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Abstract

This thesis consists of three essays on the economics of contracts and organizations.

The first essay studies organizational design as the allocation of decision rights,

primarily focusing on its interplay with agents’ career motives. It identifies a new

tradeoff between delegation and centralization, which arises solely from career con-

cerns: When delegated, an agent takes inefficient actions at the cost of a principal

but also works harder ex post to implement his project, in order to manipulate the

market expectations of his ability. Compared to the existing literature, the contri-

bution of this study is two-fold. First, it endogenizes the agent’s bias as a result

of career concerns. Second, and perhaps more importantly, it uncovers a new link

between organizational design and the implementation of a decision. Both of these

features are in sharp contrast to the vast majority of the existing studies, which

takes the agent’s bias as given and abstracts away from the implementation stage

of a decision process. Specifically, delegation can be strictly optimal in the present

framework even if the agent has no information advantage over the principal.

Motivated by some entry-level labor markets, the second essay studies an

incentive-contracting problem where (i) a principal learns an agent’s ability before

the agent himself, and (ii) both the agent’s productivity with the principal as well

as his outside option depends on his ability. I characterize the optimal contracts
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for the principal, defined to be the most profitable equilibrium outcomes among

those satisfying the D1 criterion; pooling at an earlier date is strictly optimal if the

agent’s outside option is sufficiently sensitive to the principal’s private information,

whereas separation at a later date is (weakly) optimal otherwise. Further, the prin-

cipal’s profit is shown to be neither continuous nor monotone with respect to the

agent’s outside option.

The third essay studies stable and (one-sided) strategy-proof matching rules in

many-to-one matching markets with contracts. First, the number of such rules is

shown to be at most one. Second, the doctor-optimal stable rule, whenever it exists,

is shown to be the unique candidate for a stable and strategy-proof rule. Notably,

these results are established without any substitutes conditions on hospitals’ choice

functions, and hence, the proofs do not rely on the “rural hospital” theorem. Finally,

a stable and strategy-proof rule, when exists, is shown to be second-best optimal

for doctor welfare, in the sense that no individually-rational and strategy-proof

rule can dominate it.
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Chapter 1

Organizational Design and Career

Concerns

1.1 Introduction

The allocation of decision rights within an organization is an important issue both

in management practice (e.g., McConkey, 1974; Steinmetz, 1976) and in organiza-

tional economics (e.g., Aghion et al., 2014; Gibbons et al., 2012). While various

economic theories have been offered, most of the existing studies share a com-

mon assumption that a principal and agent(s) have misaligned preferences over the

choice of certain actions. In particular, it is often assumed that agents are empire-

builders; i.e., they are assumed to put too much weight (from a principal’s point of

view) on the outcomes of their own divisions and undervalue the other divisions.

The presence of such preference misalignment is critical in those theories, because

if preferences are perfectly aligned, anyone will make the same decision and hence,

the allocation of decision rights becomes irrelevant. Despite its importance, how-

ever, most existing studies take preference misalignment as an exogenously given
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assumption, and its source has been largely unexplored.

The purpose of the this chapter is to propose a new micro-founded theory of

organizational design, which endogenizes the agent’s bias as a result of career

concerns à la Holmstrom (1999). If an agent has career motives, he would naturally

put a larger weight on the outcome of his own division or project, because it is the

primary source of information on his ability, which will determine his future career.

Yet, his ability may not necessarily be the unique determinant of the outcome. For

example, one’s project may fail not because of his ability, but simply because a

headquarter manager did not invest a sufficient amount of corporate resources

into his project, or because he was forced to take a coordinated action that helps

another division at the cost of his own performance.1 If one’s performance depends

on certain decisions as well as his own ability, the quality of his performance as a

signal of his ability will be not independent of who makes those decisions. That

is, it is not only that career motives make the allocation of decision rights relevant

by creating preference misalignment, but also that the allocation of decision rights

has feedback on the effectiveness of the agents’ career motives.

By investigating such interplay between career concerns and organizational de-

sign, this chapter identifies a new tradeoff between a centralized and decentralized

organization. In the presence of career concerns, an agent will take inefficient ac-

tions when he has the decision right. For example, he will overinvest corporate

resources into his own project, in order to inflate its performance and the market

assessment of his ability. Of course, this is a cost of delegation from the princi-

pal’s point of view. At the same time, however, it will also increase the quality

1Indeed, Steinmetz (1976) writes: “A common lament heard by many management consultants
in working with supervisory training groups and executive development programs is: ‘I could
really get things done if I had the authority.’ Or, ‘If I was the boss, I could do it. But my boss won’t
let me have the authority to get the job done.’”

2



of his performance as a signal of his ability, because the resources invested in his

project should be utilized more efficiently when his ability is higher. As a result,

the agent’s market value in the future becomes more sensitive to his current perfor-

mance, and hence, he will also exert higher effort to manipulate the signal when

he is delegated the decision right. The benefit of delegation in the present study is

this incentive effect.

Compared to the existing literature, a notable feature of the present theory is

that it identifies a new benefit of delegation, which arises solely from career con-

cerns.2 A majority of the existing studies assumes that an agent has some “local”

information that is not directly observed by a principal, and this information ad-

vantage is the source of the relative benefit of delegation in those studies. Con-

trastingly, delegation can strictly dominate centralization in the present study even

though the agent has no private information. Instead, it is critical to assume that

the decisions made within a firm is not directly observable to the outside labor

maker. That is, the key informational asymmetry in this study lies between the

inside and outside of a firm.

Relatedly, it is also noteworthy that this chapter focuses on a different stage of

decision making process from most existing studies. Figure 1.1 illustrates this dis-

tinction in the spirit of Mintzberg (1979), who divides a decision process into four

steps: from information to advice to choice to execution. As mentioned above, the

main focus of the literature has been on the effects of asymmetric information (and

communication) between a principal and agent, and the execution of a decision is

largely ignored; i.e., payoffs are finalized once a decision is made and no further ac-

2Benefits of delegation are the key in the theories of organizational design, because it is non-
trivial to explain why a principal in a centralized organization cannot mimic the decision rule that
would be taken by a delegated agent— i.e., why centralization cannot always do at least as good as
delegation.
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Figure 1.1: Comparison of this chapter and existing studies in the spirit of Mintzberg (1979).

tion is taken after that.3 Consequently, when the agent’s effort is taken into account,

it is ex-ante effort to gather or create information. In contrast, the key element in the

present model is the agent’s ex-post incentive to execute or implement a project af-

ter a decision is made, whereas I abstract away from asymmetric information (and

thus communication) between the principal and agent. Indeed, it is shown that in

my framework delegation has opposite effects on those two types of incentives—

it decreases ex-ante efforts while it increases ex-post efforts. This result would also

highlight the distinction between the present study and Aghion and Tirole (1997),

who illustrate the benefit of delegation through ex-ante incentives.

As an application, I extend the model to a multi-tasking environment à la Holm-

strom and Milgrom (1991), and identify an interaction effect between organiza-

tional design (i.e., decision right allocation) and job design (i.e., task allocation).4

3Few exceptional studies on the execution stage and their relation to the present study will be
explained in the next section.

4To the best of my knowledge, this chapter is the first to study the interaction between those
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When an agent is assigned multiple tasks, it is possible that neither the principal

nor the agent has an interim incentive to follow a decision rule that is ex-ante

optimal to the principal. To see this, suppose for example that the principal has

two tasks, one of which is riskier than the other, and a single agent handles both

tasks. Then, the agent tends to like allocating corporate resources into the safe task,

because the less volatile the outcome of a task is, the larger fraction of it will be at-

tributed to his ability rather than pure noise. Hence, even when the principal wants

to commit to (over)investment to the riskier task because of its incentive effect ex-

plained above, delegation to a multi-tasking agent does not necessarily work. Even

if so, however, the principal can use specialization in conjunction with delegation

to make sure that the agent in charge of the risky project uses the resources himself

and gets motivated. As a result, specialization can be strictly optimal even when

both (i) the outcomes of the tasks are statistically independent, and (ii) there exist

positive synergies between the tasks. Furthermore, delegation and specialization

are strictly complementary in this scenario: starting from centralization and non-

specialization, specialization without delegation is strictly harmful and delegation

without specialization is neutral, whereas delegation with specialization is strictly

profitable.

The rest of the chapter is organized as follows. Section 1.1.1 provides a brief

overview of the related literature. Section 1.2 setups and analyzes the baseline

model. Section 1.3 studies the the interaction between organizational design and

job design. Section 1.4 concludes. Appendices A.1 and A.2 provide the proofs and

additional results, respectively, omitted in the main text.

two design dimensions.
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1.1.1 Related Literature

This study is related to a few strands of the literature in organizational economics

and related fields. In the incomplete contracting literature, Aghion and Tirole (1997)

first study the effects of decision-right allocation in the absence of renegotiation.5

One of their key assumptions is that the decision right allocation is contractible, i.e.,

the principal can credibly commit to delegation, whereas decisions or actions are

not contractible per se.6 When the principal has no commitment power, Baker et al.

(1999) investigate to what extent delegation is sustainable through repeated inter-

actions. Aghion et al. (2002, 2004) introduce the concept of “transferable” control,

and illustrate how delegation in the short run can be useful as a screening device,

even when the principal cannot commit to delegation in the long run.

With contractible decision rights, Dessein (2002) applies the cheap talk model of

Crawford and Sobel (1982) and asks whether centralization with strategic commu-

nication is better or worse than delegation when the agent is privately informed

about a decision-relevant state of the world. Since then, his approach has been

extended to various settings (see, e.g., Agastya et al., 2014; Alonso et al., 2008a,b,

2010; Harris and Raviv, 2005; and Rantakari, 2008). In these studies, the primary

question is the tradeoff between loss of control (due to misaligned preferences)

and loss of information (due to strategic communication), and the agent’s bias is

5In the model of Grossman and Hart (1986), renegotiation always leads to ex-post efficient
decisions and hence, decision rights are relevant only through ex-ante investments. Based on their
logic, Stein (1997) argues that returns to investments should be lower in an integrated firm because
of the bargaining over private benefits between a CEO and division manager. See also Aghion and
Bolton (1992) for the effects of decision rights in the presence of renegotiation.

6When actions are contractible, Holmström (1984) studies a situation where a principal can
commit to a decision rule, and name it the “delegation problem” since committing to a rule that
induces truth-telling is identical to letting an agent choose from a prespecified subset of actions.
See, e.g., Alonso and Matouschek (2007, 2008) and Melumad and Shibano (1991) for subsequent
studies in this line. See also Krishna and Morgan (2008) who study the opposite situation, where
the principal can commit to a message-contingent transfer rule but not to a decision rule.
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exogenously assumed.7 An exception is Rantakari (2013), who considers the set-

ting where the principal can set the relative weights on divisional profits in each

divisional manager’s objective function. Setting biased weights may be preferable

to the principal, because it will increase the incentive to gather local information.

In his model, however, it remains unexplored why the principal cannot incentivize

the agent by high-powered but balanced contracts.8

The effects of decision-right allocation are also studied in the field of corporate

finance, primarily in their connection to internal capital markets in multi-divisional

firms. See, e.g., Brusco and Panunzi (2005), Harris and Raviv (1998, 1996), In-

derst and Laux (2005), Marino and Matsusaka (2005), Scharfstein and Stein (2000),

and Stein (2002). This strand of the literature commonly assumes the agent(s) to

be an empire-builder, who perceives intrinsic values in the size of his own divi-

sion/project.

As mentioned above, in the context of organizational design, few studies con-

sider the ex-post efforts and incentives at the execution stage of a decision making

process. Zábojnìk (2002) illustrates the benefit of delegation when both a princi-

pal and agent have private information about a state of the world, on which the

productivity of the agent’s ex-post effort depends. In his model, the agent can be

disincentivised by knowing the principal’s private information, and delegation al-

lows the principal to avoid revealing such information through her orders. Bester

and Krähmer (2008) might be the closest to the present study in that they explore

the link between organizational design and ex-post incentives in the absence of

asymmetric information. In their model, centralization can be beneficial as a com-

7Jensen and Meckling (1992) also point out a similar tradeoff without a formal model.

8In a somewhat different setting, Friebel and Raith (2010) show that when managers are pro-
tected by limited liability, inducing both high effort and truth-telling requires higher expected wage
bills than inducing only high effort (without informative communication).

7



mitment device. However, delegation has no non-trivial benefits, and it can be

optimal only when the second-best effort level is zero and the choice of organi-

zational form boils down to a simple comparison between the bliss points of the

principal and agent. Therefore, the present study and Bester and Krähmer (2008)

shed light on quite different aspects of the organizational design problem.

Lastly, there also exists a vast literature on career concerns. The concept of

career concerns is formalized by Holmström (1999), and Dewatripont et al. (1999a,b)

further develop the general theory. Among various other applications, Ottaviani

and Sørensen (2006a,b) study cheap-talk communication with career concerns, and

are worth particular mention given the cheap-talk based literature described above.

In their model, an agent has private information and his ability is measured by

the accuracy of his signal.9 In the model of this chapter, the agent has no private

information and his ability becomes relevant when implementing the decision.

1.2 Baseline Model

1.2.1 Setup

Suppose that a principal hires an agent to manage a project in her firm.10 Both the

principal and agent are risk-neutral. The agent’s project will either succeed (Y = 1)

or fail (Y = 0), and the probability of success depends on three elements: First,

the project is more likely to succeed if the agent’s ability is high (a = aH) than if it

is low (a = aL). We assume that the agent’s ability a ∈ {aH, aL} is symmetrically

9See also Brandenburger and Polak (1996), Fox and Van Weelden (2012), Prat (2005) and Scharf-
stein and Stein (1990) for studies on this type of career concerns.

10Following the convention, the principal and agent are referred to as “she” and “he” respec-
tively.
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unknown to both the principal and agent, but it is common knowledge that the

(prior) probability of being high type (resp. low type) is µ (resp. 1 − µ), which is

strictly between 0 and 1. Second, the probability of success is also increasing in the

amount of corporate resources, K ∈ {0, 1}, allocated to this project.11 Third, the

agent can increase the probability of success by exerting efforts, denoted by e ∈ R+,

at the cost of Ψ(e). The level of efforts chosen by the agent is not observable to the

principal or any third parties. Specifically, we will assume that the probability of

success is given by

Prob[Y = 1|a, K, e] = min { f (a, K) + e, 1} , (1.1)

where f (·, ·) satisfies the following assumption.

Assumption 1.1. The function f (·, ·) is positive, increasing in both arguments, and

log-supermodular.

The assumption of log-supermodularity represents complementarity between the

resources and ability: the effect of allocating the resources is higher if the agent’s

ability is high, because such an agent can use the resources more efficiently.

The principal’s net profit is given by

Π = Y − γθ · K − W0,

where γθ is the opportunity cost of the corporate resources, and W0 is the wage

payment to the agent, which is determined by exogenous labor market conditions.

The opportunity cost of the resources, γθ, depends on the state of the nature, θ ∈

{θH, θL}, and is either high (γH) or low (γL). The probability of θL is denoted by

11Although we refer to K as “resources” to fix the idea, it allows for other interpretation as well.
See Section 1.2.2 below.
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p, and is common knowledge. To make the decision problem relevant, we further

make the following assumption.

Assumption 1.2. It is socially optimal to choose K = 1 if and only if θ = L. That is,

γL < f (1)− f (0) < γH, where f (K) := Ea[ f (a, K)] = µ f (aH, K) + (1 − µ) f (aL, K).

The agent’s objective is to maximize his life-time income net of effort costs,

U = W0 + W1 − Ψ(e),

where W1 is his future wage, which is determined by the outside labor market’s ex-

post assessment of his ability. The outside market can observe the organizational

form and the realization of Y, but not θ, K, or e. (The information structure is

summarized in Table 1.1.) Specifically,

W1

(
Y, K̂(·), ê(·)

)
= δ · Prob

[
a = aH|Y, K̂, ê

]
,

where K̂ : {θH, θL} → {0, 1} and ê : {θH, θL} → R+ are the market expectations

of the resource allocation and effort choice, as functions of the state θ. Finally, we

impose the following assumption on Ψ(·) so as to guarantee the existence of a

unique, internal equilibrium.12

Assumption 1.3. The cost of effort is Ψ(e) = ψ
2 e2 with ψ > δ(1 − f (aH, 1)).

Following the incomplete contracting literature, we assume that the state of

nature, θ, is hard to verify to a third party although it is observable to both the

principal and agent. That is, the principal cannot write a binding contract to com-

mit to a specific allocation rule K(·) as a function of θ. Instead, she can commit

to an organizational form, i.e., who will retain the decision right over the choice

12In general, there may exist multiple equilibria. However, the key insight that delegation leads
to a higher level of efforts is robust, as long as we focus on internal stable equilibria.
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Org. Form State Decision Ability Effort Outcome
Principal X X X X

Agent X X X X X
Outside Market X X

Table 1.1: Summary of Information Structure

of K after θ realizes. We will refer to the organizational form as delegation (resp.

centralization) if the agent (resp. the principal) has the decision right.

The timeline of the game is as follows.

1. The principal fixes the organizational form.

2. The state θ realizes.

3. The person with the decision right chooses K after observing θ.

4. The agent chooses his effort level e.

5. The outside labor market updates its belief on a, and W1 is determined.

1.2.2 Discussion of the Modeling Assumptions

Interpretation of K. Although we refer to K as the resource input above, it al-

lows for other interpretations as well, as long as K = 1 is costly to the principal

and complementary with the agent’s ability. For example, it can be viewed as a

reduced form of a coordination problem within a multi-divisional organization. To

be concrete, suppose that a firm produces two products and an agent is responsible

for one of them. The decision variable is the design of a common component that

is used for both of the two final products. Specifically, K = 1 is the design tailored

for the agent’s final product that reduces the production cost of his division while

11



raising the cost of the other division (compared to the other design K = 0). Then,

adopting K = 1 will raise the profit of the agent’s division at the cost of the other

division, but the amount of increment will depend on the sales volume, which

further depends on the agent’s marketing ability (i.e., a).

Informational assumptions. As we will see, two informational assumptions are

critical in the subsequent analysis. First, we assume that the organization form is

observable to the outside labor market. This assumption is critical for otherwise

centralization will always be the unique equilibrium outcome, and it is closely

related to the contractibility assumption on the decision right allocation. Although

we simply assume that the principal can credibly delegate the decision right to

the agent, it is often not easy to do so (see, e.g., Bolton and Dewatripont, 2012).

Credible delegation might be available only by building some corporate culture

or reputation, which would require substantial long-term commitment, and if so,

such culture or reputation would be likely to be observable to the outside of the

firm, at least in the long run. This scenario would also rationalize the timing of

the first two stage, where the principal cannot adjust the organizational form in

response to the short-run fluctuation of θ.

Second, we also assume K is unobservable to the labor market. This assumption

is also critical in our analysis: If K is observable, the delegated agent will underin-

vest and exert even less effort than in the case of centralization. Roughly speaking,

the agent can have an excuse for a bad performance by publicly choosing K = 0,

which allows him to shirk. However, there are a few possible reasonings why K

would not be publicly observable:

• A large part of the corporate resources would consist of worker’s firm-specific

human capital, and the allocation of human capital (i.e., who works for what)
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would be hard to monitor from the outside of the firm.

• Although we model the choice of K as a one-shot decision, it could be inter-

preted as a sequence of daily decisions, each of which is hard to keep track

of.

• Even if the principal can choose to publicly disclose K, it will be often subop-

timal to do so. (See Section 1.2.4 for the details on this point.)

1.2.3 Analysis

Posterior belief and effort choice: Since the labor market cannot observe the

values of K and e, it will updates its belief based on the realized value of Y and

some expectations K̂(·) and ê(·), which should be rational in equilibrium. Let

µ̂1(K̂, ê) and µ̂0(K̂, ê) be the posterior probability that the agent is high type in the

event of Y = 1 and Y = 0, respectively, i.e.,

µ̂1

(
K̂, ê

)
=

Prob
[
Y = 1|aH, K̂, ê

]
Prob

[
Y = 1|K̂, ê

] , and µ̂0

(
K̂, ê

)
=

Prob
[
Y = 0|aH, K̂, ê

]
Prob

[
Y = 0|K̂, ê

] .

Then, after θ realizes and K is chosen, the agent’s effort choice problem can be

written as

max
e

E
[
δ · {Y · µ̂1 + (1 − Y)µ̂0} − Ψ(e)|K, K̂, ê

]
,

given K, K̂, and ê. The first order condition is given by

δ · ∆µ̂(K̂, ê)− ψ · e∗ = 0 ⇐⇒ e∗ =
δ

ψ
∆µ̂(K̂, ê), (1.2)

assuming this value is not too large, where ∆µ̂(K̂, ê) := µ̂1(K̂, ê) − µ̂0(K̂, ê). In-

deed, Assumption 1.3 guarantees this first-order condition is always necessary and

sufficient.
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Lemma 1.1. Under Assumption 1.3, the agent’s optimal effort level e∗ is no greater than

e := 1 − f (aH, 1) and satisfies equation (1.2), for any K, K̂(·), and ê.

Proof. See Appendix A.1. �

Note that the market’s posterior belief is fully determined by Y, K̂, and ê, and is

independent of the true value of K. Hence, the above Lemma implies the agent’s

optimal level of effort is also independent of K, and consequently, ê(·) must be

constant in equilibrium. In what follows, I slightly abuse notation and let ê be a

scalar that represents the market expectation of the constant level of effort.

Decision under each organizational form: If the principal retains the decision

right, on the one hand, the arguments in the previous paragraph imply that she

cannot manipulate the agent’s effort level through the choice of K. As a result, she

has no incentive to deviate from the optimal decision rule for any given market

expectations. If the agent is delegated the decision right, on the other hand, he will

always have an incentive to choose K = 1, because ∆µ̂ is always positive. That is,

the equilibrium decision rule must be

K∗
C(·) = (K∗

C(θH), K∗
C(θL)) = (0, 1),

under centralization, and,

K∗
D(·) = (K∗

D(θH), K∗
D(θL)) = (1, 1),

under delegation.

Then, it remains to pin down the equilibrium effort level in each organizational

form. With Assumption 1.1, we can show that the sensitivity of the posterior belief,

∆µ̂, is increasing in the amount of corporate resources (expected to be) allocated to

the agent. Intuitively, by the log-supermodularity of f (·, ·), the effect of the agent’s
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ability is magnified and Y becomes to convey more information regarding a, when

K = 1 rather than K = 0.

Lemma 1.2. Under Assumptions 1.1 and 1.3, ∆µ̂
(

K̂, ê
)

is increasing in K̂ for any ê ∈

(0, e).

Proof. See Appendix A.1. �

Combining this property with the equilibrium decision rules, we obtain the

following proposition.

Proposition 1.1. Suppose that Assumptions 1.1–1.3 hold. Then, there exists a unique

rational-expectation equilibrium for each organizational form. Delegation leads the agent

to exert a higher level of effort than centralization, while it induces inefficient resource

allocation. Delegation is more profitable to the principal if γH is sufficiently close to f (1).

Proof. See Appendix A.1. �

1.2.4 Extensions and Discussions

Ex-Ante Incentives

As mentioned in the Introduction, the model presented above sheds light on the

effect of organizational form on ex-post incentives to implement the project, while

the majority of the existing studies focus on ex-ante incentives to gather information

or to search for a good project. To highlight this distinction, this subsection extends

the model incorporating both ex-ante and ex-post effort.

Suppose now that the agent chooses p = Prob[θ = θL] ∈ [p0, 1) at the cost of

g(p) after the principal fixes the organizational form. Assume that g(·) is strictly

increasing and convex, satisfying g′([p0, 1)) = [0, ∞). If the agent has the decision

rights, he has no incentive at all to increase p, because he can always allocate the
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corporate resources to his own project even if the cost is high. In contrast, if the

principal retains the decision right, the agent needs to “persuade” the principal

to choose K = 1 by reducing its cost, i.e., centralization leads to a higher level of

ex-ante effort than delegation.

Proposition 1.2. Suppose that the agent chooses the probability p of θ = θL. In equilib-

rium, then, e∗ is higher but p∗ is lower under delegation than under centralization.

Proof. See Appendix A.1. �

This proposition differentiates the present study from Aghion and Tirole (1997),

although the key tradeoff in both studies can be summarized as “loss of control”

versus “loss of incentives.” To see the difference, it should be noted that the benefit

of delegation in Aghion and Tirole (1997) depends on a special structure of their

model: They assume that the level of preference congruence is exogenously fixed

and independent from the agent’s endogenous effort. Put differently, the agent

cannot “persuade” the principal that his favorite decision is also beneficial to her

unless she has no idea at all what to do.13 Indeed, it has been established that if

the agent can persuade the principal, centralization induces a higher level of ex-

ante effort than delegation, through its “winner picking” effect (see, e.g., Friebel

and Raith (2010), Inderst and Laux (2005), and Stein (2002)). The main message of

Proposition 1.2 is that delegation can have positive overall incentive effects even in

the presence of “winner-picking.”

Apparently, the fact that the delegated agent has no ex-ante incentives at all

heavily depends on the assumption that the state θ only affects the cost of K = 1.

If instead the agent can increase the expected return from K = 1, then the agent

13The same is true for the soft information case in Stein (2002). The agent cannot persuade the
principal if his information cannot be credibly revealed and thus no “winner-picking” exists with
soft information.
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will have an incentive to do so even if delegated. As a result, it is possible that

delegation induces more effort than centralization both ex-ante and ex-post, and

vice versa. However, in such a setting, we can still show that (i) delegation leads to

a higher level of ex-post effort than centralization, taking a level of ex-ante effort as

fixed, and (ii) it is never the case that delegation induces more ex-ante effort and

less ex-post effort. (See Section A.2.1 for details.) Based on these results, one could

still argue that delegation is relatively better at inducing ex-post efforts.

Endogenous Transparency

As mentioned in Section 1.2.2, a key in the above analysis is the assumption that the

value of K chosen by the principal or agent is not observable to the labor market.

To scrutinize the role of this assumption, suppose now that the principal can also

choose the “transparency” of her organization, i.e., whether to make K publicly

observable or not, at the first stage of the game.

On the one hand, transparency mitigates the commitment problem faced by the

principal: If K is publicly observable, its choice directly affects (the sensitivity of)

the market belief, and thus, the principal will internalize the incentive effect of

K = 1 at the decision-making stage. This allows her to replicate the equilibrium

outcome under delegation, whenever it is profitable. On the other hand, trans-

parency is harmful when the agent is delegated the decision. If it is observable to

the labor market, the choice of K does not change the expectation of the posterior

belief. Thus, the agent is always better off by choosing K = 0 and lowering the

equilibrium effort cost. Since the equilibrium effort level is lower and the deci-

sion rule is inefficient, delegation with observable K is always less profitable than

centralization. The following proposition summarizes these observations.

Proposition 1.3. Suppose that the principal can costlessly choose whether or not to make
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K publicly observable. Centralization with observable K always weakly dominates delega-

tion with unobservable K, Delegation with observable K is always strictly dominated by

centralization (with observable or unobservable K).

Proof. See above. �

The first part of this proposition depends on the assumption that transparency

is costless. If it is costly to make K observable, no matter how small it is, delegation

with unobservable K becomes strictly optimal for a non-degenerated set of param-

eter values. Similarly, the optimality of delegation is also regained if there exists a

direct cost of centralization. This would be the case, for example, if the principal

incurs a cost to observe θ directly or indirectly (through the communication with

the agent).

Proposition 1.4. Suppose that the principal can costlessly choose to make K publicly ob-

servable, and that her payoff is given by Y − ξ · 1C, where ξ > 0 and 1C is an indicator

function that takes 1 if and only if she chooses centralization. Then, there exists a cutoff

γH > f (1) such that if γH < γH, then delegation with unobservable K is strictly optimal

for any ξ > 0.

Proof. This is an immediate corollary of Proposition 1.1. �

Although ξ could be seen as a consequence of asymmetric information between

the principal and agent (or, the agent’s “local” information), it plays a much smaller

role in the present model than in the communication-based models such as Dessein

(2002). In Proposition 1.4, the threshold γH is independent of ξ and hence, delega-

tion can be strictly optimal for a non-degenerate set of (the other) parameter values

even when ξ ↓ 0. This is not true in the communication-based models. If the princi-

pal can directly observe the state of nature in those models, centralization achieves
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the first-best outcome for her. Therefore, for any values of the other parameters,

such as the agent’s bias, centralization becomes optimal as the observation cost

shrinks to zero.

The arguments in this subsection also has an implication for the case where the

agent is motivated by internal promotions. If the agent’s career is determined by

the belief of principal rather than the outside labor market, whether to disclose K

(in the case of delegation) could be reinterpreted as whether to monitor the decision

made by the agent. Then, the above results indicate that the principal should not

both delegate and monitor the decision, even if monitoring does not undermine the

credibility of delegation. Roughly speaking, it could be restated that a delegated

agent should be responsible for the final outcome rather than the interim choice.14

1.3 Multi-Tasking and Job Design

This section studies a variant of the baseline model in the previous section, and

investigates how organizational design (i.e., decision right allocation) interacts with

job design (i.e., task assignment) in a multi-tasking setting.

1.3.1 Setup

Suppose that the principal has two related tasks or projects, 1 and 2. For each

task t ∈ {1, 2}, let it denote the agent who is in charge of task t. The principal

can hire either a single agent (i1 = i2) or two distinct agents (i1 6= i2) to mange

those tasks. The tasks are related in two respects. First, there is a single unit of

resources that can be invested in either task. That is, the decision variable is now

14The idea that authority should be balanced with responsibility is also common in the practi-
tioner literature of management (e.g., Steinmetz, 1976).
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K = (K1, K2) ∈ {(0, 1), (1, 0)}. Second, the two tasks are effort-cost complementary:

an agent i’s effort cost is given by

Ψi(e1,i, e2,i) =
1

2(1 − η2)

(
e2

1,i − 2ηe1,ie2,i + e2
2,i

)
, (1.3)

where et,i ≥ 0 is i’s effort devoted for task t, and η ∈ (0, 1) is the degree of techno-

logical complementarity.15

Agent i’s ability is represented by ai = (a1,i, a2,i) ∼ N (a, Σ), where each at,i is

his talent for task t. The mean and variance are given by

a = (a1, a2), and Σa =

σ2
a,1 0

0 σ2
a,2

 .

The assumption of independence between a1,i and a2,i is to isolate the interaction

effect between delegation and specialization, and the case of correlated abilities will

be discussed later in Section 1.3.3 and Appendix A.2.2. Further, the ability vector

ai is assumed to be drawn independently across agents.

The revenue from each task is given by

Y1 = αK1 + βK1
(
a1,i1 − a1

)
+ a1,i1 + e1,i1 + ε1, and

Y2 = γK2 + a2,i2 + e2,i2 + ε2,
(1.4)

where (i) α, β, γ > 0 are positive parameters, (ii) εt ∼ N (0, σ2
t ) is a noise term for

each task t ∈ {1, 2}. Each εt is independent from all other random variables. To

focus on the most interesting cases, we also restrict the parameter values as follows.

Assumption 1.4. α < γ and σ2
ε,1 > (1 + β)σ2

a,1.

15Note that Ψi is positive and convex on R2
+, for it can be rewritten as

Ψi =
1

2(1 − η2)

[
(e1,i − e2,i)

2 + 2(1 − η)e1,ie2,i

]
,

which is a sum of two positive convex functions.
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Two points should be noted regarding the above production technology. First,

only task 1 exhibits the complementarity between the agent’s ability and resource

input. A possible interpretation would be that task 1 is a new, challenging line of

business while task 2 is more established. That is, the efficient use of corporate

resources for task 2 is well known and the agent can achieve the same return even

if his ability is low, whereas he needs to find out by himself how to utilize the

resource for task 1.

Second, agent it’s effort in task t′ does not increase Yt′ if he is not in charge

of t′ (i.e., if it 6= it′). This specification, along with technological complementarity

in (1.3), is intended to model the coordination cost of specialization. When agent

it works for task t, a part of his work will be also useful for the other task t′.

If he is assigned both tasks, on the one hand, he can utilize this by-product for

task t′ without any communication. If t′ is assigned to a distinct agent it′ , then

the two agents need to communicate and coordinate with each other in order to

efficiently exploit each other’s work (or, to avoid wasteful duplication). The above

specification can be seen as an extreme case where there is no coordination at all

in the case of specialization. The main qualitative insights will be unchanged for a

broader class of specifications.16

Agent i’s future wage is now given by

W1,i

(
Y1, Y2, K̂, ê

)
= δ0 + δ1 · E[a1,i|Y1, Y2, K̂] + δ2 · E[a2,i|Y1, Y2, K̂]. (1.5)

As in the baseline case, we assume W0,i is determined by the labor market condi-

tions (and thus taken as given by the principal), and for notational simplicity, it is

assumed to be zero. Hence, the principal and agent i will maximize Y1 + Y2 and

16For example, et,it in equation (1.4) can be replaced with et,it + (1− ζ · 1S)et,i′t
, where ζ ∈ (0, 1) is

a parameter that captures the coordination cost, and 1S is an indicator function that takes 1 if and
only if it 6= it′ .
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W1,i − Ψi(e1,i, e2,i), respectively.

Organizational Forms: We will consider the following three organizational forms.17

• Centralization (with no specialization): The principal hires a single agent (i.e.,

i1 = i2), and retains the decision right over K.

• Decentralization with no specialization: The principal hires a single agent

(i.e., i1 = i2), and delegates the decision right to the agent.

• Decentralization with specialization: The principal hires two agents (i.e., i1 6=

i2) and delegates the decision right to the agent in charge of task 1 (i.e., i1).

Timing: The timing of the game is as follows.

1. First, the principal (publicly) fixes the organizational form.

2. Second, the person assigned the decision right chooses K, which is unobservable

to the outside market.

3. Third, effort levels are chosen by the agent(s).

4. Finally, Y1 and Y2 realize, the market updates its belief, and the game ends.

1.3.2 Analysis

To begin the analysis, note that for any given decision and effort levels, at,it and Yt

are jointly normal. By the well known formula, the conditional mean E[at,it |Yt, K, e]

17With the assumptions we impose, the other organizational forms become never optimal. See
also Section 1.3.3.
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is linear in Yt and its slope is given by

∂E[at,it |Yt, K, e]
∂Yt

=
Cov[Yt, at,it |K]

Var[Yt|K]
.

Hence, given the market expectations K̂ and êt,it ,

∂E[W1,it |K, e, K̂, ê]
∂et,i

= EY

[
∂W1,it(Yt, K̂, ê)

∂Yt
· ∂Yt

∂et,i

]

= EY

[
δt ·

∂E[at,it |Yt, K̂, ê]
∂Yt

]
= δt ·

Cov[Yt, at,it |K̂]
Var[Yt|K̂]

.

(1.6)

Notice that as in the previous section, this sensitivity of the future wage depends

on the market expectations, but not on the true value of K.

At the effort choice stage, agent i solves

max
e1,i,e2,i

{
EY [W1,i]− Ψi(e1,i, e2,i)

}
.

The first order conditions are given by ∇E[W1,i]−∇Ψi = 0, which can be rewritten

as e∗1,i

e∗2,i

 =

1 η

η 1


 ∂W1,i

∂Y1

∂W1,i
∂Y2

 , (1.7)

where each ∂W1,i
∂Yt

depends on the organizational form and market expectations.

Centralization versus Delegation with no specialization: Suppose first that a

principal assigns both tasks to a single agent i while retaining the decision right.

Then, since the agent’s effort choice is independent of K, the assumption of γ >

α implies that the principal prefers investing the corporate resources into task 2,

for any market expectation. That is, K∗ = K̂∗ = (0, 1) must hold in equilibrium.
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Plugging this into (1.6), we obtain

∂W1,i

∂Y1
= δ1 ·

σ2
a1

σ2
a1
+ σ2

ε1

≡ S1, and
∂W1,i

∂Y2
= δ2 ·

σ2
a2

σ2
a2
+ σ2

ε2

≡ S2.

This implies that the principal’s expected profit under centralization is

ΠC = γ + (1 + η)(S1 + S2). (1.8)

Next, suppose for a moment that the principal could commit to investing the

resource into task 1 (i.e., K = (1, 0)) while assigning both tasks to a single agent.

Then the principal would face the same tradeoff as in the baseline case: Expecting

K = (1, 0), the market would update the belief about a1i so that

∂W1,i

∂Y1
= δ1 ·

(1 + β)σ2
a1

(1 + β)2σ2
a1
+ σ2

ε1

≡ S1 + ∆S1,

where ∆S1 > 0 by the second part of Assumption 1.4. This increase in the sensi-

tivity of W1,i would further incentivize the agent, while the principal would incur

the cost of γ − α > 0 by committing to K = (1, 0). Specifically, by the first-order

condition (1.7), the total effort of the agent would increase by (1 + η)∆S1 when

K = (1, 0). That is, the principal would want to commit to allocating the resource

to task 1 if and only if

(1 + η)∆S1 > γ − α ⇐⇒ α > γ − (1 + η)∆S1 ≡ α. (1.9)

The question is, therefore, when delegation leads a non-specialized agent to

invest in task 1. Given the market expectation K̂, W1,i will increase by α
∂W1,i
∂Y1

if the

agent chooses K = (1, 0), and by γ
∂W1,i
∂Y2

if K = (0, 1). Therefore, under delegation

without specialization, an equilibrium can support K = (1, 0) if

α(S1 + ∆S1) ≥ γS2 ⇐⇒ α ≥ γS2

S1 + ∆S1
≡ α∗, (1.10)

24



and K = (0, 1) if

αS1 ≤ γS2 ⇐⇒ α ≤ γS2

S1
≡ α∗∗, (1.11)

where α∗ < α∗∗ by their definitions. Note that multiple equilibria exist if α ∈

[α∗, α∗∗]. In such a case, we will pick the more profitable equilibrium to the prin-

cipal. Then, the principal’s (highest) equilibrium profit under delegation with no

specialization will be

ΠDN =


ΠC if α < α∗,

ΠC + max {0, (1 + η)∆S1 − (γ − α)} if α∗ ≤ α ≤ α∗∗, and

ΠC + (1 + η)∆S1 − (γ − α) if α∗∗ < α.

(1.12)

Comparing this expression with ΠC given by (1.8), we obtain the following inter-

mediate result.

Lemma 1.3. If α ∈ (α∗∗, α), centralization strictly dominates delegation with no special-

ization. If α > max{α, α∗}, delegation with no specialization strictly dominates centraliza-

tion. Otherwise, the two organizational forms are equally profitable.

Proof. Immediate from equations (1.8) and (1.12). �

The role of specialization:

Comparing equations (1.9) and (1.10), notice that α < α∗ may hold. If α ∈ (α, α∗),

neither centralization nor delegation with no specialization can induce K = (1, 0),

even though it is the (ex-ante) optimal decision to the principal. In such a case, the

role of specialization emerges despite the positive synergies from non-specialization.

Under delegation with specialization, the agent in charge of task 1 (i.e., i1) never

has an incentive to allocate the resource to task 2, because in the case of specializa-

25



tion Y2 has no statistical link to i1’s ability and thus his wage is independent of Y2.

Therefore, the market rationally expects K = (1, 0), which leads to(
∂W1,i1

∂Y1
,

∂W1,i1
∂Y2

)
= (S1 + ∆S1, 0) and

(
∂W1,i2

∂Y1
,

∂W1,i2
∂Y1

)
= (0, S2) .

Plugging these into the first-order condition (1.7), it follows that

(e∗1,i1 , e∗2,i2) = (S1 + ∆S1, S2),

and thus, the equilibrium profit is given by

ΠDS = α + (S1 + ∆S1) + S2

= ΠC + ∆S1 − (γ − α)− η(S1 + S2).
(1.13)

Therefore, the principal gets strictly better off by specialization if and only if

∆S1 − (γ − α)− η(S1 + S2) > 0 ⇐⇒ α > γ + η(S1 + S2)− ∆S1 ≡ α.

Recalling that specialization can be optimal only if α ∈ (α, α∗), we can make the

following observation.

Lemma 1.4. Delegation with specialization is optimal if α ∈ (α, α∗). Otherwise, it is

dominated by delegation with no specialization.

Proof. Immediate from equations (1.8), (1.12), and (1.13). �

Optimal organizational form:

Combining Lemmas 1.3–1.4, the following proposition characterizes the optimal

organizational form(s). It should be noted that when delegation with specialization

is optimal, delegation and specialization are strictly complementary. That is, starting

from centralization (with no specialization), (i) delegation without specialization
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has no impact on the principal’s profit, and (ii) hiring two agents while retaining

the decision right strictly lowers the profit.18

Proposition 1.5. Fix parameters 〈S1, S2, ∆S1, β, γ, η〉. Then,

• Centralization is uniquely optimal if α ∈ (α∗∗, α).

• Delegation with no specialization is uniquely optimal if α > max{α, α∗}.

• Delegation with specialization is uniquely optimal if α ∈ (α, α∗).

• Otherwise, centralization and delegation with no specialization are both optimal.

Proof. Immediate from Lemmas 1.3–1.4. �

Figure 1.2 (a) illustrates the optimal organizational forms on the (S2, α)-space,

holding the other parameters as fixed. It is noteworthy that a change in η has

opposite effects on the two forms of delegation, as shown in Figure 1.2 (b). On the

one hand, η represents the degree of technological complementarity, which cannot

be utilized in the case of specialization. Hence, it can been seen as the cost of

specialization, and delegation with specialization is less likely to be optimal when

η is larger. On the other hand, η also captures the benefit of delegation with no

specialization (over centralization), for it measures how much the non-specialized

agent will be motivated for task 2 by the increase in ∂[W1,i]
∂Y1

. Therefore, delegation

with no specialization is more likely to optimal when η is larger. The following

proposition summarizes these comparative statics results.

Proposition 1.6. Fix parameters 〈S1, S2, ∆S1, α, β, γ〉. If delegation with no specialization

is strictly optimal for η ∈ (0, 1), then it is so for any η′ ∈ (η, 1). If delegation with

specialization is strictly optimal for η ∈ (0, 1), then it is so for any η′ ∈ (0, η).

18By the assumption of η > 0, centralization with specialization is always strictly dominated by
centralization with no specialization.
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Figure 1.2: Optimal organizational forms.
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Proof. Since α is decreasing and α is increasing in η, the statement immediately

follows from Proposition 1.5. �

Figure 1.3 further illustrates the effects of a change in η. In the limit of η = 0, del-

egation with no specialization becomes never (uniquely) optimal, for its outcome

is always identical either to centralization or to delegation with specialization. In

contrast, delegation with specialization can be never optimal for any values of α

and S2, when η is sufficiently close to 1 (holding the other parameters constant).

Finally, it is also noteworthy that the second-best effort level for task 1 is not

necessarily decreasing in σ2
ε,1.19 When σ2

ε,1 increases, ∆S1 can also increase although

both S1 and S1 + ∆S1 always decrease. If so, the principal may want to switch the

organizational form, thereby discontinuously raising the second-best level of e∗1,i1
.

Proposition 1.7. Fix all the parameters but σ2
ε,1. The level of efforts for task 1, e∗1,i1

, under

the optimal organizational form may not be monotonically decreasing in σ2
ε,1.

Proof. See Appendix A.1. �

1.3.3 Discussion: Correlated Abilities

In the previous subsection, we assume that an agent’s abilities for the two tasks

are statistically independent. Of course, however, it would be more realistic that

a1,i and a2,i are (positively) correlated. If this is the case, specialization can have its

own benefit even when the principal retains the decision right (i.e., even though

K = (0, 1) no matter if specialized or not). Specifically, it can be shown that special-

ization is more profitable than no specialization if η is sufficiently small.20

19Note that this is in contrast with the standard CARA-normal model of moral hazard (see, e.g.,
Bolton and Dewatripont (2004, Chapter 6.2)).

20See Proposition A.3 in Section A.2.2 for details.
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Figure 1.3: Optimal organizational forms (continued).
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This is because the market’s posterior belief become less sensitive with respect

to each Yt when the agent is assigned two tasks. This can be easily seen if we divide

the update process into two steps. Suppose that starting from the unconditional

prior, the market updates its belief on a1,i1 first to a1,i1 |Y2 and then to a1,i1 |Y1, Y2.

If i1 specializes in task 1, Y2 apparently contains no information about his ability,

and thus the interim belief, a1,i1 |Y2, remains exactly the same as the prior. If he

is assigned both tasks, in contrast, Y2 conveys some information on a1,i1 (through

a2,i1) and hence, the interim belief becomes less variable and less sensitive to further

information (i.e., Y1). This logic is parallel to Dewatripont et al. (1999b, Proposition

3.1–2), although their results are not directly comparable to ours.21 The purpose

of the independence assumption above is to isolate the new kind of benefit of

specialization, which arises only in the presence of delegation.

1.4 Conclusion

This chapter proposes a new model of organizational design based on agents’ ca-

reer concerns, and illustrates a new possible explanation for the benefit of delega-

tion. My arguments rely on a different set of assumptions from existing theories,

and thus could apply to separate situations. For example, my theory could better

explain delegation in small firms, where a principal can closely monitor agents’

activities and thereby directly alleviate the problems caused by the“local” informa-

tion. Yet the analysis in this chapter has been kept very simple, and a number of

important aspects are abstracted away. One of such missing aspects is the dynamic

effects of organizational form. While we have restricted our attention to its impact

on the agent’s current effort level, a change in signal quality should also affect

21Namely, Dewatripont et al. (1999b) do not consider the possibility to hire multiple agents.
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his future effort choice, optimal job assignment, and so on. An interesting avenue

for future research would be to construct a tractable model accommodating such

dynamics and to explore the design of career paths in organizations.
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Chapter 2

Incentive Contracts with Signaling

2.1 Introduction

This chapter studies the incentive-contracting problem when a principal is better

informed of an agent’s ability than the agent himself.1 While economists often as-

sume the contrary, such a situation would naturally arise particularly in entry-level

job markets. On the one hand, employers would know from their past experi-

ences what attributes are important in determining one’s prospects in their jobs,

and their recruitment process (e.g., interview questions) must be designed to best

infer an applicant’s productivity by inspecting those important characteristics. On

the other hand, although new workers might know well what attributes they do

or do not have, they would be much more uncertain about how those attributes

are converted into their productivity and/or how they are evaluated by potential

employers. Then, it would be possible that at the contracting stage (after some

screening process) an employer has a better estimate of a worker’s ability or pro-

1I follow the convention of referring to a principal/employer as she and to an agent/employee
as he.
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ductivity than the worker himself.

Furthermore, if job-hunting is a sequential process, such informational asym-

metry is not necessarily resolved by the time when a worker decides to accept or

reject an offer. That is, even though he would be better informed of his (expected)

ability after he observes the offers made by multiple employers, he may not be

allowed to postpone his decision until he collects sufficient information. If so, he

can optimally accept an offer and quit the search and learning process while he is

still uncertain about his prospects. Actually, in many entry-level job markets such

as the ones for new MBAs, law graduates, and clinical psychologists, employers

often make an exploding offer, which expires unless a worker accepts within a very

short time window (Roth and Xing, 1994, 1997), so as to prevent the worker from

comparing multiple offers.

If an agent is uncertain about his own ability, his subjective belief could have

two opposite effects. On the one hand, the higher his belief, the more effort he

will exert conditional on the acceptance of an offer, because he believes his effort is

likely to yield a better outcome and thus to lead a higher bonus payment. On the

other hand, however, the higher his belief, the more rent he will require to accept

a contract offered by the principal, since he believes he can get a better outside

option by continuing his job search. Accordingly, the principal could also have two

opposite incentives to manipulate the agent’s belief through her offer. That is, she

might want to raise his belief in order to induce more effort, by offering a contract

which is “appropriate” for a high-ability agent (e.g., high-powered incentives). Or

she might want to lower it so as to let him accept an unfavorable offer, by offering

a contract for a low-ability agent.

The purpose of this chapter is to investigate how those forces are balanced at an

equilibrium and shape the optimal contracts and timing for the principal. Specif-
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ically, I study a simple model of moral hazard with two dates, where a principal

learns the agent’s ability at date 1 but the agent can do so only at date 2. I analyze

equilibria satisfying the D1 criterion (Cho and Kreps, 1986; Cho and Sobel, 1990),

which is a standard equilibrium refinement in the signaling-game literature, and

characterize the most profitable outcomes to the principal among those equilibria.

As a result, it turns out that the principal optimally makes a same exploding offer

to any type of agent at date 1, if the agent’s outside option is sufficiently sensitive

to the agent’s ability; otherwise, it is weakly optimal to delay an offer until date 2.

Interestingly, the principal’s highest profit is not monotonically decreasing in the

agent’s outside option. If the outside option for a high-ability agent increases, it

decreases the incentive for the principal to wait until date 2 because she will need

to give a larger rent to him after the information reveals. Hence, pooling at date

1 becomes easier to sustain as an equilibrium, which is profitable for the principal

because she can induce a higher level of effort from a low-ability agent. Conversely,

if the incentive compatibility binds with the high-ability agent, a marginal decrease

in his outside option forces the principal to always wait until date 2, even though

pooling is strictly profitable when she face the low-type agent. Consequently, her

profit may discontinuously decrease by such a marginal change in the agent’s reser-

vation wage.

The rest of this chapter is organized as follows. Section 2.1.1 briefly discusses

the related literature. Section 2.2 sets up the model and Section 2.3 presents the

analysis. Section 2.4 makes a few concluding remarks. Appendix B.1 contains

omitted proofs.

35



2.1.1 Related Literature

The most related to this chapter are the studies in the contract theory literature that

investigate the effect of a principal’s private information about the profitability or

production technology of her business (see, e.g., Bénabou and Tirole, 2003; Inderst,

2001; Silvers, 2012; Spier, 1992). This is because both the profitability in those

papers and the agent’s ability in this chapter are modeled as a parameter of a

production function. However, a key distinction is that the agent’s ability in this

chapter is also correlated with his outside option while the principal’s information

is purely firm-specific in those papers.2 The correlation between the principal’s

knowledge and the agent’s outside options creates additional effects of the agent’s

belief, and thereby makes it optimal for the principal to make early, exploding

offers. Relatedly, De la Rosa (2011) and Santos-Pinto (2008) study how the agent’s

over-confidence or positive self-image affects the optimal incentive scheme, but

they also assume that the agent’s reservation utility is independent of the agent’s

belief.

More broadly, this chapter is related to the literature on the mechanism design

problem with an informed principal (e.g., Myerson, 1983; Maskin and Tirole, 1992).

Compared to this literature, it should be noted that the analysis in this chapter (as

well as the studies mentioned above) implicitly assumes that the principal cannot

force the agent to commit to work for her, without fully specifying the contract. In

contrast, the mechanism design literature typically assume that the principal can

delay to reveal her private information, as long as a mechanism satisfies participa-

tion constraints in expectation. In the current context, this means that the principal

2Put differently, the model in this chapter could be alternatively viewed as the situation where
a principal privately knows about non-firm-specific profitability (e.g., the forecasts of business con-
ditions) that affects both the production function inside the firm and the outside option for the
agent.
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can offer a contract saying, e.g., “if you sign this contract you must work for me,

and I will choose the incentive scheme from this pre-specified set after you sign.”

In the environment of this chapter, allowing such contracts may or may not be ben-

eficial to the principal depending on parameter values, but it generally increases

the incentive for early contracting.

As this chapter implicitly assumes that the principal learns the agent’s type be-

fore other employers make competitive offers, it also loosely relates to the personnel

economics literature that examine the asymmetric information about a worker’s

ability between the current and other potential employers (e.g., Waldman, 1984;

Gibbons and Katz, 1991). However, it should be noted that these papers study the

competition for mid-career workers, while this chapter is intended to model entry-

level labor markets. Note also that workers’ beliefs are irrelevant in those papers,

for they are assumed to simply take the offer with the highest (fixed) wage.

2.2 Model

Suppose that a principal hires an agent to run a project. If the agent decides to

work for the principal, the project will either succeed (Y = 1) or fail (Y = 0). The

probability of success is given by

Prob[Y = 1] = min {e · θ + 2F, 1} ,

where e ≥ 0 is the agent’s effort and θ ∈ {H, L} ⊂ R+ is his ability. Without

any loss, we assume H > L.3 The prior probability of θ = H (resp. θ = L) is

denoted by p (resp. 1 − p) and is common knowledge between the principal and

3 However, L should not be interpreted as the lowest productivity among a pool of qualified
agents rather than among all potential workers. See Section 2.4 for details.
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agent. The prior mean of θ is denoted by M = pH + (1 − p)L. To induce effort, the

principal can offer a contingent bonus b ∈ [0, 1], which is paid if and only if Y = 1.4

Taking the incentive bonus b as fixed, the principal’s profit and the agent’s utility

are Π(b, Y) = (1 − b)Y and U(b, Y, e) = bY − c
2 e2, where c is a cost parameter.

To guarantee an internal solution to the effort choice problem, we assume c is

sufficiently high:

Assumption 2.1. The cost parameter is sufficiently high: c > H2/(1 − 2F).

If the agent decides not to work for the principal, he will return to an outside

labor market and find another employer. The principal’s profit in this case is as-

sumed to be zero.5 The value of the outside option for the agent, contingent on θ, is

denoted by uθ, with uH ≥ uL. The prior expectation of uθ is uM = puH + (1− p)uL.

To simplify the analysis and focus on the main insights, we also assume the follow-

ing:

Assumption 2.2. The expected value of the agent’s outside option is sufficiently

low: uM ≤ 0.6

As motivated in the introduction, the principal could better estimate θ during

the hiring process, whereas the agent would be uncertain what outside options

he could expect until he indeed goes through the process with other employers.

To model such a situation, suppose that there are two dates, 1 and 2, and that

4An implicit assumption here is that the agent is wealth-constrained.

5 This does not necessarily mean that the principal cannot find another employee. As mentioned
in footnote 3, the agent in this model should be seen as sufficiently qualified even when θ = L, and
it could be very costly to find an equally qualified worker even if it is possible.

6All of the results will remain qualitatively the same under a much weaker assumption that
βPC

L < β∗
H (see equations (2.1)–(2.2) for the definitions of these variables). However, minor changes

will be required in both the statements and proofs, because we need to consider more subcases
when the participation constraint is biding for the L-type.
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the principal and agent can directly learn θ at the beginning of date 1 and date

2, respectively. Further, the principal can make a contract offer either at date 1

or date 2, and in the case of an early offer, she can also force the agent to take it

or leave it by the end of date 1 (i.e., the offer is exploding). Although the agent

cannot directly observe θ at date 1, he rationally updates his belief if an early offer

is made. Without any loss, I identify his subjective belief with the expectation of θ

according to that belief. In what follows, let ϑ(b) ∈ [L, H] denote the agent’s belief

after observing an exploding offer of b ∈ [0, 1], and uϑ := ϑ−L
H−L uH + H−ϑ

H−L uL be the

subjective expectation of the outside option when the belief is ϑ.7 To summarize,

the timeline of the game is as follows:

0. The nature draws θ from the prior distribution.

1. After the principal observes θ through the screening process, she decides whether

to make an exploding offer b ∈ [0, 1] to the agent, or wait until date 2 (denoted

by b = ∅). If she makes an offer, the agent decides to accept or reject it after

updating his belief.

(a) If the agent accepts the offer, he choose his effort level, the output Y realizes,

and the payoffs are finalized.

(b) If the agent rejects, the agent gets the outside option uθ and the principal’s

profit is zero.

2. If the principal did not make an exploding offer in date 1, she offers b ∈ [0, 1]

after θ becomes publicly observable.

7It is unnecessary to specify the belief after no offer at date 1, because he will know θ for sure
at the beginning of date 2.
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(a) If the agent accepts the offer, he choose his effort level, the output Y realizes,

and the payoffs are finalized.

(b) If the agent rejects, the agent gets the outside option uθ and the principal’s

profit is zero.

2.3 Analysis

Preliminaries

To analyze the model backwardly, first consider the agent’s effort choice problem.

If the agent accepts a contract b with belief ϑ ∈ [L, H], he will solve

max
e

[
bϑe − c

2
e2
]

,

which yields e∗(b, ϑ) = bϑ
c under Assumption 2.1. Hence, the principal’s expected

profit will be

Π̃(b, ϑ, θ) := (2∆ − b)
[

bϑθ

c
+ 2F

]
.

Given belief ϑ, the agent optimally accepts an offer b if and only if

b ∈ Ac(ϑ) :=

{
b ∈ [0, 1] :

1
2

(
bϑ

c

)2

≥ uϑ

}
.

When θ becomes publicly observable at date 2, the principal’s problem is to max-

imize Π̃(b, θ, θ) subject to b ∈ Ac(θ). The optimal offer is b = βF
θ := max

{
β∗

θ , βPC
θ

}
,

where

β∗
θ := arg max

b∈[0,1]
Π̃(b, θ, θ) =

1
2
− cF

θ2 , and (2.1)

βPC
θ := min (Ac(θ) ∪ {1}) , (2.2)
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and the principal’s unique equilibrium profit with full information is Π̃(βF
θ , θ, θ).8

In what follows, we characterize the most profitable (pure strategy) perfect

Bayesian equilibria to the principal among those satisfying the D1 criterion (Cho

and Kreps, 1986; Cho and Sobel, 1990). Since the principal can always wait until

date 2, each θ-type principal must also earn non-negative expected profits in any

equilibrium. Therefore, the principal can never profitably deviate from an equilib-

rium by offering b that will be rejected. Taking this observation into account, we

can define the D1 criterion in this model as follows.

Definition 2.1. Fix an equilibrium and let Π∗
θ denote the θ-type principal’s equilib-

rium profit, for each θ ∈ {H, L}. A pair (b, θ) is said to be deleted by the D1 criterion

if (i) for all ϑ ∈ [L, H], Π̃(b, ϑ, θ) ≥ Π∗
θ implies Π̃(b, ϑ, θ′) > Π∗

θ′ , and (ii) there exists

ϑ ∈ [L, H] such that b ∈ Ac(ϑ) and Π̃(b, ϑ, θ′) > Π∗
θ′ , where θ′ ∈ {H, L} − {θ}.9

A belief system ϑ∗(·) : [0, 1] → [L, H] is said to satisfy the D1 criterion if ϑ∗(b) = θ′

whenever (b, θ) is deleted. The equilibrium is said to satisfy the D1 criterion if its

associated belief system satisfies the D1 criterion. �

The following Lemma is useful in the subsequent analysis to restrict the belief

systems that satisfy the D1 criterion. Although this corresponds to the standard

sorting condition in the signaling game literature, it is effective only when the

contracts are accepted by the agents. As a consequence, it does not always eliminate

the possibility of pooling equilibria.10

8Notice that βPC
θ is defined to be 1 when Ac(θ) is empty, and Π̃(1, θ, θ) = 0. Hence, the prin-

cipal’s full-information profit is still Π̃(βF
θ , θ, θ) even in the case where no contract is signed at an

equilibrium.

9Notice that this definition is based only on the agent’s pure best replies while the standard
definition uses mixed best replies. However, this difference is irrelevant here because the pure best
reply is generically unique.

10Technically, a key property of the present model is that the principal’s profit is not continuous
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Lemma 2.1. Suppose that b′ > b. If Π̃(b′, ϑ′, L) ≥ Π̃(b′, ϑ, L), then Π̃(b′, ϑ′, H) >

Π̃(b′, ϑ, H).

Proof. See Appendix B.1. �

Optimal Equilibria

Now we are ready to characterize the most profitable equilibrium outcomes among

those satisfying the D1 criterion. The first result establishes that the full-information

outcome is always supportable by an equilibrium.

Proposition 2.1. There always exists an equilibrium satisfying the D1 criterion such that

the principal never offers an exploding offer at date 1.

Proof. See Appendix B.1. �

Notice that the equilibrium outcome in Proposition 2.1 is always (weakly) more

profitable than any separating equilibria, because the agent must correctly and cer-

tainly know θ on the equilibrium-path of such equilibria. The question is, therefore,

whether and when pooling equilibria exist. The next proposition fully characterizes

the condition for pooling at date 1 to be supportable. This condition immediately

implies that whenever a pooling equilibrium exists, it yields a weakly higher profit

than any separating equilibria.11

Proposition 2.2. There exists a pooling equilibrium satisfying the D1 criterion, where

the principal offers a same b ∈ [0, 1] to both types of the agent at date 1, if and only if

Π̃(b, M, θ) ≥ Π̃(bF
θ , θ, θ) for each θ ∈ {L, H}.

with respect to the agent’s belief, because a marginal increase in ϑ can make the agent to switch
from accepting to rejecting an offer and thereby discontinuously lower the profit. This is why the
results in Cho and Sobel (1990) do not apply here.

11See Section 2.4 for a brief discussion regarding semi-pooling equilibria.
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Proof. See Appendix B.1. �

Corollary 2.1. Suppose that some pooling equilibrium at date 1 satisfies the D1 criterion.

Then, there exists a pooling equilibrium at date 1 that yields a (weakly) higher profit for the

principal than any other pure strategy equilibrium surviving the D1 criterion.

Proof. The is an immediate corollary of Proposition 2.2. �

Comparative Statics

Since Propositions 2.1 and 2.2 pin down the principal’s highest equilibrium profit

for a fixed set of parameters, the next question should be how it varies with changes

in the parameters. Actually, the principal’s profit has a few interesting comparative

statics properties with respect to changes in the agent’s outside option(s). So as to

keep Assumption 2.2 intact against such variations, now take uM as fixed and let

D := uH − uL ≥ 0 be a free parameter. That is, higher D means both higher uH

and lower uL. Note that D would increase when the principal’s assessment of θ

becomes more accurate or more correlated with the assessments by other potential

employers.

As D increases from 0, the participation constraint for the H-type becomes more

and more binding where as that for the L-type remains slack. Therefore, the prin-

cipal’s profit from separating at date 2 is (weakly) decreasing in D. In contrast, the

constraint Π̃(b, M, H) ≥ Π̃(βF
L, H, H) becomes less demanding when D rises, for

the right-hand side decreases in uH. Consequently, the set of supportable pooling

equilibria at date 1 is (weakly) increasing in D, and so is the profit at the optimal

equilibrium as long as it is non-empty.

To further look into the behavior of optimal pooling equilibria, let β1
M :=

arg maxb Π̃(b, M, H) and β2
M be such that β2

M > βF
L and Π̃(β2

M, M, L) = Π̃(βF
L, L, L).

43



That is, β1
M is the point that minimizes the principal’s incentive to reveal θ = H,

and β2
M is the maximal point at which the principal has no incentive to reveal

θ = L. Also define β∗
M := arg maxb Π̃(b, M, M) to denote the best possible pooling

outcome. Observe that β∗
M < β1

H must hold by definition. Based on these variables,

then, we need to consider three cases.

• First, suppose that β∗
M < β1

M < β2
M: The set of supportable pooling con-

tract becomes non-empty when D hits D∗, which is defined to be the point

such that Π̃(β1
M, M, H) ≥ Π̃(βF

H, H, H) holds with equality. At this point,

the unique supportable pooling equilibrium yields the expected profits of

Π̃(β1
M, M, M). Furthermore, the assumption of β1

M < β2
M implies Π̃(β1

M, M, L) >

Π̃(βF
L, L, L) and hence,

Π̃(β1
M, M, M) = p · Π̃(β1

M, M, H) + (1 − p) Π̃(β1
M, M, L)

> p · Π̃(βF
H, H, H) + (1 − p) Π̃(βF

L, L, L),

i.e., the principal’s profit at this unique pooling equilibrium is strictly higher

than her full-information profits. Since no pooling equilibrium is supportable

at any D < D∗, the profits at the optimal equilibrium jumps up at D = D∗.

When D further increases to D∗ + δ, pooling becomes supportable on a larger

interval of b, containing β1
M in its interior. As β1

M > β∗
M by definitions, we

can conclude that the principal’s profit is strictly right-increasing at D = D∗.

• Second, suppose that β∗
M < β2

M ≤ β1
M: Then, the first supportable pooling is

bH = bL = β2
M, which becomes supportable at D = D∗, which is now defined

by Π̃(β2
M, M, H) = Π̃(βF

H, H, H). When D further increases, pooling at β2
M − ε

becomes supportable, and it is strictly more profitable because Π̃(·, M, M) is

decreasing at β2
M by the assumption of β∗

M < β2
M. That is, the principal’s
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profit is strictly right-increasing at D = D∗. In this case, however, it is con-

tinuous because Π̃(β2
M, M, L) = Π̃(βF

L, L, L) holds by definition, as well as

Π̃(β2
M, M, H) = Π̃(βF

H, H, H) at D = D∗.

• Lastly, suppose that β2
M ≤ β∗

M: As in the second case, the first supportable

pooling is at β2
M and the principal’s profit is continuous at D = D∗. Yet, the

profit is not right-increasing in this case, because Π̃(·, M, M) is increasing on

[0, β2
M], and pooling at b > β2

M becomes never supportable.

For each of these three cases, the trajectory of the principal’s profit at the optimal

equilibrium is illustrated in Figure 2.1. To summarize, we have established the

following proposition.

Proposition 2.3. Fix uM as given and take D to be the free parameter. There exists a cutoff

D∗ such that in the optimal equilibrium, the principal offers a same exploding offer to both

types of agents if and only if D ≥ D∗. With respect to D, the principal’s profit at the optimal

equilibrium is weakly (resp. strictly) decreasing on [0, D∗) (resp. in a left neighborhood of

D∗), and weakly increasing on [D∗, ∞]. Further, it is strictly right-increasing at D∗ if

β2
M > β∗

M, and discontinuously jumps up at D∗ if β2
M > β1

M.

Proof. See the above arguments. �

Since the decrease in uL is relevant only by keeping uM constant, the principal’s

profit has similar comparative statics properties with respect uH as long as uM is

sufficiently low. In particular, we have the following corollary.

Corollary 2.2. Given uL is sufficiently low, the principal’s profit at the optimal equilibrium

may be discontinuous and increasing in uH.

Proof. The is an immediate corollary of Proposition 2.3. �
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Figure 2.1: Principal’s highest profit as a function of D.
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2.4 Discussions

This chapter studies an incentive-contracting problem with the assumption that

the principal can learn about the agent’s productivity before the agent himself. I

characterize the most profitable equilibria to the principal and illustrate how such

(adversely) asymmetric information can cause the principal to make early, explod-

ing offers. It should be noted that in the present model, the time length between

date 1 and 2 could be very short, as is often observed in reality, if the hiring sched-

ule in the outside market is sufficiently tight. This could be seen as a possible

advantage compared with the existing models of unraveling (e.g., Halaburda, 2010;

Li and Rosen, 1998; Li and Suen, 2000), where the time window is defined by the

evolution of public information on match qualities. One might wonder, however, if

the principal’s information is really essential in the above analysis, because when

the optimal equilibrium is pooling, she would be (weakly) better off by offering

β∗
M before learning θ herself. This argument is completely valid if the above model

is taken literally, but not necessarily in general. Suppose, as briefly mentioned in

footnotes 3 and 5, that there exists a third type of agents and the principal prefers

vacancy to hiring such agents. If the cost of hiring those unqualified agents is suf-

ficiently high, the principal would strictly prefer to make offers after she learns θ

but before the agent does.

In terms of comparative statics, this study suggests, unlike the standard moral

hazard models, an increase in the (H-type) agent’s reservation wage may benefit

the principal. An interesting implication of this result is that wage competitions

at later dates may actually enhance unraveling. If an employer wants to hire more

qualified agents but such agents are scarce at date 2, she might consider to raise the

wage she offers, hoping it would let more agents to remain until date 2. However,
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our model would suggest that such a wage increase would actually lead more

competitors to make an exploding offer, and consequently, the qualified agents

could become even more scarce at date 2. This argument is of course informal,

because the present model abstracts away from such strategic interactions among

employers. It would be an interesting avenue for future research to extend the

model and study market equilibria, endogenizing the agent’s outside options.

To conclude, let us briefly discuss the possibility of semi-pooling equilibria at

date 1. Indeed, semi-pooling can be an equilibrium and moreover, strictly optimal

for the principal. To see this, suppose that β∗
M < β2

M < β1
M and D = D∗. Then,

pooling is profitable to the principal but Π̃(β2
M, M, H) = Π̃(βF

H, H, H) is a binding

constraint. If the L-type principal randomize between bL = β∗
L and bL = β2

M + ε,

it is both strictly profitable and incentive compatible for the H-type principal to

offer bH = β2
M + ε with probability one, because Π̃(β2

M + ε, ϑ, H) > Π̃(βF
H, H, H),

where ϑ > M is the conditional belief at b = β2
M + ε. Further, randomization is

also incentive compatible for the L-type principal if ε is sufficiently small and ϑ

is sufficiently close to M. Thus, such a mixed strategy forms an equilibrium and

is more profitable than full pooling at β2
M. However, semi-pooling equilibria may

not necessarily fill the “gap” in the principal’s profit, because randomization by

the L-type principal cannot increase her own profit, whereas it is the jump in the

L-type’s profit that gives rise to the discontinuity in Proposition 2.3.12

12It is easy to check randomization by the H-type principal is never profitable, because it will
decrease the conditional expectation at the point where both types pool.
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Chapter 3

Stable and Strategy-Proof Rules in

Matching Markets with Contracts∗

3.1 Introduction

Since its birth by Gale and Shapley (1962), the theory of two-sided matching mar-

kets has been centered around the deferred acceptance algorithm, which is known

to satisfy a number of desiderata. Specifically, in the classic setup, it is not only sta-

ble but also (one-sided) strategy-proof (Dubins and Freedman, 1981; Roth, 1982),

and moreover, it is the unique such rule (Alcalde and Barberà, 1994). More recently,

Hatfield and Milgrom (2005) propose a more general model of matching with con-

tracts and, among many other things, verify that the deferred acceptance is stable

and strategy-proof under certain conditions, called substitutable contracts and the

law of aggregated demand.1 With those conditions, Sakai (2011) also generalizes

the uniqueness result and hence, the study of stable and strategy-proof rules is

∗This chapter is a joint work with Yusuke Kasuya.

1See Definitions C.1 and C.4 in Appendix C.1 for the definitions of those conditions.
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necessarily the study of the deferred acceptance. At the same time, however, the

rapid developments of the matching with contracts literature has started to cover,

in both theory and practice, the cases that violate those pre-known conditions for

the deferred acceptance to be stable and/or strategy-proof (e.g., Dimakopoulos and

Heller, 2014; Hatfield and Kojima, 2010; Kominers and Sönmez, 2013, 2014).

With those developments in mind, the purpose of this chapter is to study stable

and (one-sided) strategy-proof rules as generally as possible, and to disentangle

some nature of such rules that arise purely from the two properties. Specifically,

our results only require the choice functions on the hospital side to satisfy the

irrelevance of rejected contracts (henceforth, IRC) condition, which is a very mild

rationality requirement, but not any kind of “substitutes” condition.

The first and second results (Theorems 3.1–3.2) are on the uniqueness of stable

and strategy-proof rules and extend the existing results mentioned above: Theo-

rem 3.1 states that the number of such rules is at most one in general (as long

as the IRC is satisfied), although there may or may not exist one without addi-

tional assumptions. Further, Theorem 3.2 establishes that the doctor-optimal stable

rule is the unique candidate for a stable and strategy-proof rule, whenever it is

well-defined, although it may or may not be strategy-proof without additional as-

sumptions. From the technical point of view, it is noteworthy that our proofs of

Theorems 3.1–3.2 do not rely on the rural hospital theorem, which has been playing

a central role in the existing studies on stable and strategy proof rules.2 Instead,

our proofs exploit a weaker property of stable allocations, which follows solely

from the IRC condition, and shed new light on the fundamental tension between

stability and strategy-proofness.

Our last main result, Theorem 3.3, is on the constrained optimality of a stable

2See the discussion after Corollary 3.2 for details.
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and strategy-proof rule. Namely, we show (again, under the IRC condition) that

a stable and strategy-proof rule, if exists, is never dominated in terms of doctor

welfare by any other individually rational and strategy-proof rule. Further, we also

show in an appendix that the same holds true even if stability is weakened to non-

wastefulness in the above statement (Theorem C.1). These results (partially) gen-

eralize similar existing results in the school choice literature (e.g., Abdulkadiroglu

et al., 2009; Kesten, 2010; Kesten and Kurino, 2013).

The rest of this chapter is organized as follows. Section 3.2 describes the model

and introduces key concepts. Section 3.3 provides the results. Section 3.4 concludes.

Appendix C.1 introduces a number of definitions that are omitted in this chapter

but useful to relate our results to the literature. Appendix C.2 presents two variants

of Theorem 3.3. Appendix C.3 contains a few examples.

3.2 Preliminaries

We study the standard setting of a many-to-one matching market with contracts.

Let D and H be finite sets of doctors and hospitals, respectively. The finite set

of possible contracts is given by X ⊂ D × H × Θ for some Θ.3 For each contract

x ∈ X, let d (x) and h (x) be its projections onto D and H, i.e., x = (d (x) , h (x) , θ)

for some θ ∈ Θ. In other words, x is a bilateral contract between d (x) ∈ D and

h (x) ∈ H.

A subset X′ ⊂ X of contracts is said to be an allocation if it includes at most

one contract for each doctor, i.e., if x, x′ ∈ X′ and x 6= x′ imply d (x) 6= d (x′).

The set of all possible allocations is denoted by X ⊂ 2X. For each allocation

3For example, Θ can be interpreted as the set of possible wage levels (Kelso and Crawford, 1982)
and/or job descriptions (Roth, 1984).
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X′ ∈ X and doctor d ∈ D, let x (d, X′) denote the contract that X′ assigns to d;

i.e., x (d, X′) = x if x ∈ X′ and d (x) = d. If there is no such contract in X′, doctor

d is said to be assigned a null-contract and we write x (d, X′) = ∅. Similarly, let

X (h, X′) = {x ∈ X′ : h (x) = h} be the set of (non-null) contracts that X′ assigns to

hospital h ∈ H.

Each doctor d ∈ D has a strict preference relation �d over

{x ∈ X : d (x) = d} ∪ {∅}. The domain of all possible preferences for doctor

d is denoted by Pd. Given his preference relation �d, a non-null contract x is said

to be acceptable to doctor d if x �d ∅.4 The set of acceptable contracts to doctor d,

as a function of �d, is given by

Ac(�d) := {x ∈ X : d (x) = d and x �d ∅}.

The profile of the doctors’ preference relations is denoted by �D = (�d)d∈D. Let

PD := ∏d∈D Pd be the domain of all possible preference profiles. Each hospital

h ∈ H has a choice function Ch : 2X → X such that for all X′ ⊂ X, (i) Ch(X′) ∈

2X′ ∩X and (ii) h (x) = h for all x ∈ Ch(X′). Throughout this chapter, we assume

that the choice functions satisfy the following mild requirement: Hospital h’s choice

function Ch(·) is said to satisfy the irrelevance of rejected contracts (henceforth, IRC)

condition if x 6∈ Ch(X′ ∪ {x}) implies Ch(X′ ∪ {x}) = Ch(X′) for all X′ ⊂ X and

x ∈ X.5 The profile of the hospitals’ choice functions is denoted by CH(·) =

(Ch(·))h∈H.

Given �D and CH(·), we define the following concepts on X : An allocation

4Note that x �d ∅ implies d (x) = d since �d is defined over {x ∈ X : d (x) = d} ∪ {∅}.

5Aygün and Sönmez (2012, 2013) point out the importance of this condition, which is implicitly
assumed in Hatfield and Milgrom (2005) and Hatfield and Kojima (2010). Note that this condition
is satisfied if a choice function is induced by a strict preference over subsets of contracts (as in some
of the examples below).
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X′ ∈ X is said to be individually rational if (i) x(d; X′) �d ∅ for all d ∈ D, and

(ii) Ch(X′) = X (h, X′) for all h ∈ H. A pair of a hospital h ∈ H and a subset

X′′ ⊂ X of contracts is said to block an allocation X′ if (i) Ch(X′ ∪ X′′) = X′′ 6=

Ch(X′) and (ii) x (d, Ch(X′ ∪ X′′)) �d x (d, X′) for all d ∈ {d (x)}x∈Ch(X′∪X′′). An

allocation X′ is said to be stable if it is individually rational and not blocked by any

(h, X′′) ∈ H × 2X. An allocation X′ is said to strictly dominate another allocation

X′′ 6= X′ if x (d, X′) �d x (d, X′′) for all d ∈ D.6 A stable allocation X∗ is said to be

doctor-optimal if it strictly dominates any other stable allocation.

Given CH(·) as well as (D, H, X), a matching rule is a mapping f : PD → X ,

which associates each possible preference profile of doctors with an allocation. A

rule f (·) is said to be stable (resp. individually rational) if for all �D ∈ PD, its

output f (�D) is stable (resp. individually rational) with respect to �D. Similarly,

the doctor-optimal stable rule, denoted by X∗(·) if exists, is a rule such that for all

�D ∈ PD, its output X∗(�D) is the doctor-optimal stable allocation with respect to

�D. A rule f (·) is said to strictly dominate another rule g(·) 6= f (·) if x (d, f (�D)) �d

x (d, g(�D)) for all d ∈ D and �D ∈ PD.7 Finally, a rule f (·) is said to be strategy-

proof if x (d, f (�D)) �d x
(

d, f
(
�′

d,�D−{d}

))
for all d ∈ D, �D ∈ PD, and

�′
d ∈ Pd, where �D−{d}= (�d′)d′∈D−{d}.

3.3 Results

To start our analysis, we introduce the following weaker notion of blocking coali-

tions: We say that a pair (h, X′′) ∈ H × 2X weakly blocks an allocation X′ if

6Note that X′ 6= X′′ and x (d, X′) �d x (d, X′′) for all d imply x (d′, X′) �d′ x (d′, X′′) for some d′.

7Again, g(·) 6= f (·) implies x (d′, f (�D)) �d′ x (d′, g(�D)) for some d′ and �D if f (·) strictly
dominates g(·).
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(i) Ch(X′ ∪ X′′) 6= Ch(X′) and (ii) x (d, Ch(X′ ∪ X′′)) �d x (d, X′) for all

d ∈ {d (x)}x∈Ch(X′∪X′′). This definition is weak in that the first part does not re-

quire Ch(X′ ∪ X′′) = X′′. Under the IRC condition, however, it is straightforward

to verify that the two blocking concepts are equally effective in the following sense.

Lemma 3.1. Suppose that hospital h’s choice function Ch(·) satisfies the IRC condition.

For any allocation X′ ∈ X , then, there exists X′′ ⊂ X such that (h, X′′) blocks X′ if and

only if there exists X′′′ ⊂ X such that (h, X′′′) weakly blocks X′.

Proof. The “only if” part is immediate from the definitions. To see the “if” part,

suppose that (h, X′′′) weakly blocks X′, and let X′′ := Ch(X′ ∪ X′′′). Then, the IRC

condition implies Ch(X′ ∪ X′′) = Ch(X′ ∪ X′′′) = X′′ and hence, the first require-

ment for (h, X′′) to block X′ is satisfied. The second requirement is also trivially

satisfied by the assumption that (h, X′′′) weakly blocks X′. �

Lemma 3.1 leads to the following observation, which will be the key in the

proofs of Theorems 3.1–3.2.

Lemma 3.2. Suppose that every hospital h ∈ H has a choice function Ch(·) that satisfies

the IRC condition, and that X′ and X′′ are two distinct stable allocations at (CH,�D).

Then, there exists a doctor d ∈ D who is assigned distinct non-null contracts by X′ and

X′′, i.e., ∅ 6= x (d, X′) 6= x (d, X′′) 6= ∅.

Proof. The proof is by contraposition. Assume the negation of the consequent, i.e.,

[
x
(
d, X′) 6= x

(
d, X′′)] =⇒ [

∅ ∈ {x
(
d, X′) , x

(
d, X′′)}] , for all d ∈ D,

where X′ and X′′ are two (possibly identical) stable allocations at (CH(·),�D).

Since X′′ is stable (and thus individually rational), this implies for all d ∈ D,

[
x
(
d, X′′) 6= ∅

]
=⇒

[
x
(
d, X′′) �d ∅ = x

(
d, X′) or x

(
d, X′) = x

(
d, X′′)] ,
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and hence,

[
x
(
d, X′′) 6= ∅

]
=⇒

[
x
(
d, X′′) �d x

(
d, X′)] .

For an arbitrary hospital h ∈ H, then, (h, X′′) satisfies the second requirement to

weakly block X′. Since (h, X′′) cannot weakly block X′ by stability and Lemma 3.1,

it must violate the first requirement; i.e., Ch(X′ ∪ X′′) = X (h, X′) must hold. As the

symmetric arguments also imply Ch(X′ ∪ X′′) = X (h, X′′) for all h ∈ H, it follows

that X (h, X′) = X (h, X′′) for all h ∈ H and thus X′ = X′′. �

Our first main result generalizes the existing results on the uniqueness of a

stable and strategy-proof rule by Alcalde and Barberà (1994, Theorem 3) and Sakai

(2011, Theorem 1). While this theorem does not require any substitutes condition,

its proof depends on Lemma 3.2, which in turn necessitates the IRC condition.

See Example C.1 in Appendix C.3 for a counterexample in the absence of the IRC

condition.

Theorem 3.1. Suppose that every hospital h ∈ H has a choice function Ch(·) that satisfies

the IRC condition. Then, there exists at most one stable and strategy-proof rule; i.e., if f (·)

and g(·) are both stable and strategy-proof, f (�D) = g(�D) for all �D ∈ PD.

Proof. Towards a contradiction, suppose that there exist two distinct stable and

strategy-proof rules, f (·) and g(·). Let �∗
D ∈ PD be a preference profile such that

f (�∗
D) 6= g (�∗

D) and[
f (�D) 6= g (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD,

which exists by assumption. Then, by Lemma 3.2, there must exist a doctor d∗

such that ∅ 6= x (d∗, f (�∗
D)) 6= x (d∗, g(�∗

D)) 6= ∅. Note that this also implies

|Ac(�∗
d∗)| ≥ 2.
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Now, suppose without loss of generality that x (d∗, f (�∗
D)) �∗

d∗ x (d∗, g(�∗
D)),

and let �∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a preference relation of doctor d∗

such that only x (d∗, f (�∗
D)) is acceptable, i.e., Ac(�∗∗

d∗ ) = {x (d∗, f (�∗
D))}. Notice

that

x (d∗, f (�∗∗
D )) , x (d∗, g(�∗∗

D )) ∈
{

x (d∗, f (�∗
D)) ,∅

}
,

since f (·) is assumed to be stable (and hence individually rational). Then, the

strategy-proofness of f (·) and g(·) implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) , and

∅ = x (d∗, g(�∗∗
D )) 6= x (d∗, g(�∗

D)) ,

respectively, and hence, f (�∗∗
D ) 6= g(�∗∗

D ). This, however, contradicts the definition

of �∗
D, since

∣∣Ac
(
�∗∗

d∗
)∣∣ = 1 < 2 ≤

∣∣Ac(�∗
d∗)

∣∣ and �∗∗
D−{d∗} = �∗

D−{d∗}, and the

proof is complete. �

Theorem 1, together with the results by Kominers and Sönmez (2013, 2014),

immediately implies the following corollary.8

Corollary 3.1. Suppose that every hospital h ∈ H has a choice function Ch(·) that is

induced by some slot-specific priorities. Then, the cumulative offer process induces the

unique stable and strategy-proof rule.

Proof. In the case of slot-specific priorities, Kominers and Sönmez (2013, 2014) show

that the rule induced by the cumulative offer process is both stable and strategy-

proof. The uniqueness follows from Theorem 3.1. �

8See Definitions C.5 and C.6 in Appendix C.1 for the definitions of slot-specific priorities and
the cumulative offer process.
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Following the same line of proof, we can also show that whenever it exists,

the doctor-optimal stable rule is the unique candidate for a stable and strategy

rule. Note, however, that this unique candidate may or may not be strategy-proof

without additional assumptions.

Theorem 3.2. Suppose that every hospital h ∈ H has a choice function satisfying the IRC

condition, and that the doctor-optimal stable allocation X∗(�D) exists for all �D ∈ PD.

If f (·) is a stable and strategy-proof rule, then, f (�D) = X∗(�D) for all �D ∈ PD.

Proof. Towards a contradiction, suppose that the doctor-optimal stable rule X∗(·)

is well-defined, and that f (·) 6= X∗(·) is a stable and strategy-proof rule. Let

�∗
D ∈ PD be a preference profile such that f (�∗

D) 6= X∗ (�∗
D) and[

f (�D) 6= X∗ (�D) =⇒ ∑
d∈D

|Ac(�d)| ≥ ∑
d∈D

|Ac(�∗
d)|

]
for all �D ∈ PD,

which exists by assumption. Then, by Lemma 3.2, there must exist a doctor d∗

such that ∅ 6= x (d∗, f (�∗
D)) 6= x (d∗, X∗(�∗

D)) 6= ∅. Note that this also implies

x (d∗, X∗(�∗
D)) �∗

d∗ x (d∗, f (�∗
D)) �∗

d∗ ∅.

Now let �∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a truncation of �∗
d∗ at

x (d∗, X∗(�∗
D)), i.e., a preference relation such that

Ac (�∗∗
d∗ ) =

{
x ∈ X : x �∗

d∗ x (d∗, X∗(�∗
D))

}
,

and

[x �∗∗
d∗ y ⇐⇒ x �∗

d∗ y] for all x, y ∈ Ac(�∗∗
d∗ ).

Notice that X∗(�∗∗
D ) = X∗(�∗

D) by construction.9 Together with the strategy-

9To see this, note first that any stable allocation at �∗
D, including X∗(�∗

D), is also stable at �∗∗
D .

For X∗(�∗∗
D ) 6= X∗(�∗

D) to hold, therefore, X∗(�∗∗
D ) cannot be stable at �∗

D. Yet, x (d∗, X∗(�∗∗
D )) =

∅ must hold if (h, X′) blocks X∗(�∗∗
D ) at �∗

D but not at �∗∗
D . Since x (d∗, X∗(�∗

D)) �∗∗
d∗ ∅, this means

that X∗(�∗∗
D ) cannot dominate X∗(�∗

D) at �∗∗
D , which is a contradiction.
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proofness of f (·), this further implies

x (d∗, X∗(�∗∗
D )) = x (d∗, X∗(�∗

D)) �∗
d∗ x (d∗, f (�∗

D)) �∗
d∗ x (d1, f (�∗∗

D )) ,

and hence, f (�∗∗
D ) 6= X∗(�∗∗

D ). This, however, contradicts the definition of �∗
D,

since Ac
(
�∗∗

d∗
)
⊂ Ac

(
�∗

d∗
)
−

{
x (d∗, f (�∗

D))
}

and �∗∗
D−{d∗} = �∗

D−{d∗}, and the

proof is complete. �

Along with Theorem 5 of Hatfield and Kojima (2010), Theorem 3.2 leads to the

following corollary.10

Corollary 3.2. Suppose that every hospital h ∈ H has a choice function Ch(·) that satisfies

the unilateral substitutes condition and the IRC condition. Then, if a stable and strategy-

proof rule exists, it is induced by the doctor-proposing deferred acceptance algorithm.

Proof. Under the supposition, a doctor-optimal stable allocation always exists and

is induced by the doctor-proposing deferred acceptance algorithm (Hatfield and

Kojima, 2010, Theorem 5).11 Hence, the claim immediately follows from Theorem

3.2. �

Compared to the existing uniqueness results, Theorems 3.1–3.2 above are tech-

nically novel for two related reasons. First, our proof of Theorem 3.1 requires

no dominance relation between f (·) and g(·). Consequently, it is applicable even

when the doctor-optimal stable allocation does not always exist. In contrast, the

uniqueness results by Alcalde and Barberà (1994, Theorem 3) and Sakai (2011, The-

orem 1) are established by showing any stable rule that is strictly dominated by the

doctor-optimal stable rule cannot be strategy-proof and hence, the existence of the

10See Definition C.2 in Appendix C.1 for the definition of unilateral substitutes.

11See also Aygün and Sönmez (2012).
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doctor-optimal stable rule is critical in their proofs. Second, our proofs do not call

for the rural hospital theorem either, which states that every agent (i.e., every doctor

and every hospital) signs the same number of non-null contracts across all stable

allocations. Instead we utilize Lemma 3.2, which could be seen as a weaker version

of the rural hospital theorem but holds true without any restrictions on CH(·) other

than the IRC condition.12 It is this distinction that makes the proof of Theorem 3.2

non-trivial, although its statement might look very close to the previous results.

Given the second point in the previous paragraph, one might wonder if the

doctor-optimal stable rule can be strategy-proof even when the rural hospital theo-

rem fails to hold. Theorem 3.2 would be vacuous if there is no such case, since the

doctor-optimal stable rule has been shown to be strategy-proof whenever the rural

hospital theorem holds.13 Indeed, there exist such cases and hence, Theorem 3.2

applies to a strictly larger domain of choice functions than the previous results.

Fact 3.1. The doctor-optimal stable rule can be strategy-proof even if there exists a prefer-

ence profile such that not all doctors sign the same number of non-null contracts across all

stable allocations (and hence, even if the rural hospital theorem fails to hold).

Proof. The proof is by example. Suppose that D = {d1, d2, d3}, H = {h, h′}, and

X = {xi, x′i}i∈{1,2,3}, where xi (resp. x′i) represents a contract between doctor di and

hospital h (resp. h′). The choice functions of the hospitals, Ch(·) and Ch′(·), are

induced by preference profiles

�h : {x1} �h {x2, x3} �h {x2} �h {x3} �h ∅, and

�h′ : {x′2} �h′ {x′1} �h′ ∅,

12Note that the conclusion of Lemma 3.2 immediately follows if the rural hospital theorem holds.

13See the proofs of Hatfield and Kojima (2010, Theorem 7) and Hatfield and Milgrom (2005,
Theorem 11).
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x2, x′2,∅ x′2, x2,∅ x2,∅ x′2,∅ ∅

x1, x′1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}

x′1, x1,∅ {x′1, x2, x3} {x1, x′2} {x′1, x2, x3} {x1, x′2} {x′1, x3}

x1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}

x′1,∅ {x′1, x2, x3} {x′2, x3} {x′1, x2, x3} {x′2, x3} {x′1, x3}

∅ {x2, x3} {x′2, x3} {x2, x3} {x′2, x3} {x3}

(a) Case of x3 ∈ Ac (�d3).

x2, x′2,∅ x′2, x2,∅ x2,∅ x′2,∅ ∅

x1, x′1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}

x′1, x1,∅ {x′1, x2} {x1, x′2} {x′1, x2} {x1, x′2} {x′1}

x1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}

x′1,∅ {x′1, x2} {x′2} {x′1, x2} {x′2} {x′1}

∅ {x2} {x′2} {x2} {x′2} ∅

(b) Case of x3 6∈ Ac (�d3).

Table 3.1: Doctor optimal stable allocations in the proof of Fact 3.1. The rows and columns represent
the preferences of doctor d1 and d2, respectively.

respectively.14 Notice that the resulting choice functions satisfy the substitutes

condition (Definition C.1 in Appendix C.1) and thus, the doctor-optimal stable

allocation exists for any �D, as summarized in Table 3.1.

To see the rural hospital theorem fails to hold in this market, fix a preference

14That is, for each X′ ⊂ X, Ch(X′) and Ch′(X′) are the most preferred subsets of X′ ∩ X (h, X)
and X′ ∩ X (h′, X) according to �h and �h′ , respectively.
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profile �D such that

�d1 : x′1 �d1 x1 �d1 ∅,

�d2 : x2 �d1 x′2 �d1 ∅, and

x3 ∈ Ac(�d3). As shown in the colored cell in Table 3.1, the doctor-optimal stable

allocation at such �D is X∗ = {x′1, x2, x3}, whereas there exists another stable

allocation X∗ = {x1, x′2}. Note that doctor d3 is assigned a non-null contract at

X∗ but not at X∗, and hence, the rural hospital theorem fails.

To complete the proof, it remains to verify that the doctor-optimal stable rule,

X∗(·), is strategy-proof in this market. For doctors d1 and d2, note that

x (d1, X∗(�D)) and x (d2, X∗(�D)) are independent of �d3 . Hence, the incentives

for doctors d1 and d2 to manipulate will remain unchanged if d3 is excluded from

the market. Actually, once d3 is omitted, the remaining market reduces to a stan-

dard one-to-one matching market without contracts and thus, d1 and d2 have no

incentive to manipulate the doctor-optimal stable rule (Dubins and Freedman, 1981;

Roth, 1982). For doctor d3, observe that x (d3, X∗(�D)) is either x3 or ∅, and that

it depends on �d3 only through whether or not x3 ∈ Ac(�d3). Therefore, d3 has

no incentive to report that x3 is acceptable when it is not, and vice versa. In sum,

the doctor-optimal stable rule is strategy-proof in this market, and the proof is

complete. �

Another natural question that stems from Theorem 3.2 would be whether or

not the necessary condition for a stable and strategy-proof rule can be replaced

with a weaker notion of optimality. Specifically, one might wonder if a stable and

strategy-proof rule always chooses an allocation that is not dominated by another
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stable allocation. Actually, the answer to this question is known to be negative.15

Fact 3.2 (Kominers and Sönmez, 2014). A stable and strategy-proof rule may choose an

allocation that is strictly dominated by another stable allocation.

Proof. In the case of slot-specific priorities, Kominers and Sönmez (2014) show that

the cumulative offer process may not choose the doctor-optimal stable allocation

even when it exists (Example 4), whereas it always induces a stable and strategy-

proof rule (Theorem 4). �

Given that the outcomes of a stable and strategy-proof rule may not necessarily

be doctor-optimal even among the stable allocations, it could be of policy interest

whether the doctor welfare can be Pareto-improved. Since Theorem 3.1 implies

such improvement is impossible maintaining both stability and strategy-proofness,

it would be natural to ask if it becomes possible once we weaken the stability re-

quirement. Our last main result, Theorem 3.3, shows that such improvement is gen-

erally impossible. This extends the existing results in the school choice literature

that the student-optimal stable rule is second-best optimal among strategy-proof

rules (see, Abdulkadiroglu et al., 2009; Kesten, 2010; Kesten and Kurino, 2013).16

Theorem 3.3. Suppose that every hospital h has a choice function Ch(·) that satisfies the

IRC condition. Then, no individually-rational and strategy-proof rule strictly dominates a

stable and strategy-proof rule.

Proof. Towards a contradiction, suppose that f (·) is individually rational and strategy-

proof, g(·) is stable and strategy-proof, and that f (·) strictly dominates g(·). Let

15In matching markets without contracts, contrastingly, Pathak and Sönmez (2013, Lemma 1)
establish that the dominance in terms of outcomes between two stable rules implies the dominance
in terms of manipulability. For an extension of this result, see also Chen et al. (2014).

16See also Erdil (2014) and Anno and Kurino (2014) for related results in assignment problems.
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�∗
D ∈ PD be a preference profile such that f (�∗

D) 6= g (�∗
D) and[

f (�D) 6= g (�D) =⇒ ∑
d∈D

|Ac(�d)| ≥ ∑
d∈D

|Ac(�∗
d)|

]
for all �D ∈ PD,

which exists by assumption. Then, there must exist d∗ ∈ D such that

x (d∗, f (�∗
D)) �∗

d∗ x (d∗, g(�∗
D)) �∗

d∗ ∅. (3.1)

To see this, suppose contrarily that for all d ∈ D, x (d, f (�∗
D)) �∗

d x (d, g(�∗
D))

implies x (d, g(�∗
D)) = ∅. This requires f (�∗

D) ) g(�∗
D) and hence, for some

h ∈ H,

Ch ( f (�∗
D) ∪ g(�∗

D)) = Ch ( f (�∗
D)) = X (h, f (�∗

D))

6= X (h, g(�∗
D)) = Ch (g(�∗

D)) ,

where the second and last equalities hold by the individual rationality of f (·) and

g(·), respectively. Therefore, (h, f (�∗
D)) weakly blocks g(�∗

D), but by Lemma 3.1,

this contradicts the stability of g(·).

Now, take a new preference relation �∗∗
d∗ of d∗ such that Ac(�∗∗

d∗ ) =

{x (d∗, f (�∗
D))}, and let �∗∗

D =
(
�∗∗

d∗ ,�∗
D−{d∗}

)
. Then, the strategy-proofness of

f (·) and g(·) implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) �∗
d∗ x (d∗, g(�∗

D)) �∗
d∗ x (d∗, g(�∗∗

D )) ,

and thus, f (�∗∗
D ) 6= g(�∗∗

D ). However, this contradicts the definition of �∗
D since∣∣Ac(�∗∗

d∗ )
∣∣ < ∣∣Ac(�∗

d∗)
∣∣ and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is complete. �

In Appendix C.2, we provide two variants of this theorem. First, we show that

the same claim holds even if stability is weaken to non-wastefulness. Second, we

also show that the stable and strategy-proof rule in the above statement can be
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replaced with the doctor-optimal stable rule. That is, if the doctor-optimal rule

is not strategy-proof, two possible policy goals, to achieve strategy-proofness and

to unambiguously improve doctor welfare (by relaxing stability requirement), are

incompatible with each other.

3.4 Concluding Remarks

This chapter studies the model of many-to-one matching with contracts, and de-

rives a number of properties that a stable and strategy-proof rule must generally

satisfy. A notable feature of our approach is that we only impose a minimal struc-

ture on hospitals’ choice function, i.e., the IRC condition, and do not rely on any

algorithmic properties of matching rules. On the one hand, this allows us to di-

rectly illuminate the joint implication of stability and strategy-proofness. On the

other hand, our abstract approach does not tell much about how to identify a stable

and strategy-proof rule in practical applications.

It remains for future research, for example, to characterize conditions with

which the cumulative offer process is the unique candidate for a stable strategy-

proof rule. As shown by Kominers and Sönmez (2013, 2014), it is both stable and

strategy-proof in the case of slot-specific priorities, even though such markets fail

to satisfy some pre-known conditions that guarantee the deferred acceptance algo-

rithm to be stable, doctor-optimal, or strategy-proof.17 Furthermore, our Example

C.2 in Appendix C.3 show that similar cases arise even if the choice functions are

not generated by slot-specific priorities. This might suggest that the condition for

the cumulative offer process to be the unique candidate could be substantially gen-

17Namely, both the unilateral substitutes condition and the law of aggregate demand may fail in
those markets.
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eralized.

Finally, it is also worth mentioning that all of our proofs share a common tech-

nique to derive a contradiction starting from a “minimal” preference profile in

terms of the number of acceptable contracts. While this technique could be also

useful elsewhere, it should be noted that it necessitates the existence of a null-

contract as well as the full preference domain. Consequently, our results do not

directly extend to an environment where the null-contract does not exist or the

preference domain is restricted, e.g., as in Kesten and Kurino (2013).
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Appendix A

Appendix to Chapter 1

A.1 Proofs

Lemma A.1. Let a, b, c, d ∈ R++. Then, a
b < a+c

b+d if and only if a
b < c

d .

Proof. It is immediate to see

a
b
<

c
d
⇐⇒ ad < bc ⇐⇒ ab + ad < ab + bc

⇐⇒ a(b + d) < b(a + c) ⇐⇒ a
b
<

a + c
b + d

.

�

Proof of Lemma 1.1. Note that the first order condition (1.2) is not valid if and

only if

∂

∂e
Prob[Y = 1|K, e]

∣∣∣∣
e=e∗

< 1,

which in turn is the case if e∗ > 1 − f (aH, K). Since ∆µ̂ < 1 by definition, Assump-

tion 1.3 implies e∗ = δ
ψ ∆µ̂ < 1 − f (aH, 1), and the proof is complete. �

Proof of Lemma 1.2. First, we show that µ̂1 is (strictly) increasing in K̂(·) for any
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fixed ê ∈ (0, e). The likelihood ratio when Y = 1 is

̂̀1(K̂, ê) =
p · f (aH, K̂L) + (1 − p) f (aH, K̂H) + ê
p · f (aL, K̂L) + (1 − p) f (aL, K̂H) + ê

.

Now suppose that K̂H increases from 0 to 1. (The case of increase in K̂L is perfectly

symmetric.) Then, the numerator and denominator increase by f (aH, 1)− f (aH, 0)

and f (aL, 1)− f (aL, 0), respectively, and

f (aH, 1)− f (aH, 0)
f (aL, 1)− f (aL, 0)

=
f (aH, 1)
f (aL, 1)

·
f (aL, 1)− f (aL,1)

f (aH ,1) f (aH, 0)

f (aL, 1)− f (aL, 0)
≥ f (aH, 1)

f (aL, 1)
,

where the inequality holds by log-supermodularity.1 Since ̂̀1 < f (aH ,1)
f (aL,1) if K̂H = 0,

by Lemma A.1, this implies ̂̀1 strictly increases in K̂H. Then, since µ̂1 is increasing

in ̂̀1, so is it in K̂H.

Then, it suffices to show that µ̂0 is decreasing in K̂. The law of iterated expecta-

tions implies

Prob[a = aH|K̂, ê] ≡ Prob[Y = 1|K̂, ê] · µ̂1 + (1 − Prob[Y = 1|K̂, ê]) · µ̂0.

Notice that both Prob[Y = 1|K̂, ê] and µ̂1 are increasing in K̂. Hence, µ̂0 is decreas-

ing in K̂ and the proof is complete. �

Lemma A.2. For any fixed K̂, ∆µ̂
(

K̂, ê
)

is a convex function of ê on [0, e].

Proof. Differentiating ∆µ̂
(

K̂, e
)

with respect to e, we obtain

∂

∂e
∆µ̂

(
K̂, e

)
= µ

(F + e)− (FH + e)[
F + e

]2 − (1 − µ)
[1 − (FH + e)]−

[
1 − (F + e)

][
1 −

(
F + e

)]2

=
(

F − FH
) { µ[

F + e
]2 − 1 − µ[

1 −
(

F + e
)]2

}
,

1Log-supermodularity implies f (aL, 0) ≥ f (aL ,1)
f (aH ,1) f (aH , 0).
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where

FH := Eθ

[
f (aH, K̂(θ))

]
and F := Eθ

[
f (K̂(θ))

]
are independent of e. Then, it is immediate to see that the first-order derivative

is increasing in e, as F − FH is a positive constant, F + e is increasing in e, and

1 − (F + e) is decreasing in e. �

Proof of Proposition 1.1. First we show the uniqueness of equilibrium for each

organizational form. Since the uniqueness of equilibrium decision rule is demon-

strated in the main text, it suffices to show the existence and uniqueness of equilib-

rium e∗. Once K̂∗ is fixed, the equilibrium e∗ = ê∗ must satisfy

e∗ =
δ

ψ
· ∆µ̂

(
K̂, e∗

)
. (A.1)

The existence of a solution to this equation follows from the standard fixed-point

arguments. The uniqueness is guaranteed by Lemmas 1.1 and A.2.

Next we show that e∗C < e∗D, where e∗C (resp. e∗D) denotes the unique equilibrium

effort level under centralization (resp. delegation). Note that Lemma A.2 implies

that

e < e∗D ⇔ e <
δ

ψ
· ∆µ̂ (K∗

D, e) .

Since Lemma 1.2 and the equilibrium condition (A.1), implies

e∗C =
δ

ψ
· ∆µ̂ (K∗

C, e∗C) <
δ

ψ
· ∆µ̂ (K∗

D, e∗C) ,

it follows that e∗C < e∗D.

For both the equilibrium decision rule and effort level are independent of γH,

the last claim of the statement is immediate and the proof is complete. �
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Proof of Proposition 1.2. As argued in the main text, it is immediate to see the

agent chooses p∗C > p0 in an equilibrium under centralization and p∗D = p0 under

delegation.2 Hence it remains to show that e∗ is higher under delegation than

under centralization. Note also that the equilibrium decision rule must be K∗
C

under centralization and K∗
D under delegation as in the baseline case.

Define ∆̂ and ̂̀1 as in the baseline case. Since the assumption of g′(1) = ∞

implies p∗C < 1 in any equilibrium under centralization,

̂̀1 (KD, ê, p0) =
f (aH, 1) + ê
f (aL, 1) + ê

>
p∗C · f (aH, 1) + (1 − p∗C) f (aH, 0) + ê
p∗C · f (aL, 1) + (1 − p∗C) f (aL, 0) + ê

= ̂̀1 (KC, ê, p∗C) .

It then follows that ∆µ̂
(
KC, ê, p∗C

)
< ∆µ̂ (KD, ê, p0) for any ê. The rest of of the proof

is exactly parallel to that of Proposition 1.1 and thus omitted. �

Proof of Proposition 1.7. The proof is by example. Suppose η = 0, β = 3, σ2
a,1 =

1, δ1 = 1, and γ − α = 1
17 . First, suppose also that σ2

ε,1 = 6. Then, S1 = 1
7

and ∆S1 = 3
9+6 − 1

7 = 2
35 . Comparing the equilibrium profit under centralization

and delegation with specialization, ΠC − ΠDS = (γ − α) − ∆S1 = 1
17 − 2

35 > 0.

Therefore, centralization is the optimal organizational form and induces e∗1,i1
=

S1 = 1
7 .3 Second, suppose that σ2

ε,1 = 7. Then, S1 = 1
8 , ∆S1 = 3

9+7 − 1
8 = 1

16 ,

and hence, ΠC − ΠDS = 1
17 −

1
16 < 0. Therefore, delegation with specialization is

optimal, which leads to e∗1,i1
= S1 + ∆S1 = 1

5 > 1
7 . �

2The existence of equilibrium under centralization follows from the standard fixed-point argu-
ment.

3Recall that delegation with no specialization is never strictly optimal when η = 0.
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A.2 Additional Results

A.2.1 State-Dependent Returns

In the baseline model in Section 1.2, we assume that the state of nature affects

the cost of K = 1 but not its return. The purpose of this section is to check the

robustness of the results when the expected return K = 1 varies across states. To

do so, suppose that instead of (1.1), the probability of success is given by

Prob[Y = 1|a, K, e, θ] =


min {α · K + f (a, K) + e, 1} if θ = θG, and

min { f (a, K) + e, 1} if θ = θB.

Let p = Prob[θ = θG]. The cost of K = 1 is γ, independently of θ. The following

assumptions are analogues to Assumptions 1.1–1.3 in Section 1.2.

Assumption A.1. The function f (·, ·) is positive, increasing in both arguments, and

log-supermodular.

Assumption A.2. It is first-best efficient to choose K = 1 if and only if θ = θG:

f (1) < γ < α + f (1).

Assumption A.3. The cost of effort is Ψ(e) = ψ
2 e2 with ψ > δ(1 − f (aH, 1)− α).

Then, we can show that the quality of the signal is increasing in K̂(θB), which

is a partial extension of Lemma 1.2.

Lemma A.3. Taking ê as fixed, ∆µ̂ is increasing in K̂B.

Proof. The proof is exactly the same as of Lemma 1.2 and thus omitted. �

When p = Prob[θ = θG] is fixed, we obtain an analogue of Proposition 1.1 as

follows.
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Proposition A.1. For any fixed p, there exists a unique equilibrium for each organizational

form. The equilibrium level of ex-post effort e∗ is higher under delegation than under

centralization.

Proof. The proof is perfectly analogue to that of Proposition 1.1 and thus omitted.

�

When p is chosen by the agent in this case, no unambiguous ranking exists be-

tween the effort levels under centralization and delegation, as discussed in Section

1.2.4. We can show, however, a weaker version of Proposition 1.2.

Proposition A.2. Suppose that the agent chooses p as well as e. Let p∗C and e∗C (resp. p∗D

and e∗D) be the levels of ex-ante and ex-post efforts in an equilibrium under centralization

(resp. under delegation). Then, it is never the case that both p∗C ≤ p∗D and e∗C ≥ e∗D.

Proof. Suppose that p∗C and e∗C be equilibrium levels of ex-ante and ex-post efforts

in an equilibrium under centralization. Then, the first order conditions imply

e∗C =
δ1

c
· ∆µ̂(K∗

C, e∗C, p∗C),

and

g′(p∗C) =
[
α + f (1)

]
∆µ̂(K∗

C, e∗C, p∗C),

which further lead to

g′(p∗C) =
c
δ

[
α + f (1)

]
e∗C.

Similarly, for an equilibrium under delegation, it is immediate to check

g′(p∗D) =
c
δ
· f (1) · e∗D,

must hold. Now suppose that e∗C ≥ e∗D. Then, the above two equations imply

g′(p∗C) > g′(p∗D), which is equivalent to p∗C > p∗D by the convexity of g. Therefore,

e∗C ≥ e∗D and p∗C ≤ p∗D cannot simultaneously hold. �

71



A.2.2 Direct Benefit of Specialization under Correlated Abilities

This section considers an extension of the model in Section 1.3, and identifies

a benefit of specialization that is independent from the equilibrium choice of K.

Throughout this section, I assume that the principal retains the decision right and

thus, K = K̂ = (0, 1) must hold in equilibrium.4 The setup is the same as in Section

1.3 except that the covariance matrix Σa is now given by

Σa =

 σ2
a,1 rσa,1σa,2

rσa,1σa,2 σ2
a,2

 ,

where r ∈ [0, 1] is the correlation coefficient.

Suppose first that a single agent i handles both tasks. Then, for any given

ei = (e1,i, e2,i),

ai

Y

 =



a1,i

a2,i

Y1

Y2


∼ N (µ, Σ) ,

where

µ =

µa

µY

 =



a1

a2

a1 + e1,i

γ + a2 + e2,i


,

4More generally, it can be shown specialization dominates no specialization if η is sufficiently
small, assuming that the two organizational forms induce the same equilibrium K. The proof for
the case of K = (1, 0) is completely analogous and thus omitted.
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and,

Σ =

Σ11 Σ12

Σ21 Σ22

 =



σ2
a,1 rσa,1σa,2 σ2

a,1 rσa,1σa,2

σ2
a,2 rσa,1σa,2 σ2

a,2

σ2
a,1 + σ2

ε,1 rσa,1σa,2

σ2
a,2 + σε,2


.

It is well known that

E[ai|Y1, Y2, êi, K̂]− E[ai] = Σ12Σ−1
22 (Y − µY) .

Therefore,

JN :=
∂E[ai|Y1, Y2, êi, K̂]

∂Y

=
1

det (Σ22)

σ2
a,1

(
σ2

a,2 + σ2
ε,2

)
− r2σ2

a,1σ2
a,2 rσa,1σa,2σ2

ε,1

rσa,1σa,2σ2
ε,2 σ2

a,2

(
σ2

a,1 + σ2
ε,1

)
− r2σ2

a,1σ2
a,2

 ,
(A.2)

where

det (Σ22) = (σ2
a,1 + σ2

ε,1)(σ
2
a,2 + σ2

ε,2)− r2σ2
a,1σ2

a,2.

Next, suppose that the principal hires two specialized agents, i.e., i1 6= i2. Then,

it is clear that Y2 (resp. Y1) contains no information regarding ai1 (resp. ai2). The

Jacobian matrix for ai1 is thus given by

JS
•,1 :=

∂E[ai1 |Y1, Y2, êi, K̂]
∂Y1

=
1

σ2
a,1 + σ2

ε,1

 σ2
a,1

rσa,1σa,2

 , (A.3)

and

JS
•,2 :=

∂E[ai2 |Y1, Y2, êi, K̂]
∂Y2

=
1

σ2
a,2 + σ2

ε,2

rσa,1σa,2

σ2
a,1

 .
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Comparing these with the columns of JN, it is can be verified that the posterior

becomes more sensitive when an agent is specialized, unless r = 0. As a conse-

quence, specialization is more profitable when η is sufficiently small. (Recall that

η represents the cost of specialization, as it measures the degree of synergies that

cannot be utilized under specialization.)

Proposition A.3. Suppose that the principal has the decision right and thus K = K̂ =

(0, 1). If r > 0, there exists a cutoff η◦ > 0 such that specialization dominates no special-

ization if and only if η ≤ η◦.

Proof. By definitions, the sum of effective efforts is given by

e∗1,i + e∗2,i = (1 + η)
[
δ1

(
JN

1,1 + JN
1,2

)
+ δ2

(
JN

2,1 + JN
2,2

)]
, (A.4)

in the case of no specialization (i.e., i1 = i2 = i), and

e∗1,i1 + e∗2,i2 =
[
δ1JS

11 + δ2JS
21

]
+

[
δ1JS

12 + δ2JS
22

]
, (A.5)

in the case of specialization (i.e., i1 6= i2). For the value of (A.4) is increasing in

η while that of (A.5) is constant, the statement holds true if the former is smaller

than the latter at η = 1.

To complete the proof, thus, it suffices to show that JN
•,t � JS

•,t for each t ∈ {1, 2},

as long as r > 0. For t = 1, it follows from equations (A.2)–(A.3) that

JN
11 =

σ2
a,1

(
σ2

a,2 + σ2
ε,2

)
− r2σ2

a,1σ2
a,2

(σ2
a,1 + σ2

ε,1)(σ
2
a,2 + σ2

ε,2)− r2σ2
a,1σ2

a,2
<

σ2
a,1

σ2
a,1 + σ2

ε,1
= JS

11,

and

JN
21 =

rσa,1σa,2σ2
ε,2

(σ2
a,1 + σ2

ε,1)(σ
2
a,2 + σ2

ε,2)− r2σ2
a,1σ2

a,2

=
rσa,1σa,2

(σ2
a,1 + σ2

ε,1) +
1

σ2
ε,2
[(1 − r2)σ2

a,1σ2
a,2 + σ2

a,2σ2
ε,1]

< JS
12,

74



since 1 − r2 ≥ 0. The proof for t = 2 is perfectly symmetric and thus omitted. �
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Lemma 2.1. By definition,

Π̃(b′, ϑ′, L)− Π̃(b′, ϑ, L) = 2F(b − b′) +
[
(2∆ − b′)

b′ϑ′

c
− (2∆ − b)

bϑ

c

]
L.

Since b′ > b, the first term on the RHS is negative and hence, the second term must

be strictly positive if the LHS is non-negative. Then, the statement immediately

follows. �

Proof of Proposition 2.1. To begin, define βIC
L > βF

L by Π̃(βIC
L , H, L) = Π̃(βF

L, L, L),

i.e., βIC
L is the highest possible offer that a L-type principal can have an incentive

to offer at date 1. Note that by definition, the D1 criterion never deletes (b, H) for

b ≥ βIC
L .

First, suppose that βIC
L ≥ βF

H. Define a belief system ϑ∗(·) by ϑ∗(b) = L if

b < βIC
L and ϑ∗(b) = H if b ≥ βIC

L . Associated with this ϑ∗(·), it is apparent that

(bH, bL) = (∅,∅) forms a PBE. For any b < βIC
L , Π̃(b, ϑ, H) ≥ Π̃(βF

H, H, H) implies

Π̃(b, ϑ, H) ≥ Π̃(βIC
L , H, H) and hence by Lemma 2.1, Π̃(b, ϑ, L) > Π̃(βIC

L , H, L).
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Therefore, (b, L) is not deleted for b < βIC
L and ϑ∗(·) survives the D1 criterion.

Second, suppose that βIC
L < βF

H = β∗
H, and let ϑ∗(·) be the same belief system

as in the previous case. Again, it is immediate to check (bH, bL) = (∅,∅) with

this ϑ∗(·) is an equilibrium. In this case, b < βIC
L directly implies Π̃(b, ϑ, H) ≤

Π̃(b, H, H) < Π̃(β∗, H, H) and hence, (b, L) is not deleted for any b < βIC
L .

Finally, suppose that βIC
L < βF

H = βPC
H . Let ϑ∗(·) be a belief system satisfying (i)

ϑ∗(b) = H for all b ≥ βIC
L and all b ∈ B IC

H , and (ii) ϑ∗(b) ∈ {H, L} for all b, where

B IC
H :=

{
b ∈ [0, 1] : Π̃(b, L, H) ≥ Π̃(βF

H, H, H)
}

.

Notice that supB IC
H < βF

H always holds (as long as B IC
H is non-empty). Then, we

can check any such belief system can support (bH, bL) = (∅,∅) as an equilibrium.

Since either (b, H) or (b, L) must survive the D1 criterion for each b ∈ [0, 1], we can

always pick ϑ∗(·) that satisfies the D1 criterion. �

Proof of Proposition 2.2. The “only if” part is immediate because the principal can

always secure the profits of Π̃(βF
θ , θ, θ) by delay her offer. To show the “if” part,

suppose that an arbitrary b ∈ [0, 1] satisfies the condition, and let ϑ∗(·) be the belief

system such that ϑ(b′) = L if b′ < b, ϑ(b′) = M if b′ = b, and to ϑ(b′) = H

if b′ > b. Then, we can easily check that it is optimal for each θ-type principal to

make an exploding offer bθ = b, given the agent’s belief system ϑ∗(·): First, if θ = L

and the principal offers bL = b′ < b, her profit will be Π̃(b′, L, L) ≤ Π̃(βF
L, L, L) ≤

Π̃(b, M, L), where the first and second inequalities hold by the definition of βF
L ≡ β∗

L

and by assumption, respectively. Hence the L-type principal has no incentive to

deviate by bL = b′ < b. Similarly, it is never profitable for the H-type principal

to offer bH = b′ > b, because by definitions, either b′ 6∈ Ac(H) or Π̃(b′, H, H) ≤

Π̃(βF
H, H, H) ≤ Π̃(b, M, H). Next, suppose that the principal offers bL = b′ > b.

If this is strictly profitable, i.e., if b′ ∈ Ac(H) and Π̃(b′, H, L) > Π̃(b, M, L), then
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Lemma 2.1 implies Π̃(b′, H, H) > Π̃(b, M, H), but this is a contradiction to the

previous argument. The last case, θ = H and bH = b′ < b, is also guaranteed to be

never profitable by Lemma 2.1. In sum, (bH, bL) = (b, b) is an equilibrium outcome

with the belief system ϑ∗(·). Since Lemma 2.1 directly implies ϑ∗(·) satisfy the D1

criterion, the proof is complete. �
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Appendix C

Appendix to Chapter 3

C.1 Additional Definitions

This section provides the definitions of several existing concepts that are referred

to but not defined in the main text. To begin, the following substitutes conditions,

introduced by Hatfield and Milgrom (2005) and Hatfield and Kojima (2010), play a

central role in the matching with contracts literature.1

Definition C.1. Hospital h’s choice function satisfies the substitutes condition if

there do not exist contacts x and subsets X′, X′′ ⊂ X of contracts such that

(i) x /∈ Ch(X′ ∪ {x}) and (ii) x ∈ Ch(X′ ∪ X′′ ∪ {x}). �

Definition C.2. Hospital h’s choice function Ch(·) satisfies the unilateral substitutes

condition if there do not exist contracts x, y ∈ X and a subset X′ ⊂ X of con-

tracts such that (i) d (x) 6∈ {d (x′)}x′∈X′ , (ii) x /∈ Ch(X′ ∪ {x}), and (iii) x ∈

Ch(X′ ∪ {x, y}). �

1See also Afacan and Turhan (2015) for the relationships among these conditions.
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Definition C.3. Hospital h’s choice function Ch(·) satisfies the bilateral substitutes

condition if there do not exist contracts x, y ∈ X and a subset X′ ⊂ X of con-

tracts such that (i) d (x) , d (y) 6∈ {d (x′)}x′∈X′ , (ii) x /∈ Ch(X′ ∪ {x}), and (iii) x ∈

Ch(X′ ∪ {x, y}). �

Hatfield and Milgrom (2005) also introduce the following condition.

Definition C.4. Hospital h’s choice function Ch(·) satisfies the law of aggregated

demand if X′ ⊂ X′′ implies |Ch(X′)| ≤ |Ch(X′′)| for all X′, X′′ ⊂ X. �

Kominers and Sönmez (2013, 2014) study the markets where the hospitals’

choice functions are induced by slot-specific priorities. They show that such choice

functions may violate the unilateral substitutes condition, but always satisfy the

bilateral substitutes condition.

Definition C.5. A collection (�h,s)1≤s≤qh of linear orders, called slot-specific priorities,

over {x ∈ X : h (x) = h} ∪ {∅} induces a choice function for hospital h as follows:

For each X′ ⊂ X, Ch(X′) = {x1, . . . , xqh} − {∅}, where xs is recursively defined by

letting

• X′
s = X′

s−1 − {xs−1}, where X′
0 and xs−1 are defined to be X′ and ∅, and,

• xs be the maximal element in X′
s ∪ {∅}, with respect to �h,s,

for each s = 1, . . . , qh. �

Hatfield and Kojima (2010) show that the cumulative offer process, originally de-

fined by Hatfield and Milgrom (2005), can find a stable allocation whenever the

bilateral substitutes condition is satisfied, under which the deferred acceptance al-

gorithm may fail to do so.2

2The following definition is equivalent to the one by Hatfield and Milgrom (2005). Although
Hatfield and Kojima (2010) adopt a slightly different definition, Hirata and Kasuya (2014) show that
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Definition C.6. Given (CH(·),�D), the cumulative offer process proceeds as follows.

• Initial condition: Let D0 = D and P0 = ∅.

• Step t ≥ 1: Each d ∈ Dt−1 offers her best contract, xd
t , among those remaining

(i.e., among X \ Pt−1). Let Pt = Pt−1 ∪ {xd
t }d∈Dt−1 be the pool of contracts

that have been offered up to this step. Among Pt, each hospital h holds the

best combination of contracts, Ch(Pt). Finally, let Dt be the set of doctors

for whom (i) no contract is currently held by any hospital and (ii) not all

acceptable contracts have been offered yet, i.e.,

Dt = {d ∈ D : d 6∈ [Ch(Pt)]D for all h ∈ H and Ac(�d) \ Pt 6= ∅}. (C.1)

Proceed to step t + 1 if Dt is non-empty and terminate otherwise.

• Outcome: When the process terminates at step T, its outcome is
∪

h∈H
Ch(PT).

�

C.2 Additional Results

This section provides two variants of Theorem 3.3 in Chapter 3. First, we show that

stability in Theorem 3.3 can be replaced with the following weaker requirement:

An individually rational allocation X′ is said to be non-wasteful if there is no other

individually rational allocation X′′ with X′′ ) X′.3 If we take Ch(X′) = X (h, X′)

the two definitions are outcome-equivalent if every hospital’s choice function satisfies the bilateral
substitutes condition and the IRC condition. For the properties of the cumulative offer process, see
also Afacan (2014).

3It is immediate to verify that under the IRC condition, stability implies non-wastefulness as
defined above. This is not the case in general; see Example C.3 in Appendix C.3.
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as a feasibility constraint, the above condition roughly says no hospital can ac-

commodate any unmatched doctors without crowding out other (already matched)

doctors. It reduces to the standard definition in assignment problems, if we en-

dow each hospital (or object) h with Ch(·) such that Ch(X′) = X (h, X′) if and

only if |X (h, X′)| ≤ qh, where qh is the “quota” of h.4 In addition, the current

matching-with-contracts setup allows a richer class of constraints that could be of

practical relevance. For example, suppose that a school offers two distinct pro-

grams, and they require some common resources at different factor intensity (e.g.,

one is mathematics-teacher intensive while the other is English-teacher intensive).

Then, the total number of students that these programs can accommodate is not

constant but depends on its composition.

Theorem C.1. Suppose that every hospital h ∈ H has a choice function Ch(·) that satisfies

the IRC condition. Then, no individually-rational and strategy-proof rule strictly dominates

a non-wasteful and strategy-proof rule.

Proof. In the proof of Theorem 3.3, the stability of g(·) is needed only to guarantee

the existence of d∗ satisfying (3.1). Hence it suffices to prove this part from non-

wastefulness. Indeed, if x (d, f (�∗
D)) �d x (d, g(�∗

D)) implies x (d, g(�∗
D)) = ∅

for all d ∈ D, it follows that f (�∗
D) ) g(�∗

D), which directly contradicts non-

wastefulness. �

Actually, this theorem can be slightly more generalized, since the choice func-

tions are relevant for individual rationality and non-wastefulness only through

whether Ch(X′) = X (h, X′) or not.

4Of course, the feasibility constraint does not uniquely pin down CH(·), because it imposes no
restriction on Ch(X′) when X (h, X′) is infeasible. However, this additional degree of freedom is
irrelevant for the current purpose (see Corollary C.1 below).
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Corollary C.1. Suppose that CH(·) and C′
H(·) are two profiles of choice functions satisfy-

ing the IRC condition such that Ch(X′) = X (h, X′) ⇒ C′
h(X′) = X (h, X′) for all h ∈ H

and X′ ⊂ X. Then, no strategy-proof rule that is individually rational with respect to

CH(·) strictly dominates a strategy-proof rule that is non-wasteful with respect to C′
H(·).

Proof. The proof is exactly the same as of Theorems 3.3 and C.1 and thus omitted.

�

Second, we can show the second-best optimality of the doctor-optimal stable

rule, given its existence, no matter whether it is strategy-proof or not.

Theorem C.2. Suppose that every hospital h ∈ H has a choice function Ch(·) that satisfies

the IRC condition. Then, no individually-rational strategy-proof rule strictly dominates the

doctor-optimal stable rule (whether strategy-proof or not).

Proof. Towards a contradiction, suppose that f (·) is individually rational and

strategy-proof, the doctor-optimal stable rule X∗(·) is well-defined, and that f (·)

strictly dominates X∗(·). Let �∗
D ∈ P be a preference profile such that f (�∗

D) 6=

X∗(�∗
D) and[
f (�D) 6= X∗ (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD,

which exists by assumption. Then, for the same reasoning as in the proof of

Theorem 3.3, it follows from the stability of X∗(·) that there exists d∗ ∈ D with

x (d∗, f (�∗
D)) �∗

d∗ x (d∗, X∗(�∗
D)) �∗

d∗ ∅.

Now, let �∗∗
D =

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a truncation of �∗
d∗ above

x (d∗, X∗(�∗
D)), i.e., a preference such that

Ac(�∗∗
d∗ ) = {x ∈ X : x �∗

d∗ x (d∗, X∗(�∗
D))} ,
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and

[
x �∗∗

d∗ y ⇐⇒ x �∗∗
d∗ y

]
for all x, y ∈ Ac(�∗∗

d∗ ).

On the one hand, the strategy-proofness of f (·) implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) 6= ∅.

On the other hand, x (d∗, X∗(�∗∗
D )) = ∅ must also hold by doctor-optimality.5

These together imply f (�∗∗
D ) 6= g(�∗∗

D ), which contradicts the definition of �∗
D,

and the proof is complete. �

C.3 Examples

This section provides the examples that are referred to in Chapter 3 and the previ-

ous section. The first example illustrates that Lemmas 3.1–3.2 do not generally hold

true without the IRC condition. As a consequence, multiple stable and strategy-

proof rules exist in this example.

Example C.1. Let D = {d1, d2}, H = {h}, and X = {x1, x2}, where for each

i ∈ {1, 2}, xi is a contract between di and h. Suppose that each doctor di has a

preference relation with xi �di ∅, and that hospital h’s choice function is such that

Ch({x1}) = x1, Ch({x2}) = x2, but Ch({x1, x2}) = ∅. It is immediate to check Ch(·)

violates the IRC condition. Note also that at this (CH(·),�D), allocation {x1} is not

blocked by any coalition, although it is weakly blocked by (h, {x1, x2}).6 That is,

the conclusion of Lemma 3.1 fails to hold. Consequently, both {x1} and {x2} are

5If x (d∗, X∗(�∗∗
D )) 6= ∅, by construction, any (h, X′′) that blocks X∗(�∗∗

D ) at �∗
D must also block

X∗(�∗∗
D ) at �∗∗

D . Thus X∗(�∗∗
D ) is stable at �∗

D, but this contradicts the doctor-optimality of X∗(�∗
D)

for x (d∗, X∗(�∗∗
D )) �d∗ x (d∗, X∗(�∗

D)).

6The second requirement of weak blocking is vacuously satisfied since Ch({x1, x2}) = ∅.
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stable at this profile, and the conclusion of Lemma 3.2 also fails. Lastly, define for

each i ∈ {1, 2} a rule f i(·) by

f i(�′
D) =


{xi} if xi �′

di
∅,

{xj} if ∅ �′
di

xi and xj �dj ∅

∅ otherwise,

where j ∈ {1, 2} − {i}. Then it can be easily checked that both f 1(·) and f 2(·) are

stable and strategy-proof. �

The second is an example of a market where (i) the rule induced by the cumu-

lative offer process is stable and strategy-proof but not doctor-optimal, and (ii) a

hospital’s choice function cannot be induced by any slot-specific priorities.

Example C.2. Let D = {d1, d2}, H = {h}, and X = {x1, y1, x2, y2}, where xi and yi

denote two distinct contracts that involve doctor di (and hospital h). Suppose that

hospital h’s choice function is induced by

�h: {y1, y2} �h {x1, y2} �h {y1} �h {x2} �h {x1} �h {y2} �h ∅.

Notice that the resulting choice function (vacuously) satisfies the bilateral substi-

tutes condition and hence, the cumulative offer process defines a stable rule, as

summarized in Table C.1.7

To begin, we verify that the choice function induced by the above �h (over

the subsets of contracts) cannot be induced by any slot-specific priorities (over

contracts). To see this, suppose contrarily that (�h,s)1≤s≤qh induces the same choice

function. Since Ch({x1, x2}) = {x2} and Ch({y1, x2}) = {y1}, there must exist s∗

7See Definitions C.3 and C.6 in Appendix C.1 for the definitions of the bilateral substitutes
condition and the cumulative offer process.
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x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {y1, y2} {x1, y2} {y1} {x1, y2} {x1}

y1, x1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

x1,∅ {x2} {x1, y2} {x2} {x1, y2} {x1}

y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

∅ {x2} {y2} {x2} {y2} ∅

Table C.1: Outcomes of the cumulative offer process in the proof of Example C.2.

such that (i) y1 �h,s∗ x2 �h,s∗ x1 and (ii) x1 6∈ Ac(�h,s) for all s 6= s∗. Such priorities,

however, cannot rationalize Ch({x1, x2, y2}) = {x1, y2}.

Next, we show that this rule is strictly dominated by another stable rule, while

it is strategy-proof. To check the first claim, suppose that �D is such that

�d1 : x1 �d1 y1 �d1 ∅, and

�d2 : x2 �d2 y2 �d2 ∅.

The outcome of the cumulative offer process at this preference profile is {y1, y2},

as shown in the colored cell in Table C.1. This allocation is strictly dominated by

{x1, y2}, which is also stable.

It remains to verify strategy-proofness.8 First, suppose �d2 = (x2, y2,∅) or

(x2,∅). In this case, doctor d1 is assigned y1 if y1 ∈ Ac(�d1) and ∅ otherwise.

Second, suppose that �d2 = (y2, x2,∅), (y2,∅), or (∅). In this case, doctor d1 is

assigned his most preferred contract. In either case, it is apparent that d1 has no

incentive to manipulate. Symmetrically, doctor d2 is assigned y2 if y2 ∈ Ac(�d2)

8For the remainder of this proof, we slightly abuse notation and identify a preference relation
with an ordered list of acceptable contracts. For example, �d1= (x1, y1,∅) means �d1 is a preference
such that x1 �d1 y1 �d1 ∅.
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and ∅ otherwise when �d1 = (x1, y1,∅), (y1, x1,∅), or (y1,∅); he can obtain his

best contract by truth-telling when �d1 = (x1,∅) or (∅). Hence, doctor d2 does

not have an incentive to manipulate either, and the proof is complete. �

The last example shows that non-wastefulness as defined in Appendix C.2 does

not necessarily follow from stability in the absence of IRC condition.

Example C.3. Let D = {d1, d2}, H = {h1, h2}, and X = {x1, x2}, where for each

i ∈ {1, 2}, xi is a contract between di and hi. Suppose that each di has a preference

relation such that xi �di ∅, and each hi has a choice function Ch(·) such that

Ch({x1, x2}) = xi and Ch(X′) = ∅ for all X′ ( X. Then, allocation X′ = ∅ is

wasteful but stable. �
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