2.2 a). We observed 

a particularly striking increase in acetylation of nicotinamide nucleotide 

transhydrogenase (NNT) (Figure S2.2 b), in line with a published peptide library screen 

showing recombinant SIRT4 deacetylates an NNT peptide in an NAD+-dependent 

manner[11]. Strikingly, we find NNT is hyperacetylated over 150-fold at residue K70 and 

7-fold at K433 in SIRT4 KO liver (Figure S2.2 c). These residues are well conserved 

across species (Figure S2.2 d) and located in the mitochondrial matrix domain of 

NNT[23], suggesting accessibility to SIRT4. NNT is an inner-mitochondrial membrane 

bound protein that transfers reducing equivalents from NADH to NADP+, generating 

NAD+ and NADPH (Figure S2.2 e)[24-26]. Thus, by coordinating NNT and cofactor 

balance, SIRT4 has potential to direct the redox status and metabolic state of the cell.  

The finding that SIRT4 interacts with and represses PC supports a developing 

theme in sirtuin research that the major function of SIRT4 is to limit mitochondrial 

oxidative metabolism. While most sirtuins promote oxidative metabolism under low 

nutrient conditions, SIRT4 is emerging as a counterbalance that limits oxidative 

metabolism in the presence of adequate nutrients by repressing glutaminolysis, fatty acid 

oxidation and PDH, as was shown very recently[27]. We now add PC to this model. 

Future studies are needed to determine the scope of the SIRT4/PC regulatory axis in both 

physiological and pathological state. Loss of SIRT4 and upregulation of PC might be 

expected to contribute to pathogenesis of a diabetic state in patients. Furthermore, SIRT4 

loss in cancer may promote flux through PC and may be particularly advantageous to 

cancers that rely on this route for anaplerosis. To understand the role of SIRT4 in cancer, 
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it will be important for future studies to assess metabolic flux and cancer viability in PC-

dependent cancer models upon modulation of SIRT4. In sum, our work uncovers multiple 

potential metabolic substrates of SIRT4 deacetylase activity and suggests many new 

biologies that may be impacted by this sirtuin. 
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 Materials and methods 

Mice. Female 22-26 week-old C57BL/6 WT and SIRT4 KO mice that were fed ad-

libitum were used for the AcetylScan and all other experiments, except those assessing 

the role of PC in BAT. For these studies the 129 mouse strain was more readily available. 

All animal experiments were performed in accordance with institutional guidelines. 

AcetylScan and statistical analysis. Acetylation proteomics were performed as previously 

described using the platform developed by Cell Signaling Technology[12, 28]. Liver and 

BAT from WT and SIRT4 KO mice were analyzed (n=2). Label-free quantification was 

done by comparing peak intensities of the same peptide ion in each sample. Raw values 

from the mass spectrometry were used to calculate significance (p < 0.05, using n=2). 

Non-mitochondrial proteins were manually filtered and excluded from the dataset. Fold 

changes in lysine acetylation were calculated from the median-centered normalized data.  
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Crude mitochondrial extraction. Mitochondria were isolated from mouse tissue using 

differential centrifugation. Briefly, mice were euthanized by cervical dislocation. Liver 

and BAT were dissected and immediately frozen in liquid nitrogen. For mitochondrial 

extraction, tissues were homogenized in ice-cold mitochondrial isolation buffer (225 mM 

mannitol, 75 mM sucrose, 10 mM MOPS, 1 mM EGTA, 0.5% BSA, pH 7.2) containing 

protease and phosphatase inhibitors as well as 1 mM DTT, 10 mM nicotinamide and 400 

nM trichostatin A. Homogenates were centrifuged 10 min at 1,000 x g. Mitochondria 

were in the supernatant. A second extraction and centrifugation were performed. The 

supernatants were combined and spun 10 min at 1,000 x g. Finally the supernatant was 

centrifuged 15 min at 8,000 x g to pellet the mitochondria.  

Reagents and constructs. For transient overexpression studies, Fugene 6 (Roche) was 

used to transfect 293T cells. Huh7 cells were transfected with X-tremeGENE HP 

(Roche). pCMV empty vector and constructs containing Flag-SIRT4, Flag-SIRT4 H161Y 

and Flag-SIRT5 were previously described[9].  

Cell culture. 293T cells were cultured in 4.5 g/L glucose DMEM containing pyruvate 

(Invitrogen) supplemented with 10% FBS and penicillin/streptomycin. Huh7 cells were 

cultured in 4.5 g/L glucose DMEM without pyruvate (Invitrogen) supplemented with 

10% FBS and penicillin/streptomycin. MEFs were isolated from WT and SIRT4 KO 

littermate embryos and transformed as previously described[8] MEFs were cultured in 

4.5 g/L DMEM containing supplemented with 10% FBS, b-mercaptoethanol and 

penicillin/streptomycin. 

Immunoprecipitation, western blotting and antibodies. Cells or tissue mitochondrial 

extracts were lysed in 1% NP40 buffer (150 mM NaCl, 50 mM Tris, pH 8.0) containing 
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10 mM nicotinamide, 400 nM trichostatin A and protease inhibitor cocktail (Roche), 

except for Western blots of PC activity assays in which cells were lysed in the activity 

assay buffer. Protein concentrations were assessed by BCA assay (Pierce) and equal 

quantities were loaded on a 4-15% Criterion Tris-HCl gel for electrophoresis. Proteins 

were transferred to nitrocellulose membrane for immunoblotting. Western blotting was 

performed using antibodies against Flag-M2 (Sigma no. F-3165), PC (Santa Cruz no. sc-

271493), Cox5b (MitoSciences no. MS503), acetyl-lysine (CST no. 9441), CIII Rieske 

(MitoSciences no. MS305) and Hsp60 (Abcam no. ab3080-500). For 

immunoprecipitations of transiently overexpressed HA- or Flag-tagged proteins, lysates 

were immunoprecipitated using EZview anti-HA Affinity Gel (Sigma no. E6779) or 

EZview anti-Flag M2 Affinity Gel (Sigma no. F2426 ). For endogenous 

immunoprecipitations, lysates were immunoprecipitated with PC antibody (Santa Cruz 

no. sc-271493). 

Immunoprecipitation and mass spectrometry to identify SIRT4 interactors. To identify 

SIRT4 interacting proteins, HA-SIRT4 or HA-DsRed control protein was stably 

overexpressed in 293T cells. Cell lysates were collected and immunoprecipitated with 

anti-HA EzView resin. Bound material was washed twice in a high salt wash containing 

300 mM NaCl, followed by two washes at 150 mM NaCl. Immunoprecipitated material 

was separated by SDS-PAGE. The Coomassie stained band was excised, analyzed by 

LC-MS2 and searched against the Uniprot Human database. 

13C glucose flux tracing.  Metabolic flux with SIRT4 WT and KO MEFs was performed 

as previously described[29]. Prior to the analysis, MEFs were cultured in pyruvate-free 

DMEM containing 4.5 g/L glucose supplemented with 10% FBS, β-mercaptoethanol and 
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penicillin/streptomycin. Cells were split into parallel 6-well plates for flux and for cell 

counting. For flux studies, cells were rinsed in PBS and replaced with flux media 

containing glucose-free DMEM containing glutamine and supplement with labeled 

glucose, dialyzed FBS, β-mercaptoethanol and penicillin/streptomycin. 24 hr later 

metabolites were harvested for analysis and cells were counted in the parallel plates. 

Lactate secretion and glucose uptake measurements. Lactate and glucose levels in culture 

media were measured using the BioProfile FLEX analyzer (Nova Biomedical) compared 

to blank media that had not been exposed to cells. Fresh, glutamine-free media was added 

to a 6-well plate of subconfluent cells, and 6 hr later media was collected for analysis and 

normalized to cell number. 

Pyruvate tolerance tests. Mice were fasted for 16-18 hr overnight before the PTT. 

Following intraperitoneal injection of 2 g/kg sodium pyruvate, tail vein blood glucose 

was measured at 15 min intervals using a One-Touch glucometer. Results were 

normalized to initial blood glucose levels at time 0. 

Spectrophotometric-based PC activity assay. Reactions were performed as previously 

described[30] with the following exceptions. Samples were incubated with 90 mM Tris-

HCl, 100 mM NaHCO3, 50 mM MgCl2, 500 mM acetyl-CoA, 25 mM DTNB, 50 mM 

ATP, 50 mM pyruvate and 1 unit/ml citrate synthase (C3260, Sigma, Porcine). Reactions 

were initiated by the addition of 75 µg mitochondrial protein lysate. Oxaloacetate formed 

by PC is measured in the presence of excess citrate synthase, which reacts with acetyl 

CoA to yield citrate and free CoA. CoA reduces DTNB, generating a colored product 

measured at A=412 nm. 

Radioactivity-based PC activity assay. Reactions were performed as previously 
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described[31] with the following exception. Samples were incubated 30 min at 37˚ in a 

Thermomixer (Eppendorf) at 1000 rpm. Samples were quenched with 30 µl of 1 N HCl 

and heated for 60 min at 90˚ with lids open to allow carbon dioxide to escape. 

Background control samples lacked pyruvate and acetyl CoA. PC activity was calculated 

as incorporation of [14C]bicarbonate into [14C]oxaloacetate (the acid and heat stable 

product) as measured by scintillation counting. 

Molecular modeling. Using CCP4mg molecular graphic software, the homotetrameric 

form of human PC (PDB: 3BG3) was analyzed to highlight the position of acetylated 

residues. The structure depicts the C-terminal portion of PC, missing only the N-terminal 

biotin carboxylation domain. 

Statistical analysis. Unpaired two-tailed Student’s t tests were used. All experiments 

were performed at least two to three times.  

Growth rates. For growth-rate analysis, Huh7 or 293T cells were plated in the wells of a 

12 well plate (25,000 cells/well). At indicated times, cells were trypsinized and counted. 
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Abstract 

In cancer, cell metabolism is fundamentally altered to drive biosynthetic, 

bioenergetic and signaling pathways[1, 2]. While much research has focused on the use 

of glucose and glutamine by tumor cells[3-5], a substantial subset of cancers, for reasons 

largely not understood, have a high capacity and preference for fat oxidation[6]. Our 

knowledge of molecular pathways that drive dependency of fatty acid oxidation in 

cancers is limited, demonstrating a critical need to identify these regulatory nodes. Here 

we reveal a novel role for prolyl hyrdoxylase domain (PHD) 3 in inhibiting fatty acid 

oxidation (FAO) in cancers. PHDs are α-ketoglutarate-dependent dioxygenases that 

modify proline residues of target proteins and have been linked to fuel switching in 

cancer[7, 8]. We find PHD3 hydroxylates and activates acetyl-CoA carboxylase (ACC2), 

an enzyme that inhibits mitochondrial FAO[9]. Site-specific hydroxylation at Pro450 

results in full ATP binding and activation of ACC2.  We find this regulatory axis is not 

sensitive to hypoxia or the transcriptional regulator hypoxia inducible factor (HIF), but 

rather is sensitive to cellular nutrient status. Under nutrient replete conditions, PHD3 acts 

through ACC2 to drive a switch that represses FAO. We show PHD3 expression is 

strongly decreases in acute myeloid leukemia (AML). Low-PHD3 AML cell lines display 

altered ACC2, elevated FAO regardless of external nutrient cues and sensitivity to 

treatment with FAO inhibitors. Thus, loss of the PHD3/ACC2 regulatory axis in leukemia 

enables greater utilization of fatty acids as fuel, but also serves as a metabolic liability by 

rendering cells susceptible to FAO inhibition.  

Introduction 
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Elevated fatty acid uptake and utilization are hallmarks of several subsets of 

cancer[6, 10]. Amplified fatty acid catabolism may promote cancer cell survival via 

several mechanisms including by providing ATP, maintaining mitochondrial membrane 

quality or building a pool of citrate that is used for the production of the antioxidant 

molecule NADPH[11-15]. However, our knowledge of the metabolic drivers enabling 

altered FAO in cancer is lacking, highlighting a critical unmet area of cancer research. It 

is vital to elucidate the regulatory nodes that coordinate fatty acid preference and fate, 

and to understand how these pathways might contribute to cancer.  

PHDs (also called EGLN1-3) are a conserved class of oxygen- and α-

ketoglutarate dependent enzymes that perfectly poised to modulate metabolism in cancer. 

PHD family members are well known to regulate glycolytic metabolism through prolyl 

hydroxylation of the master transcriptional regulator hypoxia inducible factor (HIF)[7, 8]. 

Hypoxia and a number of mutations in cancer that alter levels of TCA cycle intermediates 

inhibit the activity of PHD family members, thus stabilizing HIFα and triggering a 

transcriptional program to increase glycolysis and anabolism while limiting 

mitochondrial bioenergetics[16-19]. PHD1 and 2 are quite sensitive to subtle changes in 

oxygen levels due to their weak affinity for oxygen, positioning these enzymes as prime 

mediators of the cellular and metabolic response to changing oxygen levels[7]. However, 

in most cell types PHD3 (also called EGLN3) is not a major HIF hydroxylase and is less 

sensitive to low oxygen than other PHDs[20, 21], raising the question as to what other 

pathways PHD3 may coordinate. In vitro studies indicate PHD3 has lower affinity for the 

co-substrate α-ketoglutarate than other PHDs, a characteristic that suggests PHD3 might 

be sensitive to fluctuations in the cellular nutrient state[22]. Recent studies indicate 
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PHD3 can bind and regulate other targets with potential disease relevance including 

pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase (PDH)-E1β, demonstrating 

broader specificity of these enzymes[20, 23]. Therefore, in this study we aimed to 

identify novel PHD3 substrates that may impact cellular metabolism in cancer. 

Results 

PHD3 binds and modifies ACC by site-specific prolyl hydroxylation 

In order to determine novel PHD3 substrates, we performed immunoprecipitation 

of PHD3 followed by liquid chromatography tandem mass spectrometry (LC-MS2) and 

detected a novel interaction with acetyl-CoA carboxylase (ACC). ACC specifically 

interacted with PHD3 but not PHD1, PHD2 or anti-HA affinity resin alone, as verified by 

Western blot (Figure 3.1 a, Table 3.1). Although PHDs are commonly associated with 

glucose metabolism, this interaction was perplexing in that it suggests PHD3 may be 

directly linked to fat metabolism. ACC is a key regulator of fatty acid homeostasis that 

directs the cell to catabolize or synthesize fatty acids. ACC converts acetyl-coA to 

malonyl-CoA, which serves as a precursor for fat synthesis and an inhibitor of fatty acid 

oxidation (FAO)[24-26].  

We considered the possibility that PHD3 modifies ACC by prolyl hydroxylation. 

To this end, we analyzed PHD3-responsive changes in prolyl hydroxylation. We identify 

for the first time that ACC is prolyl-hydroxylated and that this modification is present in 

a PHD3-dependent manner (Figure 3.1 b). Hydroxylation of endogenous ACC is 

decreased upon knockdown of PHD3 by two different hairpins, as detected by 

immunoprecipitation and Western blot with a pan-hydroxyproline antibody (Figure 3.1 b, 

extent of knockdown by each hairpin shown in Figure S3.1 a-b). Accordingly, 
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Figure 3.1 | ACC interacts with PHD3 and is modified by site-specific hydroxylation 
at Pro450. a, Interaction between ACC and PHD3. HA-tagged PHD1-3 or empty vector 
were transfected in 293T cells, immunoprecipitated with anti-HA affinity resin, and 
interactions were detected by immunoblotting for ACC. b, Endogenous ACC hydroxyl-
ation was measured in 293T cells in complete media following stable PHD3 knockdown 
by two different shRNA or non-targeting control. c, Endogenous ACC hydroxylation in 
293T cells in serum-free, low glucose media transiently overexpressing HA-PHD3 or 
vector. ACC was immunoprecipitated by ACC antibody and Protein G affinity resin. 
Hydroxylation was detected by immunoblot with hydroxyproline (OH-Pro) antibody. d, 
Endogenous ACC hydroxylation in 293T cells in serum-free, low glucose media tran-
siently overexpressing wild type PHD3 or catalytically inactive PHD3 mutants (R206K 
and H196A). e, Hydroxylation of endogenous ACC1 versus ACC2 was assessed by 
immunoprecipitation with isoform-specific antibodies and immunoblotting with OH-Pro 
antibody. 293T cells were pre-treated 12 h with serum-free, low glucose media prior to 
IP. f-g, Representative mass spectra identifying the hydroxylated and non-hydroxylated 
versions of residue P450 in ACC2 peptides. OH-Pro sites were identified by the expected 
+15.9949 molecular weight shift. ‘b’ fragments (blue) contain the N-terminal amino acid 
of the peptide and are labeled from the amino to the carboxyl terminus. ‘y’ fragments 
(green) contain the C-terminal amino acid of the peptide are labled from the carboxyl to 
the amino terminus. h, ACC2 hydroxyproline residues detected by mass spectrometry 
following transient overexpression of ACC2 in 293T cells and immunoprecipitation with 
ACC antibody. i, Diagram shows the location of OH-Pro residues in ACC2 domains. j, 
Hydroxylation of transiently overexpressed WT ACC2 or proline to alanine point 
mutants. Overexpressed ACC2 was immunoprecipitated with ACC antibody. Hydroxyl-
ation was assessed by immunoblot. k, In vitro reconstituted hydroxylation assay with 
ACC2 peptides containing the indicated proline residue and recombinant PHD3 (n = 2).  
Xcorr = cross correlation score. BT = biotin transferase domain. BCCP = biotin carboxyl 
carrier protein. ***p < 0.001. Error bars indicate SEM.
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Xcorr Corr # Ions Redundancy Peptide 

4.518 0.54 33/88 8 R.ITSENPDEGFKPSSGTVQELNFR.S 

3.168 0.392 16/24 12 R.DFTVASPAEFVTR.F 

2.409 0.071 15/24 9 K.EASFEYLQNEGER.L 

2.221 0.415 16/18 9 R.AIGIGAYLVR.L 

1.757 0.124 8/14 8 K.DMYDQVLK.F 

Table 3.1 | PHD3-interacting peptides indistinguishable between ACC1 and 2 isozymes.

Peptides were filtered using Xcorr and ΔCorr. Xcorr= cross correlation score. ΔCorr= delta correlation.
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hydroxylation is increased with PHD3 overexpression (Figure 3.1 c), while two 

previously characterized catalytically inactive PHD3 mutants, H196A and R206K[27, 

28], did not augment ACC hydroxylation to the same extent as wild type PHD3 (Figure 

3.1 d). 

ACC is present in two spatially and functionally distinct isoforms. Cytosolic 

ACC1 provides malonyl-CoA for fatty acid synthesis, while ACC2 at the outer 

mitochondrial membrane generates malonyl-CoA to inhibit the fatty acid transport 

protein CPT1[24]. Several PHD3-interacting peptides that we found by mass 

spectrometry are shared between ACC1 and ACC2 (Table 3.1). Thus, we interrogated 

whether PHD3 hydroxylates ACC1 or ACC2. Immunoprecipitation of endogenous ACC1 

or ACC2 by isoform-specific antibodies showed hydroxylation was particular to ACC2 

and also stronger in the presence versus absence of PHD3 (Figure 3.1 e), showing PHD3 

is a clear modulator of ACC2 hydroxylation status.  

We next used LC-MS2 to map ACC2 proline residues that were modified by 

hydroxylation, as detected by a +15.9949 molecular weight shift compared to an 

unmodified peptide (representative spectra in Figure 3.1 f-g). We found three 

hydroxylated prolines with greater than 5 redundant peptides per hydroxylation site: 

prolines 343, 450 and 2131 of ACC2 (Figure 3.1 h). These sites are located in the biotin 

carboxylase, ATP-grasp and carboxyltransferase domains, respectively (Figure 3.1 i). To 

validate hydroxylation of these residues, we generated proline to alanine ACC2 point 

mutants at each putative hydroxylation site. Immunoprecipitation of wild type or mutant 

ACC2 revealed P450A mutagenesis most dramatically decreased the level of 

hydroxylation compared to P343A and P2131A variants (Figure 3.1 j). Using a 
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reconstituted in vitro radioactivity-based hydroxylation assay, we determined that 

recombinant PHD3 could hydroxylate a synthetic ACC2 peptide containing P450, but not 

a peptide containing P2131 or a control ACC2 proline-containing peptide (P966) (Figure 

3.1 k). Together these data demonstrate P450 is a major site of PHD3 hydroxylation, 

suggesting that modification of this residue may coordinate ACC2 function. 

Hydroxylation at residue P450 promotes ACC2 activity and ATP binding 

At only 16 daltons, prolyl hydroxylation is among the smallest of all 

posttranslational modifications. Nevertheless, the electronegativity it imparts alters the 

pucker of the modified proline residue and induces larger-scale conformational changes 

significant enough to alter protein-protein interactions, substrate stability or activity[8, 

29]. Thus, we investigated the mechanism by which site-specific hydroxylation might 

regulate ACC2 activity. Residue P450 is conserved from yeast to human (Figure 3.2 a) 

and is located in the ATP-grasp domain, a 196 amino acid region within the biotin 

carboxylase domain that includes nucleotide-binding amino acids at residues 458-

463[30].  We mapped site P450 in the published human ACC2 biotin carboxylase domain 

crystal structure (PDB: 3JRW)[31] superposed with the e. coli ATP-bound ACC biotin 

carboxylase domain (PDB: 1DV2)[32]. This modeling revealed P450 is in close 

proximity to the catalytic site ATP (Figure 3.2 b). P450 caps the adenine ring of ATP, 

while the phosphate groups of ATP abut the previously described nucleotide-binding site 

within ACC2. The proximity of P450 and ATP led us to hypothesize that hydroxylation 

modulates that ability of ACC2 to bind ATP. To assess this hypothesis, we purified ATP-

binding proteins from dialyzed cell lysates using ATP affinity chromatography and 

Western blotted to determine levels of ACC bound by the ATP-linked resin. We found 

90



Biotin-carboxylation domainb

f

c

ACC 

tubulin

WT P45
0A

ve
cto

r
g

e

Input 
ACC 

ACC 

tubulin

ATP-
resin

bound 

WT
P45

0A

ve
cto

r
WT
P45

0A
ve

cto
r
WT
P45

0A
0

200

400

600

800

ns *

***

***

- citrate + citrate

AC
C

 A
ct

iv
ity

(C
PM

 o
ve

r b
ac

kg
ro

un
d/

µg
 p

ro
te

in
)

vector WT P450A
0

50

100

150

200

250

+ vector
+ PHD3

ns nsAC
C

 A
ct

iv
ity

(C
PM

 o
ve

r b
ac

kg
ro

un
d/

µg
 p

ro
te

in
)

ATP

Pro450
ATP-grasp
domain

ATP-binding
site

a

**
ACC 

tubulin

HA

HA-PHD3-   +     -    +     -   +
vector WT P450A

               450
Human      ERIGFPLMIKASEGGGGK
Rat        EKVGFPLMIKASEGGGGK
Mouse      EKIGFPLMIKASEGGGGK
C. elegans HNIGFPLMIKASEGGGGK
Drosophila NKIGFPVMIKASEGGGGK
Yeast      KRIGFPVMIKASEGGGGK

Input 
ACC2 

ACC2 

tubulin

ATP-
resin

bound 

sh
Con

tro
l

sh
PHD3d

Input 
ACC 

ACC 

tubulin

ATP-
resin

bound

WT
P45

0G

Figure 3.2 | Hydroxylation at site P450 promotes ACC2 activity and ATP binding. a, 
Conservation of P450 in the ATP grasp domain. Alignment shows the ACC2 isoform in 
human, rat and mouse, and ACC in C. elegans, drosophila and S. cerevisiae, organisms 
lacking distinct ACC1/2 isoforms. P450 highlighted in purple. b, Molecular modeling to 
evaluate the location of P450 (purple) in the human ACC2 ATP-grasp domain (green) 
relative to ATP (magenta) and known nucleotide binding residues (orange).  c-d, ATP-
affinity of wild type and P450A (c) or P450G (d) ACC2 point mutant from transiently 
transfected 293T cells, as assessed by immunoprecipitation with ATP-affinity resin and 
immunoblot with ACC antibody. e, ATP-affinity of endogenous ACC2 from 293T cells 
stably expressing shRNA against PHD3 or non-targeting control. Levels of immunopre-
cipitated ACC2 were analyzed by immunoblot with ACC2 antibody. f, ACC activity was 
measured in 293T cell lysates overexpressing vector, wild type ACC2 or P450A mutant 
(n = 3). Reactions were done ± the ACC allosteric activator citrate (2 mM). Western blots 
show overrexpressed ACC2. g, ACC activity in 293T cell lysates co-overexpressing 
vector, ACC2 or P450A along with either HA-PHD3 or empty vector (n = 4). Reactions 
were done with citrate. Western blots show overexpressed ACC2 and HA-PHD3. *p < 
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that ACC2 lacking the major hydroxylation site upon P450 mutation to alanine or glycine 

showed decreased ATP binding versus wild type ACC2 (Figure 3.2 c-d), demonstrating 

the importance of this residue for ATP binding. Strikingly, knockdown of PHD3 also 

diminished ATP-binding by endogenous ACC2 (Figure 3.2 e), further demonstrating that 

hydroxylation of P450 is critical for ACC binding to ATP. Together these data indicate 

PHD3 may activate ACC2 by enabling greater affinity for the co-substrate ATP. 

To evaluate whether PHD3 promotes ACC enzymatic activity, we performed in 

vitro ACC activity assays based on the production of [14C]malonyl-CoA from 

[14C]bicarbonate and acetyl-CoA. Although endogenous ACC activity was barely 

detectable in whole cell lysates, overexpression of ACC2 enabled measurement of 

enzymatic activity. ACC2 was activated by citrate, a known allosteric modulator[33], 

while P450A mutation strongly decreased ACC activity (Figure 3.2 f). When assaying the 

effect of PHD3 on ACC2 function, we found PHD3 overexpression amplified wild type 

ACC2 activity (Figure 3.2 g), but had no effect on the P450A variant. Our data 

collectively support the model that PHD3 boosts ACC2 activity via site-specific 

hydroxylation of P450.  

PHD3 represses long chain fatty acid oxidation 

Via production of malonyl-CoA, ACC2 is implicated in regulation of the carnitine 

shuttle that transports long chain fatty acids into the mitochondrial matrix for 

oxidation[33]. Malonyl-CoA generated by ACC2 allosterically inhibits CPT1, an outer 

mitochondrial membrane-bound component of the carnitine shuttle that serves as the rate-

limiting enzyme in FAO. Thus, high ACC2 activity decreases FAO. Therefore, we 

hypothesized that FAO is repressed when ACC2 is hydroxylated and activated by PHD3. 
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To test if the PHD3/ACC2 regulatory axis impacts fatty acid utilization, we measured 

oxidation of the fatty acid palmitate upon PHD3 modulation. Knockdown of PHD3 

enhanced palmitate oxidation in 293T cells (Figure 3.3 a, Figure S3.1 a-b). This result 

showed that PHD3 has an inhibitory effect on FAO, a finding confirmed in HepG2 cells 

(Figure 3.3 b, Figure S3.2 a). Of note, PHD3 modulates FAO at a magnitude similar to 

that observed in studies of known lipid metabolism regulators including ACC2, 

adiponectin and sirtuins[34-37]. PHD1 and PHD2 gene expression were not consistently 

altered by PHD3 knockdown, indicating the effect on FAO was not due to over-

compensation by other PHDs (Figure S3.1 a). To assess the role of ACC2 P450 prolyl 

hydroxylation in FAO, we performed FAO experiments in 293T cells overexpressing 

wild type or mutant ACC2. While overexpression of wild type ACC2 decreased palmitate 

oxidation, the P450A mutant lacking the major hydroxylation site had blunted ability to 

repress FAO (Figure 3.3 c). By contrast, mutations P343A and P2131A had no effect on 

FAO (Figure S3.3 a-b). 

Since ACC2 gates long chain fatty acid import into the mitochondria, whereas 

short chain fatty acids can freely diffuse, we probed whether PHD3 specifically 

modulates oxidation of long chain fatty acids. Comparison of 16-carbon palmitate 

oxidation versus 6-carbon hexanoate oxidation revealed PHD3 knockdown only boosts 

long chain FAO (Figure 3.3 d). Consistent with the biochemical and mass spectrometry 

studies showing that ACC2, but not ACC1, is hydroxylated by PHD3, we observed no 

effect of PHD3 on fatty acid synthesis in cell lines tested- a process mediated by ACC1 

(Figure 3.3 e-f). Together the data suggests a model in which PHD3 hydroxylates and 

93



R
el

at
iv

e 
FA

O

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
FA

O

shPHD3.1
shPHD3.2

shControl
d

***

***

******

sh
Con

tro
l

sh
PHD3.1

sh
PHD3.2

0.0

0.5

1.0

1.5

a

palmitic
acid

hexanoic
acid

b

sh
Con

tro
l

sh
PHD3

0.0

0.5

1.0

1.5

R
el

at
iv

e 
FA

O

HepG2

*

Figure 3.3 | PHD3 represses long chain fatty acid oxidation. a, Palmitate oxidation by 
293T cells stably expressing shRNA against PHD3 (shPHD3.1 and shPHD3.2) or non-
targeting control (n = 4). b, Palmitate oxidation in HepG2 cells with PHD3 knockdown 
(n = 3). c, Palmitate oxidation in complete media in 293T cells transiently overexpressing 
wild type ACC2 or ACC2 lacking the P450 hydroxylation sites (n = 3). Western blots 
show levels of overexpressed ACC2. d, Impact of PHD3 on long chain versus short chain 
FAO. Oxidation of long chain palmitic acid and short chain hexanoic acid was assessed 
in 293T cells stably expressing shPHD3 or non-targeting control shRNA (n = 3). e-f, 
Lipid synthesis from acetate in HepG2 (e) or 293T (f) cells with stable PHD3 knockdown 
by shRNA or non-targeting control (n = 3). C75 = fatty acid synthase inhibitor (20 μM). 
g, Model of the effect of PHD3 on long chain FAO via ACC2 hydroxylation. PHD3 
hydroxylates and activates ACC2 to limit long chain fatty acid mitochondrial import, but 
not import of short chain fatty acids which bypass regulatory mechanisms. *p < 0.05, 
***p < 0.001. Error bars indicate SEM. 

293T

fe
HepG2

sh
Con

tro
l

sh
PHD3

sh
Con

tro
l

sh
PHD3

0.0

0.5

1.0

1.5

vehicle C75

293T

sh
Con

tro
l

sh
PHD3

R
el

at
iv

e 
lip

og
en

es
is

R
el

at
iv

e 
lip

og
en

es
is

0.0

0.5

1.0

1.5

c

ve
cto

r
WT

P45
0A

0.0
0.2
0.4
0.6
0.8
1.0
1.2 ** **

ns

R
el

at
iv

e 
FA

O

ns

**
** ACC 

tubulin

ve
cto

r
WT

P45
0A

Electron
transport chain

HO

O

FAO

long-chain 
fatty acids

outer mito 
membrane

inner mito 
membrane

CPT1

short-chain 
fatty acids

HO

O

ACC2

PHD3
g

OH

ns

94



 

activates ACC2, limiting flux of long chain fatty acids into the mitochondria (Figure 3.3 

g). 

PHD3 represses FAO in a manner insensitive to hypoxia and HIF, but sensitive to 

cellular nutrient status 

We next aimed to identify physiological stimuli that might modulate the ability of 

PHD3 to activate ACC2 and inhibit FAO. First, we used a multifaceted approach to 

systematically assess whether the elevated FAO caused by PHD3 knockdown was 

sensitive to hypoxia or occurred via HIF stabilization. We found PHD3 repression of 

FAO was not sensitive to hypoxia, and PHD3 knockdown still led to increased FAO even 

under 1% O2 (Figure 3.4 a).  Additionally, HIF1/2α protein levels were not changed with 

PHD3 knockdown under our experimental conditions (Figure 3.4 b), suggesting the 

effects of PHD3 on FAO are not due to altered HIF. Further, PHD3 modulates FAO in 

cellular systems where HIF is either constitutively stabilized or inactivated. We found 

PHD3 knockdown boosts FAO in 786-O von Hippel-Lindau (VHL)-deficient renal 

carcinoma cells with stabilized HIF[38] (Figure 3.4 c, Figure S3.2 b). Additionally, 

PHD3 alters FAO in mouse hepatoma 4 (B13NBii1) arylhydrocarbon receptor nuclear 

translocator (ARNT, also known as HIFβ) null cells, which lack functional HIF1 

transcriptional activity[39] (Figure 3.4 d-e, Figure S3.2 c). The absence of HIF 

transcriptional activity in ARNT -/- cells was validated by treatment with CoCl2, which 

stabilizes HIFα, but in these cells was found not to induce HIF target genes including 

phosphoglycerate kinase 1 (PGK1) and hexokinase 2 (HK2) (Fig. S3.2 c). Together, these 

multiple lines of data indicate PHD3 repression of FAO is not sensitive to hypoxia and 

not dependent on HIF.  
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Figure 3.4 | PHD3 modulation of FAO is not sensitive to hypoxia or HIF, but is 
sensitive to nutrient status. a, Palmitate oxidation in 293T cells following 12 hr pre-
incubation in normoxia or hypoxia (1% O2). For 2 hr FAO analysis, cells were again 
maintained under normoxia or hypoxia (n = 4). b, Immunoblot of HIF1α and 2α levels in 
293T cells with PHD3 knockdown or control. Bands representing HIF1/2α were made 
more visible by 4 hr treatment with 250 μM CoCl2. c, Palmitate oxidation in 786-O 
VHL-/- cells with constitutively stabilized HIF. Cells were transiently transfected with 
Dharmacon siGENOME SMARTpool EGLN3 siRNA (siPHD3) or Non-Targeting siRNA 
Pool #2 (siControl), and FAO was assessed 48 hr later (n = 3). d-e, Effect of PHD3 levels 
on palmitate oxidation in complete media in ARNT-deficient cells, which have constitu-
tively inactive HIF. FAO was assessed following transfection with siPHD3 or siControl 
(d) or with human HA-PHD3 or vector (e) (n = 3). f, FAO in high nutrient conditions 
(complete media containing 4.5 g/L glucose) or low nutrient conditions (serum-free 
media containing 1 g/L glucose) in transiently transfected ARNT-deficient cells. In empty 
vector-treated cells, FAO is limited under a high nutrient state and increased under low 
nutrient conditions. PHD3 overexpression blunts the increase in FAO. g, ACC is more 
hydroxylated in hight nutrient versus low nutrient media, suggesting endogenous PHD3 is 
activated by a nutrient replete state. PHD3 overexpression enables hydroxylation under 
low nutrient conditions. Endogenous ACC hydroxylation was measured in 293T cells 
treated for 12 h in high or low nutrient media, as described above, and also transiently 
overexpressing HA-PHD3 or vector. h, PHD3 gene expression in high versus low nutrient 
media, as described above. *p < 0.05, ***p < 0.001. Error bars indicate SEM. 
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We next considered the possibility that PHD3 limits FAO in a manner linked to 

the nutrient state of the cell. Physiologically, in many tissues fatty acids are not a major 

fuel choice under nutrient replete conditions but rather are reserved for utilization under 

fasting or nutrient deprivation to allow restoration of metabolic homeostasis[37]. Nutrient 

availability and the bioenergetic status of the cell result in major changes in catabolism or 

anabolism that are often mediated by post-translational modification of metabolic 

enzymes. Recent reports indicate that PHD enzymes, beyond oxygen sensing, are also 

responsive to the cellular nutrient status. This family of enzymes have potential roles as 

versatile metabolic sensors because their catalytic activity is dependent on several key 

molecules that can be viewed as indicators of the metabolic state including TCA cycle 

intermediates and reactive oxygen species[7]. In response to changing levels of all these 

inputs, PHDs have been shown to instigate metabolic changes that restore homeostasis 

and redox balance. 

With this landscape in mind, we assessed whether PHD3 activity toward ACC2 

and FAO is sensitive to the cellular nutrient status. In ARNT-/- hepatoma cells expressing 

endogenous levels of PHD3, we observed FAO is limited to a basal level under high 

nutrient conditions with complete media, but reaches higher levels under low nutrient 

conditions, consisting of serum-free, low glucose media (Figure 3.4 f). However, forcing 

PHD3 overexpression blunts the increase in FAO that otherwise occurs in a low nutrient 

state (Figure 3.4 f). This raises the possibility that PHD3 is sensitive to nutrient 

availability and bioenergetic status and consequently adjusts fatty acid utilization. Our 

data fits the hypothesis that greater activity of endogenous PHD3 in the presence of 
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abundant nutrients restricts FAO, while reduced PHD3 activity upon nutrient deprivation 

causes repression of FAO to be lifted. 

We next examined ACC hydroxylation under high and low nutrient conditions. 

ACC is strongly hydroxylated by endogenous PHD3 in 293T cells grown in complete 

media, but less hydroxylated in cells grown in serum-free, low glucose media (Figure 3.4 

g), suggesting PHD3 is active under nutrient replete conditions. In low nutrient 

conditions, overexpressing PHD3 restores the level of hydroxylation to nearly that of 

cells in the high nutrient state (Figure 3.4 g). Thus, our data suggest endogenous PHD3 

hydroxylates ACC2 under nutrient replete conditions to limit FAO, but is less active 

under nutrient deprivation. This model is further supported by the observation that PHD3 

expression is higher in 293T cells grown in complete media compared to low nutrient 

media (Figure 3.4 h). 

Low PHD3 expression in AML is linked to altered ACC2 and largely elevated FAO 

FAO is increased as part of metabolic reprogramming in cancers such as diffuse 

large B-cell lymphoma (DLBCL) subtypes, prostate cancer, colorectal cancer, acute 

myeloid leukemia (AML) and subsets of aggressive breast cancer, but the underlying 

mechanisms are largely unknown[6, 12, 40, 41]. Moreover, recent studies suggest 

leukemia can be characterized by enhanced dependence on FAO, and that inhibition of 

FAO increases sensitivity to pharmacological induction of apoptosis both in cell culture 

and in a murine model of human AML[15, 42]. Thus we probed whether cancer cell 

dependence on FAO was linked to PHD3 status. Analysis of the Ramaswamy Multi-

Cancer dataset[43] from the Oncomine cancer microarray database 

(http://www.oncomine.org) indicated AML has the lowest PHD3 expression compared to 
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a panel of other cancerous tissues (Figure 3.5 a). Valk Leukemia (285 AML and 8 normal 

marrow samples) and Andersson Leukemia (23 AML and 6 normal marrow samples) 

datasets also show decreased PHD3 mRNA levels in AML compared to normal marrow 

patient samples (Figure 3.5 b-c)[44, 45].  

To investigate the relevance of decreased PHD3 in leukemia, we examined the 

metabolic consequences of low PHD3 expression in a panel of leukemia cell lines. Gene 

expression studies revealed PHD3 is nearly undetectable in panel of AML cell lines 

(MOLM14, KG1, THP1) compared to the K562 chronic myeloid leukemia (CML) cell 

line (Figure 3.5 d). Low-PHD3 AML cell lines show reduced ACC hydroxylation and 

ATP binding (Figure 3.5 e-f). Additionally, low PHD3 expression in AML cells 

correlates with markedly increased palmitate oxidation (Figure 3.5 g). 

Low PHD3 expression in AML indicates insensitivity to physiological nutrient cues and 

highlights a dependency on FAO that can be therapeutically targeted 

We hypothesized that low-PHD3 leukemia cells possessed a metabolic liability 

rooted by their dependency on FAO. Thus we examined their sensitivity to etomoxir or 

ranolazine, FAO inhibitors that have shown success in treating angina and heart disease, 

respectively[6, 46, 47]. Etomoxir represses FAO by inhibiting CPT1 to limit the uptake 

and oxidation of long chain fatty acids, and ranolazine inhibits 3-ketoacylthiolase, the 

enzyme catalyzing the final step in each round of β-oxidation[6]. 96 hr inhibition of FAO 

by etomoxir led to substantial cell death in low-PHD3 leukemia cells but not K562 

leukemia cells with higher PHD3 (Figure 3.6 a-b). Along these lines, 96 hr treatment with 

ranolazine also drastically reduced cell viability in low-PHD3 leukemia cells while 

viability was largely maintained for K562 cells (Figure 3.6 c-d). Sensitivity to FAO 
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Figure 3.5 | PHD3 expression is strongly repressed in AML, contributing to 
increased FAO and altered ACC. a, Gene expression of PHD3 in patient samples 
across cancer types. Data obtained from the Ramaswamy multi-type cancer analysis on 
Oncomine. b-c, Relative PHD3 gene expression in normal marrow versus AML patient 
samples. Data obtained from Valk and Andersson Leukemia Oncomine datasets. d, PHD3 
gene expression in leukemia cells. K562= CML cell line (black bar). MOLM14, KG1 and 
THP1= AML cell lines (purple/magenta bars). e, Endogenous ACC2 hydroxylation was 
measured in leukemia cell lines. ACC2 was immunoprecipitated with ACC2 antibody, 
and hydroxyproline was assessed by immunoblot with OH-Pro antibody. Because the 
ACC2 antibody cannot detect endogneous levels of ACC2 in whole cell lysates, an ACC 
antibody was used instead to show input. f, ATP-affinity of endogenous ACC in leukemia 
cell lines, as assessed by immunoprecipitation with ATP-affinity resin and immunoblot 
with ACC antibody. g, Palmitate oxidation by leukemia cell lines in complete RPMI 
media (n = 3).  **p < 0.01, ***p < 0.001. Error bars indicate SEM. 
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nutrient cues and highlights a dependency on FAO that can be therapeutically 
targeted. a, Viability of leukemia cells assessed by PI staining after 96 hr treatment with 
indicated doses of etomoxir (n = 3). All data points with drug treatment are significant by 
p < 0.001 for all cell lines compared to K562. b, Plot of data shown in (a) highlighting 
sensitivity to 150 μM etomoxir. c, Viability of leukemia cells after 96 hr treatment with 
indicated doses of ranolazine (n = 3). All data points with drug treatment are significant 
by p < 0.05 for all cell lines compared to K562. d, Plot of data shown in (c) highlighting 
sensitivity to 500 μM ranolazine. e, Viability of high PHD3 CML cell line (K562) com-
pared to low PHD3 CML cell line (KU812) and low PHD3 AML cell lines (NB4) follow-
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inhibition was more strongly linked to PHD3 status than to classification as AML or 

CML. A CML cell line with low PHD3 expression, KU812, was in fact sensitive to 

treatment with etomoxir and more closely mimicked another low-PHD3 AML cell line 

(NB4) rather than a high-PHD3 CML line (K562) (Figure 3.6 e-f). 

Our findings suggest PHD3 serves as a metabolic toggle to repress FAO under 

high nutrient conditions (Figure 3.4 f-g). Therefore, we assessed whether this nutrient 

switch is defective in AML cells with low PHD3 expression. Indeed, MOLM14 cells, 

which are almost entirely deficient of PHD3 expression, show a loss of sensitivity to 

external nutrient cues and display consistently elevated FAO under both high and low 

nutrient conditions (Figure 3.6 g). Strikingly, restoring PHD3 levels via overexpression 

reestablishes sensitivity to nutrient status and enables repression of FAO under high 

nutrient conditions (Figure 3.6 g). Overexpression of PHD3 in low-PHD3 AML cells also 

decreases cancer cell proliferation, demonstrating the susceptibility of tumor cells with 

low PHD3 to inhibition of FAO (Figure 3.6 h). Collectively, our data show low PHD3 

expression in AML indicates a loss of metabolic plasticity, sustained elevation of FAO 

and susceptibility to treatment with pharmacological inhibitors of FAO. 

Discussion  

In this work, we elucidate a novel mechanism by which PHD3 directly regulates 

fatty acid oxidation: via hydroxylation and activation of ACC2. Mechanistically, PHD3 

induces a switch in fat metabolism by hydroxylating residue P450 of ACC2 to boost its 

ATP affinity and enzymatic activity. P450 is in close proximity to the ATP-binding site 

of ACC2, suggesting hydroxylation causes a conformational change significant enough to 

alter this binding site and allow greater access to or retention of ATP. In addition, we 

102



 

found PHD3 activates ACC2 under high nutrient conditions in order to limit FAO. 

Reduced PHD3 activity toward ACC2 under low nutrient conditions allows FAO to 

increase. We show cancer cells with very low levels of endogenous ACC2 are deficient 

in this nutrient switch and show persistently sustained levels of high FAO. Furthermore, 

we reveal that loss of PHD3 expression is a common feature of AML patient samples 

compared to healthy marrow. Low PHD3 expression contributes to a dramatic boost in 

fatty acid consumption that is necessary for AML cell survival. We find that low PHD3 

expression indicates cancer cell vulnerability to FAO inhibition upon treatment with 

pharmacological FAO inhibitors or upon overexpression of PHD3.  

The PHD3/ACC2 axis could be explored as a way the cell couples metabolic 

status with fat oxidation. This hypothesis is in line with previous reports suggesting 

sensitivity of PHD3 to high levels of α-ketoglutarate, or more generally to a high nutrient 

state that may be restored by addition of α-ketoglutarate. Addition of cell-permeable α-

ketoglutarate restored PHD activity in cancer cells where PHDs were otherwise 

inhibited[48]. Further, treating mouse xenografts with cell-permeable α-ketoglutarate 

inhibited growth in a PHD3-dependent mechanism[49]. Thus PHD3 sensitivity to 

nutrient levels may have important roles in cancer biology. In this study, we highlight the 

ability of PHD3 to respond to the nutrient state of the cell and adjust the level of FAO 

accordingly. PHD3 contributes to a metabolic toggle that limits FAO when nutrients are 

abundant, thus enabling fuel conservation and metabolic efficiency. Low PHD3 activity 

under nutrient-deprived conditions contributes to amplification of FAO. Future studies 

may reveal whether the PHD3 response to nutrient status occurs downstream of 

transcriptional changes, post-translational modification, allosteric regulation or some 
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combination of these factors. Along these lines, further studies are also needed to identify 

how hydroxylation by PHD3 and phosphorylation by AMPK might cooperate to co-

regulate ACC2 under various nutrient stimuli.  

Finally, this study illuminates PHD3 as a fundamental regulator and predictor of 

the level of FAO in cancer. We find PHD3 presents a metabolic barrier to fatty acid 

utilization in cancer. Accordingly, reduced PHD3 expression- a common feature of 

AML- amplifies fatty acid consumption and to enable sustained FAO that bypasses the 

metabolic toggle normally regulated by PHD3. Loss of the PHD3/ACC axis thus boosts 

FAO in cancer, but also indicates a metabolic liability that could be targeted in cancer 

treatment. We show inhibition of FAO has dramatic cytotoxic effects in hematological 

malignancies characterized by low PHD3 expression. These data may have implications 

for future therapeutic strategies targeting lipid catabolism in a broad range of cancers. In 

addition to low PHD3 expression in AML, PHD3 is also silenced in multiple tumor types 

with links to high fatty acid dependency including prostate, colorectal and invasive breast 

cancer[50-52]. Based on the knowledge of the regulatory axis identified here, PHD3 

expression could be considered as a biomarker in cancer to distinguish patients that may 

be successfully treated with FAO inhibitors, thus moving the field toward metabolically 

based treatment options in the future. 

Acknowledgments 

We thank Elma Zaganjor and Daniel Santos for technical assistance. We thank 

Qing Zhang for assistance in setting up the in vitro hydroxylation assay. We thank Peppi 

Karppinen at the University of Oulu, Finland, for recombinant PHD3. We thank Oliver 

Hankinson at the University of California, Los Angeles, for ARNT-/- hepatoma cells and 

104



 

Stuart Orkin at the Dana Farber Cancer Institute/HMS for KU812 leukemia cells. This 

work is funded in part by the Alexander and Margaret Stewart Trust Grant. N.J.G. is 

supported by the National Science Foundation Graduate Research Fellowship Grant 

1000087636 and NIH Training Grant T32 GM007306. S.G. is supported by NIH grant 

GM67945.	  W.G.K. is a Howard Hughes Medical Institute (HHMI) investigator and is 

supported by grants from the NIH. M.C.H. is supported by NIH Grant AG032375, the 

Glenn Foundation for Medical Research and the American Cancer Society New Scholar 

Award.  

Materials and Methods 

Reagents and constructs. For transient overexpression studies, Fugene 6 (Roche) was 

used to transfect 293T cells. ARNT -/- mouse hepatoma cells were transfected with 

Fugene HD. pcDNA3.1 empty vector and constructs containing HA-PHD1, PHD2 and 

PHD3 were previously described[53]. HA-PHD3 pcDNA 3.1 point mutants were 

generated using the QuikChange II Site-Directed Mutagenesis Kit (Agilent). ACC2 

cDNA in pENTR223 vector was obtained from the Dana Farber/ Harvard Cancer Center 

Resource Core. For transient overexpression, ACC2 cDNA was cloned into pDEST 

vector (Wader Harper lab at Harvard Medical School) using Gateway LR Clonase II 

Enzyme Mix according to manufacturer’s instructions. Briefly, 10 µl reactions containing 

150 ng ACC2 pENTR223, 150 ng pDEST vector and 2 µl Clonase in TE buffer (pH 8.0) 

were incubated at 25˚ for 2 hr. ACC2 point mutants were generated using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent). Mutagenesis primers are 

listed below. For stable overexpression via retroviral infection, the HA-PHD3 construct 

was cloned from pCDNA3.1 into the pBABE puro vector.  
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MOLM14 cells were retrovirally infected via spin infection. 300,000 cells were 

resuspended in 2 ml of complete media supplemented with polybrene, and 500 µl virus 

was added. Cells were centrifuged at 37°C for 1 hr at 2250 rpm, then re-plated in fresh 

media in a 6-well plate. 

For transient knockdown, cells were transfected with 22.5 nM siRNA and 

Dharmafect 1 Transfection Reagent (Dharmacon) according to manufacturer’s 

instructions. Cells were transfected with siGENOME SMARTpool EGLN3 siRNA or 

control Non-Targeting siRNA Pool #2 (Dharmacon). 

For stable knockdown, lentiviral shRNA against PHD3 were obtained from The 

RNAi Consortium at the Broad Institute/Harvard. pLKO empty vector was used as non-

silencing control. Stable knockdown cell lines were generated following the Consortium 

instructions. Target sequences for shRNA are listed below. In experiments using one 

shRNA against PHD3, shPHD3.2 was used. 

Primers for Mutagenesis  
Point mutant    Primer 
ACC2 P450A    F AGAAGCTTTGATCATCAATGCAAAACCAATTCTTTCTGCTGC 
     R 
GCAGCAGAAAGAATTGGTTTTGCATTGATGATCAAAGCTTCT 
ACC2 P343A    F CCGCCTGCACGGCGATTCTCTTGGC 
     R GCCAAGAGAATCGCCGTGCAGGCGG 
ACC2 P2131A   F GTAGGCTGAGTCTGCGAACCACACCTGTC 
     R GACAGGTGTGGTTCGCAGACTCAGCCTAC 
ACC2 P450G     F 
GGCAGCAGAAAGAATTGGTTTTGGATTGATGATCAAAGCTTCTGA 
     R 
TCAGAAGCTTTGATCATCAATCCAAAACCAATTCTTTCTGCTGCC 
PHD3 H196A    F CAGATCGTAGGAACCCAGCCGAAGTGCAGCCCT 
     R AGGGCTGCACTTCGGCTGGGTTCCTACGATCTG 
PHD3 R206K    F GCCCTCTTACGCAACCAAATATGCTATGACTGTCT 
     R AGACAGTCATAGCATATTTGGTTGCGTAAGAGGGC 
 

shRNA Target Sequences 
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Name  Clone ID  Target Sequence 
shPHD3.1 TRCN0000001048 CACCTGCATCTACTATCTGAA 
shPHD3.2 TRCN0000001050 GTGGCTTGCTATCCGGGAAAT 
 
Cell culture. 293T cells and 786-O VHL-/- cells were cultured in 4.5 g/L glucose DMEM 

(Invitrogen) supplemented with 10% FBS and penicillin/streptomycin. Low glucose 

DMEM contained 1 g/L glucose. ARNT-deficient mouse hepatoma c4 (B13NBii1) cells 

previously derived from Hepa c1c7 cells[54, 55] were cultured in Minimum Essential 

Media alpha (Invitrogen) supplemented with 10% heat-inactivated FBS and 

penicillin/streptomycin. K562, MOLM14, THP1, KU812 and NB4 cells were maintained 

in RPMI 1640 media (Invitrogen) supplemented with 10% FBS and 

penicillin/streptomycin. KG1 cells were maintained in IMDM (Invitrogen) supplemented 

with 20% FBS and penicillin/streptomycin. HepG2 cells were cultured in Minimum 

Essential Medium Eagle (Sigma) supplemented with 10% FBS, penicillin/streptomycin, 

1% sodium pyruvate and 1% non-essential amino acids. All cell lines were tested with 

the Universal Mycoplasma Detection Kit (ATCC) to ensure absence of mycoplasma. 

Quantitative RT-PCR analysis. RNA was isolated by extraction with Trizol according to 

manufacturer instructions (Invitrogen). cDNA was synthesized using iScript cDNA 

synthesis kit (BioRad). Quantitative real-time PCR was performed with Sybr Green I 

Mastermix (Roche) or Sybr Green Fast Mix (Quanta Biosciences) on a Roche Lightcycler 

480 and analyzed by using ΔΔCt calculations. qPCR analyses in human cell lines are 

relative to the reference gene B2M. qPCR analyses in mouse ARNT -/- hepatoma cell 

line are relative to RPS4X. Primer sequences are provided below.  

Gene  Primer 
Human 
PHD1  F ACGGGCTCGGGTACGTAAG 
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  R CCCAGTTCTGATTCAGGTAATAGATACA 
PHD2  F GACCTGATACGCCACTGTAACG 
  R CCCGGATAACAAGCAACCAT 
PHD3  F ATACTACGTCAAGGAGAGGT 
  R TCAGCATCAAAGTACCAGA 
B2M F AGATGAGTATGCCTGCCGTGTGAA 
 R TGCTGCTTACATGTCTCGATCCCA 
ACC1 F ATCCCGTACCTTCTTCTACTG 
 R CCCAAACATAAGCCTTCACTG 
ACC2 F CTCTGACCATGTTCGTTCTC 
 R ATCTTCATCACCTCCATCTC 
CPT1a F GATTTTGCTGTCGGTCTTGG 
  R CTCTTGCTGCCTGAATGTGA 
CPT1b  F ATTCCCACCGCGGAAGGTGC 
  R GCAGCCTGGGGGCAGTCTTG 
ACADM F TCATTGTGGAAGCAGATACCC 
  R CAGCTCCGTCACCAATTAAAAC 
LIPG   F TGTGGAAGGAGTTTCGCAG 
  R GGGATATGCTGGTGTTCTCAG 
PGK1  F CCACTTGCTGT GCCAAATGGA 
  R GAAGGACTTTACCTTCCAGGA 
HK2  F GATTGTCCGTAACATTCTCATCGA 
  R TGTCTTGAGCCGCTCTGAGAT 
 
Mouse 
RPS4X F ACCCTGCTGGGTTTATGGATGTCA 
  R TACGATGAACAGCAAAGCGACCCT 
PHD3  F CAGACCGCAGGAATCCACAT 
  R TTCAGCATCGAAGTACCAGACAGT 
 
Immunoprecipitation, Western blotting and antibodies. Western blotting was performed 

using antibodies against ACC (Cell Signaling Technologies (CST) no. 3676), ACC1 

isoform (CST no. 4190), ACC2 isoform (CST no. 8578), HA (CST no. 2367), 

hydroxyproline (Abcam no. ab37067), tubulin (Sigma no. T5168), HIF1α (BD no. 

610959), HIF2α (CST no. 7096), actin (Sigma no. A2066), LSD1 (CST no. 2139) and 

PHD3 (Novus Biologicals no. NB100-139). For immunoprecipitations of transiently 

overexpressed HA-tagged proteins, lysates were immunoprecipitated using EZview anti-

HA Affinity Gel (Sigma no. E6779). For endogenous immunoprecipitations, lysates were 
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immunoprecipitated with ACC antibody (CST no. 3767) or ACC2 antibody (CST no. 

8578) and EZview Red Protein G Affinity Gel (Sigma no. E3403).  

Mass spectrometry. To identify hydroxylated proline sites, ACC2 was transiently 

overexpressed in 293T cells. 48 hr later, cell lysates were collected and ACC2 was 

immunoprecipitated with ACC2 antibody and Protein G Affinity Gel described above. 

Bound material was washed and separated by SDS-PAGE. The Coomassie stained band 

was excised, analyzed by LC-MS2 and searched against the Uniprot Human database 

(downloaded August 2011) using Sequest with proline hydroxylation set as a variable 

modification (+15.9949 molecular weight shift).  

In vitro hydroxylation assay. The in vitro hydroxylation assay was modified from a 

previously described assay based on the fact that hydroxylation by PHDs results in 

decarboxylation of α-ketoglutarate to form carbon dioxide[56]. Briefly, 250 µl reactions 

were performed in glass vials sealed with rubber stoppers and parafilm wax. Reaction 

mixtures containing 12.5 nmol synthetic peptide (Peptide 2.0), 50 mM Tris/HCl (pH 7.8), 

2 mg/ml BSA, 4200 U/ml catalase, 0.1 mM DTT, 2 mM ascorbate, 500 µM 

FeSO4⋅7H2O, 0.02 µmol [1-14C]α-ketoglutarate (Perkin Elmer) and 1.2 µg recombinant 

PHD3 were incubated at 37˚ for 30 min. Reactions were stopped by injection of 0.25 ml 

of 1 M KH2PO4 (pH 5) into vials. Vials were agitated on slow speed for 30 min at room 

temperature to allow capture of [14C]CO2 onto solubilized Whatman paper positioned at 

the top of the vials. CPM were measured by scintillation counts on filter paper. 

Peptides for In Vitro Hydroxylation 
Proline Sequence 
450  ERIGFPLMIKASEGGGGK 
2131          AGQVWFPDSAYKTAQ   
966            ARLELDDPSKVHPAE 
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ACC activity assay. Reactions were performed as previously described[57], with the 

exception of using 16.7 mM MgCl2 instead. 50 µg protein lysate was used for each 

reaction. Following addition of 1 N HCl to quench reactions and convert remaining 

[14C]bicarbonate (American Radiolabeled Chemicals) to CO2, reactions were evaporated 

2 hr at 60˚ and 15 min at 85˚ in a thermo shaker. ACC activity was calculated as 

incorporation of [14C]bicarbonate into [14C]malonyl CoA (the acid and heat stable 

product) as measured by scintillation counting.  

ATP binding assays. ATP immunoprecipitations were performed using the ATP AffiPur 

Kit (Jena Bioscience), which contained aminophenyl-ATP-Agarose, C10-spacer. 

Procedure was done according to manufacturer’s instructions, except for the following 

distinction. Transiently transfected 293T cells were lysed in ACC activity assay 

buffer[57] to promote native protein folding. Following dialysis to remove endogenous 

ATP and immunoprecipitation with ATP-affinity resin, bound material was washed and 

eluted by addition of sample buffer containing beta-mercaptoethanol. Samples were 

boiled 5 min at 95˚ for analysis by Western blot. 

Fatty acid oxidation. For FAO assays, cells in 12 well-plates were pre-incubated with 

100 µM palmitate or hexanoate and 1 mM carnitine for 4 hr in serum-free low glucose 

media, unless otherwise noted. Cells were then changed to 600 µl media containing 1 µCi 

[9,10(n)-3H]palmitic acid (GE Healthcare) or 1.8 µCi n-[5,6-3H]hexanoic acid (American 

Radiolabeled Chemicals) and 1 mM carnitine for 2 hr. The medium was collected and 

eluted in columns packed with DOWEX 1X2-400 ion exchange resin (Sigma) to analyze 

the released 3H2O, formed during oxidation of [3H]palmitate. FAO in complete media 

indicates media including serum was used for pre-incubation and FAO analysis. Basal 
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FAO indicates cells were not pre-incubated with fatty acids prior to FAO analysis. For all 

FAO experiments, counts per minute (CPM) were normalized to protein content in cell 

lysates. 

Lipogenesis. Lipogenesis was performed as previously described[58] with the following 

modifications. Cells were pulsed for 4 hr with 4 µCi [14C]acetate ± 20 µM C75, then 

lipids were extracted. Scintillation counts were normalized to protein concentration in 

parallel plates.  

Drug treatment and PI staining. Cells were treated 96 hr with a range of doses of 

etomoxir (Cayman Chemical) or ranolazine dihydrochloride (VWR/Selleck Chemicals) 

or vehicle. Fresh etomoxir was spiked in at 24, 48 and 72 hr. Fresh ranolazine was spiked 

in at 48 hr. Dosing schedules were determined by identifying the minimum number of 

times drug must be re-added to observe an effect on cell viability. Cell viability at 96 hr 

was determined by staining cells with 1 µg/ml propidium iodide (Sigma) in PBS and flow 

cytometry on the BD LSR-II analyzer. 

Growth rates. MOLM14 cells were plated in the wells of a 24 well plate (50,000 

cells/well). At indicated times, cells were counted on the Beckman Z1 Coulter Counter. 

Molecular modeling. Using CCP4mg molecular graphic software, the biotin-carboxylase 

domain of human ACC2 (PDB: 3JRW) was superposed with the e. coli biotin-

carboxylase domain bound to ATP (PDB: 1DV2) to highlight the likely position of ATP 

in the catalytic site of human ACC2.  

Statistical analysis. Unpaired two-tailed Student’s t tests were used. All experiments 

were performed at least two to three times.  
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Abstract 

 Metformin, a first-line diabetes drug linked to cancer prevention in retrospective 

clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem 

cells (CSCs). Although a few metabolic effects of metformin and the related biguanide 

phenformin have been investigated in established cancer cell lines, the global metabolic 

impact of biguanides during the process of neoplastic transformation and in CSCs is 

unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess 

metabolic changes induced by metformin and phenformin in an Src-inducible model of 

cellular transformation and in mammosphere-derived breast CSCs. Although phenformin 

is the more potent biguanide in both systems, the metabolic profiles of these drugs are 

remarkably similar, although not identical. During the process of cellular transformation, 

biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of 

the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In 

contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle 

intermediates, but they strongly deplete nucleotide triphosphates and may impede 

nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides 

inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ 

depending on the stage of cellular transformation. 

Introduction 

 Altered metabolism is a hallmark of malignantly transformed cells. Cancer risk is 

linked to metabolic syndrome, a disease state that includes obesity, type 2 diabetes, high 

cholesterol, and atherosclerosis. Retrospective studies of type 2 diabetes patients treated 

with metformin, the most widely prescribed antidiabetic drug, show a strong correlation 
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between drug intake and reduced tumor incidence or reduced cancer-related deaths [1–4]. 

 In the breast lineage, metformin inhibits growth of cancer cell lines [5–7], blocks 

transformation in a Src-inducible cell system [8, 9], and selectively inhibits the growth of 

cancer stem cells (CSCs) [8]. As a consequence of its selective effects on CSCs, 

combinatorial therapy of metformin and standard chemotherapeutic drugs (doxorubicin, 

paclitaxel, and cisplatin) increases tumor regression and prolongs remission in mouse 

xenografts [8, 10]. In addition, metformin can decrease the chemotherapeutic dose for 

prolonging tumor remission in xenografts involving multiple cancer types [10]. 

 Phenformin, a related biguanide and formerly used diabetes drug, acts as an 

anticancer agent in tumors including lung, lymphoma, and breast cancer with a greater 

potency than metformin. Phenformin mediates antineoplastic effects at a lower 

concentration than metformin in cell lines, a PTEN-deficient mouse model, breast cancer 

xenografts, and drug-induced mitochondrial impairment [11–14]. The chemical 

similarities of these biguanides, as well as their similar effects in diabetes and cancer, 

have led to the untested assumption that phenformin is essentially a stronger version of 

metformin. 

 In a Src-inducible model of cellular transformation and CSC formation, multiple 

lines of evidence suggest that metformin inhibits a signal transduction pathway that 

results in an inflammatory response [15]. In the context of atherosclerosis, metformin 

inhibits NF-κB activation and the inflammatory response via a pathway involving AMP 

kinase (AMPK) and the tumor suppressor PTEN [16, 17]. As metformin alters energy 

metabolism in diabetics, we speculated that metformin might block a metabolic stress 

response that stimulates the inflammatory pathway [15]. However, very little is known 
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about the metabolic changes that inhibit the inflammatory pathway. 

 Previous studies on metformin-induced metabolic effects in cancer have focused on 

single metabolic alterations or pathways in already established cancer cell lines. 

Metformin leads to activation of AMPK, which plays a key role in insulin signaling and 

energy sensing [18]. Metformin can reduce protein synthesis via mTOR inhibition [19]. 

In addition, metformin may directly impair mitochondrial respiration through complex I 

inhibition and has been described to boost glycolysis as a compensation mechanism [14, 

20]. In this regard, lactic acidosis can be a side effect of metformin and phenformin 

treatment of diabetic patients, presumably because inhibition of complex I prevents 

NADH oxidation, thereby leading to a requirement for cytosolic NADH to be oxidized by 

the conversion of pyruvate to lactate. There is some knowledge about the metabolic 

effects of metformin [21, 22], but very little is known about the specific metabolic 

alterations linking biguanides to inhibition of neoplastic transformation. 

 Here, we perform a metabolomic analysis on the effects of metformin and 

phenformin in a Src-inducible model of transformation and in CSCs. This inducible 

model permits an analysis of the transition from nontransformed to transformed cells in 

an isogenic cell system and hence differs from analyses of already established cancer cell 

lines. We studied CSCs to address why this population, which is resistant to standard 

chemotherapeutics and hypothesized to be a major reason for tumor recurrence, is 

selectively inhibited by metformin. Our results indicate the metabolic effects of 

metformin and phenformin are remarkably similar to each other, with only a few 

differences. Both biguanides dramatically decrease tricarboxylic acid (TCA) cycle 

intermediates in the early stages of transformation, and they inhibit the boost in select 

121



 

glycolytic intermediates that normally occurs with transformation along with increases in 

glycerol 3-phosphate and lactate, which are metabolites branching from glycolysis. 

Unexpectedly, in CSCs, biguanides have only marginal effects on glycolytic and TCA 

cycle metabolites, but they severely decrease nucleotide triphosphates. These detailed 

metabolic analyses provide independent support for the idea that metformin inhibits 

mitochondrial complex 1 [14, 20], and they indicate that the metabolic effects of 

biguanides depend on the stage of the cellular transformation. 

Results 

Phenformin inhibits morphological transformation of ER-Src cells at a lower 

concentration than metformin 

 We previously showed metformin inhibits cellular transformation using an 

inducible breast cancer model [8, 9]. This model involves a derivative of the spontaneous 

immortalized breast epithelial cell line MCF-10A [23] expressing an ER-Src fusion gene 

that consists of the v-Src oncogene and the ligand-binding domain of the estrogen 

receptor. Activation of Src via tamoxifen results in morphological transformation and the 

ability to form colonies in anchorage- independent growth assays [9, 24]. 

 As phenformin appears to be a more potent anticancer drug than metformin in 

various cell types [11, 12, 25], we first asked whether the related biguanide phenformin 

could achieve this same effect with increased potency. Indeed, soft agar assays showed 

that treatment with metformin or phenformin for 24 h during tamoxifen-induced Src 

activation reduces the number of colonies to that of cells treated only with vehicle (Figure 

4.1 a). Additionally, morphologic transformation due to loss of contact inhibition is 

suppressed by both biguanides. Phenformin shows a comparable, and perhaps stronger, 
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Figure 4.1  | Metformin and phenformin block malignant transformation. a-b, 
ERSrc cells were treated with EtOH, tamoxifen, tamoxifen + metformin, or tamoxifen + 
phenformin for 24 h, and soft agar assays (a) and morphology assays (b) were 
performed. c-d, Cell viability via MTT was measured after 24 h treatment of ERSrc cells 
with different concentrations of metformin (c) or phenformin (d). Error bars indicate 
SEM.
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effect, even though it is used at a 30-fold lower concentration than metformin (Figure 4.1 

b). In accordance with the clinical data for diabetes treatment, phenformin is both more 

potent and more toxic than metformin. At the effective concentration, phenformin (10 

µM) shows slightly reduced cell viability, whereas metformin (300 µM) does not affect 

cell survival (Figure 4.1 c and d). 

Induction of cellular transformation is associated with metabolic changes typical of 

cancer cells 

 Fully transformed cancer cells commonly display the Warburg effect, characterized 

by a high rate of glucose consumption and lactate production [26]. Additionally, many 

transformed cells consume high amounts of glutamine as an additional nutrient source 

and consequently generate a large amount of ammonium that is secreted from the cell. In 

accord with these observations, analysis of media from induced ER-Src cells reveals a 

significant increase in glucose and glutamine uptake 24 h after Src activation (Figure 4.2 

a). In addition, ammonium and lactate production are increased following Src induction 

(Figure 4.2 a). This switch to typical tumor cell metabolism that occurs within only 24 h 

of Src activation validates our inducible model for metabolic analysis of cellular 

transformation. 

Metformin and phenformin have very similar, but nonidentical, metabolic profiles during 

cellular transformation 

 Based on their chemical relationship and a few similar effects in diabetes and 

cancer, it is generally assumed that phenformin is a stronger version of metformin. To 

address this issue in more detail and to determine the global metabolic impact of 

metformin and phenformin on cells undergoing transformation, we measured more than 
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Figure 4.2  | Metformin and phenformin alter the metabolic state of the transforma-
tion process, specifically preventing an increase in some glycolytic intermediates. a, 
24 h after Src induction by tamoxifen (Tam) or control treatment with ethanol (EtOH), 
glucose and glutamine uptake and lactate and ammonium production were measured in 
the media of MCF10A ERSrc cells, n = 3. b, To identify metformin vs. phenformin 
differences, fold changes of both drugs for all LS-MS/MS metabolites over the 
tamoxifen-only sample were determined and ratios were calculated. Red dots indicate 
differentially regulated metabolites outside of a 99.7% CI generated over all ratios. c, 
Relative levels of glycolytic intermediates measured with LC-MS/MS for tamoxifen ± 
metformin or phenformin and vehicle (ethanol)-treated samples, n = 4. d, Glucose uptake 
and lactate production were measured in the media 24 h after Src induction ± metformin , 
n = 3. e, Relative levels of metabolites branching from glycolysis with tamoxifen ± 
metformin or phenformin and vehicle-treated samples, n = 4. f, Diagram of glycolytic 
intermediates altered by metformin or phenformin treatment. The role of glycerol 
3-phosphate production in regeneration of NAD+ is indicated in orange. For all panels, *p 
< 0.05 and **p < 0.01 compared with control sample. Error bars indicate SEM.
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200 metabolites by LC/MS/MS 24 h after tamoxifen treatment in the presence or absence 

of biguanides (Table 4.1). Fold change values for each biguanide vs. tamoxifen-only 

treatment were determined for all metabolites (Figure 4.2 b). Taking into account the 

consistently stronger potency of phenformin over metformin, the vast majority of 

metabolites behave similarly with the two biguanides. Only two metabolites appear to be 

differentially affected (P < 0.003), namely serine and anthranilate, and a similar analysis 

in a stably transformed breast cancer cell line, CAMA-1, reveals five differentially 

affected metabolites. 

Metformin and phenformin prevent the tamoxifen-induced boost in glycolytic 

intermediates 

 To identify metabolic pathways altered by biguanides during the initial stages of 

transformation, we focused on significantly changed metabolites in biguanide-treated 

samples compared with tamoxifen-only treatment (p < 0.05). As expected, levels of 

multiple glycolytic intermediates are increased during transformation (Figure 4.2 c and 

Figure S4.1 a). Interestingly, increases in glycolytic intermediates are only observed for 

the early part of the pathway. All intermediates preceding 1,3 bisphosphoglycerate are 

increased during transformation, whereas this and all subsequent intermediates including 

pyruvate are not. 

 Addition of either biguanide causes a decrease in specific glycolytic intermediates, 

but not in the entire pathway (Figure 4.2 c). With phenformin treatment, three successive 

intermediates in the middle of glycolysis—fructose 1,6-bisphosphate, dihydroxyacetone 

phosphate (DHAP), and glyceraldehyde-3-phosphate— are significantly reduced 

compared with tamoxifen-only treatment and even lower than the untransformed state 
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Table 4.1 | Metabolites analyzed by LC-MS/MS

1-methyl-histidine 
1-methyladenosine 
1,3-diphosphateglycerate 
2-aminooctanoic acid 
2-dehydro-D-gluconate 
2-deoxyglucose-6-phosphate 
2-hydroxy-2-

methylbutanedioic acid 
2-hydroxygluterate 
2-isopropylmalic acid 
2-keto-isovalerate 
2-ketohaxanoic acid 
2-oxo-4-methylthiobutanoate 
2-oxobutanoate 
2,3-dihydroxybenzoic acid 
2,3-diphosphoglyceric acid 
3-methylphenylacetic acid 
3-phospho-serine 
3-phosphoglycerate 
3-S-methylthiopropionate 
4-aminobutyrate 
4-pyridoxic acid 
5-methoxytryptophan 
5-methyl-THF 
5-phosphoribosyl-1-

pyrophosphate 
6-phospho-D-gluconate 
7-methylguanosine 
7,8-dihydrofolate 
a-ketoglutarate 
acadesine 
acetoacetate 
acetyl-CoA 
acetylcarnitine 
acetyllysine 
acetylphosphate 
aconitate 
adenine 
adenosine 
adenosine 5-phosphosulfate 
ADP 
ADP-D-glucose 
alanine 
allantoate 
allantoin 
aminoadipic acid 
aminoimidazole carboxamide 

ribonucleotide 
AMP 
anthranilate 
arginine 
ascorbic acid 
asparagine 
aspartate 
ATP 
atrolactic acid 
betaine 
betaine aldehyde 
biotin 
carbamoyl phosphate 
carnitine 
CDP 
CDP-choline 
CDP-ethanolamine 
cholesteryl sulfate 
choline 

citraconic acid 
citrate 
citrulline 
CMP 
coenzyme A 
creatine 
creatinine 
CTP 
cyclic-AMP 
cystathionine 
cysteine 
cystine 
cytidine 
cytosine 
D-erythrose-4-phosphate 
D-glucarate 
D-gluconate 
D-glucono-lactone-6-

phosphate 
D-glucosamine-1-phosphate 
D-glucosamine-6-phosphate 
D-glyceraldehdye-3-

phosphate 
D-sedoheptulose-1-7-

phosphate 
dAMP 
dATP 
dCDP 
dCMP 
dCTP 
deoxyadenosine 
deoxyguanosine 
deoxyinosine 
deoxyribose-phosphate 
deoxyuridine 
dephospho-CoA 
dephospho-CoA 
dGDP 
dGMP 
dGTP 
dihydroorotate 
dihydroxy-acetone-

phosphate 
dimethylglycine 
dTDP 
dTMP 
dTMP 
dTTP 
dUMP 
ethanolamine 
FAD 
flavone 
folate 
fructose-1,6-bisphosphate 
fructose-6-phosphate 
fumarate 
GDP 
geranyl-PP 
glucono-lactone 
glucosamine 
glucose-1-phosphate 
glucose-6-phosphate 
glutamate 
glutamine 
glutathione 
glutathione 

glutathione disulfide 
glutathione disulfide 
glycerate 
glycerophosphocholine 
glycolate 
glyoxylate 
GMP 
GTP 
guanidoacetic acid 
guanine 
guanosine 
guanosine 5-diphosphate,3-

diphosphate 
hexose-phosphate 
histidine 
homocysteic acid 
homocysteine 
homoserine 
hydroxyisocaproic acid 
hydroxyphenylacetic acid 
hydroxyphenylpyruvate 
hydroxyproline 
hypoxanthine 
IDP 
imidazole 
imidazoleacetic acid 
IMP 
indole 
indole-3-carboxylic acid 
indoleacrylic acid 
inosine 
isocitrate 
kynurenic acid 
kynurenine 
L-arginino-succinate 
lactate 
lipoate 
lysine 
malate 
maleic acid 
methionine 
methionine sulfoxide 
methylcysteine 
methylmalonic acid 
methylnicotinamide 
myo-inositol 
N-acetyl spermidine 
N-acetyl spermine 
N-acetyl-glucosamine 
N-acetyl-glucosamine-1-

phosphate 
N-acetyl-glutamate 
N-acetyl-glutamine 
N-acetyl-L-alanine 
N-acetyl-L-ornithine 
N-carbamoyl-L-aspartate 
N6-acetyl-L-lysine 
NAD+ 
NADH 
NADP+ 
NADPH 
nicotinamide 
nicotinamide ribotide 
nicotinate 
O-acetyl-L-serine 
ornithine 

orotate 
orotidine-5-phosphate 
oxaloacetate 
p-aminobenzoate 
p-hydroxybenzoate 
pantothenate 
phenylalanine 
phenyllactic acid 
phenylpropiolic acid 
phosphoenolpyruvate 
phosphorylcholine 
pipecolic acid 
proline 
purine 
putrescine 
pyridoxamine 
pyridoxine 
pyroglutamic acid 
pyrophosphate 
pyruvate 
quinolinate 
riboflavin 
ribose-phosphate 
S-adenosyl-L-homocysteine 
S-adenosyl-L-homocysteine 
S-adenosyl-L-methionine 
S-methyl-5-thioadenosine 
S-ribosyl-L-homocysteine 
S-ribosyl-L-homocysteine 
sarcosine 
sedoheptulose-bisphosphate 
serine 
shikimate 
sn-glycerol-3-phosphate 
spermidine 
spermine 
succinate 
succinyl-CoA 
taurine 
thiamine pyrophosphate 
thiamine-phosphate 
threonine 
thymine 
trans, trans-farnesyl 

diphosphate 
trehalose-6-phosphate 
trehalose-sucrose 
tryptophan 
tyrosine 
UDP 
UDP-D-glucose 
UDP-D-glucuronate 
UDP-N-acetyl-glucosamine 
UMP 
uracil 
urea 
uric acid 
uridine 
UTP 
valine 
xanthine 
xanthosine 
xanthurenic acid 
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(dotted line). With metformin treatment, fructose 1,6-bisphosphate is significantly 

reduced, albeit to a lesser extent than with phenformin, and DHAP and glyceraldehyde-3-

phosphate are slightly reduced. Neither biguanide has an effect on the earliest glycolytic 

intermediates that are increased during transformation nor on later glycolytic 

intermediates whose levels are unaffected during transformation. 

 The decrease in specific glycolytic intermediates is not due to a defect in glucose 

uptake. Analysis of cell culture media 24 h after tamoxifen treatment shows that 

phenformin and (to a lesser extent) metformin actually increase glucose uptake (Figure 

4.2 d), consistent with previous reports that metformin increases the dependency on 

glycolysis [4]. Lactate production is also increased in the presence of biguanides, again 

with phenformin having the stronger effect (Figure 4.2 d). Thus, despite promoting 

increased glucose consumption and lactate production, metformin and phenformin 

ultimately decrease specific glycolytic intermediates, suggesting rapid glucose processing 

that depletes intermediates from key junctions in glycolysis. 

Biguanide treatment increases glycerol 3-phosphate and lactate production during 

transformation  

 We asked whether decreased glycolytic intermediates in the presence of biguanides 

during transformation might be due to increased partitioning to metabolites branching 

from glycolysis. Surprisingly, although a number of anabolic precursors of the pentose 

phosphate pathway, nucleotide sugars, or glycogen synthesis are depleted with biguanide 

treatment, glycerol 3-phosphate is increased by both metformin and phenformin (Figure 

4.2 e and f). Glycerol 3-phosphate, which is generated from the glycolytic intermediate 

DHAP, can serve as an intermediary between glucose and lipid metabolism. However, 
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analysis of 14C-glucose incorporation into the lipid fraction reveals that biguanides 

instead decrease de novo lipogenesis (Figure S4.1 b), indicating that glycerol 3-phosphate 

levels are increased for an alternate purpose. As conversion of DHAP to glycerol 3-

phosphate regenerates NAD+ from NADH (shown in orange, Figure 4.2 f), we 

hypothesize increased glycerol 3-phosphate levels promote NAD+ regeneration, which is 

required to maintain glycolysis. 

 Although glycerol 3-phosphate is increased with both drugs, UDP-glucose and 

UDP-glucuronate, branching out of glycolysis at the glucose 6-phosphate step via glucose 

1-phosphate, are decreased. As UDP-glucose is a metabolic precursor for glycogen 

synthesis, biguanides may direct glycolytic intermediates away from glycogen synthesis, 

which is a nutrient storage pathway that normally occurs in cells during energy 

abundance. UDP-glucuronate feeds in the pentose phosphate pathway, but this pathway is 

not significantly affected by either biguanide (Figure 4.2 e). 

Metformin and phenformin decrease the level of TCA cycle intermediates 

 In addition to boosting glycolysis, cancer cells must allocate nutrients toward the 

TCA cycle to generate ATP and intermediates necessary for macromolecule biosynthesis 

[27]. Along with glucose-derived pyruvate, glutamine flux contributes substantially to 

fueling the TCA cycle in many cancer cells. Strikingly, nearly all TCA cycle metabolites 

are strongly decreased with both metformin and phenformin (Figure 4.3 a and b). 

Decreased levels of TCA cycle intermediates correlate with decreased pyruvate (with 

phenformin), increased shunting of glucose-derived carbons toward lactate, and 

decreased levels of glutamate and (marginally) glutamine (Figure 4.3 b). Glutamine 

uptake is not decreased by biguanides, indicating there is no defect in glutamine transport 
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Figure 4.3  | Metformin and phenformin decrease TCA cycle intermediates. a, 
Schematic of the TCA cycle with key molecules fueling the cycle indicated in orange. b, 
Relative levels of TCA cycle intermediates following treatment with tamoxifen ± metfor-
min or phenformin as measured by LC-MS/MS, n = 4. c, Glutamine uptake and NH4+ 
production were measured in the media 24 h after Src induction ± metformin or phenfor-
min, n = 3. *p < 0.05 and **p < 0.01 compared with tamoxifen treatment alone. Error 
bars indicate SEM. 
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across the cell membrane (Figure 4.3 c). Ammonium production is increased by 

biguanide treatment (Figure 4.3 c), suggesting increased utilization of glutamine as an 

attempt to refuel the TCA cycle via anaplerosis. 

 Our results appear to differ from a previous report in prostate cancer suggesting that 

metformin does not inhibit the TCA cycle but rather alters the fuel source by decreasing 

the oxidation of glucose-derived pyruvate and increasing glutamine anaplerosis [28]. We 

considered the possibility that this apparent difference in TCA cycle inhibition might be 

due to analysis of stably transformed cancer cells as opposed to cells early in the process 

of transformation. However, biguanide treatment of a stably transformed breast cancer 

cell line (CAMA-1) leads to a decrease in TCA cycle intermediates (Figure S4.2), 

suggesting that the metabolic reduction of the TCA cycle by biguanides may be 

important for inhibiting transformation. 

Biguanides induce a CSC-specific depletion of nucleotide triphosphates 

 Metformin selectively kills breast CSCs and, as a consequence, can act together 

with standard chemotherapeutic drugs to increase tumor regression and prolong relapse in 

mouse xenografts [8, 10]. CSCs represent a minor population of cancer cells either in 

primary tissue or cancer cell lines, but they are enriched in mammospheres that form 

when cultivated in nonadherent and non-differentiating conditions [29, 30]. We 

performed metabolic profiling on 7-day-old mammospheres from the transformed breast 

cancer cell line CAMA-1 that were treated with metformin, phenformin, or vehicle for 24 

h; as a control, we analyzed the CAMA-1 parental cell line. In accordance with 

observations during cellular transformation (Figure 4.2 b), the vast majority of 

metabolites are similarly regulated with both drugs (Figure 4.4 a). 
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Figure 4.4  | Metformin and phenformin alter the metabolic state of breast cancer 
stem cells and deplete NTPs. a, Fold change comparisons identify metabolites differ-
ently regulated in metformin vs. phenformin samples measured by LC-MS/MS after 24 h 
of treatment in breast CSCs. Red diamonds represent differentially altered metabolites. b, 
Relative levels of nucleoside monophosphates, diphosphates, and triphosphates in metfor-
min- or phenformin-treated CAMA-1 CSCs compared with untreated CSCs, n = 4. c-d, 
Relative levels of pyrimidine precursors in CAMA-1 CSCs (c) and parental CAMA-1 (d) 
treated with metformin or phenformin, n = 4. e, Schematic of key metabolites in pyrimi-
dine synthesis. f-g, Relative levels of folate metabolites in CAMA-1 CSCs (f) and paren-
tal CAMA-1 (g) treated with metformin or phenformin for 24 h, n = 4. h, Schematic 
depicting of folate and regeneration of 5-MTHF in purine and dTTP synthesis . *p < 0.05 
and **p < 0.01 compared with vehicle control. Error bars indicate SEM.
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 Surprisingly, the degree of the metabolic effects induced by biguanides differs 

considerably between the transformation and CSC systems. CSCs treated with biguanides 

show only marginal effects on glycolytic and TCA cycle intermediates (Figure S4.3). In 

contrast and unexpectedly, levels of all ribonucleotide and deoxyribonucleotide 

triphosphates (NTPs) are strongly decreased on biguanide treatment, with the effects of 

phenformin being stronger than metformin. Conversely, levels of all ribonucleotide and 

some deoxyribonucleotide monophosphates trend toward being increased by biguanide 

treatment, whereas little if any effect is seen on nucleotide diphosphates (Figure 4.4 b). 

Importantly, this depletion of NTPs by metformin and phenformin occurs specifically in 

CSCs and not in the parental CAMA-1 cell line (Figure S4.4 a). Although isolated effects 

on nucleotide metabolism are observed during tamoxifen-induced transformation (Figure 

S4.4 b), the magnitude and extent of NTP pool depletion are much greater in CSCs 

(Figure 4.4 b). Biguanide treatment also increases the levels of early precursors in 

nucleotide metabolic pathways, including orotate (Figure 4.4 c and e). Although the 

orotate precursors aspartate and carbamoyl aspartate are similarly regulated in CSCs and 

parental CAMA-1 cell line, the increased orotate level is specific to CSCs (Figure 4.4 c 

and d). These observations indicate that CSCs have distinct responses to biguanides and, 

in particular, appear to be defective in converting nucleotide precursors to NTPs. 

Folate metabolism and aminoimidazole carboxamide ribonucleotide levels are altered by 

biguanides  

 Analysis of metabolites that feed into purine and pyrimidine synthesis reveals that 

CSCs treated with metformin, but not phenformin, have a buildup of folate (Figure 4.4 f 

and h). Folate is enzymatically reduced to tetrahydrofolate (THF) and subsequently 
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converted to N5-methyl-THF (5-MTHF) to serve as a methyl donor for both purine and 

dTTP synthesis. 5-MTHF can also serve as a 1-carbon donor to homocysteine to produce 

methionine, and conversely, homocysteine can be regenerated from methionine via the 

intermediate S-adenosyl-methionine (SAM). In both CSCs and parental CAMA1 cells, 

we observed increased folate and homocysteine with metformin treatment, possibly 

indicating a defect in entry of folate into the THF-cycling pathway for nucleotide 

synthesis. Interestingly altered folate metabolism in the Escherichia coli food source has 

been implicated in metformin-mediated benefits in Caenorhabditis elegans [31]. 

Additionally, both phenformin and metformin decrease aminoimidazole carboxamide 

ribonucleotide (AICAR), an intermediate required for purine synthesis (Figure 4.4 f–h). 

As decreased AICAR is observed in both CSCs and the parental line, the CSC-specific 

depletion of NTPs suggests that this population may have greater NTP utilization and 

hence be more sensitive to AICAR levels. 

Discussion 

Phenformin and metformin have remarkably similar metabolic profiles, with phenformin 

having increased potency 

 It has been assumed that phenformin is essentially a stronger version of metformin, 

but the evidence is limited to their chemical similarity and a few common effects in 

diabetes and cancer contexts. Our detailed metabolic analysis (>200 metabolites) 

indicates that the metabolic profiles of metformin and phenformin are remarkably similar, 

with phenformin causing stronger effects even when used at a 30-fold lower 

concentration. At least in part, this likely reflects the slightly greater lipophilic character 

of phenformin relative to metformin that facilitates drug uptake. Although both 

134



 

biguanides use the OCT1 transporter for cellular entry, phenformin may be more readily 

taken up to reach its cellular targets [32, 33]. However, it is possible that phenformin may 

also have a stronger effect on the cellular target(s) per se. 

 Despite the remarkably similar metabolic profiles, a very small number of 

metabolites are uniquely altered by only one biguanide. Although metabolites that appear 

to be specifically affected by phenformin might simply reflect a quantitative difference 

between the two biguanides, metabolites such as anthranilate that are only affected by 

metformin cannot be explained in such a manner. These rare examples, which could be 

considered to occur from off-target effects of the drugs, have the potential to 

differentially affect medical outcomes. Nevertheless, the remarkably similar metabolic 

profiles, together with other lines of evidence, suggest that phenformin be considered as a 

more powerful alternative to metformin as an anti-cancer agent. 

Biguanides lead to a depletion of glycolytic and TCA cycle intermediates during cellular 

transformation 

 The process of neoplastic transformation creates a demand for increased synthesis 

of macromolecules, and this is accommodated by increased uptake of glucose and 

glutamine from the medium. Tamoxifen-induced transformation causes increased levels 

of all metabolites involved in glycolysis up to and including the step mediated by triose 

phosphate isomerase, presumably a consequence of increased glucose uptake. However, 

glycolytic intermediates after this step are not increased, even though the cells produce 

more lactate. It is possible that increased lactate production is not simply due to increased 

flux through the entire glycolytic pathway but rather involves differences in the 

competition for pyruvate to be converted to lactate or to citrate for entry into the TCA 
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cycle (see below). Alternatively, the latter glycolytic intermediates may not accumulate 

due to rapid processing toward lactate. 

 Interestingly, the biguanides selectively decrease three consecutive metabolites in 

the middle of the glycolytic pathway. For each drug, the levels of these three metabolites 

are reduced to a comparable extent, an observation that could be explained by a decrease 

in the step that converts fructose 6-phosphate to fructose 1,6-diphosphate. Alternatively, 

it might reflect biguanide-induced partitioning of glucose-derived carbons toward 

glycerol 3-phosphate, a metabolite whose level is significantly increased by metformin 

and phenformin. 

 Both biguanides cause a quantitatively similar decrease in all TCA metabolites 

tested, strongly suggesting decreased flux into the TCA cycle. Reduced levels of some 

TCA metabolites have been observed previously with metformin treatment [22]. There 

are two explanations, which are not mutually exclusive, to explain the effects on the TCA 

cycle. First, biguanides lead to decreased levels of pyruvate and increased levels of 

lactate production, presumably by increasing the conversion of pyruvate to lactate. As 

pyruvate directly leads into the TCA cycle, lowering its intracellular levels is expected to 

reduce the levels of all TCA metabolites. Second, biguanides decrease the levels of 

glutamate, a metabolite that leads directly into the TCA cycle on conversion to α-

ketoglutarate. Thus, biguanides may decrease input into the TCA cycle by inhibiting 

precursors generated either by carbon or nitrogen metabolism (pyruvate and glutamate, 

respectively), and hence reduce ATP production and anabolic metabolites necessary for 

cell growth that are derived from the TCA cycle. 

 Transformation in the inducible ER-Src model is mediated by an inflammatory 
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response that depends on NF-κB and STAT3 [9, 24], and metformin blocks this response 

by an unknown mechanism [15]. Our results indicate that this inflammatory response is 

associated with increased glucose uptake and increased glycolytic intermediates, although 

the mechanistic connection is unknown. Further, they suggest that the biguanide-

mediated effects on metabolism effectively decrease the inflammatory stimuli or signal 

transduction pathway that is required for transformation. 

Biguanides differently affect the transformation process and CSCs, suggesting unique 

metabolic states of these two systems  

 As the biguanides presumably affect the same target(s) in all cells, we were 

surprised to find different metabolic profiles during the transformation process and in 

CSCs. Although TCA cycle and glycolysis were mainly affected during transformation, 

the biguanides more specifically affected NTP levels in the CSCs. The decreased NTP 

levels in CSCs are likely to limit the availability for energetics, RNA, DNA, and 

biosynthesis of cofactors such as FAD, NADH, and CoA. In addition, metformin causes a 

defect in folate utilization in CSCs, as evidenced by increased levels of folate pathway 

metabolites. Consistent with this observation, the folate derivative 5-formimino-

tetrahydrofolate increases in metformin-treated breast cancer cell lines [34], and patients 

treated with metformin have a higher serum level of homocysteine, a metabolite involved 

in folate cycling [35]. 

 The differential metabolic effects of biguanides strongly suggest that CSCs have a 

distinct metabolic state compared with other cancer cells. We speculate that CSCs might 

have reduced requirements for glycolysis and the TCA cycle, perhaps analogous to yeast 

cells growing on nonfermentative carbon sources, and increased dependence for NTPs, 
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perhaps due to a reduced energy state. It is also tempting to speculate that the severe 

defect in NTP levels (and perhaps the defect in folate metabolism) underlies the increased 

sensitivity of CSCs to metformin treatment compared with typical cancer cells. More 

generally, our observations suggest that the metabolic effects of metformin may differ 

considerably among cancer cell types and states. 

Evidence for mitochondrial complex 1 being a target of biguanides and future use of 

metabolic profiles 

 The direct target(s) of metformin is unknown, although mitochondrial complex I is 

the best candidate at present [14, 20]. A defect in complex I will decrease oxidation of 

NADH to NAD+, a critical reaction to maintain the function of the TCA cycle, and 

ultimately inhibit oxidative phosphorylation leading to ATP. Several observations in this 

paper are consistent with the hypothesis that biguanides target complex I. First, 

biguanides decrease the levels of all TCA intermediates, suggesting an overall defect in 

TCA cycle function due to the relative inability to oxidize NADH to NAD+. Second, 

decreased TCA cycle function is likely to result in preferential conversion of pyruvate to 

lactate as opposed to entering the TCA cycle, and this is observed in biguanide-treated 

cells. In this regard, inhibition of complex I by rotenone boosts lactate production [36] 

and reduces TCA cycle intermediates [37], allowing an alternate way to produce ATP 

when the electron transport chain is not functional. Third, the increased lactate production 

and increased levels of glycerol-3-phosphate may reflect stimulation of two key reactions 

that effectively oxidize NADH to NAD+, thereby compensating for lower levels of NAD+ 

due to decreased complex I activity. Fourth, the strong decrease in NTPs in CSCs 

suggests a major defect in energy state necessary, likely reflecting a defect in oxidative 
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phosphorylation. 

 Our detailed metabolic profiling provides independent support for the idea that 

complex I is a target of biguanides. As a complement to biochemical studies, examining 

metabolic profiles conferred by drugs with known targets (e.g., rotenone) or caused by 

functional inhibition or deletion of an individual gene should be very helpful for 

identifying the physiological target of biguanides. In addition, metabolic profiles 

conferred by biguanide treatment should be very useful for identifying new drugs with 

similar metabolic properties, and such drugs might have potential for treatment of 

diabetes or cancer. 

Materials and Methods 

Cell lines and culture conditions.  MCF-10A ER-Src cells were grown as previously 

described in DMEM/F12 media supplemented with charcoal stripped FBS, 

penicillin/streptomycin, puromycin, EGF, hydrocortisone, insulin and cholera toxin [10].  

Transformation via Src activation was induced by addition to 1 µM tamoxifen (Sigma) 

for 24 h.  Metformin (300 µM) or phenformin (10 µM) were added together with 

tamoxifen. CAMA-1 cells were grown in DMEM media containing 10% FBS and 

antibiotics.   

Mammosphere culture conditions.  CAMA-1 cells were trypsinized, counted, and 10,000 

cells/ml were seeded in ultra-low attachment plates in serum free mammosphere media as 

previously described [10].  Cells were passaged every 7 days, collected in 50 ml tubes, 

and the plate was washed once with PBS and combined with the collected cells. Spheres 

were collected by gentle centrifugation and resuspended in 0.5% Trypsin for 8 minutes. 

Trypsin was quenched with media containing FBS, pelleted by centrifugation, and 
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resuspended in mammosphere media. Cells were further dissociated mechanically by 

passing through a 23G syringe 6 times, and single cell suspension verified 

microscopically. Mammospheres were passaged multiple times to ensure enrichment for 

CSCs. 

Metabolic profiling by target liquid-chromatography mass spectrometry.  Cells were 

washed once with PBS and lysed in 80% (v/v) methanol at -78°C to extract intracellular 

polar metabolites.  Cell debris was removed by centrifugation at 13000 rpm at 4°C. The 

supernatant containing metabolites was evaporated using a refrigerated Speed Vac. 

LC/MS/MS-based metabolomics analysis was done as previously described by [38].  

Lipogenesis.  De novo lipogenesis was measured as previously described [39]. Briefly, 

lipogenesis was measured in in MCF-10A ERSrc cells 24 hours after treatment +/- 

tamoxifen and +/- biguanide. Cells were pulsed for 4 hours with 0.8µCi 14C-glucose 

(Perkin Elmer) per 800ul media +/- biguanide. Cells were rinsed twice with PBS then 

lysed in 0.5% Triton X-100. The lipid fraction was obtained by chloroform and methanol 

(2:1 v/v) extraction, followed by the addition of water. Samples were centrifuged, and the 

bottom phase was collected to measure 14C incorporation into lipids. All scintillation 

counts were normalized to protein concentrations. 

Statistical analysis.  To identify significantly altered metabolites with either metformin or 

phenformin treatment in comparison to control treatment, metabolites from each sample 

were normalized to total metabolite counts.  A student t-test was performed, and changed 

metabolites with a P < 0.05 were used for further analysis.  To identify unique effects of 

one biguanide over the other, unbiased by a consistent potency effect, fold-changes of 

metformin or phenformin over control cells for all metabolites were plotted against each 
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other. Ratios of these two-fold changes for each metabolite were calculated and a 99.7% 

confidence interval over all measured metabolites was determined to address whether 

some metabolites are uniquely altered by either biguanide. Metabolites outside of this 

interval were considered to be differentially regulated. 

Glucose, glutamine, lactate and ammonia measurement (NOVA analysis).  Cell 

supernatant was collected 24 hours post tamoxifen and biguanide treatment, and cells 

were counted for normalization. Analysis was performed using the BioProfile FLEX 

analyzer (Nova Biomedicals) as previously described [40]. 
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CHAPTER V 

 
Discussion 

 Altered metabolism is at the heart of cancer, from the early stages of cancer onset to 

the late stages of an established tumor. The process of metabolic reprogramming enables 

cancer cells to ramp up nutrient uptake and processing in order to amass biomolecules 

and fuel pathways that maintain cancer cell survival. In many cases, these metabolic 

adaptations originated throughout evolution to enable organismal survival under harsh, 

nutrient-limited conditions, but have been hijacked by cancer cells to fuel their own 

growth and proliferation, even at the expense of the host[1, 2]. In cancer, metabolic 

regulatory nodes are frequently altered in a way that defies the normal constraints 

intended to maintain metabolic homeostasis. However, it has recently been realized and 

clinically verified that these junctions of metabolic misregulation can be identified, 

understood and targeted to fight back against cancer.   

 During the course of my dissertation studies, I completed three studies focused on 

uncovering novel metabolic regulatory pathways with the goal of shedding light on the 

utility of these nodes as potential therapeutic targets in cancer. In Chapter II, I started 

from a blank slate and aimed to identify metabolic enzymes that may be regulated by 

SIRT4, a protein linked to nutrient homeostasis and tumor suppression. In Chapter III, I 

described the discovery of a fundamental mechanism by which PHD3 limits fatty acid 

catabolism, and showed that loss of PHD3 in acute myeloid leukemia (AML) promotes 

cancer cell survival by enabling unhindered uptake and oxidation of fatty acids. In 

Chapter IV, I analyzed the global metabolic effects of the diabetes drug metformin on 

tumor-initiating cells to help solve the mystery of how this small molecule impedes 
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cancer onset.   

SIRT4 coordinates the mitochondrial acetylome and PC activity 

 In Chapter II, we performed an acetylomics survey of mitochondrial proteins in 

wild type (WT) and SIRT4 knockout (KO) liver and brown adipose tissue (BAT) to 

identify putative substrates of SIRT4 deacetylase activity. Contrary to the view in the 

sirtuin field that SIRT4 is a weak deacetylase, our data suggest SIRT4 may be a 

biologically relevant, substrate-specific deacetylase with major impact on cellular 

bioenergetics. We find SIRT4 loss increases acetylation of select mitochondrial proteins, 

the majority of which are enzymes in the TCA cycle, fatty acid metabolism and the 

electron transport chain (ETC). While future biochemical studies are necessary to 

validate these substrates, the metabolic pathways identified by this study fit with known 

biologies of SIRT4. SIRT4 KO mice are known to have increased fatty acid oxidation but 

decreased lipid synthesis, increased levels of TCA cycle intermediates and overall 

hyperactived mitochondrial metabolism. By coordinating multiple enzymes in these 

pathways, SIRT4 could potentially establish greater metabolic regulation.  

 A major finding in this study is that SIRT4 binds and represses pyruvate 

carboxylase (PC). PC is a key anaplerotic enzyme that provides an alternate route for 

pyruvate to enter the TCA cycle. Our data support a developing theme in sirtuin research 

that the major function of SIRT4 is to limit mitochondrial oxidative metabolism. While 

most sirtuins promote oxidative metabolism in response to low nutrient conditions, 

SIRT4 is emerging as a counterbalance that limits oxidative metabolism in the presence 

of adequate nutrients. In the case of PC, we hypothesize SIRT4 may limit oxidative 

metabolism by interfering with formation of the active PC homotetramer and therefore 
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limiting anaplerotic flux into TCA cycle. Because PC has strong relevance in cancer and 

diabetes, it will be interesting for future studies to assess whether SIRT4-mediated 

repression of PC contributes to these diseases.    

 Further studies are also needed to validate other putative SIRT4 targets identified in 

our acetylation proteomics analysis. Nicotinamide nucleotide transhydrogenase (NNT) 

warrants particular interest because it has already been validated as a SIRT4 target in 

vitro[3] and was the most dramatically hyperacetylated protein in SIRT4 KO mice in our 

study. By coordinating the balance of NAD(H) and NADP(H), NNT modulates the 

cellular redox status. Thus, through NNT, SIRT4 could potentially direct the cellular 

balance of catabolic versus anabolic pathways. NNT is increasingly being recognized as a 

key contributor to cancer cell metabolism. In tumors experiencing hypoxia or 

mitochondrial defects, NNT is a major source of NADPH to drive reductive 

carboxylation to maintain anaplerosis[4, 5]. Therefore, further studies could explore the 

role of the SIRT4/NNT axis in coordinating reverse TCA cycling in cancer. 

 More broadly, our results in Chapter II raise the question of how SIRT4 coordinates 

activity toward potentially multiple substrates to regulate organismal metabolism. It is 

now known that SIRT4 has a handful of metabolic targets, and our data raises the 

possibility of dozens of new substrates that may be validated in the future. However it is 

not clear how SIRT4, or in fact how any sirtuin, directs its activity toward select 

substrates at specific times. Because metabolism is regulated with intricate and 

sophisticated precision, we consider it unlikely that SIRT4 simply acts on all of its 

substrates at once with no preference or selectivity under different scenarios. We propose 

that in response to certain environmental or nutrient stresses, SIRT4 activity is directed to 
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enzymes in particular metabolic pathways to appropriately restore homeostasis. Future 

studies are needed to identify factors that guide the preferred enzymatic activity and 

substrates of SIRT4 in response to a range of stimuli. 

PHD3 hydroxylates and activates ACC2 to limit fatty acid oxidation in cancer  

 In Chapter III we identified PHD3 as a fundamental regulator of fatty acid 

metabolism in response to the cellular metabolic state. Our findings diverge from 

traditional views of PHDs as predominantly serving to modulate hypoxia inducible factor 

(HIF) and glycolysis. Here, we show instead that PHD3 plays a major role in lipid 

metabolism by hydroxylating and activating ACC2 to limit fatty acid oxidation (FAO). 

We find this mode of repressing FAO is particularly important under high nutrient 

conditions, raising the intriguing possibility that PHD3 may act as a nutrient sensor to 

coordinate fuel utilization. One candidate molecule that may coordinate PHD3 activity is 

the PHD co-substrate α-ketoglutarate. Abundant α-ketoglutarate could signal that the 

TCA cycle is sufficiently fueled, and high local concentrations of this metabolite might 

be sensed by PHD3 to limit further, unnecessary catabolism of fatty acids. There is 

currently little knowledge of how the cell dually incorporates information about fat 

metabolism and the TCA cycle to coordinate fuel choice. My research presents the 

innovative hypothesis that the PHD3/ACC axis allows these pathways to be concordantly 

regulated.  

 A key insight of Chapter III is that PHD3 is frequently suppressed in AML. We 

show loss of PHD3 contributes to high FAO, a metabolic pathways that is essential for 

survival of these cancer cells. In the immediate future, we are pursuing ongoing mouse 

studies to evaluate whether reinstating the PHD3/ACC2 regulatory axis limits AML 
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severity. As we observed in human AML, we have found that several mouse models of 

AML show strongly decreased levels of PHD3 compared to normal cd11b+ myeloid cells. 

Thus, we are evaluating whether PHD3 overexpression in a mouse model of leukemia 

impedes onset and severity of AML. We are using a mouse model in which primary 

mouse bone marrow cells are transduced with MLL-AF9 ex vivo and transplanted into 

mice to induce AML.  Overexpression of PHD3 or empty vector in tandem with MLL-

AF9 transduction will allow us to assess whether PHD3 impedes leukemogenesis. 

Additionally, we will assess whether modulation PHD3 in primary human AML cells 

limits engraphment upon tail vein injection in immune-compromised NOD/SCID gamma 

mice. This experiment will assess whether PHD3 activation has therapeutic potential in 

the treatment of existing AML.  

 This study raises several questions and possibilities about the role of PHD3 and 

FAO in cancer. First, what is the purpose of elevated FAO in cancer, and why is its 

upregulation particularly essential for specific tumor types? FAO has been proposed as a 

mechanism to generate ATP, build TCA cycle intermediates or other fats or produce the 

antioxidant molecule NADPH. Additionally, other studies suggest FAO is required to 

maintain the quality of the mitochondrial membrane. Future studies are needed to explore 

these hypotheses, perhaps aided by targeted screens to identify pathways that rescue FAO 

inhibition in cancer cells otherwise dependent on this pathway. Second, based on the 

results in Chapter III, could low PHD3 expression serve as a biomarker to indicate 

cancers with high FAO? In ongoing analyses of AML patient gene expression profiles, 

we find approximately 80% of patients have very low levels of PHD3, and this subset of 

patients shows striking, significant upregulation of oxidative phosphorylation gene 
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programs. This supports the findings in Chapter III and further suggests low PHD3 is a 

promising clinical marker of AML dependency on oxidative metabolism. Finally, could 

FAO inhibitors be used to treat AML characterized by low PHD3 expression? Currently 

metabolically-targeted therapeutics are not a standard part of treatment in AML, and 

furthermore there are no ongoing clinical trials testing the efficacy of FAO inhibitors in 

AML. There is great need for more clinical options for patients with AML. In 2015, over 

20,000 people are expected to be diagnosed with AML in the US, and over 10,000 

patients with AML are expected to die[6]. Our work, combined with the work of others 

on the role of FAO in leukemia, provides ample support that FAO inhibitors should be 

explored as treatment options for this deadly disease.    

Metformin and phenformin alter the metabolic state and impede neoplastic 

transformation and cancer stem cell viability 

 The diabetes drug metformin and the related, more potent biguanide phenformin 

have received much attention for their anti-cancer properties in biochemical studies, 

animal models and even retrospective patient studies. In Chapter IV, we set out to define 

the metabolic alterations caused by metformin and phenformin that may bear insight to 

how these drugs inhibit the induction of a cancerous cellular state. We also analyzed the 

drugs’ unique metabolic effects on cancer stem cells, a small population of cells that 

possesses predominant tumor-initiation capacity and, importantly, is selectively inhibited 

by metformin treatment. 

 One surprising insight from our metabolomics analysis is that the ability of 

metformin and phenformin to block neoplastic transformation is linked to a forced 

dependency on glycolysis and an ensuing nutrient crisis. In a breast cell culture model of 
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Src-induced transformation, metformin and phenformin block the transition to a cancer 

cell state. In this system, we find biguanide treatment increases glucose uptake and 

lactate production. This strong upregulation of glycolysis may occur as a cellular 

adaptation to low ETC flux. This hypothesis fits with the major dogma in the field that 

biguanides inhibit Complex I of the ETC. Our data indicate that the glycolytic switch 

induced by biguanides cannot fulfill the metabolic and bioenergetic demands required for 

transformation. In the presence of biguanides, cells undergoing transformation become 

depleted of glycolytic intermediates and TCA cycle metabolites. We hypothesize this 

nutrient crisis prevents the cell from achieving a transformed state. 

 Our work also highlights the complex role of glycolysis in cancer. Numerous 

studies have shown upregulated glycolysis and the Warburg effect fuel growth and 

survival of multiple cancer subtypes. However, we show here that a strong switch to 

glycolytic metabolism is not amenable to the early stages of cellular transformation. 

Indeed, we find metformin and phenformin greatly upregulate glycolysis, but block 

transformation. This suggests the amount of glycolysis that promotes cancer development 

requires a fine balance. Some level of upregulation is needed to boost the biosynthetic 

processes that are characteristic of the transformed state, but extreme dependency on 

glycolysis due to blocks in the ETC can limit transformation. Our observation that 

metformin induces nutrient deprived state in order to prevent cancer fit with studies in the 

Pollack lab[7]. This group recently showed serine metabolism is upregulated in cells to 

compensate for the nutrient deficiencies induced by biguanide treatment. Furthermore, a 

serine-free diet enhanced the anti-neoplastic effects of metformin treatment in mice, 

which we suggest might amplify the glycolytic and TCA cycle deficits caused by 
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biguanides to exacerbate the nutrient crisis and restrict the onset of cancer. 

 A second finding from Chapter IV that calls for further study is the intriguing 

increase in glycerol 3-phosphate upon metformin and phenformin treatment during 

transformation induction. Glycerol 3-phopshate is a glucose-derived molecule that can be 

used for lipid synthesis. While most anabolic molecules are decreased with biguanide 

treatment, the level of this particular biosynthetic molecule is strongly increased. We 

propose two hypotheses for why glycerol 3-phosphate may be upregulated by biguanide 

treatment. First, generating glycerol 3-phopshate also produces NAD+. Thus, producing 

glycerol 3-phosphate can enable continued glycolysis similar to the way in which lactate 

production sustains glycolysis. Alternatively, glycerol 3-phosphate levels may be 

increased to help fuel the electron transport chain in a way that bypasses Complex I 

inhibition. Glycerol 3-phosphate can travel to the mitochondria and be converted to 

dihydroxyacetone phosphate (DHAP) by mitochondrial glycerol 3-phosphate 

dehydrogenase (GPDH-M), directly contributing electrons to the quinol pool in the ETC. 

In this way, we hypothesize glycerol 3-phosphate drives a cellular adaptation to 

compensate for Complex I inhibition. Interestingly, recent studies by the Shulman lab 

suggest metformin leads to downstream inhibition of GPDH-M by 50% in mice[8]. 

Future studies are needed to examine the role of glycerol 3-phosphate in response to 

biguanides, and more importantly to understand whether increased glycerol 3-phosphate 

provides a possible mechanism of resistance that a cancer cell may adapt to bypass the 

effects of biguanide treatment.  

  A final conclusion of our metabolomics analysis is that biguanides induce different 

metabolic effects in transforming cells compared to cancer stem cells (CSCs). Unlike 
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cells undergoing transformation, CSCs treated with metformin or phenformin did not 

show broad decreases in glycolytic and TCA cycle metabolites. Instead, the most striking 

metabolic alteration in CSCs is depletion of nucleotide triphosphates (NTPs). This 

correlates with dramatically decreased levels of AICAR, a biosynthetic intermediate in 

purine synthesis. Intriguingly, NTP levels were unaffected in the parental CAMA1 cell 

line from which the CSCs were derived, despite similar decreases in AICAR. Our study 

raises the hypothesis that biguanide treatment may cause CSCs to rely heavily on NTPs, 

leading to a precipitous decrease in NTPs that is not amenable to survival. We propose 

that CSCs require high levels of NTPs to maintain growth and stemness. This hypothesis 

fits with studies in developmental biology showing NTPs are key signaling molecules in 

hematopoietic and neural stem cells[9-11]. For example, exogenous UTP added to 

hematopoietic stem cells promotes migration and bone marrow engraphment[11]. We 

propose the following model for how biguanides may alter NTP levels and induce CSC 

death: when biguanides inhibit Complex I, ATP production by oxidative phosphorylation 

is impeded. To compensate, CSCs use other NTPs to make ATP. Thus, NTPs are 

unavailable to perform other functions that are key for maintaining CSC survival. 

Eventually, NTP depletion combined with a low bioenergetic state may cause selective 

growth inhibition in CSCs. Further studies are needed to test this hypothesis and 

determine the role of NTPs in CSCs, with the potential of discovering new avenues to 

explore in cancer therapeutics.  

Conclusions 

 In the last decade, the advances in cancer metabolism have been monumental. 

Much has been learned about the molecular drivers that boost fuel uptake and direct 
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nutrient fate in order to promote cancer onset and progression. There is great momentum 

to push this research toward the clinic and hopefully yield therapeutic outcomes that 

improve upon the current standard of care. The findings in this dissertation contribute to 

the field of tumor metabolism through the discovery and characterization of pathways 

and regulatory nodes guiding nutrient utilization in cancer cells. This work reveals a 

clearer picture of how metabolic programs are altered in cancer to promote proliferation 

and survival, and also how metabolism can be targeted in strategies for cancer treatment. 
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SUMMARY

Lipid metabolism is tightly controlled by the nutri-
tional state of the organism. Nutrient-rich conditions
increase lipogenesis, whereas nutrient deprivation
promotes fat oxidation. In this study, we identify
the mitochondrial sirtuin, SIRT4, as a regulator of
lipid homeostasis. SIRT4 is active in nutrient-replete
conditions to repress fatty acid oxidation while
promoting lipid anabolism. SIRT4 deacetylates
and inhibits malonyl CoA decarboxylase (MCD), an
enzyme that produces acetyl CoA from malonyl
CoA. Malonyl CoA provides the carbon skeleton for
lipogenesis and also inhibits fat oxidation. Mice
lacking SIRT4 display elevated MCD activity and
decreased malonyl CoA in skeletal muscle and white
adipose tissue. Consequently, SIRT4 KO mice
display deregulated lipid metabolism, leading to
increased exercise tolerance and protection against
diet-induced obesity. In sum, this work elucidates
SIRT4 as an important regulator of lipid homeostasis,
identifies MCD as a SIRT4 target, and deepens our
understanding of the malonyl CoA regulatory axis.

INTRODUCTION

According to the bioenergetic demands of the organism, tissues
must appropriately adjust their metabolism to either store lipids
or catabolize fatty acids to generate more energy (Duncan
et al., 2007; Long and Zierath, 2006). This balance between lipid
anabolic and catabolic processes is coordinately and precisely
regulated, in part by the cellular levels of the metabolite malonyl

CoA (Saggerson, 2008; Saha and Ruderman, 2003). To undergo
b-oxidation, fatty acidsmust cross both the inner and outer mito-
chondrial membranes, and this rate-limiting step is catalyzed by
carnitine palmitoyltransferase 1 (CPT1), which is allosterically
inhibited by malonyl CoA. In addition, malonyl CoA serves as
the chain-elongating unit for fatty acid synthesis. Thus, regula-
tion of malonyl CoA levels provides a means to control the bal-
ance between fat synthesis and fat oxidation. Two enzymes
regulate cellular malonyl CoA levels: acetyl CoA carboxylase
(ACC) converts acetyl CoA to malonyl CoA, and malonyl CoA
decarboxylase (MCD) converts it back to acetyl CoA. The regu-
lation of ACC activity through phosphorylation by AMPK is well
characterized (Hardie, 2011), whereas the regulation of MCD
activity is much less studied.
Sirtuins are NAD+-dependent deacylases and ADP-ribosyl-

transferases involved in many biological processes, mediating
adaptive responses to the cellular environment (Houtkooper
et al., 2012; Lombard et al., 2011). Proteomic surveys revealed
that a majority of mitochondrial metabolic enzymes are differen-
tially acetylated according to the nutritional state of the cell
(Wang et al., 2010; Yang et al., 2011; Zhao et al., 2010), suggest-
ing that acetylation may regulate global cellular metabolism and
coordinates fuel switching. Three of the mammalian sirtuins
(SIRT3, SIRT4, and SIRT5) are located in the mitochondria and
may play roles as sensors of energy status in this organelle
(Houtkooper et al., 2012; Lombard et al., 2011). SIRT4 is one
of the least-characterized mitochondrial sirtuins (Haigis et al.,
2006; Ahuja et al., 2007). Previously, it was shown that SIRT4
represses fat catabolism (Nasrin et al., 2010), but the direct
substrates involved and the physiological significance remain
unknown. Importantly, the role of SIRT4 in lipid synthesis and
storage has never been investigated.
In this study, we demonstrate a novel function for SIRT4 in

the regulation of lipid metabolism. We find that SIRT4 represses
fatty acid oxidation in skeletal muscle and stimulates lipogenesis
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in white adipose tissue (WAT), indicating that SIRT4 can regu-
late the balance between fat oxidation and fat synthesis. To
achieve this regulation, SIRT4 directly binds, deacetylates, and
represses malonyl CoA deacarboxylase (MCD). As a conse-
quence, SIRT4 KO mice display deregulation of crucial physio-
logic aspects of lipid metabolism, leading to increased tolerance
to an exercise challenge and protection against diet-induced
obesity.

RESULTS

SIRT4 Promotes Lipid Synthesis and Represses Fatty
Acid Oxidation
To assess the role of SIRT4 on lipid homeostasis, we initially
examined its effects on de novo lipid synthesis. As WAT is the
major organ responsible for lipid synthesis and storage, we
tested the role of SIRT4 on lipogenesis in the mouse adipocyte
cell line, F442A. We found that overexpression of SIRT4 leads

to an increase in lipogenesis, as measured by [14C]-acetate
incorporation into the lipid fraction (Figure 1A), and an increase
in accumulation of trigycerides (TGs) and stored lipids (Figures
1B and 1C). This increasewas not observed in cells overexpress-
ing the catalytically inactive mutant of SIRT4, SIRT4H162Y
(Ahuja et al., 2007). To confirm these results using a primary
model, we examined lipogenesis using adipocytes freshly iso-
lated from WAT from SIRT4 WT and KO mice. As observed in
F442A cells, lipid synthesis was decreased in SIRT4 KO primary
adipocytes (Figure 1D). Together, these results suggest that
SIRT4 activity promotes fat anabolism.
To assess the role of SIRT4 in lipid catabolism, we measured

fatty acid oxidation in C2C12 cells, a mousemyocyte cell line. As
muscles rely primarily on fatty acids for energy, myocytes
provide a good model to study fatty acid oxidation. We found
that the oxidation of palmitate, a saturated long-chain fatty
acid, was significantly higher in C2C12 cells in which SIRT4
expression was stably reduced by lentiviral expression of
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Figure 1. SIRT4 Regulates Lipid Metabolism
(A–C) (A) Lipogenesis from 14C-acetate (n = 3) (A), triglyceride levels (n = 6) (B), and oil red O staining (n = 6) (C) were determined using F442A adipocytes stably

expressing empty vector control (CTL, open bar), SIRT4 (red bar), or the catalytic inactive mutant of SIRT4, SIRT4H162Y (red striped bar).

(D) Lipogenesis was measured using 14C-acetate in WT (open bar) and SIRT4 KO (blue bar) primary adipocyte lines (n = 3).

(E) Fatty acid oxidation (FAO) was measured in C2C12 cells expressing control shRNA (shNT, open bar) or shRNAs targeted against SIRT4 (blue bars) (n = 3).

(F) FAO was measured in C2C12 cells overexpressing empty vector control, SIRT4, or SIRT4H162Y (n = 3).

(G) FAOwas determined usingWT andSIRT4 KOprimaryMEF lines (n = 3). Levels of SIRT4 protein were determined bywestern blotting using antibodies to SIRT4

and tubulin as a loading control. In each panel, data represent mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001.
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three independent shRNAs against SIRT4 compared to control
cells (Figure 1E). Conversely, palmitate oxidation was diminished
in C2C12 cells stably overexpressing SIRT4, but not in cells
overexpressing SIRT4H162Y (Figure 1F). Similarly, fatty acid
oxidation was elevated in primary SIRT4 KO mouse embryonic
fibroblasts (MEFs) (Figure 1G). These data demonstrate for the
first time that SIRT4 promotes lipogenesis and represses fatty
acid oxidation, indicating that SIRT4may coordinate the balance
between lipid catabolic and anabolic pathways.

SIRT4 Represses Malonyl CoA Decarboxylase
As SIRT4 represses palmitate oxidation and stimulates lipogen-
esis, we reasoned that SIRT4 regulates an enzyme positioned at
the interface between oxidative and synthetic pathways. One
major branchpoint in lipid homeostasis is the interconversion
of acetyl CoA tomalonyl CoA, ametabolite that inhibits fat oxida-
tion, while promoting fat synthesis (Figure 2A). Two enzymes
regulate cellular malonyl CoA levels: ACC converts acetyl CoA
to malonyl CoA, and MCD converts it back to acetyl CoA.
Together these enzymes constitute a highly responsive control
system modulating the levels of malonyl CoA and thereby the
rate of fatty acid catabolism or synthesis (Figure 2A). To test
this idea, we determined whether SIRT4 physically binds with
ACC or MCD in coimmunoprecipitation studies. We did not
detect an interaction between SIRT4 and ACC (see Figure S1A
online). WhereasMCD localizes both to the cytosol and themito-
chondrial matrix, in skeletal muscle the majority of MCD activity
resides within mitochondria (Kerner and Hoppel, 2002). Thus, we
investigated and observed a physical interaction between SIRT4
and SIRT4H162Y with mitochondrial MCD (Figures 2B and 2C).
We confirmed that SIRT4 and MCD colocalize in mitochondria
using confocal microscopy (Figure 2D). In contrast to SIRT4,
the other mitochondrial sirtuins, SIRT3 and SIRT5, showed no
detectable physical associationwithMCD in control immunopre-
cipitations under these conditions, further indicating a specific
interaction between SIRT4 and MCD.

We next investigated the importance of MCD activity in SIRT4-
mediated regulation of lipid homeostasis. We observed that
overexpression of MCD in C2C12 and F442A cells increases
fatty acid oxidation rates and repressed lipogenesis, respec-
tively (Figures S1B–S1D). Thus, MCD overexpression phe-
nocopied SIRT4 deletion. To assess directly whether SIRT4
regulates lipid homeostasis through MCD, we analyzed fatty
acid oxidation in SIRT4 WT and KO MEFs in which MCD exp-
ression was stably reduced by lentiviral expression of shRNA
against MCD (Figure S1E). Reduction of MCD abrogated the
increased fatty acid oxidation found in SIRT4 KO cells to levels
comparable to those of WT cells (Figure 2E), demonstrating
that the increased fatty acid oxidation in SIRT4 KO cells required
MCD activity.

Based on these findings, we hypothesized that MCD activity
would be elevated in SIRT4 KO cells, decreasing malonyl CoA
levels, subsequently increasing fat oxidation. In agreement
with this model, MCD activity was elevated 2-fold in SIRT4 KO
MEFs compared to WT MEFs (Figure 2F). Next, to confirm that
acutemodulation of SIRT4 activity can regulateMCD, we treated
cells with a pansirtuin inhibitor nicotinamide (NAM). We found
that MCD activity was significantly increased in the WT cells

treated with NAM compared to the untreated cells. This is due
to inhibition of SIRT4, as NAM had no further effect in SIRT4
KO cells (Figure 2F). To confirm these findings, we further exam-
ined the effect of SIRT4 onMCD activity in muscle and adipocyte
cells, using C2C12 and F442A cell lines stably expressing WT or
H162Y SIRT4. In both cell types, overexpression of SIRT4
resulted in reduced MCD activity, whereas overexpression of
the catalytic mutant had no effect (Figures 2G and 2H). Taken
together, these data suggest that SIRT4 represses MCD activity
in muscle and adipocyte cell lines.

SIRT4 Deacetylates MCD
Our results demonstrate that in cells SIRT4 binds MCD and
represses its enzymatic activity. We sought to assess whether
this repression is mediated by posttranslational modification.
Although they belong to the same protein family, sirtuins exhibit
several enzymatic activities, including deacetylation, deacyla-
tion, and ADP-ribosylation. Previous reports found that SIRT4
is a weak ADP-ribosyltransferase but not a BSA or histone
deacetylase (Ahuja et al., 2007; Haigis et al., 2006; Schwer
et al., 2002). To identify posttranslational modifications of
MCD, we immunoprecipitated MCD from C2C12 cells and
analyzed posttranslational modifications by mass spectrometry.
MCD was previously shown to be acetylated on six different
lysines (K58, K167, K210, K316, K388, and K444) (Nam et al.,
2006). Our analysis identified additional acetylation on lysine
residue 471 (Figure S2A) but did not detect ADP-ribosylation,
malonylation, or succinylation. Notably, K471 is one of the
most conserved lysines of MCD and is invariant from D. Rerio
to humans (Figure S2B). Hence, we speculated that SIRT4 may
have a substrate-specific deacetylase activity, as has been
demonstrated for SIRT6 and SIRT7 (Barber et al., 2012; Zhong
et al., 2010).
To test whether MCD acetylation level is regulated by SIRT4,

we stably expressed a FLAG-tagged murine MCD in MEFs
and treated cells with or without NAM. MCD acetylation was
measured after immunoprecipitation of MCD by western blotting
with anti-acetyl lysine antibody. We found that NAM treatment
increased MCD acetylation levels (Figure 3A). We also detected
an increase in the acetylation level of MCD in the SIRT4 KO cells
compared to the WT cells (Figure 3B). Furthermore, SIRT4
overexpression reduced MCD acetylation (Figure 3C). These
data demonstrate that SIRT4 regulates the acetylation levels of
MCD in cells.
To test whether SIRT4 can directly deacetylate MCD, we

assessed the ability of SIRT4 to deacetylate MCD protein
in vitro. We incubated MCD-FLAG with SIRT4-FLAG and
SIRT4H162Y-FLAG immunoprecipitated from HEK293T cells in
the presence of NAD+. We observed that SIRT4 directly deace-
tylates MCD in vitro, whereas SIRT4H162Y does not (Figure 3D).
Since SIRT4 interacts with SIRT3 (Ahuja et al., 2007), we wanted
to exclude the possibility that the observed deacetylation was
due to a contamination by SIRT3. We performed in vitro deace-
tylation assays using SIRT4 immunoprecipitated from HEK293T
cells where SIRT3 was stably reduced by shRNA (Figure S2C)
and immunoprecipitated MCD-FLAG from SIRT3 KO cells. We
then observed that SIRT4 isolated from SIRT3-deficient cells
could deacetylate MCD (Figure S2D). Next, to determine
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(A) Schematic of the regulation of lipid homeostasis and malonyl CoA by acetyl-CoA carboxylase (ACC) and malonyl CoA decarboxylase (MCD).

(B) Sirtuin-MCD interactions were assessed by cotransfecting expression vectors for SIRT3, SIRT4, or SIRT5 (FLAG-tagged at the C terminus) with an expression

vector for C-terminal HA-tagged MCD in HEK293T cells. HA-tagged MCD was immunoprecipitated, and interactions were detected by immunoblotting with

antibodies against FLAG.

(C) Expression vectors containing SIRT4 or SIRT4H162Y (FLAG-tagged) were cotransfected with C-terminal HA-taggedMCD in HEK293T cells, and SIRT4-MCD

binding was assessed by immunoprecipitation of MCD-HA and western blotting with FLAG antibodies.

(D) The subcellular localization of SIRT4-HA (green) and MCD-FLAG (red) stably overexpressed in immortalized MEFs was examined by immunofluorescence

using HA and FLAG antibodies and the mitochondrial marker Mitotracker (pseudocolored in blue).

(E) FAO rates were assessed inWT and SIRT4 KO primaryMEFs treatedwith control shRNA (shNT) or two shRNAs against MCD (sh1 and sh2) as indicated (n = 3).

(F) Relative MCD activity in SIRT4 WT and SIRT4 KO immortalized MEFs treated or not with nicotinamide (NAM; striped bars) (n = 3).

(G and H) Relative MCD activity in C2C12 (n = 3) (G) or in F442A cells (n = 3) (H) overexpressing empty vector control, SIRT4, or SIRT4H162Y. Levels of SIRT4 and
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mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S1.
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whether the deacetylation ofMCDby SIRT4 regulates its activity,
we measured MCD activity after in vitro deacetylation by SIRT4.
MCD activity was reduced after incubation with SIRT4, but not
with SIRT4H162Y (Figure S2E). Together, these results demon-
strate that SIRT4 has a substrate-specific deacetylase activity,
and that MCD is a target of SIRT4.

To elucidate which residues on MCD are deacetylated by
SIRT4, we performed a series of mass spectrometry-based

deacetylation assays using chemically synthesized acetylated
peptides of MCD. We found that SIRT4 deacetylated lysine 471
of MCD with the highest efficiency but presented little activity
against other acetylated MCD peptides (Figure 3E, Figure S2F,
and Table S1). Providing an additional negative control, SIRT4
did not deacetylate pyruvate dehydrogenase (PDH), which is
readily deacetylated by SIRT3 (data not shown), suggesting that
SIRT4 deacetylase activity is substrate specific (Figure 3E), and
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Figure 3. SIRT4 Deacetylates MCD
(A) MCD acetylation was measured in WT immortalized MEFs before or after treatment with NAM. FLAG-tagged MCD was stably overexpressed in WT MEFs

treated with (+) or without (!) NAM and immunoprecipitated using antibodies against FLAG. MCD acetylation levels were assessed with antibodies against

acetyl-lysine (AcK).

(B) MCD acetylation was assessed using WT and SIRT4 KO MEFs as described for (A).

(C) MCD acetylation wasmeasured in C2C12 cells stably overexpressing FLAG-taggedMCD and SIRT4 or SIRT4H162Y. After immunoprecipitation of MCDwith

anti-FLAG antibodies, acetylation was measured as for (A).

(D) In vitro deacetylation assay was performed using immunopurified MCD and SIRT4. FLAG-MCD was immunoprecipitated from MEFs and incubated with

FLAG-SIRT4 and FLAG-SIRT4H162Y immunoprecipitated from HEK293 cells and MCD acetylation status assessed by western blot.

(E) Recombinant SIRT4 was incubated with synthesized acetylated peptides of MCD, and peptide deacetylation was assessed using mass spectrometry.

Acetylated peptide from pyruvate dehydrogenase (PDH) was included as a negative control (n = 3).

(F) Acetylated peptide was incubated with SIRT4, and NAD+ concentrations were varied as indicated. Peptide deacetylation levels were analyzed by LC-MS.

(G) Constructs encoding MCD, MCD K471R, or MCD K471Q were expressed in HEK293T cells, and MCD activity was measured (n = 4).

(H and I) Retrovirus used to generate stable C2C12 (H) and F442A (I) cell lines overexpressing MCD, MCD K471R, or MCD K471Q where FAO rates and

lipogenesis were assessed (n = 3). In each panel, data represent mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001. See also Figures S2 and S6.
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also not due to contaminant deacetylase activity. Moreover, this
activity was NAD+ dependent, and the recombinant SIRT4 used
in this assay showedaKm forNAD+comparable to thatof other sir-
tuins (Figure 3F). Next we investigated the contribution of K471 to
the total acetylation level and enzymatic activity of MCD. We
tested the acetylation level of K471R MCD mutant, which cannot
be acetylated on that residue, and found that K471R MCD was
notably less acetylated than wild-type MCD (Figure 3G). To
confirm the significance of K471 deacetylation to MCD enzyme
function, we tested the enzymatic activity of K471R and K471Q
MCDmutants, which mimic constitutive deacetylation and acety-
lation, respectively. K471RMCDhad a reduced enzymatic activity
(Figure 3H), whereas the K471Q variant had elevated activity
(Figure 3H). These data indicate that SIRT4 possesses direct de-
acetylase activity on K471 of MCD in vitro and that acetylation of
this residue accounts for a significant contribution to the total level
of MCD acetylation and activity.
Finally, we examined the consequences of K471 acetylation

status on palmitate oxidation and lipogenesis. In accordance
with the effect observed on its enzymatic activity, the K471R
MCD variant diminished fat oxidation, whereas K471Q MCD
enhanced fat oxidation (Figure 3I). Similarly, lipogenesis was pro-
motedbyK471RMCDand repressedbyK471QMCD (Figure 3J).
Of note, mutation of K210 in MCD, which was a weaker peptide
SIRT4 substrate, did not alter fat oxidation or lipogenesis (Figures
S2D and S2E). These results show that the acetylation status
of the K471 residue of MCD regulates both lipogenesis and FAO.

SIRT4 Deacetylates MCD In Vivo during the Fed State
We next sought to understand the physiological relevance of the
biochemical regulation ofMCDby SIRT4. During periods of nutri-
tional abundance, when surplus metabolic intermediates funnel
into fatty acid synthesis and energy storage, the steady-state
levels of malonyl CoA rise (Saggerson, 2008). This in turn pre-
vents entry of fatty acids into mitochondria and dampens fat
oxidation, while promoting fat synthesis (Figure 4A, left panel).
Conversely, in the fasted state, when malonyl CoA is low, fatty
acids are transported into the mitochondria and undergo
b-oxidation (Figure 4A, right panel). Thus, malonyl CoA level is
tightly linked to the nutritional state of the organism. As malonyl
CoA is the substrate for MCD, we hypothesized that the regula-
tion of MCD by SIRT4 might be linked to nutritional status of
mice. To test this idea, we measured SIRT4 protein levels during
the fed and fasting state inWTmice. SIRT4 levels decreasedwith
fasting inmuscle (Figure 4B) andWAT (Figure 4C), supporting the
idea that SIRT4may be important for the regulation of lipid meta-
bolism during nutrient-rich conditions.
As SIRT4 represses MCD activity via deacetylation, we

reasoned that MCD acetylation would be regulated by nutrient
status. We assessed the acetylation level of MCD in muscle
and WAT in WT mice under fed and fasted conditions. Proteins
were immunoprecipitated with monoclonal anti-acetyl-lysine
antibody and analyzed by western blot with MCD antibody. We
found that MCD was deacetylated in muscle and WAT of fed
mice (Figures 4D and 4E). Importantly, MCD is hyperacetylated
in muscle and WAT of SIRT4 KO mice compared to WT (Figures
4F and 4G), demonstrating that SIRT4 is necessary for MCD
deacetylation in vivo under fed conditions.

To determine whether SIRT4 represses MCD activity in vivo,
we measured MCD activity in muscle and WAT of WT and
SIRT4 KO mice in the fed state and found that, as in cells,
MCD activity was significantly increased in SIRT4 KO compared
to WT tissues (Figures 4H and 4I). Since MCD regulates lipid
metabolism by lowering malonyl CoA levels, we hypothesized
that SIRT4 may control malonyl CoA levels in response to
nutrient availability. As expected, in both muscle and WAT of
WT mice, malonyl CoA levels diminished with fasting (Figures
4J and 4K). Strikingly, SIRT4 deletion reduced malonyl CoA
levels in both muscle and WAT during the fed state and abol-
ished the switch between high and low malonyl CoA levels in
the fed versus fasted state (Figures 4J and 4K). Thus, these
studies identify SIRT4 as a physiological regulator of malonyl
CoA levels in vivo.

Alteration of Lipid Metabolism in SIRT4 KO Mice
As MCD activity and malonyl CoA levels were altered in SIRT4
KO mouse, we examined potential physiological indicators of
dysregulation in lipid metabolism. We measured the lipid
composition of WAT and skeletal muscle isolated from WT and
SIRT4 KO mice under fed and fasted conditions and observed
that the levels of triglycerides and phospholipids in SIRT4 KO
mice under fed conditions trended to the levels observed in
WT and SIRT4 KO mice under fasting conditions (Figures
5A–5C). Moreover, the differences between fed and fasted levels
of triglycerides and phospholipids were blunted in SIRT4 KO
tissues. These observations indicated that SIRT4 loss in WAT
and muscle may in part mimic a fasted state of lipid metabolism
during fed conditions, and dampens the physiological switch to
low nutrient conditions.
We next examined the physiological relevance of low malonyl

CoA levels in fat oxidation and lipid synthesis. Exercise capacity
is one well-established physiological readout of fatty acid oxida-
tion. For example, AMPK activation increases skeletal muscle
oxidative capacity and exercise endurance in mice (Narkar
et al., 2008; Thomson et al., 2007). As SIRT4 loss increased
MCD activity, resulting in low malonyl CoA level, we speculated
that a metabolic shift toward lipid utilization in SIRT4 KO mice
might augment exercise performance. Using untrained SIRT4
KO and WT littermate controls, we found that SIRT4 KO mice
ran 20% further distance and longer running times during a
graded, maximal treadmill challenge (Figures 5D and 5E).
Whole-body indirect calorimetry showed that the respiratory
exchange ratio (RER) of SIRT4 KO mice trended lower at high
workloads and throughout 15 min of recovery (Figures 5F
and 5G), suggesting increased lipid oxidation during these
periods. We did not detect any major changes in the fiber types
of SIRT4 WT and KO mice (Figure S3A). As well, blood glucose
and lactate levels, measured 15 min after exercise, were similar
between genotypes (Figure S3B). To test the possibility that
these phenotypes stem from a general increase in mitochondrial
content or function, we examined mitochondrial DNA content
but did not observe differences in muscle or WAT of SIRT4 WT
and KO mice (Figure S3C). In addition, we did not detect gross
abnormalities in mitochondrial ultrastructure analyzed by
electron microscopy (Figure S3D). Finally, we do not see a
significant difference in mitochondrial and fat oxidation gene
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expression in the muscle of SIRT4 KO mice compared to WT
muscle (Figure S3E). Thus, these results are consistent with
an increase in fat oxidation in SIRT4 KO mice, leading to higher
exercise capacity.

To examine whether SIRT4 loss affected lipid synthesis in vivo,
we monitored de novo lipogenesis by measuring incorporation
of deuterated water into palmitate, as previously described
(Edmond et al., 1998; Lee et al., 1994). Deuterium atoms

A B

C

acetyl CoA

malonyl CoA

Fat synthesis Fat Oxidation

l C

ACC MCD

fatty acylCoAs

triglycerides

β oxidation

FED
acetyl CoA

malonyl CoA

l C

ACC MCD

fatty acylCoAs

triglycerides

β oxidation

FASTED

Fat synthesis Fat Oxidation

MUSCLE

WAT

SIRT4

Tubulin

 Fed Fasted

0.0

0.5

1.0

1.5

Fo
ld

 c
ha

ng
e 

(q
ua

nt
ifi

ca
tio

n 
SI

R
T4

/T
ub

ul
in

)

FED

FASTED

*

WAT

D E

FED
FASTED

IP: AcK
WB:MCD IP: AcK

WB:MCD

FED
FASTED

MUSCLE WAT

Input: MCDInput: MCD

 Fed Fasted

SIRT4

Tubulin Fo
ld

 c
ha

ng
e 

(q
ua

nt
ifi

ca
tio

n 
SI

R
T4

/T
ub

ul
in

)

MUSCLE

*

FED

FASTED

*

0.0
0.2
0.4
0.6
0.8
1.0
1.2

F G

WT SIR
T4 K

O

IP: AcK
WB:MCD
Input: MCD

WT SIR
T4 K

O

IP: AcK
WB:MCD
Input: MCD

Input: SIRT4 Input: SIRT4

MUSCLE WAT

0

50

100

150

200

250

0

50

100

150

WT

SIR
T4 K

O

*
*

R
el

at
iv

e 
M

C
D

 a
ct

iv
ity

R
el

at
iv

e 
M

C
D

 a
ct

iv
ity

WT
SIR

T4 K
O

MCD

SIRT4
Tubulin

WT
SIR

T4 K
O

MCD
SIRT4
Tubulin

WT

SIR
T4 K

O

H I

M
al

on
yl

 C
oA

 (n
m

ol
/g

)

***

M
al

on
yl

 C
oA

 (n
m

ol
/g

)

MUSCLE WAT

0

2

4

6

8

0

5

10

15

Fed
 W

T

Fas
ted

 W
T

Fed
 KO

Fas
ted

 KO

Fed
 W

T

Fas
ted

 W
T

Fed
 KO

Fas
ted

 KO

J K

***

***
***

***

***

WATMUSCLE

Figure 4. SIRT4 Deacetylates MCD In Vivo during the Fed State, Controlling Malonyl CoA Levels
(A) Schematic of the regulation of lipid homeostasis during fed and fasted state.

(B andC)Muscle (soleus) andWATwere harvested frommice under fed or fasted conditions and analyzed for SIRT4 expression bywestern blot and normalized to

tubulin. Images were quantified (right panels) for the SIRT4/tubulin ratio using ImageJ.

(D and E) Muscle (soleus) and WAT extracts from WT mice fed or fasted were immunoprecipitated with a monoclonal AcK antibody and blotted for MCD.

(F and G) Muscle (soleus) and WAT extracts from WT and SIRT4 KO fed mice were immunoprecipitated with a monoclonal AcK antibody and blotted

for MCD.

(H and I) Relative MCD activity in muscle (quadriceps) and WAT from WT and SIRT4 KO fed mice (n = 4 per genotype).

(J and K) Malonyl CoA levels were measured in muscle (quadriceps) and WAT fromWT (open and gray bars) and SIRT4 KO (dark and light blue bars) mice under

fed and fasted conditions (n = 4 per genotype, per condition). In each panel, data represent mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001.
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exchange with hydrogen atoms on different carbon positions of
glucose metabolites as they go through the glycolytic/gluconeo-
genic pathways and the TCA cycle (Radziuk and Pye, 2002), and
the accumulation of these deuteratedmetabolites can contribute
to deuterium labeling of fatty acids during de novo lipogenesis.
The extent of labeled palmitate, representing de novo lipid syn-
thesis, can be measured by GC-MS. We observed a 50% reduc-
tion in the percentage of newly synthesized lipids in SIRT4 KO
WAT compared to WT tissue, highlighting the importance of
SIRT4 to de novo lipogenesis in vivo (Figure 5H). This effect is
not observed in liver and plasma, where we found that palmitate
synthesis was identical in WT and SIRT4 KO animals (Figures 5I
and 5J). Malonyl CoA levels were also not different in livers of
SIRT4 KO mice (Figure S3F), consistent with previous studies
identifying a major role for MCD in organs other than the liver
(Ruderman et al., 2003). Overall, these results suggest that
SIRT4 plays a major role in lipid homeostasis by repressing fat
oxidation and promoting lipid anabolism in vivo.

SIRT4 Deletion Protects against Dietary-Induced
Obesity
Increased lipogenesis can contribute to obesity. We therefore
investigated whether the decrease in lipogenesis observed in
SIRT4 KO mice would correspond with a change in weight
gain. On a standard low-fat diet (LFD), SIRT4 KO mice have
normal growth curves (Figure 6A), and do not display differences
in adipose fat mass (Figures S4A–S4D) or serum lipid profiles
(Figures S4E–S4H). Strikingly, when SIRT4 KOmice were placed
on a high-fat diet (HFD), their weight gain remained similar to the
mice under LFD, and was significantly less than the weight gain
of WT mice under HFD (Figure 6A). Thus, we show for the first
time that loss of SIRT4 protects mice fromHFD-induced obesity.
To better understand the mechanism of protection against

obesity in SIRT4 KO mice, we assessed the body composition
of animals fed a HFD using computed tomography (CT) scans.
The percentage of fat mass was significantly lower in SIRT4
KO mice compared to control animals (Figures 6B and 6C). By
contrast, absence of SIRT4 did not appear to affect the percent-
age of brown adipose tissue (BAT) (Figure S4I). In addition, while
liver weight was not affected by SIRT4 loss (Figure S4J), weight
of epididymal WAT was significantly lower in the SIRT4 KO mice
compared to WT animals (Figure 6D). We found that WAT in
SIRT4 KOmice appears normal, andwe did not detect increased
signs of apoptosis, structural alterations, or inflammation (Fig-
ure 6E and Figures S4K and S4L).
To test whether protection from adiposity was due to differ-

ence in food intake, we analyzed food consumption. SIRT4 KO
mice ate equivalent amounts (or slightly more) as WT controls
(Figure 6F). Likewise, we did not detect differences in their RER
or physical activity (Figures S4M and S4N). By contrast, analysis
of energy expenditure revealed that SIRT4KOmice have a signif-
icant increase in energy expenditure during the dark cycle
(Figures 6G–6I); this increased energy burning phenotype is
consistent with our cellular data and provides an explanation for
the protection against a HFD. As the dark cycle corresponds to
the fed state in mice, this result also supports the role of SIRT4
function during nutrient abundance. Interestingly, despite pro-
tection against diet-induced obesity, the SIRT4 KO mice were

equally susceptible to glucose and insulin intolerance when
compared to their WT counterparts (Figures S5A–S5E).
Finally, we assessed MCD acetylation levels in SIRT4 WT and

KO mice under HFD in WAT. As expected, we found that MCD
was hyperacetylated in SIRT4 KO mice compared to WT mice
(Figure 6J). Measurement of MCD activity demonstrated an
elevated activity (Figure 6K and Figure S5F), and consistently
malonyl CoA levels (Figure 6L and Figure S5G) were lower in
SIRT4 KO compared to WT mice. These data demonstrate that
SIRT4 loss increases MCD acetylation and activity during a
high-fat dietary challenge.

DISCUSSION

In this study, we identify a clear role for the mitochondrial sirtuin,
SIRT4, in the metabolic reprogramming toward anabolic lipid
processes to promote lipogenesis while inhibiting fatty acid
oxidation (Figure 1). Mechanistically, SIRT4 mediates this switch
in lipid homeostasis by binding, deacetylating K471, and inhibit-
ingMCD activity (Figures 2 and 3). Interestingly, only a few cases
of protein deacetylation have been described to result in
decreased enzymatic activity (Zhao et al., 2010; Kim et al.,
2012). K471 is at close distance to the malonyl CoA entry point
(PDB ID code 2YGW), and its acetylation might help gate the
ligand entry (Figure S6). In addition, we discovered that SIRT4
regulates MCD activity and malonyl CoA levels in vivo (Figure 4).
SIRT4 represses MCD in the fed state (Figure 4), promoting lipid
synthesis and storage while inhibiting lipid catabolism. SIRT4 KO
mice are deficient for this switch between fed and fasted states
(Figure 5) and demonstrate decreased lipogenesis in vivo (Fig-
ure 5). As a consequence, when placed under HFD, SIRT4 KO
mice are resistant to diet-induced obesity (Figure 6).
Sirtuins possess multiple enzymatic activities, and this is the

first study to demonstrate that SIRT4 possesses deacetylase
activity. SIRT5 was reported to have deacetylase activity (Naka-
gawa et al., 2009), but recent work demonstrated that SIRT5 is
also a demalonylase and desuccinylase (Du et al., 2011; Peng
et al., 2011). Similarly, SIRT6 was initially thought to function
solely as an ADP-ribosyltransferase, but later studies identified
a substrate-specific deacetylase activity (Zhong et al., 2010).
No deacetylase activity was reported for SIRT4 using histone
or BSA substrates (Haigis et al., 2006; Ahuja et al., 2007; Schwer
et al., 2002). However, our data suggest that the absence of
deacetylase activity for SIRT4 may have been a reflection of
the lack of an appropriate substrate. Here, we show for the first
time that SIRT4 has a susbstrate-specific deacetylase activity,
as SIRT4 deacetylates MCD directly and regulates the levels of
its acetylation in cells and organs. In the future, it will be inter-
esting to assess whether SIRT4 possesses other deacylase
activities.
Maintenance of metabolic homeostasis requires a coordi-

nated regulation of energy intake, storage, and expenditure.
Metabolic pathways are designed to sense incoming nutritional
and environmental cues and to respond appropriately. Due to
their dependency on NAD+, sirtuins are critical modulators of
metabolism, sensing changes in metabolic cues in order to exert
adaptive responses (Houtkooper et al., 2012). Our work reveals
that SIRT4 mediates the switch between anabolic and catabolic
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Figure 5. SIRT4 KO Mice Display an Altered Lipid Metabolism In Vivo
(A) Triglyceride composition from WAT from WT and SIRT4 KO fed and fasted mice (n = 3 mice per genotype, per condition).
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(legend continued on next page)
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pathways through the regulation of MCD. It was proposed that
AMPK may regulate MCD activity, but this regulation remains
unclear (Kuhl et al., 2006; Habinowski et al., 2001; Sambandam
et al., 2004; Saha et al., 2000). We uncovered a distinct regula-
tion of MCD via acetylation. Thus, it will be interesting for future
studies to examine how MCD acetylation may synergize with
differences in AMPK activity.
Our data suggest that themitochondrial form ofMCD is impor-

tant for control of lipidmetabolism, shedding new light on the sig-
nificance of mitochondrial malonyl CoA. Our findings indicate
that influencing mitochondrial malonyl CoA can affect both fat
oxidation and lipogenesis. Indeed,weshow that changes inmito-
chondrial MCD activity clearly affect total malonyl CoA levels (2-
to 3-fold in SIRT4 KOmuscle andWAT). However, little is known
about how themitochondrial pool ofmalonyl CoA regulates these
pathways. Of note, a recent study similarly showed that changes
in mitochondrial lipogenesis protected against diet-induced
obesity (Smith et al., 2012). It will be important for future studies
to examine the mechanisms that control mitochondrial versus
cytoplasmic malonyl CoA, such as involvement of transporters
or shuttle systems, and dissect their role in lipid homeostasis.
Strikingly, loss of SIRT4 increases exercise capacity. Exercise

training activates a number of pathways that contribute to meta-
bolic reprogramming of lipid handling (Bassel-Duby and Olson,
2006). Of relevance, decreased malonyl CoA has been observed
in muscle after exercise, increasing fat oxidation (Dean et al.,
2000; Hutber et al., 1997). A study showed that these changes
were associated with increased MCD activity (Kuhl et al.,
2006). In line with these observations, we show that deletion of
SIRT4 leads to decreased malonyl CoA levels and increased
exercise capacity, suggesting that SIRT4 might play a role in
metabolic reprogramming during exercise training.
The adaptations that improve exercise performance are typi-

cally expected to protect against obesity and related metabolic
disorders, making it important to identify proteins involved in
this reprogramming to treat metabolic diseases. However, the
glucose homeostasis of SIRT4 KO mice on a HFD resemble
that of WT mice on a HFD (Figure S6), demonstrating that while
SIRT4 loss protects against diet-induced adiposity, it does not
protect the animals against metabolic dysfunction that arises
with high-fat challenge. Thus, SIRT4 loss appears to uncouple
metabolic fitness from obesity. Interestingly, and in line with
our observation, deletion of MCD protects against insulin resis-
tance (Koves et al., 2008). Likewise, increased mitochondrial
flux and fatty acid oxidation are associated with some models
of insulin resistance (Sunny et al., 2011; Koves et al., 2008). To
understand this uncoupling, it will be important for future studies
to probe the role of SIRT4 and MCD in glucose and insulin
homeostasis and to assess further the potential therapeutic con-
sequences of modulating SIRT4 or MCD function. In sum, our
work uncovers an aspect of lipid metabolic reprogramming
mediated by SIRT4 deacetylation of MCD.

EXPERIMENTAL PROCEDURES

Cell Culture
MEFs were isolated from SIRT4 WT and KO littermate embryos as

described (Xu, 2005) and were immortalized using the SV40 large T antigen.

F442A cells were differentiated as previously described (Djian et al., 1985).

Isolation of primary adipocytes was performed as previously described

(Eguchi et al., 2011). All primary cell cultures were performed using a mini-

mum of two independently generated cell lines per genotype. For NAM

treatments, cells were incubated overnight with a final concentration of

20 mM NAM. Lentiviral shRNA against SIRT4 clones were purchased from

Openbiosystems and lentiviral shRNA against MCD was obtained from

The RNAi Consortium (TRC) at the Broad Institute/Harvard. Stable knock-

down cell lines were generated according to TRC instructions. MCD cDNA

was purchased from Openbiosystems and cloned into pBabe vector for sta-

ble expression and pcDNA (HA tag) for transient transfection. Cells overex-

pressing SIRT4 and SIRT4H162Y were generated by retroviral infection by

pBabe vector. Commercial antibodies were used to analyze acetyl-lysine

(ImmuneChem for western blotting and PTM biolabs for immunoprecipita-

tion), and antibodies raised against murine SIRT4 were described previously

(Haigis et al., 2006).

Measurement of DeNovo Lipogenesis in Cells, Triglyceride Content,
and Oil Red O Staining
For the measurement of lipogenesis, F442A cells and primary adipocytes were

placed overnight in low-glucose low-serum media, then labeled with 1-14C

acetic acid (Perkin Elmer) while stimulated with insulin and high glucose for

1 hr. Cells were washed twice with PBS before lysis in 0.5% Triton X-100.

The lipid fraction was extracted by the addition of chloroform and methanol

(2:1 v/v), followed by the addition of water. Samples were centrifuged, and
14C incorporation was measured in the bottom, lipid-containing phase using

a scintillation counter. Each condition was normalized to protein concentra-

tions. Triglycerides were measured using the adipogenesis assay kit from Bio-

vison (K610-100), and oil red O staining was performed using the adipogenesis

assay kit from Millipore (ECM950).

Fatty Acid Oxidation
C2C12 cells were differentiated in 2% horse serum media and incubated

overnight in culture medium containing 100 mM palmitate (C16:0) and 1 mM

carnitine. In the final 2 hr of incubation, cells were pulsed with 1.7 mCi

[9,10(n)-3H]palmitic acid (GE Healthcare), and the medium was collected

and eluted on ion exchange columns packed with DOWEX 1X2-400 resin

(Sigma) to analyze the released 3H2O, formed during cellular oxidation of

[3H]palmitate. For FAO assays in MEFs, primary MEFs were used below pas-

sage 5.

MCD Activity Assay and Determination of Malonyl CoA Levels
MCD activity was tested using a radiochemical assay (Kerner and Hoppel,

2002). Briefly, protein lysates are incubated with [2-14C]malonyl CoA which

is decarboxylated by MCD into [2-14C]acetyl-CoA, which is converted to

[2-14C]acetylcarnitine in the presence of excess L-carnitine (Sigma) and carni-

tine acetyltransferase (Roche). The positively charged radiolabeled product,

acetylcarnitine, is separated from negatively charged excess radiolabeled

substrate through an exclusion column, and the radioactivity is measured by

scintillation counting. MCD activity assays were performed on 50 mg of protein

from cell or tissue lysates. Malonyl CoA was determined by the method previ-

ously described (McGarry et al., 1978; Saha et al., 1995) to measure malonyl

CoA-dependent incorporation of [3H]acetyl CoA into fatty acids, and results

were normalized by protein content (Linn, 1981).

(D and E) Exercise tolerance assays were performed on WT and SIRT4 KO mice (n = 11–14 per genotype).

(F and G) RER in WT and SIRT4 KO mice during exercise (F) and recovery (G) (n = 11–14).

(H–J) De novo lipogenesis in vivo was measured by determining incorporation of deuterated water into palmitate in WAT (H), liver (I), and plasma (J) (n = 6 per

genotype). New synthesized fraction has a max value of 1, where the number of observed deuteriums on palmitate measured equals the number of maximal

deuterium atoms incorporated. In each panel, data represent mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S3.
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(C) Percentage of fat mass analyzed by CT scan of WT and SIRT4 KO mice on a HFD (n = 6 per genotype).

(D) Epididymal WAT weights from WT and SIRT4 KO mice on a HFD (n = 6 per genotype).

(E) Representative hematoxylin and eosin staining slides of WAT of WT and SIRT4 KO mice under LFD and HFD. Scale bar, 50 mM.

(F) Food intake in WT and SIRT4 KO mice on a HFD (n = 6 per genotype).

(legend continued on next page)
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Animal Studies
Studies were performed according to protocols approved by the Institutional

Animal Care and Use Committee, the Standing Committee on Animals at

Harvard. Three- to four-month-old SIRT4 WT and KO male littermates

(n = 6) fed a normal chow diet (PicoLab Diet 5053) were used for all LFD

studies. For fasting experiments, food was removed just before the dark

cycle (7 p.m.), and mice were subjected to fasting conditions overnight

before sacrifice. For lipid composition, organs were analyzed by the Vander-

bilt Mouse Metabolic Phenotyping Center (MMPC) using GCMS. For HFD

experiments, SIRT4 WT and KO male littermates (n = 6) mice were fed

D12492 from Research diets for 16 weeks, and studies were performed

with two to three separate cohorts of mice. Body weight was measured

weekly. CT scan studies were performed at the Longwood SAIF (Boston).

SIRT4 WT and KO male mice fed a HFD (n = 6) were used. Results were

analyzed using InVivoScope software.

Exercise Tolerance Assays
Male SIRT4 KO and littermate controls (n = 11–14) were habituated to the

metabolic treadmills (Columbus Instruments) for 3 days prior to exercise

testing. Each 15 min habituation session consisted of a 5 min exploration ses-

sion at 0 m/min, 5 min at 6 m/min, and 5 min at 15 m/min at a constant 10"

incline. A mild electrical stimulus was applied to trained mice to remain on

the moving treadmill belt. O2 and CO2 gas sensors (Columbus Instruments)

were calibrated before every test, and testing started at 8 a.m. each morning

following removal of food for 1 hr. After collection of resting gasses, the tread-

mill was started at a speed of 6 m/min and was increased by 3 m/min every

3 min until mice could no longer maintain the set workload. Animals were

allowed to recover for 15 min in the metabolic treadmills, after which blood

glucose (Accu-Check Aviva) and lactate (Nova Biomedicals) were obtained

from tail blood. All procedures were approved by Duke University Institutional

Animal Care and Use Committee.

Lipogenesis In Vivo
De novo lipogenesis studies were done bymeasuring palmitate (C16:0) enrich-

ments using gas chromatography (GC)-electron impact ionization (EI) mass

spectrometry (MS) as previously described (Lee et al., 1994; Edmond et al.,

1998). Briefly, mice were injected with 6% body water of deuterated water fol-

lowed by 4%D20 in the drinking water for 14 days. After harvesting the organs,

petroleum ether extractions of the fatty acids were performed after acidifica-

tion of the saponified tissue. Fatty acid methyl esters (FAMEs) were prepared

by adding 200 ml methanolic HCl (Supelco) to the dried fatty acid fraction and

were then heated at 100"C for at least 1 hr. FAMEwas then dried with nitrogen,

redissolved in hexane as solvent, and analyzed by GC/MS.

Statistical Analysis
Analyses were performed using an unpaired Student’s t test and ANOVA test

for lipid composition. Significant differences are as follows: *p < 0.05,

**p < 0.01, and ***p < 0.001. All experiments were performed at least two to

three times.

SUPPLEMENTAL INFORMATION
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Figure S1.  

(A) Expression vectors for wild type SIRT4 and SIRT4H162Y (C-terminal, FLAG-

tagged) were transfected in HEK293T and assessed for interaction with ACC by 

immunoprecipitation. (B) Fatty acid oxidation in C2C12 cells overexpressing 

empty vector control (CTL, open bar) or MCD (black bar). (C-D) Triglyceride 

levels and Oil Red O staining in F442A adipocytes stably expressing empty 

vector control (CTL, open bars) or MCD (black bars). (E) MCD expression tested 

by RT-qPCR in WT cells (open bars) and KO cells (blue bars) treated with a 

control shRNA (shNT) or two shRNAs against MCD (sh1 and sh2). Data 

represent mean ± SEM. (*) p < 0.05; (**) p < 0.01, (***) p < 0.001. 

 

Figure S2.  

Mass spectrometry analysis identified one new site of MCD acetylation. (A) 

Summary peptide fragment table from acetylated lysine residue and m/z spectra 

obtained from mass spectrometry analysis of MCD purified from C2C12 cells. (B) 

K471 is highly conserved in many species. (C) SIRT3 expression in 293T cells 

treated with shRNA control (shNT) and shRNA targeting SIRT3. (D) FLAG-MCD 

immunoprecipitated from SIRT3 KO fibroblasts was incubated with FLAG-SIRT4 

and FLAG-SIRT4H162Y immunoprecipitated from HEK293T cells knock down for 

SIRT3 and MCD acetylation status assessed. (E) MCD activity was assessed 

after deacetylation assay in vitro by SIRT4 and SIRT4H162Y. (F) Time course of 

the K471 deacetylation in presence of SIRT4. Reaction was stopped every 10 

minutes until 40 minutes and the deacetylated product analyzed by mass 
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spectrometry. (G-H) Vectors containing wild-type MCD, MCD K210R or MCD 

K210Q were stably expressed in C2C12 cells (G) and F442A cells (H) and FAO 

rates and lipogenesis were assessed, respectively. Data represent mean ± SEM. 

(*) p < 0.05; (**) p < 0.01, (***) p < 0.001. 

 

Figure S3. 

(A) Fibers types were analyzed by quantitative RT-PCR in SIRT4 WT vs KO 

soleus. Relative expression values were normalized to WT mice. (B) SIRT4 WT 

vs. KO blood glucose and lactate levels were measured 15 minutes after 

exercise. (C) Mitochondrial DNA content was assessed in muscle (soleus) and 

WAT of SIRT4 WT and KO mice. (D) Representative EM images of mitochondria 

in red muscle (left panel) and WAT (right panel) of SIRT4 WT and KO mice. 

Scale bar is 1 µM. (E) Gene expression assessed by qRT-PCR of mitochondrial 

genes in muscle (quadriceps) of SIRT4 WT and KO mice. (F) Malonyl CoA levels 

in liver of SIRT4 WT and KO fed and fasted mice. Data represent mean ± SEM. 

(*) p < 0.05; (**) p < 0.01, (***) p < 0.001. 

 

Figure S4. 

Bone density (A), lean mass (B), fat mass (C) and percentage of fat mass (D) 

were analyzed by Dexascan for SIRT4 WT and KO mice. (E) Plasma 

triglycerides were measured from SIRT4 KO and WT mice on a HFD or LFD (F) 

Plasma cholesterol was measured from SIRT4 KO and WT mice on a HFD or 

LFD. (G-H) Plasma non-esterified fatty acids (NEFA) were measured from SIRT4 
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KO and WT mice on a HFD or LFD diet in mice that were fed (G) or fasted 

overnight (H). (I) Brown Adipose Tissue (BAT) mass was analyzed by CT scan in 

SIRT4 WT and KO mice under HFD and normalized to total body weight. (J) 

Liver weight was measured from SIRT4 WT and KO mice after HFD. (K) 

Representative images of Mac2 immunostaining and Hematoxylin and Eosin 

(H&E) staining from liver, WAT and muscle (quadriceps) of SIRT4 WT and KO 

mice after LFD and HFD. (L) Quantification of cells stained with Mac2 in liver, 

WAT and muscle of SIRT4 WT and KO mice under LFD and HFD. (M) 

Respiratory Exchange Ratio (RER) in SIRT4 WT and KO mice under HFD (n=6). 

(N) Locomotor activity of SIRT4 WT and KO mice. Data represent mean ± SEM. 

(*) p < 0.05; (**) p < 0.01, (***) p < 0.001. 

 

Figure S5. 

(A-B) Blood glucose levels in SIRT4 WT and KO mice on a LFD and HFD in a 

fed state (A) or after on overnight fast (B). (C) Plasma insulin levels were 

measured from SIRT4 WT and KO mice on a LFD and HFD after on overnight 

fast. Glucose tolerance test (D) and Insulin tolerance test (E) was performed 

using SIRT4 WT and KO mice on a LFD and HFD. In each experiment, n=5-7 

mice per condition. (F) MCD activity in muscle (quadriceps) of SIRT4 WT and KO 

under HFD (G) Malonyl CoA levels in muscle (quadriceps) of SIRT4 WT and KO 

under HFD. Data represent mean ± SEM. (*) p < 0.05; (**) p < 0.01, (***) p < 

0.001. 
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Figure S6. 

MCD structure. To assess the possible relevance of K471 residue, we 

superimposed the MCD crystal structure (PDB: 2YGW) with the structurally 

homologous CurA protein from the cyanobacteria L. majuscula (PDB: 2REF). By 

overlaying the MCD and CurA structures, we found that K472 of human MCD 

(the equivalent of K471 of mouse MDC) is at close distance to the putative 

malonyl CoA entry point. MCD is represented in purple, the ligand in green and 

K472 is in yellow. 

 

Table S1. 

Peptide sequences used for peptide deacetylation assays. 
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Supplemental Experimental Procedures 

SIRT4 recombinant protein 

The cDNA corresponding to SIRT4 residues 25-314 were cloned into pET15b 

(Merck Biosciences), resulting in an N-terminal HIS-tag. SIRT4 (25-314) protein 

was produced overnight at 20 °C in E. coli BL21(DE3)Star (Invitrogen) through 

induction with 0.5 mM IPTG at an OD600 of 0.8. Harvested cells were lysed in 25 

mM Hepes, pH 7.0, 150 mM NaCl, and 10 mM imidazole. The protein was 

incubated with Talon resin (Clontech), the resin washed with 25 mM Hepes pH 

7.0, 150 mM NaCl, 20 mM imidazole, and bound protein eluted with the same 

buffer with an increased imidazol concentration of 200 mM. The protein was then 

applied to a Superdex200 size exclusion column (GE Healthcare) in 20 mM 

Hepes pH 7.0, 150 mM NaCl. SIRT4 protein eluted at the volume expected for a 

monomer and was concentrated in amicon units (Millipore) and snap frozen in 

liquid nitrogen for storage at -80 °C. 

Peptide deacetylation assay  

Standard assays contained 20 mM Tris/HCl pH 7.8, 150 mM NaCl, 1 mM NAD+, 

2 mM DTT, 0.5 mM substrate peptide and 5 µg to 20 µg SIRT4. For NAD+ or 

peptide titrations concentrations were varied as indicated and SIRT4 amounts 

adjusted to obtain well measurable deacetylation levels. Reactions were 

incubated at 37 °C and aliquots stopped after different time points (up to 120 

min) by adding trifluoro-acetic acid (TFA) (0.2 % v/v). Samples were diluted 

1:1000 with 0.1 % formic acid (FA) (v/v) and analyzed on an LC-ESI-MS 

consisting of a Shimadzu prominence HPLC (Shimadzu) connected to a Thermo 
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LCQ mass spectrometer (Thermo Fisher Scientific). Peptide species were 

separated using a linear gradient from 0% to 45% buffer B within 30 min (buffer 

A: 0.1 % TFA, 0.02 % HFBA; buffer B: 70 % ACN, 0.1 % TFA, 0.02 % HFBA) 

and a 100 µm ID capillary reversed phase column (Reprosil C18, AQ, 3µm; Dr. 

Maisch, Germany) with a flow rate of 300 µl/min. Extracted ion chromatograms 

with mass windows ± 2 m/z were generated for the acetylated and deacetylated 

peptide, peak areas determined using Xcalibur, and time-courses analyzed in 

Excel and GraFit (Erithacus Software). 

Analysis of MCD modifications 

In gel tryptic digests of MCD-IPs were prepared as described previously 

(Schluesener et al., 2005). Peptide separation on an Accela U-HPLC connected 

to an LTQ XL Orbitrap Velos (Thermo Fisher Scientific) was achieved with a 

linear gradient from 0 % to 40 % buffer B within 90 min (buffer A: 2 % ACN 0.1 % 

FA; buffer B: 70 % ACN, 0.1 % FA) on a heated (45 °C) 75 µm ID capillary 

reversed phase column (Luna C18, Phenomenex) with a flow rate of 250 µl/min. A 

full MS scan between 300 and 2000 m/z was acquired for the precursor ion (R = 

60 000) using Velos method files, followed by MS/MS scans of the top 20 ions 

using standard CID fragmentation settings. Fragment identification was 

performed using the SEQUEST algorithm in Proteome discoverer 1.2 (Thermo 

Fisher Scientific). 

Immunofluorescence 

In brief, cells were fixed in 4% paraformaldehyde (PFA) for 30 min, permeabilized 

in 0.01% triton for 10 min, rinsed twice in phosphate buffered saline (PBS) 
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solutions and blocked for 30 min in 5% BSA. Cells were stained with MitoTracker 

Far-Red (Molecular Probes), together with specific antibody recognizing HA tag 

(Cell Signaling) for SIRT4 detection and FLAG tag (Sigma) for MCD detection. 

Images were acquired with identical exposure times and settings. 

Metabolic parameters 

Blood was collected from fed or overnight fasted mice and serum was separated 

by centrifugation. Blood glucose was read directly from the tail vein using a 

glucose meter (OneTouch Ultra 2, Lifescan). Glucose tolerance tests were 

performed after an overnight fast by injecting mice intraperitoneally with 2 g/kg 

BW glucose. Insulin tolerance tests were performed on animals in the fed state 

by intraperitoneal injection with 0.75 U/kg BW of insulin (Sigma). In each case, 

blood glucose was read from the tail vain using a glucose meter. Plasma NEFA, 

triglycerides and cholesterol levels were analyzed using commercial kits (WAKO 

diagnostics). Lipid composition in muscle and WAT was analyzed by the 

Vanderbilt Mouse Metabolic Phenotyping Center (MMPC) Lipid Lab. Insulin 

levels were analyzed by the Specialized Assay Core (Joslin Diabetes Center). 

Metabolic cages analyses were performed using the TSE LabMaster (TSE 

Systems). Mice were acclimated to the chambers for 2 days and then gas 

exchanges and locomotor activity were measured every 27 min for 48 h. Mice 

were fed every day while in the cages. Body composition of the LFD mice was 

analyzed by dual energy X-ray absorptiometry (Lunar, PIXImus). 
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Immunohistochemistry 

Organs were fixed in 4% PFA and embedded in paraffin. Sections were stained 

with hematoxylin and eosin (H&E) in accordance with standard procedures. 

Immunohistochemistry was performed using antibodies against Mac2, a marker 

of macrophages and images were manually quantified. 

Electron Microscopy 

Tissues were immersion fixed in 2.5% glutaraldehyde, 2% PFA, in 0.1M 

cacodylate buffer pH 7.4 (modified Karnovsky’s fixative) for at least 1hr at room 

temperature before being placed in a 4ºC refrigerator. To continue processing, 

tissues were washed 4x for 10 minutes each in 0.1M cacodylate buffer, and then 

fixed secondarily in 1% osmium tetroxide in buffer, for 1 hour at 4ºC. Tissues 

were washed 4x for 10 minutes in deionized water before being immersed in 2% 

aqueous uranyl acetate to be contrast fixed over night at 4ºC. The following day 

the tissues were washed 4x10 minutes in deionized water, then taken through a 

dehydration series including 30%, 50%, 70%, 95%, and 100% ethanol, 10 

minutes each at 4ºC. Next, tissues were brought to room temperature to continue 

dehydrating with 100% ethanol 3x 10 minutes each and 100% propylene oxide 

twice for 15 minutes. Infiltration proceeded with 1:1 propylene oxide and LX112 

Epon resin, tissues being rotated overnight at room temperature. The following 

day, the sample containers’ caps’ were left off to evaporate the propylene oxide 

over the course of the day before removing the remaining resin and adding 100% 

freshly made resin. Samples were recapped and rotated overnight. Before 

embedding the next day, samples were placed in a vacuum oven at 60ºC for 2 
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hours. Tissues were embedded in flat molds and cured at 60ºC over 48 hrs. 

Cured blocks were sectioned using a Leica Ultracut E ultramicrotome with a 

diamond knife set to cut sections at 80nm thickness, which reflected a light gold 

color. Sections were put on 2mm x 0.5mm formvar coated copper slot grids that 

had been carbon coated and glow discharged. Grids were contrast stained with 

2% uranyl acetate for 10minutes and lead citrate for 5minutes. Grids were 

imaged on a JEOL 1400 TEM equipped with a side mount Gatan Orius SC1000 

digital camera. 

Gene expression and mtDNA analysis  

RNA from skeletal muscle tissue were extracted with Trizol (Invitrogen) and 

cleaned up with RNeasy mini kit (QIAGEN) according to the instructions. cDNA 

was synthesized with the iScript cDNA synthesis kit (BioRad) using 500ng of 

RNA. Quantitative RT-PCR reactions were performed using 1µM of primers and 

LightCycler® 480 SYBR Green Master (Roche) on an LightCycler® 480 detection 

system (Roche). Calculations were performed by a comparative method (2-ǼǼ

CT) using actin as an internal control. For mtDNA analysis, total DNA from 

skeletal muscle tissue and WAT were extracted with DNeasy blood and tissue kit 

(QIAGEN). mtDNA was amplified using primers specific for the mitochondrial 

cytochrome c oxidase subunit 2 (COX2) gene and normalized to genomic DNA 

by amplification of the ribosomal protein s18 (rps18) nuclear gene. Primers 

sequences available upon request. 
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Modeling of MCD and ligand binding site.  

Initial atomic coordinates and files for MCD, CurA and acetyl-CoA were obtained 

from the RCSB protein data bank and modeled using CCP4mg molecular 

graphics software (McNicholas et al., 2011). Acetyl-CoA from CurA was 

positioned into the 2.80Å MCD structure by superposing the structures as a 

guide. 

Supplemental References 
 
McNicholas, S., Potterton, E., Wilson, K.S., and Noble, M.E. (2011). Presenting 
your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D 
Biol Crystallogr 67, 386-394. 

Schluesener, D., Fischer, F., Kruip, J., Rogner, M., and Poetsch, A. (2005). 
Mapping the membrane proteome of Corynebacterium glutamicum. Proteomics 
5, 1317-1330. 
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APPENDIX II 

 

Supplemental data tables and figures to accompany Chapters II-IV.  
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Figure S2.1  | SIRT4 KO mice show increased blood glucose levels in pyruvate 
tolerance tests.  a-b, Pyruvate tolerance tests in 6-month WT and SIRT4 KO male and 
female mice. Mice were fasted overnight, then injected intraperitoneally with 2 g/kg 
pyruvate. Tail vein blood glucose was monitored at15 min intervals.  Values are repre-
sented as the ratio of blood glucose versus initial for each mouse. n=22-29. c, Area under 
the curve calculated from PTT graphs. * p < 0.05, ***p < 0.001. Error bars indicate SEM. 
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ca

Figure S2.2  | NNT is a strongly hyperacetylated protein in SIRT4 KO liver. a, Pie 
chart depicting the pathways represented by the 24 mitochondrial proteins with signifi-
cantly increased lysine acetylation in SIRT4 KO versus WT liver. Enzymes involved in 
lipid metabolism, ETC and energy production represent the greatest portion. b, Raw 
intensity of acetylated peptides in WT versus SIRT4 KO liver mitochondrial proteins. 
Each point represents one acetylated peptide. While most protein changes are <8-fold, 
NNT is particularly highly acetylated in SIRT4 KO liver. c, AcK sites with the greatest 
increase in SIRT4 KO liver, based on the median-centered normalized fold change 
values. The acetylated residue is listed in parenthesis. d, Conservation of K70 and K433 
in NNT. K70 is conserved from C. elegans to Homo sapiens. K433 is conserved in 
several vertebrate species. K70 and K433 are highlighted in red. Other conserved 
residues are in orange. e, Schematic depicting NNT function. NNT acts as a proton pump 
at the the inner mitochondrial membrane and is linked to ETC function. Protons moved 
to the intermembrane space by the ETC can be returned to the matrix not only via ATP 
synthase but also via NNT. NNT concomitantly interconverts NADP+ and NADH to 
NADPH and NAD+. *p < 0.05, **p < 0.01. Error bars indicate SEM.
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Figure S3.1 | Extent of PHD3 knockdown in 293T cells. a-b, PHD gene expression (a) 
and PHD3 protein levels (b) in 293T cells stably expressing shRNA against PHD3 
(shPHD3.1 and shPHD3.2) or non-targeting control (shControl). *p < 0.05, ***p < 0.001 
Error bars indicate SEM.
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Figure S3.2 | Extent of PHD3 knockdown by shRNA or siRNA in several cell lines. a, 
PHD3 gene expression in HepG2 cells stably expressing shRNA against PHD3 
(shPHD3.2) or non-targeting control (shControl). b, PHD3 gene expression in 786-O 
VHL-/- cells transiently transfected with siRNA against PHD3 or control. c, PHD3 gene 
expression and HIF target gene expression in ARNT-deficient cells transiently transfected 
with siRNA against PHD3 or control, and also treated +/- the HIF stabilizing compound 
CoCl2 . ***p < 0.001. Error bars indicate SEM.
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Figure S3.3 | Site-specific mutagenesis of sites P343 and P2131 in ACC2 does not 
alter the ability of ACC2 to repress FAO. a-b, Palmitate oxidation in complete media 
in 293T cells transiently overexpressing wild type ACC2 or ACC2 lacking the P343 (a) 
or P2131 (b) putative hydroxylation sites (n = 3). Western blots show levels of overex-
pressed ACC2 (n = 3). *p < 0.05. Error bars indicate SEM. 
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Figure S4.1  | Glycolytic induction during transformation and decrease in lipogen-
esis with phenformin treatment.  a, Relative levels of glycolytic intermediates mea-
sured by LC-MS/MS in MCF10A ER-Src cells treated with tamoxifen or ethanol for 24 
hr, n=4. b, De novo lipogenesis from 14C-glucose in ER-Src cells pre-treated with 
tamoxifen or ethanol +/- biguanide for 24 hr prior to 4 hr lipogenesis analysis, n=3. *p < 
0.05 compared to vehicle control. Error bars indicate SEM.
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Figure S4.2  | TCA cycle regulation by biguanides in transformed CAMA-1 breast 
cancer cells. 24 hours after metformin or phenformin treatment TCA cycle intermediates 
were measured in CAMA-1 breast cancer cells, n=4. *p < 0.05, **p < 0.01 compared to 
vehicle control. Error bars indicate SEM.
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Figure S4.3  | Glycolysis and TCA cycle regulation by metformin and phenformin in 
CSCs. a-b, After 24 hr treatment with metformin and phenformin, intermediates of 
glycolysis (a) and TCA cycle (b) in cancer stem cells were measured, n=3. *p < 0.05, **p 
< 0.01 compared to vehicle control. Error bars indicate SEM.
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Figure S4.4  | Nucleoside regulation by metformin and phenformin in parental 
CAMA-1 cells and during the transformation process of MCF-10A ER-Src. a-b, 
Parental CAMA-1 (a) and transformation induced MCF-10A ER-Src (b) cells were 
treated with metformin or phenformin for 24hr and changes in nucleotide metabolism 
were measured, n=4. *p < 0.05, **p < 0.01 compared to tamoxifen treatment alone. Error 
bars indicate SEM.

a

UMP
AMP

GMP
CMP

dA
MP

dC
MP

UDP
ADP

CDP
dT

DP
dG

DP
UTP

ATP
GTP

CTP
dA

TP
dT

TP
dG

TP
dC

TP
0.0

0.5

1.0

1.5

2.0

2.5

C
ou

nt
s 

/ t
ot

al
 m

et
ab

ol
ite

s 
re

la
tiv

e 
to

 v
eh

ic
le

ER-Src MCF10Ab

UMP
AMP

GMP
CMP

dA
MP

dT
MP

dC
MP

UDP
ADP

GDP
CDP

dT
DP

dG
DP

dC
DP

UTP
ATP

CTP
dA

TP
dT

TP
dG

TP
dC

TP
0.0

0.5

1.0

1.5

2.0

2.5

monophosphates diphosphates triphosphates

CAMA1 parental

C
ou

nt
s 

/ t
ot

al
 m

et
ab

ol
ite

s 
re

la
tiv

e 
to

 v
eh

ic
le

vehicle
Met
Phen

vehicle
Tam
Tam + Met
Tam + Phen

*
**

****

*

**** *

*
** *

* **
**

monophosphates diphosphates triphosphates

207


