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Abstract

This thesis explores the opportunities for economic research that arise from importing

empirical methods from the field of machine learning.

Chapter 1 applies inductive learning to cross-sectional asset pricing. Researchers have

documented over three hundred variables that can explain differences in cross-sectional

stock returns. But which ones contain independent information? Chapter 1 develops a

framework, deep conditional portfolio sorts, that can be used to answer this question and

that is based on ideas from the machine learning literature, tailored to an asset-pricing

application. The method is applied to predicting future stock returns based on past stock

returns at different horizons, and short-term returns (i.e. the past six months of returns)

rather than medium- or long-term returns are recovered as the variables that convey almost

all information about future returns.

Chapter 2 argues that machine learning techniques, although focusing on predictions,

can be used to test theories. In most theory tests, researchers control for known theories.

In contrast, chapter 2 develops a simple model that illustrates how machine learning can

be used to conduct an inductive test that allows to control for some unknown theories, as

long as they are covered in some way by the data. The method is applied to the theory that

realization utility and nominal loss aversion lead to the disposition effect (the propensity

to sell winners rather than losers). An inductive test finds that short-term price trends

and other features of the price history are more important to predict selling decisions than

returns relative to purchase price.

Chapter 3 provides another perspective on the disposition effect in the more traditional
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spirit of behavioral finance. It assesses the implications of different theories for an investor’s

probability to sell a stock as a function of the stock’s return and then tests those implications

empirically. Three different approaches that have been used in the literature are shown

to lead to the, at first sight, contradictory findings that the probability to sell a stock is

either V-shaped or inverted V-shaped in the stock’s return. Since these approaches compute

different conditional probabilities, they can be reconciled, however, when the conditioning

set is taken into account.
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Introduction

In 1997, NASA researchers Michael Cox and David Ellsworth described the problem of

big data for the field of computational fluid dynamics. Scientific visualization had become

difficult because data sets had become too large to store them in the memory of even the

largest graphics workstations. To the best of my knowledge, this marked the first article

to use the phrase “big data”. Almost twenty years later, the sentiment about big data has

shifted remarkably: Big data is widely regarded as an opportunity rather than a problem,

for businesses, policy and scientific research.

The market for so-called big data analytics has been estimated to grow to $ 125 billion

by the end of 2015,1 that are split across infrastructure, software and services. Big data sets

have been used to predict election outcomes or the spread of diseases, or to track economic

activity in real-time. Research that involves big data is conducted in a variety of fields,

including economics: For example, economists have successfully analyzed large data sets to

estimate teacher value-added effects or the effects of health care expansion in the US.2

There is a slightly more subtle way in which big data has started to affect economics: It

has opened the door for a constructive dialogue between computer scientists and economists

about the empirical methods that are used in either field. At first glance, it appears that

the respective methods are quite different: Empirical economics is particularly interested

in estimating causal effects or parameters of structural models and inference procedures

1http://www.forbes.com/sites/gilpress/2014/12/11/6-predictions-for-the-125-billion-big-data-analytics-
market-in-2015/

2For a recent overview of applications in economic research, see Einav and Levin (2014).
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typically target coefficient estimates. In contrast, the goal of machine learning (the empirical

arm of computer science that economics mostly interacts with) is usually to come up

with prediction functions, often estimated non-parametrically, and statistical guarantees

commonly solely target the accuracy of predictions. The methods of machine learning are

philosophically close to the principle of inductive reasoning, and the terms “machine learning”

and “inductive learning” are often used interchangeably.3

On the other hand, there are also similarities between the approaches: In many prob-

lems in economics one is in fact interested in making accurate predictions rather than in

assessing parameter estimates (e.g. predicting firm defaults or future economic activity).

Furthermore, some problems in economics can be turned into prediction problems, even

though traditionally they were viewed differently (e.g. instrumental variable estimation or

finding an optimal set of controls).

I took this thesis as an opportunity to study the empirical approach of machine learning

in more detail and to think about whether it can beneficially be applied to economic ques-

tions. The empirical applications in this thesis are in the field of finance but my conclusion

is that inductive learning can find fruitful applications in many areas of economics.

Chapter 1 is an attempt to see how far one can push the paradigm of inductive learning

in an application to cross-sectional asset pricing. Over the past forty years, researchers have

documented over three hundred variables that can explain differences in cross-sectional

stock returns. But how many of these variables contain independent information? Standard

techniques like portfolio sorts and Fama-MacBeth regressions cannot easily answer this

question when the number of candidate variables is large and when cross-terms might

be important as well. Chapter 1 develops a framework, deep conditional portfolio sorts,

that can be used in this context and that is based on ideas from the machine learning

3Incidentally, this is also close to Sherlock Holmes’ modus operandi that he describes in Doyle (1892) as
follows:

Let me run over the principal steps. We approached the case, you remember, with an absolutely
blank mind, which is always an advantage. We had formed no theories. We were simply there to
observe and to draw inferences from our observations. [...]

2



literature, tailored to an asset-pricing application. The method is purely inductive in the

sense that we let an algorithm choose the most important variables from a large set of

candidate variables based on past data without imposing any prior knowledge. While this

may sound somewhat extreme, I think of it as a useful benchmark: The algorithm effectively

exploits all systematic variation that we could hope to explain with theory. The method

is then applied to predicting future stock returns based on past stock returns at different

horizons, and short-term returns (i.e. the past six months of returns) rather than medium-

or long-term returns are recovered as the variables that convey almost all information about

future returns.4 A trading strategy based on these findings has Sharpe and information

ratios that are about twice as high as in a Fama-MacBeth framework that accounts for

two-way interactions. The second part of the paper goes beyond the prediction exercise and

tries to shed light on how the black box model combines these past return variables to come

up with superior predictions.

Chapter 2 argues that machine learning techniques, although focusing on predictions,

can be used to test theories. In most theory tests, which we call deductive, researchers control

for the known theories. In contrast, chapter 2 develops a simple model that illustrates how

machine learning can be used to conduct an inductive test. These tests allow for one to

control not just for known theories but some unknown theories, as long as they are covered

in some way by the data. The method is then applied to a classic theory in behavioral finance:

that realization utility and nominal loss aversion lead to the disposition effect. A deductive

test replicates the original finding that investors are more likely to sell winners than losers

(relative to purchase price) in their portfolios (the disposition effect). An inductive test,

however, finds that other features of the price pattern since purchase are more important

to predict selling decisions; short-term trends seem more important, as does the current

price relative to the distribution of past prices. This suggests that realization utility and

nominal loss aversion are not the most relevant motives of investment choices but that the

4While this chapter outlines the method and illustrates it using past return variables, a larger set of predictors
(currently one hundred) is considered in ongoing work.
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disposition effect could proxy for some other theory.

Chapter 3 provides another perspective on the disposition effect in the more traditional

spirit of behavioral finance. It assesses the implications of different theories for an investor’s

probability to sell a stock as a function of the stock’s return and then tests those implications

empirically. Three different approaches that have been used in the literature are shown to

lead to the, at first sight, contradictory findings that the probability to sell a stock is either V-

shaped or inverted V-shaped in the stock’s return. Since these approaches compute different

conditional probabilities, they can be reconciled, however, when the conditioning set is taken

into account. The conclusion is that realization utility is rejected as an explanation of the

disposition effect whereas a particular version of prospect theory appears to be consistent

with it.

The extent to which machine learning methods and big data will leave a footprint in

(economic) research is yet unclear. Expectations run high and some have already declared

the end of traditional science.5 My own view is more pragmatic: Machine learning methods

can assist researchers to find structure in data sets but they do not replace the frequent need

for a good research design. Big data sets provide potentially exciting opportunities but they

do not replace the need to define an interesting research question.6 The process of scientific

discovery will almost certainly evolve differently from what we imagine but expanding the

toolkit and the data basis should be universally good (at least, weakly).

5http://archive.wired.com/science/discoveries/magazine/16-07/pb_theory

6In conversations with classmates, we referred to that as the big data curse: The difficulty of turning access to
large and promising data sets into well-defined research questions.
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Chapter 1

Deep conditional portfolio sorts: The

relation between past and future stock

returns1

1.1 Introduction

Consider the challenge of a portfolio manager who wants to utilize past information to

estimate expected returns at the firm level. He has at his disposal an overwhelming set

of potentially correlated predictor variables as documented by a number of recent survey

papers. Subrahmanyam (2010) surveys 50 earnings-based return predictive signals, McLean

and Pontiff (2012) document 82, Harvey et al. (2013) and Green et al. (2013) both extend

the list to around 330. These variables range from classic accounting-based variables like

book-to-market to return-based variables like the stock return over the previous year to more

exotic ones like the creativity of a stock’s ticker. Figure 1.1 shows two graphs from Harvey

et al. (2013) and Green et al. (2013) that illustrate the rate of discovery of predictor variables

1Co-authored with Benjamin Moritz
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over time.2 Both panels show a strong upward trend in the number of published (Harvey

et al.) or publicly available (Green et al.) articles that report new predictor variables of

returns, particularly in the last decade. Many of these variables might interact in non-trivial

ways, which increases the set even more. In addition, the literature suggests a number of

stand-ins for many variables (e.g. value or quality); which one should the manager pick?

On top of these questions lurks the risk of overfitting the data with any estimation method

that the manager might use, rendering the analysis worthless for new observations. How

should one then go about estimating expected returns while taking all of these issues into

account?

The literature in empirical asset pricing provides a few methods to assist the manager in

his decision-making. As we will show, however, two prominent methods, portfolios sorts

and Fama-MacBeth regressions, can only deal with a subset of the questions posed above.

We suggest an alternative approach that is motivated by the method of conditional portfolio

sorts but that extends easily to large sets of predictor variables and flexibly deals with their

interactions. In contrast to how conditional portfolio sorts are usually applied, we estimate

both the optimal conditioning variables and associated optimal thresholds from the data.

Our contribution to the literature is threefold: First, we provide a framework that can

be used to organize different methods of estimating expected returns. The framework

illustrates that these methods can be thought of as different approximations of a conditional

expectation and it can be used to evaluate the relative merits of different techniques on

simple metrics. We argue that, within this framework, portfolio sorts and Fama-MacBeth

regressions, are not suited to evaluate the independent information in the entirety of many

cross-sectional predictor variables and their potential interactions.

Second, we import ideas from the machine learning literature and tailor them to a

financial application in order to produce a model that works in this context. While our

method is data-driven in nature, we are careful to develop valid out-of-sample validations

2Note that these papers use a different terminology: Predictor variables are factors in Harvey et al. (2013)
and return-predictive signals in Green et al. (2013).
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of the model. As the machine learning literature is often criticized for producing black-

box predictions, we put particular emphasis on new measures to extract interpretable

information about the structure of the estimated prediction function.

Third, we apply our methodology to past-return based prediction of future returns,

and we recover short-term returns (i.e. the past six most recent one-month return) as the

most important predictors. Implementable trading strategies based on our findings have

a risk-adjusted monthly return of around 2 percent per month, with an information ratio

that is about three times as high as the information ratio that can be achieved in a linear

framework that does not account for non-linearities and variable interactions and twice as

high as in a Fama-MacBeth framework that accounts for two-way interactions. Transaction

costs cannot account for our results.

While this paper focuses on a particular application, the methodology can be applied

more generally and it has interesting implications for the analysis of cross-sectional predictor

variables going forward that we discuss in the conclusion.

We start by documenting some results that are based on standard methodologies in

finance. We show that, if the investor above had used those methodologies to estimate

future returns from past returns, he could have made reasonable returns of around 1 percent

per month (after controlling for risk factors) with information ratios of about 1. We also

show that, had the investor taken potential two-way interactions between past returns into

account, he could have earned similar monthly returns at an information ratio of 1.3, that is,

at much reduced risk. Similarly, when we repeat Fama and French (2008)’s exercise and

extend it to a number of other variables, we show that there are important interactions

between past returns and firm fundamentals.

These results pose a challenge for existing methodologies when the goal is to evaluate

many variables in a joint framework. The portfolio sort methodology, a dominant method

in analyzing cross-sectional predictor variables,3 each month (or year) sorts stocks into three

to ten portfolios based on the value of a particular variable. In the next step, subsequent

3See the survey of Green et al. (2013).
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returns for each portfolio are calculated and it is checked whether there is a monotone

relation between the sorting variable and these subsequent portfolio returns. In addition,

researchers often compute the equal- or value-weighted hedge return of going long (short)

the highest quantile portfolio and going short (long) the lowest quantile portfolio. The

relevance of the sorting variable is then assessed by comparing the hedge return to some

equilibrium model of asset prices (e.g. the capital asset pricing model) and/or by assessing

the monotonicity of the returns over deciles. With regard to the former, a sorting variable is

considered relevant if the hedge return strategy makes abnormal returns that are statistically

different from zero. With regard to the latter, Patton and Timmermann (2010) provide a test

for monotonicity in one- or two-variable sorts. The portfolio sort methodology is a powerful,

non-parametric, tool that works best in low dimensional cases. Problems arise if returns are

to be sorted on more than two or three predictor variables as there will be typically be few

stocks in each portfolio. But this makes it challenging to control for information contained

in other variables or, as Fama and French (2008) put it, "sorts are awkward for drawing

inference about which anomaly variables have unique information about average returns."

Multivariate Fama-MacBeth regressions are able to address this concern by showing

the marginal effect of each predictor variable once all others are controlled for. The

methodology is based on estimating a cross-sectional regression in each period and averaging

the coefficient estimates over time. This works well with a larger number of predictor

variables. But when we include interactions between predictor variables, this methodology

reaches its limit, too: Even if only fifty variables are considered jointly, the total number of

regression coefficients that include all two-way interactions (and no higher-order interactions)

is 1275, higher than the number of companies in early months of the sample, and higher

than the number of companies throughout the entire sample if the sample is split by firm

size first as in Fama and French (2008). Second, as Fama and French note, results can be

vulnerable to influential observations of extreme returns. With this in mind, Green et al.

(2014) "view it as infeasible to examine non-linearities in RPS-returns relations in the manner

undertaken in Fama and French (2008)."
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We suggest a method that is based on the well-known idea of conditional portfolio

sorts that is designed to address the aforementioned challenges and that can account for

arbitrary interaction terms.4 Conditional portfolio sorts arrange firms into groups based on

the value of some variable (e.g. book-to-market). Within each group, stocks are then sorted

again based on the value of some other variable. Sorting variables and sorting values are

typically chosen based on a-priori reasoning. We start from the assumption that neither the

sorting variable nor the sorting value are known and need to be estimated. Furthermore,

conditional sorts are typically conducted for no more than two levels (that is, stocks are

sorted twice) and the same sorting variable is used in all branches on the second level. We

estimate sorts at deeper levels (motivating the method’s name in the title) and allow for

flexible variable selection at each branch.

The optimization problem is computationally challenging but can be solved with insights

from the machine learning literature. The solution follows a simple algorithm that, for each

portfolio of firms and starting from the portfolio of all firms (the entire data set), splits the

firms in the portfolio into two new groups. The algorithm finds the sorting variable and

associated sorting value that minimize a loss function over the data in the two resulting

groups. The optimization is repeated at every non-terminal node using the remaining

observations as long as that number is not too small and there is still a split of the data that

significantly improves upon the value of the loss function.

There are two well-known and related problems with this approach. First, since the

optimization proceeds stepwise, the variables and sorting values that are selected at each

point need not be globally optimal. But since the sorting rule is discrete, any error in the

estimation of the sorting variable and sorting value could have a large impact on the model’s

predictions. Second, the approach is data-driven and easily overfits the data. We, therefore,

need to take great care to make sure that the estimates are valid out-of-sample.

The solution that we employ is based on model-averaging. We estimate deep conditional

4The finance literature is somewhat imprecise about the distinction between interaction terms and non-
linearities, and often uses both terms interchangeably. We reserve "interactions" for cross-products between two
variables, and we think of "non-linearities" as higher-order polynomial terms with respect to a single variable.
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portfolio sorts many times, with different subsets of regressors and on different subsets of

the data, and combine the estimates from all models into a final prediction. The rationale is

that by averaging estimates that come from models that are de-correlated in this manner,

one can obtain different but related signals about the true underlying process, even if the

simple underlying models are not entirely correct. At the same time, model-averaging

helps with the overfitting problem because only subsets of the data and predictor variables

are used in each model. The idea is grounded in the computer science literature and has

been successfully applied in many contexts. We find that deep conditional portfolio sorts

combined with model-averaging produces very accurate predictions of expected returns.

The main drawback of averaging over many models is that results are not as easy to

interpret as a single deep conditional sort. In order to shed light on the mechanism, we

suggest a number of evaluation measures. We compute a measure of predictor variable

importance that can be interpreted similarly to t-statistics in regressions. In addition, we

develop a way to compute partial derivatives for each predictor variable so that we are able

to talk about directional effects of specific variables. We also run diagnostic checks to see

whether the predictions from the model can be explained by a simple linear regression on

our predictor variables (which would speak against the importance of interaction effects).

The method takes into account that a predictor variable’s influence might vary over

time.5 We set up the out-of-sample tests in such a way that they lend themselves naturally

to investigate time-variation of the importance of particular variables. In each year, we

estimate the model with data over the past years. For the next twelve months, one-month

expected returns are then projected by fixing the model estimates and making predictions

based on the new data that were reported only after the estimation period. Not only are

our trading results below strong in this exercise, but the approach also enables us to look at

which variables come out as important in the search procedure in which period.

We apply our method to contribute to the debate about whether past returns contain

5As Harvey et al. (2013) note "it is possible that a particular factor is very important in certain economic
environments and not important in other environments. The unconditional test might conclude the factor is
marginal."
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information about future returns and, if so, which past returns matter the most. This debate

has recently regained interest after Novy-Marx (2012) found that medium-term momentum,

that is a stock’s return over the twelve to seven months prior to portfolio formation, can

be a better indicator of future return than momentum calculated over the entire previous

year (excluding the most recent month). Goyal and Wahal (2013) cannot find this effect in

37 other markets outside the US. Other recent articles have looked at a moving average

strategy derived from past prices (Han et al. (2011)) or construct a trend factor from daily to

annual returns that outperforms the standard momentum factor (Han and Zhou (2013)).

We, therefore, regard the relation between past and future returns as a natural laboratory

for our method.

As predictor variables, we construct a set of decile rankings for the non-overlapping

one-month returns over the two years before portfolio formation. This yields a set of

twenty-five predictors and it is ex-ante unclear how to combine them optimally to forecast

next period’s returns.

We use standard methods to derive forecasts and benchmark them against forecasts

from deep conditional portfolio sorts. A strategy based on deep conditional portfolio sorts

yields abnormal returns (relative to the four-factor model) of 2-2.3 percent per month,

depending on the exact specification, with information ratios of around 2.8. Our preferred

specification has an abnormal monthly return at the lower end of that range. Although

the strategy has high turnover, transaction costs do not dwarf the abnormal return. This

compares to results from a Fama-MacBeth regression framework with abnormal returns of

1-1.4 percent per month with an information ratio of 1-1.5, depending on whether two-way

interactions between past returns are included. We conclude that deep conditional portfolio

sorts perform better via producing a moderate increase in average abnormal returns at

much reduced variance.

What is the structure of the prediction function that we estimate? While it cannot be

summarized as a simple linear equation, we can use our suggested evaluation measures

to shed light on the black box: Intriguingly, the most important predictor variables are
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short-term return functions and returns appear to become less important when they are in

the more distant past. In particular, we show that the most recent six months of past returns

capture almost all the information that is contained in more distant past returns.

We then show how past returns are related to future returns in the deep conditional

portfolio sorts. While we recover some standard results like short-term reversal over the

most recent past month or momentum over the previous twelve months of returns, we

also find evidence for the relevance of non-linear effects (e.g. both high and low returns

over the month before the most recent one predict lower returns) and interactions (e.g.

the one-month return over the second-to-last month is negatively related to returns for

stocks with low returns last month, but is positively related to returns with high returns

last month).

The results hold in a variety of alternative settings. We construct another set of predictor

variables that includes many possible past returns with different horizons and gaps to

the portfolio formation date to see how our methodology performs when many of the

predictor variables (a total of 126) are highly correlated. In this setting, abnormal returns

are again high and a similar return structure, with similar partial derivatives for specific

predictor variables, is estimated. Our results are also unaffected by including eighty-six

additional firm characteristics from the literature. Here, results for abnormal returns are

actually a bit stronger because of the additional information in accounting variables and

other characteristics, and the return structure results still hold. We then make sure that our

results are not entirely driven by illiquid stocks by re-doing all computations for large, small

and micro firms (in the terminology of Fama and French (2008)) separately. While we find

that results are stronger in small stocks and strongest in micro stocks, our main conclusions

hold throughout all size categories. We conclude that more recent past returns are more

relevant than intermediate past returns for prediction of future returns and, more generally,

past returns are related to future returns in a more complex way than can be captured by

any single one past return.

Before we continue, we provide a short overview of the related literature. In his
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presidential address, Cochrane (2011) describes the "factor zoo" of stock market anomalies

and how it has developed over the years. Subrahmanyam (2010), Goyal (2011), Green et al.

(2013) and Harvey et al. (2013) review as many as 330 anomalies that have been found by

academic research and call for a synthesis of the existing literature. While early attempts in

this direction where undertaken by Haugen and Baker (1996), Daniel and Titman (1997) and

Brennan et al. (1998) who focus on smaller sets of characteristics, Cochrane (2011) argues

that different methods might be required to find the independent information for average

returns in the entirety of documented predictor variables. Our paper can be read as an

attempt to provide just such a new method.

Green et al. (2014) investigate the mutual information in 100 signals, and find that

up to 24 of them have predictive power for returns when used jointly. They suggest an

alternative to the standard three factor model by Fama and French (1992) that is based on

10 different characteristics. The paper notes the potential relevance of interactions but does

not investigate them in detail.6 Lewellen (2013) investigates the power of 15 different firm

characteristics to predict variation in the cross section. He finds that expected stock returns

derived from the model are strongly predictive of actual stock returns for as much as 12

months.

Fama and French (2013) follow an alternative approach that attempts to capture variation

in returns by a (small) factor model. They extend the three factor model by proxies for

profitability and investment which appears to capture contemporaneous variation in cross-

sectional returns well, except for small stocks. The paper uses a quadruple sorting strategy

to address interactions between size, value, profitability and investment opportunities.

Kogan and Tian (2012) construct all combinations of three and four factor models from a set

of 27 firm characteristics. They find that the best performing models are unstable across

time periods.

The literature on momentum and reversal is too large to review it here but we note a view

6They write, "fundamental valuation type measures and market trading type measures appear to matter
across firm size. In large-cap firms the important RPS can be broadly classified as fundamental valuation
measures or trading type measures. For mid-cap and small-cap firms the themes appear slightly different."
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key articles. If stock prices systematically over- or underreact, future stock returns should be

predictable from past returns data alone. de Bondt and Thaler test overreaction by sorting

stocks based on the return in the previous three years (the portfolio formation period).

They find that losers (the bottom decile of returns in the formation period) outperforms

winners by about 25% over three years. They hint at the fact that there is some interaction

with the January effect. A similar "reversal effect" has been found by Jegadeesh (1990)

and Lehmann (1990) for portfolios that are formed based on short-term (one week to one

month) prior returns. Jegadeesh and Titman (1993), on the other hand, find evidence

for a "momentum effect" when portfolios are sorted on medium-term (3 to 12 months)

prior return. "Momentum" means that past winners continue to outperform past losers

for up to 12 months (with an apparent reversal effect after 12 months). The momentum

finding survives the analysis in Fama and French (1996) who use the three-factor model as

a model of equilibrium returns. Long-term reversal disappears as an anomaly once normal

returns are approximated by the three factor model. For much more on momentum, we

refer to Asness et al. (2014) who use simple analysis and survey published studies to show

that momentum returns are (among other things) not too volatile, not only a small firm

phenomenon and not dwarfed by tax considerations or transaction costs.

This essay is organized as follows. Section 1.2 discusses the data, sets up a motivating

framework and investigates two standard methods, portfolio sorts and simple Fama-MacBeth

regressions, that a portfolio manager could employ to predict future returns. Section 1.3

explains deep conditional portfolio sorts in detail. Section 1.4 applies the method to past

return predictor variables and section 1.5 has further results on transaction costs and a risk

factor vs characteristics interpretation. Section A.3 in the appendix illustrates robustness of

our results along several dimensions. Section 1.6 concludes.

1.2 Data, motivating framework and standard methods

Before we introduce deep conditional portfolio sorts, we analyze a few standard approaches

that an investor might try. These are: Single variable selection, i.e. investing based on the
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single best-performing variable in historical data over a certain time window; standard Fama-

MacBeth regressions, i.e. a multivariate prediction that combines historically important

signals; and Fama-MacBeth regressions that include variable interactions.

1.2.1 Data

Since we will use the relation between past returns and future returns as a running example

throughout the article, we start by describing the data and the variable construction first.

The basis for our analysis is the universe of monthly US stock returns from the Center

for Research in Security Prices (CRSP) from 1963 to 2012. Since we use firm characteristics

from Compustat and IBES in some robustness checks, we match stock price data to those

data sets first, and focus our analysis on those firms that can be linked in all datasets. Firm

characteristics include traditional variables like size, book-to-market, dividend yield, gross

profitability and eighty-two others that are described in more detail in appendix A.3.1.

The number of firms in our sample varies over time between 1182 and 6626. Size, value,

momentum factors and the risk-free interest rate are taken from Kenneth French’s data

library.7

Figure 1.2 illustrates how return-based predictor variables are constructed. Suppose that

the investor wants to form a portfolios at the formation time t f . Return-based predictor

variables can be defined by two parameters; the gap between the time of portfolio formation

and the most recent month that is included in the return calculation, and the length of the

return computation horizon. We denote the former by g, the latter by l and a return function

by Ri,t f (g, l) maps returns into cross-sectional decile ranks. For example, Ri,t f (1, 11) = 10

implies that firm i is in the highest decile of returns at time t f for the return that is computed

over the previous twelve months and leaves out the most recent one.

Our benchmark set of predictors contains all one-month returns over the two years

before portfolio formation, that is, Ri,t(g, 1), g = 0, . . . , 24. Much of the related literature is

based on sorting firms into one of ten deciles depending on the values of a sorting variable.

7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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month

Figure 1.2: Construction of past return-based characteristics

Notes: The investor forms a portfolio at time t f . Return-based predictor variables can be defined by two parameters; the
gap between the time of portfolio formation and the most recent month that is included in the return calculation, and the
length of the return computation horizon. We denote the former by g, the latter by l and a return function by Ri,t f

(g, l)
maps returns into cross-sectional decile ranks.

When we consider return-based strategies below, we refer to buying the upper decile and

selling the lower decile based on Ri,t(g, l). As in Novy-Marx (2012), we will use the notation

Ri,t(g, l) to denote both the return for portfolio formation, and the strategy return based on

that simple sorting strategy.8

The problem of predicting future returns based on past returns has the ingredients that

make it difficult for an investor to find the relevant signals: Should momentum be measured

over the most recent six or twelve months? What if the signals go in opposite directions?

Should one leave out the most recent month? Or the most recent six (Novy-Marx (2012))?

Degrees-of-freedom in choosing the gap and length parameters above contribute to the fact

that these questions do not have a definitive answer yet.

1.2.2 Motivating framework

In each time period, an investor has access to information Θit about firm i to model the

conditional expectation of next period’s return as in equation (1.1), a general version of the

8We have checked that results are robust when future returns are computed over the next future month, but
skip a day to make sure that the return would actually be implementable.
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model9 that is typically estimated in the literature.

Et[ri,t+1|Θit] = ft(Θit), (1.1)

Here, the expectation of ri,t+1 is formed at time t (we take a period to be one month in what

follows), and the function ft() that maps the information set into expected returns can be

time-varying. The information set Θit can contain data on the firm’s past earnings, balance

sheet information, past stock return movements and many other variables. Since we will

focus on the relation between past and future returns in this paper, and in line with the

sorting-based literature, we assume that the information set consists of decile rankings of

companies over the past two years, that is, Θit = {Ri,t(0, 1), . . . , Ri,t(24, 1)}. In other words,

we consider decile rankings for each of the most recent twenty-five one-month returns.

With that information set, adding an additive error term and choosing the common

specification of a linear form (see e.g. Haugen and Baker (1996), Daniel and Titman (1997)

or Brennan et al. (1998)) for the function ft(), equation (1.1) can be written as

ri,t+1 = a +
24

∑
g=0

βt
gRi,t(g, 1) + εi,t, (1.2)

which is usually estimated via a Fama-MacBeth procedure or by a cross-sectional regression.

In general, the model can be viewed as a joint test of the relevance of characteristics and

of the linearity assumption. We first illustrate how an investor could go about predicting

returns using standard methods.

1.2.3 Existing methods

In our running example, the investor faces the problem of predicting returns based on

one-month returns over the previous two years. We consider two possible solutions to that

9At a greater level of generality, one could write the model as

Et[ri,t+1|Θit] = ft(zi,t, zi,t−1, . . . , λt, λt−1, . . .),

which would also include risk factors, and zit and λt and their histories are subsumed in the information set
Θit = {zi,t, . . . , λt, . . .} at time t. We disregard this aspect for now but note that our framework easily extends to
the case where all returns are interpreted as excess returns over risk factors.
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problem that are employed in the existing literature.

Portfolio sort

The potentially simplest strategy is to evaluate one variable at a time, and then base forecasts

on the single variable that has performed best in the past. More specifically, we suggest the

following simple strategy: In each month, compute the m month trailing average return for

each sorting variable, pick the one with the best performance (in terms of the Sharpe ratio),

and base the subsequent long and short orders on values of that variable.

Table 1.1 shows that the return to such a strategy is .71 percent per month with an

information ratio (relative to the four factor model) of .89, when the trailing performance

is computed over the sixty months that precede the portfolio formation date. While this

is already a good result, each month’s returns are based on the values of a single sorting

variable. The question remains whether the investor can do even better by combining

information from different variables. While a few more variables can be incorporated (e.g.

double sorts), the number of observations in each portfolio decreases quickly such that

estimates become unreliable.

Fama-MacBeth regressions

With that question, the investor turns to a multivariate regression setup that we describe

in some detail. We suggest two approaches: A "kitchen-sink" Fama-MacBeth estimation

that throws in all past return variables and that uses them for prediction regardless of their

individual significance. On the other hand, it could be more appropriate to base predictions

solely on the relevant variables where we define "relevant" as variables that are selected

in a LASSO regression.10 While we report results for the LASSO regression, we have tried

other model selection methods (general-to-specific, specific-to-general) and obtained similar

10Least absolute shrinkage and selection operator (LASSO), originally introduced by Tibshirani (1996), is
a method that regularizes regressions by putting a penalty on the size of regression coefficients. Due to the
nature of the penalty term (the sum of the absolute values of individual coefficients), the optimum will typically
set many coefficients to exact zeros, which is why the method can be viewed as a variable selection device.

19



Table 1.1: Strategy factor loadings: Portfolio Sort

(1) (2) (3) (4)

Intercept 0.71 0.74 0.71 0.72

(6.45) (6.77) (6.60) (6.67)

MKT -0.03 -0.03 -0.03

(-1.51) (-1.28) (-1.28)

SMB 0.03 0.03

(0.73) (0.73)

HML 0.04 0.04

(1.17) (1.16)

UMD -0.00

(-0.11)

R2 0.00 0.01 0.01

IR 0.92 0.89 0.89

SR 0.88

N 540 540 540 540

This table shows time-series regressions of strategy returns on factors. Returns are specified in percent
per month. The strategy is to go long (short) the highest (lowest) decile of firms based on a single
past return variable from the set of the most recent twenty-five past one-month returns. In each
month, the past return that would have produced the highest strategy Sharpe ratio over the sixty
preceding months is selected as the sorting variable. MKT is the market return, SMB and HML are the
Fama-French factors for size and value, and UMD is the momentum factor. SR is the Sharpe ratio and
IR is the information ratio. The sample period covers 1968 to 2012. T-statistics are in parentheses, and
standard errors are clustered using Newey-West’s adjustment for serial correlation.
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results.

Our general implementation for the Fama-MacBeth-framework works as follows. In

each cross-section, the investor fits the regression

ri,t+1 = βt
cons +

24

∑
g=0

βt
gRit(g, 1) + εit (1.3)

and he keeps either all coefficients (kitchen sink) or uses LASSO to select the relevant

variables.

His period t + 1 forecast is computed based on the rolling average of the coefficient

estimates up to period t− 1 and then applying the linear model to Rit(g, 1), that is,

r̂i,t+1 = β
t−1
cons +

24

∑
g=0

β
t−1
g Rit(g, 1), (1.4)

where β
t−1
g = 1

m ∑t−1
j=t−1−m β̂t

g. We initially use a rolling window of 120 months but, as

Lewellen (2013), have found that results are robust to varying that parameter.

Lewellen (2013) uses a set of 15 predictor variables that are well-established in the

literature. In contrast, we consider an investor who faces substantial uncertainty about

which variables he should include and, therefore, has to cast a wide net. Consistent with

our running example, the investor considers all one-month returns over the two years before

portfolio formation. Each period, he computes return predictions based on past model

estimates, and sorts predictions into ten deciles. He constructs an equal-weighted hedge

portfolio that goes long the highest decile of predicted returns and that goes short the lowest

decile of predicted returns, analogous to the strategies above.

Starting with the kitchen sink model, the first four columns of table 1.2 show the

strategy’s factor loadings from time-series regressions on the market, size, value and

momentum factors. The strategy has a positive and significant average return of 1.51 percent

per month, and loads mostly on the market and the momentum factor. The alpha relative to

the four-factor model is about 1 percent per month, with an information ratio of about 1.

When we use the LASSO in the Fama-MacBeth framework as described above, results

remain almost unchanged. The last four columns of table 1.2 show that the average strategy
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Table 1.2: Strategy factor loadings: Fama-MacBeth predictions using all variables

Kitchen sink regression LASSO regression

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.51 1.33 1.30 1.00 1.50 1.31 1.28 1.00

(8.93) (7.87) (8.06) (6.23) (8.63) (7.60) (7.79) (6.16)

MKT 0.20 0.20 0.26 0.21 0.21 0.26

(3.07) (3.08) (4.34) (3.29) (3.34) (4.51)

SMB 0.05 0.06 0.05 0.05

(0.58) (0.51) (0.53) (0.47)

HML 0.05 0.14 0.05 0.14

(0.40) (1.35) (0.44) (1.31)

UMD 0.30 0.27

(4.25) (3.76)

R2 0.06 0.06 0.18 0.06 0.07 0.16

IR 1.23 1.20 0.98 1.20 1.17 0.97

SR 1.36 1.33

N 540 540 540 540 540 540 540 540

This table shows time-series regressions of strategy returns on factors. Returns are specified
in percent per month. Strategies are based on the predictions of a Fama-MacBeth regressions
of future returns on past decile sorts of returns. Past return sorts include decile rankings
R(g,l) with length l equal to 1 and gap g between 0 and 24 months (i.e. all one-month returns
over the two years before portfolio formation), that is, predictions are based on the equation

ri,t+1 = βt
cons +

24

∑
g=0

βt
gRit(g, 1) + εit.

The kitchen sink Fama-MacBeth model uses all variables in each period regardless of their
significance, and the LASSO model selects a set of relevant variables each period based on
a penalty function approach. Both procedures are described in section 1.2.3. Strategies go
long the highest predicted return decile and go short the lowest predicted return decile.
The sample period covers 1968 to 2012, and all results are based on rolling out-of-sample
estimates of the models. MKT is the market return, SMB and HML are the Fama-French
factors for size and value, and UMD is the momentum factor. SR is the Sharpe ratio and IR
is the information ratio. T-statistics are in parentheses, and standard errors were clustered
using Newey-West’s adjustment for serial correlation.
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return is again around 1.5 percent per month, and the four-factor alpha is 1 percent per

month. The information ratio is close to 1, as in the kitchen sink regression. The reason that

these results are very similar is that many irrelevant regressors have coefficients close to

zero in the kitchen sink case.

Note that the approaches so far have not included variable interactions. The Fama-

MacBeth regression framework lends itself to a simple implementation of additionally

including interactions of predictor variables. Equation (1.5) shows the regression equation

that adds all two-way interactions between past return rankings.

ri,t+1 = a +
24

∑
g=0

βt
gRi,t(g, 1) +

24

∑
g=0

∑
j>g

γt
gjRi,t(g, 1)Ri,t(j, 1) + εi,t. (1.5)

Table 1.3 shows strategy returns that are based on predictions from equation (1.5).11 At

1.13 percent per month, the average excess return relative to the four factor model is slightly

higher than in the levels-only version above. The information ratio, however, experiences a

much stronger increase to 1.3.-1.4. Hence, the main benefit to including two-way interactions

appears to be a reduction in variance rather than an improved mean return.

Of course, this begs the question whether we have now captured all information in

past returns for future returns or whether we should estimate the prediction equation

more flexibly. For instance, if we are interested in exploring all systematic variation, why

would we stop at two-way interactions? Appealing as the Fama-MacBeth method might

seem, it quickly becomes infeasible when we want to analyze the entirety of potential

interactions. Considering only two-way interactions, the number of terms to include when p

candidate predictors are included is p(p+1)
2 which starts to become greater than a thousand

at a mere forty-five predictor variables. This prevents the use of Fama-MacBeth regressions

in the early years of the sample (although LASSO would still be a feasible alternative) if

all firms are considered, and over the entire sample if the sample is divided by, say size,

first. With higher-order interactions, estimation becomes difficult for even fewer candidate

11Since the model with two-way interactions has 325 regressors, we focus on results based on variable
selection.

23



Table 1.3: Strategy factor loadings: Fama-MacBeth predictions using all variables and two-way
interactions

(1) (2) (3) (4)

Intercept 1.46 1.27 1.28 1.13

(9.62) (8.29) (8.35) (7.55)

MKT 0.21 0.18 0.21

(4.38) (3.82) (4.40)

SMB 0.12 0.12

(1.63) (1.48)

HML -0.03 0.02

(-0.33) (0.20)

UMD 0.15

(2.91)

R2 0.09 0.11 0.15

IR 1.43 1.46 1.32

SR 1.57

N 540 540 540 540

This table shows time-series regressions of strategy returns on factors. Returns are specified in
percent per month. Strategies are based on the predictions of a Fama-MacBeth regressions of future
returns on past decile sorts of returns. Past return sorts include decile rankings R(g,l) with length l
equal to 1 and gap g between 0 and 24 months (i.e. all one-month returns over the two years before
portfolio formation) and their two-way interactions, that is, predictions are based on the equation

ri,t+1 = βt
cons +

24

∑
g=0

βt
gRi,t(g, 1) +

24

∑
g=0

∑
j>g

γt
gjRi,t(g, 1)Ri,t(j, 1) + εi,t.

LASSO estimation is applied to select relevant variables each period, described in more detail in
section 1.2.3. Strategies go long the highest predicted return decile and go short the lowest predicted
return decile. The sample period covers 1968 to 2012, and all results are based on rolling out-of-
sample estimates of the models. MKT is the market return, SMB and HML are the Fama-French
factors for size and value, and UMD is the momentum factor. SR is the Sharpe ratio and IR is
the information ratio. T-statistics are in parentheses, and standard errors were clustered using
Newey-West’s adjustment for serial correlation.
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predictors. In the next section, we import a method from the machine learning literature

that is sufficiently flexible in this setting and tailor it to a finance application.

1.3 Estimation strategy

Returning to the general model for expected returns in equation (1.1), we briefly discuss

the difficulties that arise when the set of firm characteristics gets large. More specifically,

even when the set of characteristics appears manageable, the number of regressors can grow

quickly if characteristics interact or are non-linearly related to returns.

Interactions between different anomalies can arise quite naturally from simple economic

models. Chen et al. (2002) test the theory of gradual information diffusion to explain

momentum. They argue that the rate of information diffusion could be different for firms

which would result in different strength of momentum profits. They find that momentum

interacts with firm size and with analyst coverage, and that the effect of analyst coverage

on momentum profits is largest in small firms (a triple interaction). Vassalou and Xing

(2004) illustrate a complex interaction between size and value and default risk. They show

that small stocks earn higher returns than big stocks only if they have higher default risk

and the same holds for the return of value over growth stocks. Complementary, high

default risk firms earn higher returns than low default risk firms if they are small or value

stocks. Expected return-relevant two-way interactions have been demonstrated between

size and value (Fama and French (1992)), between size and seasonal effects (Daniel and

Titman (1997)), or between stock exchange and volume (Brennan et al. (1998)). Some authors

have also considered interactions between past-returns and firm fundamentals (see e.g.

Asness (1997) for the interaction between value and momentum, or (Lee and Swaminathan

(2000)) for the interaction between volume and momentum). Interactions between different

past-return variables are rare in the literature, with Grinblatt and Moskowitz (2004) who

consider the consistency of return patterns and Han and Zhou (2013) who construct a

trend-factor from past returns of different frequencies being two exceptions.

The literature that investigates interactions has typically used portfolio sorts. This
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approach sorts stocks into portfolios based on the characteristics in question, and the returns

for each portfolio are evaluated. It is, however, only feasible for a small set of, typically two,

characteristics. Three-way or four-way sorts are rarely executed at all because the individual

portfolios contain few firms.12 Correlations between firm fundamentals make it difficult to

isolate their individual marginal contribution to expected return prediction.13

One might think that a fully interacted version of equation (1.2) can overcome this

challenge, but in fact becomes infeasible quickly, too. Consider a model that allows for

arbitrary three-way interactions

ri,t+1 = a +
G

∑
g=0

βt
gRi,t(g, 1) +

G

∑
g=0

∑
j>g

γt
gjRi,t(g, 1)Ri,t(j, 1)

+
G

∑
g=0

∑
j>g

∑
k>j

δt
gjkRi,t(g, 1)Ri,t(j, 1)Ri,t(k, 1) + εi,t. (1.6)

Even if we consider a small set of G = 20 firm characteristics, 190 two-way interactions

and 1140 three-way interactions would need to be considered. In the application of Green

et al. (2014) with G = 100, these numbers amount to 4950 and 161700 which is prohibitively

large for statistical analysis.14

Given the difficulties that stem from comprehensively investigating the interactions be-

tween characteristics using these standard methodologies, the existing evidence is restricted

to the low-dimensional cases that have been and can be considered, while we may not learn

the full extent to which interactions are relevant. Our approach below provides one way to

address this question.

1.3.1 Conditional Portfolio Sorts

Our goal is to estimate the conditional expectation in equation (1.1) more flexibly than

can be achieved by a globally linear model like a Fama-MacBeth regression or by portfolio

12For examples, see Daniel and Titman (1997), Fama and French (2008) or Fama and French (2013).

13An early contribution that criticizes portfolio sorts for their inability to deal with correlated signals can be
found in Jacobs and Levy (1989).

14In general, all k-way interactions are given by (G
k ).
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sorts that allow for non-linearities but tha6t, in their usual form, are restricted to one- or

two-dimensional cases.

Our estimation is based on the well-known concept of conditional portfolio sorts which

are illustrated schematically in figure 1.3. Consider sorting stocks into two portfolios based

on sorting variable R(g(1), 1) and threshold τ(1), such that all stocks with R(g(1), 1) ≤ τ(1)

are pooled together into one portfolio, and stocks with R(g(1), 1) > τ(1) are pooled together

into another portfolio. For instance, if τ(1) = 5 and g(1) = 0, we would sort all stocks with

returns below the cross-sectional median in the previous month into one portfolio and

all stocks with returns above cross-sectional median in the previous month into another

portfolio.15 The expected stock returns in each portfolio are now E[ri,t+1|R(g(1), 1) ≤ τ(1)]

and E[ri,t+1|R(g(1), 1) > τ(1)], respectively, and, if the expected return is modeled as a

constant within each portfolio, the prediction is just the average of realizations of next

months’ returns within each group. Sorting stocks within each portfolio again by another

(or the same) characteristic with associated thresholds τ(2a) and τ(2b) results in four different

portfolios S1 to S4, e.g. the stocks in portfolio S1 in the figure have expected return

E[ri,t+1|R(g(1), 1) ≤ τ(1), R(g(2a), 1) ≤ τ(2a)].

A simple way to test whether R(g(2a), 1) provides additional information over R(g(1), 1)

would compare the sorts on R(g(2a), 1) within each portfolio sorted on R(g(1), 1).16 On the

other hand, one could test whether R(g(2a), 1) creates a return spread only in the portfolio of,

e.g. low R(g(1), 1) firms, therefore, testing for a potential interaction between characteristics

R(g(2a), 1) and R(g(1), 1).

In appendix A.1, we illustrate a basic conditional portfolio sort with a few standard firm

characteristics. Our results complement Fama and French (2008) who sort stocks into three

size portfolios first and then sort each portfolio subsequently on a further firm characteristic.

In our illustration, we consider conditional portfolio sorts that are each based on two of the

15The literature usually considers one-variable sorts of stocks into ten different portfolios. However, our sort
into two portfolios is not restrictive because a one-variable sort into multiple portfolios can always be achieved
by a repeated sort into two portfolios.

16This kind of test is, for example, applied in Bandarchuk and Hilscher (2012).
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𝑹(𝒈(𝟏), 𝟏) > 𝝉(𝟏)𝑹(𝒈(𝟏), 𝟏) ≤ 𝝉(𝟏)

𝑹(𝒈(𝟐𝒃), 𝟏) > 𝝉(𝟐𝒃)𝑹(𝒈(𝟐𝒃), 𝟏) ≤ 𝝉(𝟐𝒃)𝑹(𝒈(𝟐𝒂), 𝟏) > 𝝉(𝟐𝒂)𝑹(𝒈(𝟐𝒂), 𝟏) ≤ 𝝉(𝟐𝒂)

𝑺𝟒𝑺𝟐 𝑺𝟑𝑺𝟏

Figure 1.3: Schematic representation of a conditional portfolio sort

Notes: First, observations are sorted into two portfolios based on past return R(g(1), 1) and threshold τ(1). The resulting
portfolios are then sorted again on variables R(g(2a), 1) and R(g(2b), 1) with thresholds τ(2a) and τ(2b) for a total of four
portfolios S1, S2, S3 and S4.

following variables: short-term reversal, momentum, intermediate momentum, size, gross

profitability, and book-to-market.

We refer the interested reader to the appendix for detailed results but highlight a few

notable results here. The overall picture that emerges is that of return sorts being relatively

stable while accounting-based sorts are less robust to initial sorts on some other return- or

accounting-based variable. For instance, size sorts do not work uniformly when stocks are

sorted on short-term reversal or momentum first. Interestingly, momentum sorts continue

to work well when firms are sorted on intermediate momentum first but the reverse is not

true.

Of course, there is the question of how to choose the sorting variables and the sorting

thresholds in the first place. The literature typically chooses the sorting variables based

on a specific hypothesis and uses thresholds that evenly sort stocks into three, five or ten

portfolios. The same sorting variable is used in all branches after the first sort. But, if viewed

as a way to approximate a conditional expectation of returns, this restriction might not

deliver the best approximation. We relax these constraints in the next section.
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1.3.2 Deep Conditional Portfolio Sorts

We suggest to extend the method of conditional portfolio sorts along the following dimen-

sions. First, unlike in our example above that had thresholds and sorting variables chosen

ex-ante, we will choose thresholds and sorting variables optimally (where "optimally" will be

defined below) within each portfolio in a data-driven way. Second, we apply the procedure

to levels deeper than the two levels that are usually considered which gives rise to, what we

call, a deep conditional portfolio sort. Third, since conditional sorts involve hard thresholds

that are sensitive to small changes in the data, their predictions do not work very well

out-of-sample. Following Kleinberg (1990, 1996), Ho (1998) and Breiman (2001), we average

over many deep conditional portfolio sorts to smooth out the decision boundary which

improves predictions significantly, as explained below in more detail.

Our approach draws on parallel concepts from the machine learning literature. The

techniques that we use to estimate deep conditional portfolio sorts mirror those that are used

to estimate a so-called decision tree in computer science.17 Model averaging or ensemble

methods are also developed in that literature and they are successfully applied to areas

as diverse as biology (DNA sequencing), psychology or motion sensing. Applications in

economics are rare18 and our paper can also be read as an attempt to investigate whether

these techniques have something to add to academic research in finance and economics.

This is the first paper that interprets conditional portfolio sorts from a machine learning

perspective, tailors the methodology to similar approaches well-known in finance, and

applies it to a comprehensive financial dataset.

17For further reading on decision-trees, see Hastie et al. (2009), Zhang and Ma (2012), Murphy (2012) or
Criminisi and Shotten (2013).

18A few examples in a macroeconomic context use decision trees to analyze currency crises (Kaminsky
(2006)), sovereign debt crises (Manasse and Roubini (2009)), banking crises (Duttagupta and Cashin (2011)) or to
develop early warning indicators for e.g. excessive credit growth (Alessi and Detken (2014)).
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Estimation

We start by describing how variables are selected and how thresholds are estimated. The

goal is still to estimate the expectation of the return of firm i in period t + 1 conditional on

information in period t as in equation (1.1).

To illustrate estimation start out with the conditional portfolio sort in figure 1.3. Consider

the portfolio S1 in that figure which is defined by variable R(g(1), 1) being less than threshold

τ(1) and variable R(g(2a), 1) being smaller than threshold τ(2a). Other portfolios can be

defined similarly by their relations between sorting variables and associated thresholds.

Within each portfolio Sl , the predicted expected return is modeled as the average return, µl ,

of all firms in the portfolio, that is,

µ̂l = Mean(ri,t+1|Firm i ∈ Sl in period t) (1.7)

In other words, analogous to linear regression, we are interested in approximating the

conditional mean of the outcome variable at a value of the regressor by the average of the

outcome variable over observations with close values of the regressors. The conditional

portfolio sort therefore generates subsets of firm observations that are more homogenous.

Suppose for a moment that we have found such a homogenous allocation of firms into

portfolios. The prediction function could then be written as

r̂i,t+1 =
L

∑
l=1

µ̂l1(Firm i ∈ Sl in period t), (1.8)

giving a portfolio-specific expected return prediction for each observation. What we have

described so far is nothing more than a formal definition of the common conditional sorting

methodology that we carried out in the previous section.

Of course, the conditional sort does not need to end after two levels but can be computed

at greater depth. We consider the case in which the depth of the conditional sort, the sorting

variables and associated thresholds are not pre-selected but need to be identified from the

data. To start with a negative result, it can be shown that finding the optimal solution to

this problem requires solving an optimization problem for which a computationally fast
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solution does not exist (see (Hyafil and Rivest (1976))).

Instead, we adopt a greedy algorithm from the machine learning literature that proceeds in

a step-wise fashion. We describe the details in appendix A.2 and give a high-level summary

here. The algorithm starts out with all observations and splits them into two subsets. From a

given set of variables, it finds the variable and the associated threshold value that minimize

the mean squared error over all observations if predictions are computed as in equation (1.7).

The algorithm is called greedy because it solves the minimization problem in a brute-force

fashion by trying every combination of variable and threshold value. The same procedure is

then repeated in each subset until the number of observations in a subset becomes small or

if no further split can meaningfully improve upon the mean squared error. The result is a

deep conditional portfolio sort, that is, a conditional portfolio sort with many levels.

Figure 1.4 illustrates the results of this procedure using the data and variables described

in section 1.2.1 below. Rather than showing the entire iterative sort, the figure only shows

the first few nodes. The first selected split variable is R(0,1), the return over the previous

month. The associated threshold is 6, that is, all firms with a return over the previous month

in the lowest six deciles are sorted into one portfolio, and the remaining ones are sorted

into the other. Conditional on this split, R(0,1) is selected again in the left branch at the

next level and R(2,1), the one-month return two months ago, is selected in the right branch.

The actual iterative sort goes deeper but, for illustration, we have computed the one-month

ahead returns in each of the four subsets. Differences are already pretty stark: The subset

S1 which is the set of companies that were in the lower of the two R(0,1) groups, display

the highest return, indicating short-term reversal. The right branch illustrates a momentum

effect: Stocks with higher values of R(2,1) have a higher subsequent return on average.

Before we move on, we want to point out a few links to other estimation methods in

the literature. The greedy algorithm introduced in this section bears some resemblance

to forward-selection methods in regression models. Forward-selection starts out with the

smallest possible linear model, estimates bivariate regressions of the outcome variable

on each candidate regressor separately, and keeps the one with the highest t-statistic (or
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𝜇𝑆1 = .073 𝜇𝑆2 = .010 𝜇𝑆3 = −.093 𝜇𝑆4 = −.024

R(0,1) ≤ 1 R 0,1 > 1 R(2,1) ≤ 2 R 2,1 > 2

R(0,1) ≤ 6 R 0,1 > 6

Figure 1.4: Deep conditional portfolio sort using the entire data set: First nodes

some other selected performance criterion). The procedure is then repeated for all of the

remaining variables with the best-performing variable joining the regression each round

until no further variables are significant. As deep conditional sorts, forward-selection works

when there are more regressors than observations. On the other hand, forward selection is

global in nature in the sense that one regression function is fitted for the entire sample and

variable selection is based on performance over the entire sample. In addition, interaction

terms would need to be added one-by-one as well leading to a large set of candidate

variables whereas the set of candidate variables is always less than the number of main

signals in iterative conditional portfolio sorts.

Kernel regression is based on approximating an outcome variable by a (kernel-) weighted

average of the outcome at each value of the regressor. Deep conditional portfolio sorts

approximate the outcome by the average value of the outcome for a regressor region defined

by split points and threshold values. Kernel regressions are very flexible but do not extend

easily beyond the bivariate case. A small practical issue is the difficulty to display results

in higher dimensions. More importantly, since kernel regression is based on using local
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averages, there are few observations in each subspace over which an average is taken as

the number of regressors becomes large. This is known as the curse of dimensionality and

one can show that the convergence rate for kernel regressions deteriorates sharply with the

dimensionality of the regressors. Local linear regressions run into analogous problems in

high dimensions.

Model averaging

Constructing deep conditional portfolio sorts in the way described above results in a few

challenges. First, as described above, because of the complexity of the optimization, we

have to use a greedy algorithm to estimate the model. This algorithm, however, does not

guarantee that thresholds and split variables are selected optimally at each node. Second,

the threshold rule is discrete, and any error in the estimation of the threshold could greatly

distort the correct path for any expected return that is supposed to be predicted from the

estimated model. Third, our initial results showed that a single estimated deep conditional

portfolio sort summarizes the estimation data well, but the model does not extend well

to new observations. In other words, the deep conditional portfolio sort can often overfit

the estimation sample. The related machine learning literature acknowledges these issues

under the label of weak learners, characterized by the fact that their predictions for new

observations are often only weakly (albeit positively) correlated with the actual values.

We adopt a solution based on averaging over many deep conditional portfolio sorts that

combines elements of Kleinberg (1990, 1996), Breiman (1996), Ho (1998) and Breiman (2001).

Kleinberg introduces the idea of "stochastic discrimination" to solve estimation problems

without overfitting too much in sample. The idea is to estimate a model a number of times

using only random subsets of regressors each time. The resulting models are less prone

to overfitting since they are arguably less complex. Kleinberg shows that by combining

predictions from such models the accuracy of out-of-sample estimates can be improved

upon.19 Breiman (1996) suggests a related approach, "bootstrap aggregating" (or bagging),

19Kleinberg (1990) provides the following intuition: "If one were presented again and again with the same
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that leaves the set of regressors intact but estimates a model several times on different

random parts of the estimation data. The final prediction is then again constructed as an

average over the different models’ predictions. Breiman (2001) combines both elements,

stochastic discrimination and bagging, in the context of decision trees (which are, what we

call, deep conditional portfolio sorts). He finds that this approach that he labels "random

forests"greatly improves upon out-of-sample accuracy.20

The idea of combining many predictions to construct a more accurate one can be

illustrated in a simple voting setup in which people use majority voting to make a decision

or to determine the (objective) value of an object. If everyone has the same information set,

then nothing can be learned from aggregating individual votes, instead every single vote is

a sufficient statistic for the outcome. Only if voters differ in their information, aggregation

can lead to a more precise estimate. Stochastic discrimination and bagging induce just such

different information sets.

We apply these concepts to deep conditional portfolio sorts. New predicted expected

returns are generated by first computing an estimated expected return from each deep

conditional sort and then averaging over the individual predictions. More formally, let B be

the number of deep conditional sorts that are computed, and let f̂b(Θit) be the predicted

expected return for stock i at time t that is based on model b. The final expected return

poor solution to a problem, he would have little chance of ever creating anything better than that poor solution
- on the other hand, if he were presented again and again with equally poor but different solutions to the
problem, he would at least be getting diverse information; and in this case, stochastic discrimination will enable
him to create from this diverse information an essentially perfect solution."

20While applications of these methods are plentiful in computer science, their theoretical properties are
not all well-understood. Breiman (2001) shows that bagging decision-trees implies an upper bound on the
out-of-sample mean squared error that depends on the strength of the individual models and on the correlation
between them. In that sense, bagging shields against overfitting if one can sufficiently de-correlate the individual
greedy conditional portfolio sorts. Büchlmann and Yu (2002) analyze the bias-variance trade-off of bagging and
they show that bagging reduces mean squared error by substantially reducing variance with only a small effect
on bias. They argue that bagging works well for the case of unstable models that are characterized by hard
decision rules like splits based on thresholds. Bagging softens these hard decision rules because thresholds vary
across models with positive probability. The argument carries over to deep conditional portfolio sorts such that
one would expect an ensemble of DCPS to make fewer mistakes than each individual one. Biau et al. (2008)
provide consistency results of using stochastic discrimination jointly with bagging for decision-trees for the case
in which the outcome variable is ordinal (a classification problem). To our knowledge, analog results are not
available yet for the case in which the outcome variable is continuous.
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estimate is given by

r̂i,t+1 =
1
B

B

∑
b=1

f̂b(Θi,t). (1.9)

In all results that follow, we construct two hundred deep conditional portfolio sorts (that

is, B = 200) and we use eight out of twenty-five regressors (that is, roughly 30% of the

number of regressors) in each of them. We have tried other values for the share of sampled

regressors (between 20% and 40%) and also larger values for the number of estimated deep

conditional portfolio sorts but have found that results do not vary much with these choices.

We settled on the share of 30% of regressors because it is a standard recommendation in

the random forest literature, and we chose B = 200 because higher values did not have any

apparent benefit for the estimation but are more costly in terms of computation.

Discussion and strategies for evaluating the estimations

Our ultimate goal is to provide a new method that is capable of tracing out which firm

characteristics predict the cross-section of stock returns well. (Deep) conditional portfolio

sorts are potentially interesting because they can account for both the correlation and the

interactions of candidate characteristics. Model averaging as described above protects

against the risk of in-sample overfitting, and deals with the hard thresholds that sorting

induces.

Our suggested approach differs from previous work in a number of ways. First, we do

not need to handpick variables in advance; instead, our methodology works well with large

sets of many potentially irrelevant variables. Many firm or return characteristics are highly

correlated which makes it difficult to judge their contribution when they are considered in

isolation. We aim to include many variables and let our algorithm control for the correlation

structure between all of them. Second, we can allow for arbitrary interactions between the

variables that we include. This is important because, as we have shown in section 1.3.1,

these interactions tend to be important. However, the universe of potential interactions is

large and can generally not be considered with standard methods.
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The flexibility of our approach does not come without costs: Model averaging loses the

simple interpretation from a single deep conditional portfolio sort. Moreover, we cannot

summarize our model as a simple linear equation in the space of firm characteristics and

factors. One reason for the popularity of linear regression methods certainly lies in their

apparent transparency. Our approach draws on methods from computer science that are

sometimes criticized for producing black box predictions that cannot easily be interpreted.

One contribution of this paper is to introduce measures with which the relation between

model predictions and regressors can nevertheless be evaluated transparently.

Variable importance Since the relevance of a variable is determined by both its level and

its potential interactions with other variables, summarizing statistical significance via a

simple t-test is not appropriate. Instead, we rely on a relative variable importance measure

that was suggested in Breiman (2001) and that can be interpreted similarly to t-statistics in

simple regressions.

For each predictor variable and each deep conditional portfolio sort, we compute the

mean squared error (MSE) of the prediction when the values of that variable are randomly

permuted, and we express its MSE relative to the model’s MSE when all variables are at

their original values. This fraction is then averaged over all iterative conditional sorts and

predictor variables are ranked by this measure, where higher values imply that random

permutations of a predictor variable cause higher increases in mean squared error, and the

predictor variable is therefore considered more relevant.

Results are typically displayed relative to the predictor variable that causes the highest

increase in mean squared error when it is permuted, a convention that we follow. For

example, a value of .8 for a predictor variable means that this variable is associated with an

MSE increase equal to 80% of the variable with the highest MSE increase.

Interactions and partial derivatives Another question that one might ask is whether

interactions are important in the resulting trees or whether a linear model in the predictor

variables would have yielded a similar return forecast. We address this by projecting return
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forecasts on the space of predictor variables, that is, we estimate

r̂i,t+1 = ψcons +
24

∑
g=0

ψgRi,t(g, 1) + εit, i = 1, . . . , N; t = 1, . . . , T, (1.10)

and we compute the R2 from this regression. This gives us an answer to the question

how much of the variation in forecasts is explained by a simple linear combination of

the predictors. In our application below, we find that R2 is generally low throughout all

specifications, illustrating the importance of interaction effects. Then we run the same

specification including all two-way interactions of variables to measure the increase in

(the adjusted) R2 which gives us a sense of how important variable interactions and non-

linearities are for the return predictions.

To assess directional effects of particular predictor variables on the prediction, we define

a measure of partial derivatives that can be applied to deep conditional portfolio sorts.

Define Rit(g−, 1) as the vector of past return variables that does not include past return g.

We approximate a partial derivative of the prediction with respect to past return ranking

Rit(g, 1) as follows. Recall that we construct past return rankings as the cross-sectional

decile ranks, that is, Rit(g, 1) ∈ {1, . . . , 10}. For each of the ten values, counterfactually set

Rit(g, 1) = d, ∀d = 1, . . . , 10 for all observations and compute the average prediction over

firms, time and bootstrap samples,

r̂g,d
i,t+1 =

1
N

1
T

1
B ∑

i,t,b
f̂b(Rit(g, 1); Rit(g−, 1)).

Repeat this for all values of d, and graph the results for each past return g and each value

of d. Our method can easily be extended to varying two (or more) variables at the same

time. Below, we also report partial derivatives for two-way interactions of return variables.

Return predictions Finally, we address the question of whether deep conditional portfolio

sorts really work in the sense that they make superior return predictions. Based on our

model estimates, we predict stock returns for each firm in each month and we sort stocks

into deciles each month based on those predictions. We then compute the mean return
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spread that is generated across deciles. In addition, we employ a simple trading strategy:

Each month, we go long the highest decile of predicted returns and we go short the lowest

decile of predicted returns, therefore earning an equal-weighted hedge return.

It is, of course, essential to test the model out-of-sample. While an actual out-of-sample

test is difficult to implement, we suggest a standard pseudo-out-of-sample procedure that

works as summarized in figure 1.5 and that we also used in section 1.2.3. Deep conditional

portfolio sorts are re-estimated each year with data over the past five years. Predicted

returns are then calculated for the next twelve months. In each of these months, we trade

on our predicted returns as described in the previous paragraph. This approach takes into

account the potential time-varying importance of different regressors, and answers whether

averaged deep conditional portfolio sorts could, in principle, be used for trading purposes.21

𝑡𝑡 − 60 𝑡 + 12

Estimation period One-month predictions

𝑡 + 1
months

In-sample Out-of-sample

Figure 1.5: Out-of-sample testing

Notes: Deep conditional portfolio sorts are re-estimated every year with data over the past sixty months. Predicted
returns are then calculated for the next twelve months. The strategy is go long (short) the highest (lowest) decile of those
predictions each month.

1.4 Empirics

We apply our method to the prediction of future returns based on past returns. Our main

results are as follows. First, deep conditional portfolio sort works well in this setting in

the sense that expected return predictions are ordinally accurate. Strategy returns and

21An alternative strategy for pseudo-out-of-sample testing is often employed when the data can be assumed
to be independently and identically distributed. The model would be estimated once over the entire period
with 70% of the data. Predictions would then be computed for the remaining 30% of the data. Even if data
were stratified by month, this procedure would not provide proper out-of-sample evidence because returns are
cross-sectionally correlated within each period due to common factors.

38



information ratios based on the model’s predictions are much higher than those from

alternative models. Second, among return-functions the most important ones refer to the

more recent past. Third, superior predictive ability can be traced to flexibly dealing with

non-linear relations between past and future returns, and interaction effects between past

return functions. The relation between past and future returns is more complex (and more

predictable) than can be captured by any one summary return.

1.4.1 Strategy returns

We first show that a strategy that buys high predicted expected returns and that sells low

predicted expected returns makes robust and strong risk-adjusted excess returns.We proceed

as described in section 1.3.2, that is, we estimate the model with five years of data up to

period t, and use the estimated model to predict returns for t + 1, . . . , t + 12. This procedure

is repeated for every year between 1968 and 2012. In both cases, we sort returns into ten

deciles from the lowest to the highest predictions each month.

Figure 1.6 shows that the annual strategy return would have been positive for each of

the past forty-five years. Returns tend to be somewhat lower after the year 2000 which is

consistent with the observation that momentum strategies have not performed well recently

(see Lewellen (2013)). Figure 1.7 shows the return to investing $1 in the long portfolio and

the short portfolio and illustrates that the deep conditional portfolio sort works well in both

portfolios.

More generally, figure 1.8 illustrates that the deep conditional portfolio sort manages to

spread returns more accurately across the entire distribution of firm-months than common

past return sorting strategies. It plots the average decile performance for predictions based

on the rolling model estimation. The deep sort does consistently better than a simple sorting

on a single past return. Although this is not surprising, it is not self-evident that a larger

set of explanatory variables will do better in these dimensions. Recall that we evaluate all

performances out-of-sample for twelve months by fixing the prediction function based on

past estimates. Deep conditional portfolio sorts appear to excel by producing a much more
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Figure 1.6: Annual strategy return

Notes: The strategy is based on the predictions of deep conditional portfolio sorts that relate future returns to past decile
sorts of returns. Past return sorts include decile rankings R(g,l) with length l equal to 1 and gap g between 0 and 24
months (i.e. all one-month returns over the two years before portfolio formation). The strategy goes long the highest decile
of predictions and goes short the lowest decile of predictions each month. The figure shows the annual return for each of
forty-five out-of-sample predictions.

pronounced return spread than simple strategies.

Table 1.4 regresses the return to the long-short strategy on the CAPM, the three-factor

model and the four-factor model. The raw average monthly return in column (1) is 2.3

percent. The strategy is significantly positively correlated with the market return with a

very low factor loading; however, projecting the strategy return on the market return does

not have a strong effect on the average abnormal return. The strategy does not load highly

on the size or value factors.

Overall, results for the CAPM and the three-factor model are very similar, with almost

no increase in R2. As is not surprising, time-variation in the strategy return can partially

be explained by the momentum factor, but the intercept is still strongly significant and
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Table 1.4: Strategy factor loadings: Deep conditional portfolio sort

(1) (2) (3) (4)

Intercept 2.30 2.23 2.25 2.05

(16.75) (16.04) (16.51) (14.54)

MKT 0.07 0.05 0.09

(2.14) (1.53) (2.78)

SMB 0.08 0.09

(1.40) (1.69)

HML -0.03 0.04

(-0.39) (0.61)

UMD 0.20

(5.57)

R2 0.02 0.03 0.13

IR 2.90 2.93 2.82

SR 2.96

N 540 540 540 540

This table shows time-series regressions of strategy returns on factors. Returns are specified in
percent per month. Strategies are based on the predictions of a deep conditional portfolio sort that
relates future returns to past decile sorts of returns. Past return sorts include decile rankings R(g,l)
with length l equal to 1 and gap g between 0 and 24 months (i.e. all one-month returns over the two
years before portfolio formation). Predictions are based on the model in section 1.3.2. Strategies
go long the highest predicted return decile and go short the lowest predicted return decile. The
sample period covers 1968 to 2012, and all results are based on rolling out-of-sample estimates of
the models. MKT is the market return, SMB and HML are the Fama-French factors for size and
value, and UMD is the momentum factor. SR is the Sharpe ratio and IR is the information ratio.
T-statistics are in parentheses, and standard errors were clustered using Newey-West’s adjustment
for serial correlation.
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Figure 1.7: Earned profit from investing $1 in the strategy in 1968

Notes: The strategy is based on the predictions of a deep conditional portfolio sort that relates future returns to past decile
sorts of returns. Past return sorts include decile rankings R(g,l) with length l equal to 1 and gap g between 0 and 24
months (i.e. all one-month returns over the two years before portfolio formation). The strategy goes long the highest decile
of predictions and goes short the lowest decile of predictions each month. The figure shows the earned profit from investing
$1 in the long and the short portfolio, respectively. For reference, the figure also includes the returns to investing $1 at
the riskfree rate and for investing at the rate of the market return over the same horizon.

large with a value of 2 percent per month. The R2 goes up to .13 which still leaves a large

part of the strategy variation unexplained by the equilibrium model. We observe very high

information ratios at a value of around 2.9 throughout all specifications. While averaged

deep conditional portfolio sorts produce mean excess returns that are somewhat, if not

greatly, above those of the standard methods in section 1.2.3, the method seems to do so

with a large reduction in variance.

Table 1.5 sheds more light on the decile portfolios that are formed based on the models’

predictions. They show the factor loadings of each decile portfolio return for one of four risk

models. The returns of all decile portfolios appear to correlate one-to-one with the market
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Figure 1.8: Average monthly decile return for strategy return and simple return strategies

Notes: The strategy is based on the predictions of a deep conditional portfolio sort that relates future returns to past
decile sorts of returns. Past return sorts include decile rankings R(g,l) with length equal to 1 and gaps between 0 and 24
months. The strategy goes long the highest decile of predictions and goes short the lowest decile of predictions each month.
Simple return strategies are plotted for comparison. R(1,5) is the strategy that goes long (short) the highest (lowest) decile
of returns over the past six months, leaving out the most recent one. R(6,6) is Novy-Marx (2012)’s intermediate return
strategy that goes long (short) the highest (lowest) decile of returns that are computed over the six months that skip the
most recent six months.

return, with the extreme portfolios experiencing a slightly higher covariance. Second, there

is no apparent spread in factor loadings for the size and the value factor. The extreme

portfolios load slightly higher on the size factor (an issue that we come back to in appendix

A.3), and slightly lower on the value factor. Third, there is a monotone relationship of decile

returns with respect to loadings on the momentum factor. Quantitatively, however, these

differences are small. Fourth, even though none of these portfolios differ much in their

loadings on risk factors, there is a strong monotone relation between the portfolios and their

(risk-adjusted) average returns. This stands in stark contrast to the seemingly very similar

portfolios in terms of risk loadings. What is more, this relation is not only driven by the

43



extreme portfolios (although it is particularly strong in those portfolios), but it exists across

all ten portfolios. In unreported22 monotonicity tests based on Patton and Timmermann

(2010), we confirm that raw and risk-adjusted returns are monotonically increasing in deciles

at all levels of significance.

22available on request
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Deep conditional portfolio sorts appear to work well in our application in the sense

that they produce high and stable excess returns out of sample that are not explained by

standard factor models. This begs the question what the method finds that researchers have

not paid attention to. We discuss the discovered structure of predictor variables next.

1.4.2 Exploring the mechanism

Predictor variable importance

Recall that we re-estimate the model each year for a total of 45 different estimated models

over time. When we can compute our measure of predictor variable importance for each

year, this gives us a ranking of the importance of each variable in each year. As a first

summary, we rank past returns by their median rank in these 45 models. Table 1.6 shows

the median rank as well as the upper and lower quartile of ranks for each of the top ten

past returns.

The top four return functions are related to the most recent six months of returns; all

return functions over the most recent six months enter the top ten. In addition, some returns

that show up provide information about the intermediate return between six and twelve

months before the formation date. In particular, it is interesting and reassuring to see past

return functions considered in the preceding literature to rank highly in the list. R(0,1), the

return over the most previous month is the return function of Jegadeesh (1990) and many

other papers, while R(11,1), the one-month return exactly twelve months ago, is the seasonal

effect documented by Heston and Sadka (2008).

There is also considerable time variation in the exact ranks as illustrated by the interquar-

tile range of ranks for each past return. All of them were in the top half for more than fifty

percent of the time, and seven out of the ten return functions are in the top ten for at least

half of the years. On the other hand, each variable also had periods during which it appears

less relevant to the prediction as expressed in the last column of the table. Overall (unre-

ported) we find that the rank correlation (Spearman) of past returns’ importance between

subsequent years is around .7, which points to the fact that the structure is relatively stable.
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Table 1.6: Most important past return variables: Rank statistics

Median 75th percentile 25th percentile

R(0,1) 1 1 1

R(1,1) 4 2 15

R(2,1) 4 3 8

R(3,1) 6 4 12

R(11,1) 7 3 9

R(4,1) 8 6 11

R(5,1) 8 5 14

R(8,1) 11 7 18

R(10,1) 11 7 16

R(9,1) 12 8 15

This table shows the ten most important past returns (by me-
dian rank) in the deep conditional portfolio sort that relates
future returns to past decile sorts of returns. Past return sorts
include decile rankings R(g,l) with length l equal to 1 and gap
g between 0 and 24 months (i.e. all one-month returns over the
two years before portfolio formation). The model is estimated
each year between 1968 and 2012 for a total of 45 different
rankings. The table reports the median, and the upper and the
lower quartile for the top ten past returns (by median rank)
over the 45 estimations.
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The fact that the pattern of more recent returns being more relevant than more distant

past returns comes out of an agnostic search procedure is intriguing. We find that it is quite

a robust fact in the data throughout various specifications. For instance, we find very similar

results for past-return based variables when we include other firm characteristics in the

estimation (appendix A.3.1). In appendix A.3.2 we consider an expanded set of predictor

variables that uses 126 past return functions of different gaps and different lengths such that

standard past return functions like R(0,6) (the return over the most recent six months) are

also part of the set of regressors. In that exercise, all ten predictor variables are related to the

most recent six months of returns and, what is more, the top six return functions are returns

of length one that, taken together, summarize the most recent six month return. The fact

that a standard return like R(0,6) is not chosen but its components are, illustrates that using

the return over the previous year alone (and not the one-month returns that it is based on)

leads to a loss of relevant information. One-month returns contain important information

that is neglected when summary returns such as R(0,6) or R(1,11) are considered. For both

sets of past-return functions we repeat the estimations by firm size in appendix A.3.3 and

again find similar results.

Our first intermediate result is, thus, that deep conditional portfolio sorts work because

they effectively exploit variation in relatively recent one-month returns. The next sections

look at how these variables are combined.

Average partial derivatives

Next, we consider the measure of an approximated partial derivative that we introduced in

section 1.3.2. For each one-month return ranking over the previous half year, for all observa-

tions, we vary its value from the lowest one (1) to the highest one (10), and compute the

counterfactual predictions. This allows us to trace out whether a variable is monotonically

related to returns and to evaluate the sign of the average derivative going from the lowest to

the highest value of the predictor variable. We focus on the most recent half year before

portfolio formation because our results so far suggest that these returns are most important
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for return prediction.

Figure 1.9 shows results. Focus on the first row for now (we will get to the second

row in section A.3.1) which correspond to the deep conditional portfolio sort that we have

considered so far. Each column shows results for one of the most recent past one-month

returns. Each panel varies the respective predictor from low to high and averages the

prediction for each of ten values. We observe that short-term reversal, the most recent one

month return, is negatively related to the return predictions, that is, higher values of the

most recent one-month return predict lower returns. For the next return function, R(1,1), the

one-month return over the second-to-last month, both high and low values are associated

with lower returns. The next return functions are monotonically related to predictions, but

in a non-linear way: Low realizations have a large negative effect on the prediction, but high

realizations do not have as much of a positive effect. These returns, thus, help to identify

stocks with low expected returns but they do not necessarily help much to identify stocks

with high expected returns. It is only when we consider one-month returns that are in the

more distant past (more than four months out) that we find a standard momentum effect,

that is, a monotonically positive and close to linear relation between past and predicted

returns.
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The literature has not paid much attention to non-linear relations between past and

future returns. Given that a. predictions from our deep conditional portfolio sorts make high

risk-adjusted excess returns, b. short-term return functions have high values in our predictor

variable importance calculations and c. the partial effects of these variables cannot all be

linearly related to returns, it appears, however, that non-linearities should be investigated

further in future research.

Figure 1.10 shows contour plots for all two-way interactions of the most recent one-

month return functions. In each panel, darker areas represent lower return predictions and

brighter areas represent higher return predictions. A couple of interesting results stand out:

First, many return variables interact in non-linear ways. For example, the upper left panel

shows the interaction of R(0,1), the most recent one-month return, and R(1,1), the return

over the preceding month. Return predictions generally decrease in the value of R(0,1),

reflecting short-term reversal. However, within high values of R(0,1), return predictions

increase in R(1,1), while they decrease in R(1,1) within low values of R(0,1). This type of

non-linearity holds, with some varying extent, in many panels involving R(0,1). Second,

for some return variables, we find monotonically increasing predictions within both return

variables, mostly for those that involve returns from four or more months ago. Third, some

return predictions neither decrease nor increase monotonically in the predictor variable

range, but are non-linearly related to return predictions, once one variable is fixed. For

instance, from figure 1.9 we know that R(1,1) is non-linearly related to returns. In figure

1.10, we see that this non-linearity is more pronounced when R(1,1) is interacted with

intermediate returns like R(3,1) or R(4,1).
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Finally, we find evidence that the estimate average partial derivates are time-varying.

Figure 1.11 and 1.12 illustrate this for two different variables. Figure 1.11 shows average

partial derivatives in eight different years, evenly spaced over the sample period, for R(0,1),

the return over the previous month. Short-term reversal is detectable across all years, but

its strength varies over time. While our model estimates indicate relatively monotone (or

regular) short-term reversal across all ten deciles for the first half of the sample, short-term

reversal is more apparent in the extreme deciles in the second half of the sample. Similar

conclusions can be drawn from figure 1.12 which shows the same calculations for R(5,1),

the one-month return six months before portfolio formation. In the first half of the sample,

momentum is apparent and robust across all deciles. In the second half, however, differences

in average partial derivatives are more pronounced between extreme deciles than between

intermediate deciles. Interestingly, recently (in 2012, the lower right panel), the average

partial derivative of R(5,1) has reversed such that lower values of R(5,1) are associated

with higher returns in the model estimates. Recall that the estimation period for this panel

is 2006-2011 which coincides with an episode of a momentum crash as documented by

Daniel and Moskowitz (2014). As we have shown in the previous section, a trading strategy

based on our model estimates has not suffered the strong crash that a standard momentum

strategy has experienced in this period. The average partial derivative at that time indicates

that the model has picked up the weakness of standard momentum and that the estimated

relationship was adjusted (in that case: reversed) accordingly.

55



Fi
gu

re
1.

11
:A

ve
ra

ge
pa

rt
ia

ld
er

iv
at

iv
es

in
di

ffe
re

nt
ye

ar
s

N
ot

es
:

Th
e

fig
ur

e
sh

ow
s

th
e

av
er

ag
e

pr
ed

ic
tio

n
w

he
n

R
(0

,1
),

th
e

re
tu

rn
ov

er
th

e
pr

ev
io

us
m

on
th

,
is

co
un

te
rf

ac
tu

al
ly

va
ri

ed
fr

om
lo

w
to

hi
gh

va
lu

es
,a

nd
re

su
lts

ar
e

di
sp

la
ye

d
fo

r
di

ffe
re

nt
ye

ar
s

to
ill

us
tr

at
e

tim
e-

va
ri

at
io

n.
R

es
ul

ts
ar

e
ba

se
d

on
ro

lli
ng

op
tim

iz
at

io
n

of
th

e
m

od
el

,d
et

ai
ls

ca
n

be
fo

un
d

in
se

ct
io

n
1.

3.
2.

56



Fi
gu

re
1.

12
:A

ve
ra

ge
pa

rt
ia

ld
er

iv
at

iv
es

in
di

ffe
re

nt
ye

ar
s

N
ot

es
:T

he
fig

ur
e

sh
ow

s
th

e
av

er
ag

e
pr

ed
ic

tio
n

w
he

n
R

(5
,1

),
th

e
on

e-
m

on
th

re
tu

rn
si

x
m

on
th

s
be

fo
re

po
rt

fo
lio

fo
rm

at
io

n,
is

co
un

te
rf

ac
tu

al
ly

va
ri

ed
fr

om
lo

w
to

hi
gh

va
lu

es
,a

nd
re

su
lts

ar
e

di
sp

la
ye

d
fo

r
di

ffe
re

nt
ye

ar
s

to
ill

us
tr

at
e

tim
e-

va
ri

at
io

n.
R

es
ul

ts
ar

e
ba

se
d

on
ro

lli
ng

op
tim

iz
at

io
n

of
th

e
m

od
el

,d
et

ai
ls

ca
n

be
fo

un
d

in
se

ct
io

n
1.

3.
2.

57



An extensive discussion of the time-variation of all predictor variables is beyond the scope

of the paper. The examples above, however, serve to illustrate its importance. The question

of whether time-variation in past-return signals can be related to, e.g., the macroeconomic

or financial cycle is left for future research.

Do interactions drive the predictions?

We answer this question with the simple exercise outlined in equation (1.10) in section

1.3.2. We regress the deep conditional portfolio sort’s predicted expected returns on a linear

combination of the regressors that enter the model. The first row of table 1.7 shows that

this regression has an R2 of 1%, that is, only a small portion of the variation in predictions

can be explained by a model that is linear in the regressors. The second row adds all

two-way interactions between regressors, resulting in a striking ten-fold increase in R2 (and

the adjusted R2). Regressor interactions can therefore explain a much larger portion of the

deep conditional sort’s variation in predicted expected returns. While two-way interactions

help to explain the predictions, there is still a large part of the variations in predictions that

remains unexplained and that should be attributed to higher-order terms.

1.5 Further results

In this section, we investigate a couple of related questions. Section 1.5.1 re-estimates the

model when we use only recent past returns and compares the results to a model that

uses only intermediate past returns (seven to twelve months in the past) and therefore

contributes to the debate about the relative merits of standard momentum and intermediate

momentum for cross-sectional return variation started by Novy-Marx (2012). In section

1.5.2, we compare our results to those of a Fama-MacBeth regression that uses recent past

returns and two-way interactions. Section 1.5.3 makes sure that the strategy’s estimated

excess return does not disappear after taking transaction costs into account. Section 1.5.4

addresses the issue of whether the discovered structure should be given a characteristics or

risk factor interpretation.
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Table 1.7: Measures of fit: Regressing the predictions onto linear combinations of the predictor
variables

Other characteristics? Interactions? R2 R2
adj

No No 0.01 .009

No Yes 0.11 .097

Yes No 0.017 .015

Yes Yes 0.102 .055

This table show measures of fit for regressing the predicted returns from the deep conditional
portfolio sort on the predictor variables linearly with and without interaction terms. The set of
predictor variables contains twenty-five one-month returns over the previous two years, firm
fundamentals are a set of 86 firm characteristics as described in appendix A.3.1. Results in the
first row are based on the regression

r̂i,t+1 = ψcons +
24

∑
g=0

ψgRi,t(g, 1) + εit,

and results in other rows are based on likewise regressions that include other firm characteristics
and/or two-way interactions between the regressors. Regressions are fitted for each year of
predictions separately and the mean measure of fit over time is reported.
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1.5.1 Medium-term momentum

Our results suggest that the most important predictor variables are related to the most

recent six months before portfolio formation. One could therefore suspect that short-horizon

returns are generally better predictors of future returns than intermediate horizon returns.

We address this question by defining two more sets of return-based functions that split

the regressors into those that provide information about the most recent six months and

into those that provide information about returns seven to twelve months before portfolio

formation. Formally, our split is based on the sum of the gap and length parameters. One

set includes all return-based functions for which the sum of gap and length is smaller than 7

months (we call this the short-term set), and our second set includes all return-based functions

for which the sum of gap and length is between 7 and 12 months (the intermediate-term set).

The latter set of functions includes the function suggested by Novy-Marx (2012) and other

functions that are correlated with it.

Table 1.8 provides the factor loadings of the equal-weighted hedge return strategy that

goes long the highest predicted decile and that goes short the lowest predicted decile based

on the predictions derived from each set of predictor variables. The first five columns report

loadings for the strategy based on the short-term set and the remaining columns report

loadings for the strategy based on the intermediate-term set. There are a couple of intriguing

results. First, we see that both strategies make high and robust excess returns relative to

the CAPM, and the three- and four-factor models. Second, as is immediately apparent,

alpha is lower for the medium-term strategy than for the short-term strategy throughout

all specifications. In columns (5), we add the strategy return of the intermediate-term set

to the factors. As indicated by the t-statistic on the coefficient and the increase in R2, the

two strategies are correlated, and the excess return of the short-term strategy decreases to 1

percent per month.

In column (10), we do the same, and add the short-term strategy return to the factor

regression for the intermediate-strategy return. Interestingly, alpha disappears almost

entirely once the short-term strategy return is accounted for.
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We interpret this as evidence that the most important variation for return prediction

purposes stems from short-term variation in returns rather than intermediate-term variation

once interactions and confounding returns are included in the estimation. This reconciles the

result in Novy-Marx (2012) with Goyal and Wahal (2013) who cannot find the intermediate-

term momentum effect in 37 out of 38 markets.

1.5.2 Fama-MacBeth with recent returns only

In this section, we briefly contrast the results from the deep conditional portfolio sorts to

the Fama-MacBeth results in section 1.2.3. Deep conditional portfolio sorts can be viewed

as either a kitchen-sink regression or as a variable selection method (since a variable is

selected for each split). An initial interesting comparison can thus be conducted between the

performance of the deep conditional sort in table 1.5 and the Fama-MacBeth regressions in

table 1.2. The raw and factor adjusted returns are about .5 percentage points higher than in

the Fama-MacBeth regressions and, more interestingly, the information ratios are generally

roughly three times as high. Even if we include all two-way interactions in a Fama-MacBeth

regression as in table 1.3, average excess returns and information ratios are generally much

lower than in our results for the deep conditional sort.

These results let deep conditional sorts shine in two dimensions. If regarded as a

kitchen sink method, the greedy conditional sort leads to better performance than the

Fama-MacBeth analogue, although both perform well. If regarded as a variable selection

device, the Fama-MacBeth method mostly recovers momentum as an important determinant

of expected returns whereas the structure discovered by the greedy conditional sort is more

stable and cannot be explained by (simple) factor models.

In table 1.9, we contrast this to the case in which only variables that are considered

important based on our deep conditional sorts are included in the Fama-MacBeth estimations.

In particular, as a consistent set, we focus on the six most recent months of past returns, since

our results above indicate that the most recent returns are most important for estimating

expected returns. We abstract from variable selection and therefore act as if variable selection
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Table 1.8: Strategy factor loadings: Short-term and intermediate-term return functions

Dependent variable

Return of short-term strategy Return of intermediate-term strategy

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept 2.15 2.12 2.17 2.04 1.05 1.78 1.74 1.78 1.44 0.16

(19.09) (18.47) (19.35) (17.37) (9.11) (15.01) (14.90) (15.52) (13.33) (1.65)

MKT 0.03 0.01 0.03 -0.04 0.05 0.04 0.10 0.08

(1.38) (0.46) (1.64) (-2.37) (1.40) (1.32) (4.25) (4.39)

SMB 0.04 0.04 0.06 -0.05 -0.04 -0.06

(0.65) (0.85) (1.95) (-0.74) (-0.93) (-2.27)

HML -0.08 -0.04 -0.06 -0.08 0.03 0.05

(-1.52) (-0.85) (-1.95) (-1.15) (0.78) (1.85)

UMD 0.13 -0.11 0.35 0.27

(3.80) (-4.28) (11.11) (10.71)

MT/ST strategy 0.69 0.63

(15.63) (15.24)

R2 0.00 0.02 0.08 0.48 0.01 0.02 0.37 0.64

IR 3.38 3.46 3.37 2.29 2.40 2.47 2.49 0.37

SR 3.42 2.45

N 540 540 540 540 540 540 540 540 540 540

This table shows time-series regressions of strategy returns on factors. Returns are specified in percent
per month. Strategies are based on the predictions of a deep conditional portfolio sort that relates future
returns to past decile sorts of returns. Strategies go long the highest predicted return decile and go
short the lowest predicted return decile. The short-term strategy is based on predictions from a deep
conditional portfolio sort that only uses the most recent six months of past return rankings, while the
intermediate-term strategy is based on predictions that use past return rankings from seven to twelve
months before portfolio formation. Predictions are based on the model in section 1.3.2. The row "MT/ST
strategy" adds the intermediate-term strategy return to the factor regressions for the short-term strategy,
and adds the short-term strategy return when the intermediate-term strategy is the dependent variable.
The sample period covers 1968 to 2012, and all results are based on rolling out-of-sample estimates of the
models. MKT is the market return, SMB and HML are the Fama-French factors for size and value, and
UMD is the momentum factor. SR is the Sharpe ratio and IR is the information ratio. T-statistics are in
parentheses, and standard errors were clustered using Newey-West’s adjustment for serial correlation.
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had already been conducted based on the deep conditional sort’s results.
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The first four columns of table 1.9 use only the return functions themselves and no

interactions. The long-short strategy has an average return of 1.27 percent per month, and a

four-factor alpha of .81 percent per month, with an information ratio of .78. Results based on

using all past return functions are slightly higher, indicating that there is some information

to be gained by including more distant past returns as well.

The next four columns of table 1.9 additionally include the most relevant two-way

interactions between the six most recent return functions based on our previous results.

The average strategy return is 1.61 percent per month and the four-factor alpha is 1.38

percent per month, both higher than in the kitchen sink regression above and also than in

the estimations without interactions. Most remarkably, we observe an about 50% increase in

the information ratio relative to the kitchen sink regression, from 1 to 1.49, indicating that

the strategy return is earned at a much better risk-return trade-off.

The last four columns of the table use all (and not only relevant) two-way interactions

between the six most recent return functions. Results are almost identical to including the

relevant interactions only. Table 1.10 shows that this can be attributed to the fact that the

non-relevant interactions have small and insignificant coefficients and therefore do not have

a big impact on the predictions.

Note that the returns in table 1.9 are still lower than the strategy returns in the original

deep conditional portfolio sort. The Fama-MacBeth regressions only include two-way

interactions, and recall from section 1.4.2 that two-way interactions explain only around 10%

of the variance of the estimated expected returns of the deep conditional sort. While the

Fama-MacBeth regression with two-way interactions goes some way to achieve similar-sized

returns, the remaining differences can be attributed to the actual return structure being

more involved than can be captured by including levels and two-way interactions of past

returns alone.
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Table 1.10: Fama-MacBeth regression coefficients and t-statistics: Using the six most recent one-month
returns

Coefficients t-stats

Levels only Relevant Int All Int Levels only Relevant Int All Int

R(0, 1) -1.63 -6.29 -6.32 -9.20 -16.30 -16.52

R(1, 1) 0.06 -2.87 -2.82 0.43 -8.83 -8.69

R(2, 1) 0.64 -0.93 -1.48 4.76 -4.65 -4.80

R(3, 1) 0.42 -0.87 -1.06 3.44 -4.25 -3.67

R(4, 1) 0.43 -0.42 -0.47 3.26 -1.99 -1.66

R(5, 1) 0.62 -0.11 -0.20 5.19 -0.60 -0.72

R(6, 1) 0.39 -0.33 -0.70 3.51 -1.80 -2.50

R(0, 1) X R(1, 1) 2.33 2.33 12.45 12.42

R(0, 1) X R(2, 1) 2.19 2.16 11.84 11.81

R(0, 1) X R(3, 1) 1.55 1.54 8.83 8.88

R(0, 1) X R(4, 1) 0.88 0.87 5.10 5.11

R(0, 1) X R(5, 1) 0.82 0.86 5.20 5.48

R(0, 1) X R(6, 1) 0.77 0.79 4.85 5.00

R(1, 1) X R(2, 1) 0.60 0.53 3.64 3.21

R(1, 1) X R(3, 1) 0.73 0.69 4.40 4.18

R(1, 1) X R(4, 1) 0.61 0.60 3.73 3.66

R(1, 1) X R(5, 1) 0.48 0.49 2.95 3.04

R(1, 1) X R(6, 1) 0.54 0.55 3.25 3.27

Continued on next page
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Table 1.10: (continued)

Coefficients t-stats

Levels only Relevant Int All Int Levels only Relevant Int All Int

R(2, 1) X R(3, 1) 0.27 1.59

R(2, 1) X R(4, 1) 0.29 1.82

R(2, 1) X R(5, 1) 0.36 2.24

R(2, 1) X R(6, 1) 0.20 1.20

R(3, 1) X R(4, 1) -0.01 -0.08

R(3, 1) X R(5, 1) -0.10 -0.66

R(3, 1) X R(6, 1) 0.22 1.41

R(4, 1) X R(5, 1) -0.26 -1.61

R(4, 1) X R(6, 1) 0.10 0.65

R(5, 1) X R(6, 1) 0.08 0.49

This table shows coefficient estimates and t-statistics for the three regression models in table 1.9.

Past returns include return-based functions R(g,l) with length equal to 1 and gaps between 0 and

6 months. The sample period covers 1968 to 2012. "Levels only" only includes the levels of past

return functions, "Relevant Int" includes relevant two-way interaction terms and "All Int" includes

all two-way interaction terms between the six most recent past returns. The first three columns show

the coefficient estimates times 100, and the last three columns show t-statistics.

Table 1.10 shows the Fama-MacBeth coefficient estimates averaged over the entire sample

and corresponding t-statistics for the three regression models in table 1.9.23 The second

column shows coefficients in the levels-only regression. We observe the short-term reversal

effect while all other past return variables enter with a positive sign. This is in line with the

23Note that for the prediction exercise we based predictions on rolling estimates of past coefficients as
described above, while table 1.10 gives an average over the entire sample period.
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standard reversal and momentum effects in the literature.

Column three illustrates how these results completely flip when interaction terms are

introduced in the regression. All level effects are on average negatively associated with

expected returns while interaction terms are positive. This result is robust to including

further (less relevant) interaction terms in column four. A possible interpretation of this

finding is that momentum is more likely to exist when returns are more consistent. For

instance, we find that the effect of high returns in either the last month or in the second-

to-last month indicate low returns. When both returns are high, however, the interaction

effect of this consistently high return works against the reversal effect of the two individual

returns. Return consistency effects in momentum have been documented before by, among

others, Watkins (2003) and Grinblatt and Moskowitz (2004).

How do the estimated Fama-MacBeth interactions compare to the average double partial

derivatives in figure 1.10?24 We find both similarities and differences. When we calculate

the same average derivatives for the Fama-MacBeth model, we find that interactions of

returns display the aforementioned consistency effect, that is, consistently high past returns

predict high returns. These patterns coincide with the ones in figure 1.10. We also see that

in two-way interactions that involve R(0,1), returns are less sensitive to the more distant

returns, as in the top row of figure 1.10. On the other hand, in the Fama-MacBeth results, the

interactions sometimes overturn the reversal effect, unlike in the deep conditional portfolio

sort. Owing to their simplicity, the Fama-MacBeth regressions do not capture the more

involved interaction patterns between R(1,1) and more distant returns that are apparent in

the second row figure 1.10.

To summarize, we have emphasized the flexibility to control for variable interactions as

one of the strengths of deep conditional portfolio sorts before. Now we see that the (two-

way) interactions could have been discovered in a Fama-MacBeth regression framework, too.

The deep conditional portfolio sort, however, is an efficient way to screen out the irrelevant

24Note that since we do not include higher-order polynomials of the past decile ranks, the average partial
derivatives with respect to each variable will be linear and therefore cannot capture non-linear effects.
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interactions when the set of candidates is potentially large. At the same time, it also allows

to control for more involved interactions.

1.5.3 Transaction costs

While the strategy returns in our deep conditional portfolio sort appear high, they could

still disappear after taking transaction costs into account. Strategies that are based on past

returns generally have been found to have relatively high turnover (see de Groot et al. (2012)

or Frazzini et al. (2013)), especially so, when they are based on recent past returns. As the

deep conditional portfolio sort mainly exploits variation in the most recent past returns, we

expect turnover to be high as well.

The first row of table 1.11 shows that this expectation is correct: An equal-weighted

hedge strategy that goes long $1 and short $1 in the extreme portfolios has an average

monthly turnover of 318%. Turnover is also high using the less extreme hedge returns that

go long the ninth or eight decile and that go short the second or third decile, respectively.25

25These numbers are similar to those reported in de Groot et al. (2012) or Frazzini et al. (2013) for strategies
based on short-term returns.
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Recent research has noted the large heterogeneity of trading costs across different types

of investors. Keim and Madhavan (1997) suggest a simple model to estimate transaction

costs for a sample of institutional traders. However, as de Groot et al. (2012) note, this model

can give rise to negative transaction costs in recent years. We, therefore, went with a rough

calculation that extrapolates transaction costs from the turnover estimates in Frazzini et al.

(2013). Even though the numbers might not apply to our sample exactly, they should be of

similar magnitude, given the similarities of the data sample.

Using this approximation, we find that trading costs are around 7-8 percent per year

(second row of table 1.11), close to the trading costs of the standard short-term reversal

strategy investigated in the aforementioned papers. The last row of the table subtracts the

approximate trading costs from the gross annual returns that we reported in table 1.4. After

adjusting for trading costs, the hedge strategy that trades the extreme portfolios has an

excess return of 24% per year. Trading the ninth minus the second decile (recall that these

companies are larger and therefore probably more suited to the extrapolation from Frazzini

et al. (2013)) yields an excess return of 5% per year. The excess return of trading the eight

versus the third decile is insignificant and slightly negative. In other words, the iterative

conditional portfolio sort manages to profitably spread 40% of the companies, even after

adjusting for transaction costs.

While our strategy implementation is standard in the stock market anomalies literature,

more sophisticated variants could be designed for trading purposes when transaction costs

are taken into account. de Groot et al. (2012) suggest to reduce turnover of the short-term

reversal strategy by holding on to the position in stocks even when they are not ranked in

the extreme portfolios. We do not pursue their implementation here, but, given the return

spread in the less extreme portfolios, it is plausible that such an implementation could be

constructed here as well in order to reduce turnover and trading costs further.26

26For instance, Novy-Marx and Velikov (2014) finds that many anomalies can be exploited by following an
(s,S)-type strategy that, e.g. buys stocks when they are in the highest decile but only sells them if they drop out
of the highest quintile.
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1.5.4 Risk factors or return characteristics?

Our results in section 1.4.1 indicate that portfolios that are based on forecasted returns from

the estimated model have similar loadings on the Fama-French factors and the momentum

factor, and yet consistently have different expected returns. While, at the surface, this seems

to be a challenge to the four-factor model, we investigate the issue further in this section.

Table 1.12 shows the bivariate correlation between the strategy return, formed from the

extreme portfolios, and the four standard risk factors. The strategy return displays low

correlation with the market return and the value factor. It is somewhat higher correlated

with the size factor and, as one would expect from a past return-based strategy, correlated

with the momentum factor. In general, however, these correlations are low relative to the

correlations between the other factors, which makes the strategy return a potentially suitable

candidate factor.

Table 1.12: Strategy return correlations with four factors

MKT SMB HML UMD DCPS

MKT 1.000 0.306 -0.320 -0.140 0.125

SMB 1.000 -0.241 -0.032 0.129

HML 1.000 -0.146 -0.081

UMD 1.000 0.291

DCPS 1.000

Bivariate correlations between the market return (MKT),
the size (SMB) and value (HML) factors, the momentum
factor (UMD) and the strategy return from an estimated
deep conditional portfolio sort (DCPS).

This motivates table 1.13, which mirrors the analysis in Haugen and Baker (1996). It

shows the average values of various firm characteristics in each decile of expected returns.

The first panel of the table shows measures of risk across the ten deciles with no clear
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(monotone) pattern. Average market beta is higher in the extreme deciles. The same holds

for the profitability measures in the second panel. Interestingly, gross profitability is very

similar in each decile, but expected returns are very different. This illustrates that our

sorting is not driven by Novy-Marx (2013)’ measure of gross profitability. Panel three shows

that book-to-market is balanced across deciles, as one would expect from the balanced factor

loadings in table 1.5. The last panel shows that the firms in the extreme deciles are on

average smaller.

More intriguingly, since the strategy is based on the extreme deciles, it is worthwhile

to compare the average values within these two deciles. Note that the values of most firm

characteristics are very similar in these two deciles. The strategy appears to be based on, on

average, riskier, less profitable and smaller companies. Yet, within the set of these firms,

there are stark differences in returns that can be systematically predicted.
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Recall that alternative strategies that are based on buying the second (third) highest decile

and selling the second (third) lowest decile rather than the extreme portfolios also make

robust excess returns. Comparing deciles two and nine, or deciles three and eight, illustrates

that the two corresponding portfolios are again very balanced throughout characteristics.

As a sole characteristic, return-on-equity is lower in decile nine (eight) than in decile two

(three), but other measures of profitability indicate that the portfolios are comparable along

this dimension. While the non-extreme decile portfolios display similar characteristics,

their excess returns vary and (see table 1.5) can be predicted from past returns. Since the

portfolios based on the deep conditional portfolio sort appear not to be discernible based on

many characteristics, we would not expect the strategy return that is based on it to help

explain other anomalies.

As the strategy return itself appears to be unpriced by equilibrium models and unrelated

to standard characteristics, the return could, in principle, be added as an additional risk

factor to standard equilibrium models. However, in unreported results, we found that the

strategy return, as expected, only weakly helps to explain other asset pricing anomalies,

which is why we prefer the interpretation from a characteristics’ rather than a risk factor

perspective.

1.6 Conclusion

Some fifty years after the Capital Asset Pricing Model of Sharpe (1964), Lintner (1965) and

Mossin (1966), and some twenty years after the three-factor model of Fama and French

(1992), there is still a remarkable lack of consensus about which variables can be related to

expected stock returns. To date, the literature has found more than 300 variables that spread

returns in a way that is unaccounted for by the standard equilibrium models. This has

led Green et al. (2013) to conclude that "either US stock markets are pervasively inefficient,

or there exist a much larger number of rationally priced sources of risk in equity returns

than previously thought." Surely, many of these variables contain correlated information,

and some will not hold up out-of-sample, but, so far, the literature has not rigorously
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identified which ones are fundamentally important. Furthermore, we have illustrated that

some variables interact in non-trivial ways, making it more challenging to single-out the

important ones with standard methodologies.

We provide a framework, deep conditional portfolio sorts, that is designed to deal with

a large number of variables and their potential non-linearities and interactions. It also puts

emphasis on systematic out-of-sample testing of all results. It connects model evaluation in

finance to the machine-learning literature in computer science and can serve to bridge the

two fields.

We apply our framework to find information in past returns that can be related to future

returns. A simple, linear Fama-MacBeth framework finds moderate excess returns relative

to the four-factor model. Using the same variables in the deep conditional portfolio sort

framework, on the other hand, yields high and stable excess returns, indicating that the

linear framework does not exploit all relevant information in the data.

Finance has criticized machine learning for producing black box predictions without any

possibility to "get insights into the underlying structure of the data" (Breiman, 2002). We

show that, even though the structure does not come in the form of simple equations, one

can still extract interpretable information from the resulting deep conditional sorts. First,

we find that, among the prior two years of one-month return functions before portfolio

formation, the more recent ones are the most important for accurate return predictions.

Second, some of these return-functions are non-linearly related to future returns, mostly

returns between two and four months before portfolio formation. For instance, both high

and low values of the return over the second-to-last month forecast lower returns. Third,

many of the return functions display non-trivial interactions. For instance, the one-month

return over the second-to-last month, is positively related to returns for stocks with low

returns last month, but is positively related to returns with high returns last month. At a

minimum, our results indicate that the relation between past and future returns is more

complex than can be captured by any one summary return, like momentum or intermediate

momentum.
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Our results are robust to including a larger set of correlated return functions, and to the

inclusion of other firm characteristics. Similar structures are also discovered within different

size-sorted portfolios.

The finance literature that tries to understand the drivers of cross-sectional variation in

expected returns, and the literature in machine learning that tries to predict stock returns

have largely developed unnoticed of each other. The machine learning literature has focused

on predicting stock returns from a few return-based and accounting-based variables jointly,

but then has largely ignored the structure of the prediction equation, and has analyzed the

quality of the prediction itself instead.27,28 This article can also be viewed as an attempt to

connect the two and to provide a synthesized framework that can be used in either field.

Lastly, deep conditional portfolio sorts can accommodate the inclusion of new predictor

variables quite easily. Starting from the observation that if a predictor variable is relevant, it

should show up among the most important variables that the method finds, one could just

add the variable in question to the existing set of variables. Running the estimation on this

extended set effectively controls for correlations with other variables and takes potential

interactions and non-linearities into account. Our hope is that a framework around deep

conditional portfolio sorts can significantly speed up the process of scientific discovery in

this literature.

27See, e.g. Tsai et al. (2011) or Huerta et al. (2013).

28The variables that this literature uses for prediction are typically not motivated by results from the finance
literature, but they appear to be chosen based on their availability in different datasets (convenience samples).
In analyzing the predictions itself, the joint hypothesis problem (Fama (1965, 1970)) is usually ignored and the
evaluation is conducted for raw return estimates.
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Chapter 2

Inductive Testing: Theory and an

Application to the Disposition Effect1

2.1 Introduction

In the last two decades, both the scale and breadth of data have erupted, so much that it has

spawned a new term: “big data”. These changes have affected many other fields and will

surely affect empirical social science research (as they already have to some degree2). There

are some fairly natural ways this will happen. First, as the scale of data — the number of

observations — increases, standard errors fall and estimates become more precise. This

allows researchers to test hypothesis at much greater granularity: empirical relationships

that would otherwise be swamped by noise can be seen more clearly. Second, as the breadth

of data–the number of variables–increases, new phenomena such as social networks or

well-being, can now be brought under the empirical lens.3 In both cases, big data boosts the

1Co-authored with Jon Kleinberg, Sendhil Mullainathan and Chenhao Tan

2See Einav and Levin (2014) for an overview of applications in economics.

3For instance, Dahl et al. (2014) use administrative data to uncover peer effects in maternity leave, Burke and
Kraut (2013) use Facebook data to investigate how helpful strong and weak ties are in finding a new job after
unemployment, and Dodds et al. (2011) extract happiness patterns from messages of over 60 million Twitter
users.

81



power of existing empirical tools: the larger the dataset the more we can do with the tools

we already have.

Big data, though, has also brought with it new empirical tools. Specifically, machine

learning techniques appear to represent a different way to analyze data sets and are

particularly suited to large data sets. In this paper we argue that machine learning can be

profitably applied to social science research and in particular provide a new way to test

theories.4

A fictional example illustrates our approach. Imagine a medical researcher in the 19th

century who has a novel theory: that mental health and physical health are connected.

Pessimism, she conjectures, impedes the healing process and thereby mortality is a self-

fulfilling prophecy. She recognizes that simply correlating reported pessimism with mortality

is an inadequate test of her theory since pessimism may be correlated with other factors

that affect health. So instead she isolates another empirical variable for a more precise test.

She notes that a patient should be more pessimistic if his roommate dies, and roommates

can be randomly assigned. Amongst the theories she knows, there is still one potential

confound–doctor quality–since roommates could share doctors. So she collects data on

doctor assignments and controls for this in her experiment.

To her delight, she finds support for her theory: roommate mortality predicts own

mortality. Of course, today we know that her test was confounded. The more likely

interpretation for the researcher’s finding is that bacterial infections spread easily between

roommates. Our 19th century researcher, however, isn’t aware of the germ theory of disease

and did not control for it. Two points are worth noting about this example. First, this is

not simply a case of "omitted variable bias". The causal effect of roommates is correctly

estimated. The empirical relationship is right; the theory that predicted it is wrong. We

might call it “omitted theory bias” because she did not control for the germ theory. Second,

this faulty interpretation is clear only in hindsight. Because we now know the powerful

4Other interesting work that uses or conceptualizes machine learning or high-dimensional data techniques
in social science include Belloni et al. (2011), Belloni et al. (2012), Belloni et al. (2013), Farrell (2013), Gelman and
Imbens (2013) or Fan et al. (2011). See also the recent survey by Belloni et al. (2014) and the references therein.

82



effect of bacterial infections on health, we see immediately this alternative interpretation.

How could a researcher blind to this future discovery anachronistically have been expected

to anticipate it and control for it? Unlike omitted variable bias, omitted theory bias seems

impossible to address. We will argue though that machine learning techniques can at least

partly address it.

To understand how machine learning can do so, it first is useful to see how it is used

by computer scientists for the problems it was initially created to address. Take sentiment

analysis: a classic artificial intelligence problem where the task is to classify some text–such

as a movie review–as either favorable or unfavorable. Early artificial intelligence approaches

began by noting that we, as humans, solve this problem trivially. So they would introspect

about what words (or phrases) constituted a favorable or unfavorable review, such as

“gripping”, “cliched” or “moving”. An algorithm could then scan reviews for those words

and classify reviews into favorable and unfavorable ones based on the frequency with which

those words occurred. This method for choosing words does turn out to work significantly

better than randomly guessing the sentiment of a review. However, it is also limited by the

candidate lists of words that researchers could create from introspection.

But there is an alternative strategy, reflected in current approaches to the problem.

Instead of deducing from priors what words might matter, why not induce the words that

work? Specifically, put together a large set of training data–examples of text where sentiment

is known–and see which words are diagnostic of sentiment in this data set. Recasting

problems as prediction problems is a key element of the machine learning framework–in this

case, given a movie review, to predict its sentiment using a set of features derived from the

review, such as the words in it. A second key element in the machine learning framework

is the effective construction of the variables to be used in this prediction. If we applied

traditional regression techniques to this problem, we would need to decide upon a modest

set of variables to include as regressors where the left hand side variable is sentiment. This

is better than ex ante deciding which words are diagnostic but it limits the set of words we

can search over.
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Instead, machine learning approaches to this problem begin with a very large set of

features as potential inputs. For example a standard bag-of-words technique (“unigrams”)

would form a vector of dummy variables indicating the presence of every single word in

the database. So if there are 5,000 words used in any review then there are 5,000 dummies.

One could also include a vector of “bigrams”: a variable for each pair of consecutive words

appearing in every review. This most often results in a dataset with more variables than

observations. Machine learning, or statistical learning, techniques effectively (and provably)

can search such large spaces and find prediction functions that work well. In the case

of sentiment analysis, for example, prediction rules extracted in this way trump carefully

crafted rules based on words deduced a priori.5 This story replays itself in many areas,

machine learning making tractable problems that were once thought to be intractable, from

handwriting recognition to word sense disambiguation.

Sentiment analysis highlights several features of machine learning algorithms. First,

note that machine learning techniques are powerful exactly because they can handle large

numbers of independent variables (k) relative to sample size (n). As in the example above

they can even handle situations where k > n. Second, note that they are designed exactly

to address over-fitting: they do not simply do well in the data provided but on new data

(drawn from the same distribution). Finally, and most importantly note that machine

learning techniques focus on prediction, while econometrics focuses on estimation. Put

simply, if we think about problems involving the analysis of a relationship y ≈ β · x, machine

learning focuses only on ŷ and traditional econometrics focuses on accurate estimates of

β̂. Machine learning techniques therefore often provide a weaker guarantee: that ŷ will be

close to y. These three ingredients are what facilitate an inductive approach to problems

such as sentiment analysis.

Empirical social science research is more interested in understanding theories — in

other words, more interested in β̂. We would like to argue, however, that machine learning

techniques, initially designed for prediction, can also be used for theory testing. Let’s

5See Pang et al. (2002)
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return to our 19th century researcher and compare her problem to the sentiment analysis

problem. Her goal is different–she is not trying to come up with a black box mortality

predictor but instead is trying to test a theory. But in one crucial respect her problem was

similar. In deciding what theories to control for she took a deductive approach. Much like

early attempts at sentiment analysis she used her prior knowledge of alternative theories to

decide on what variables to include–in this case measures of doctor quality. The steps she

followed in our story are basic to the scientific method: formulate a theory, deduce from it

a hypothesis that a specific target variable should affect some outcome, and then test this

hypothesis by controlling for known theories. We refer to this procedure as deductive testing.

But with machine learning she could have done better. Let’s imagine a 19th-century

researcher who doesn’t know the germ theory but does have access both to modern machine

learning techniques and a large data set including many variables — not just roommate

random assignment and other variables she would hand-collect. If she were now to come up

with the best predictor of mortality, she’d notice two facts. First, variables that she could not

understand–such as sharing of scalpel or test instrument with a sick person–would predict

mortality. That by itself does not invalidate her theory; it merely suggests there is more for

her to understand. Second, and more importantly, once these variables are accounted for

she might find that roommate assignment no longer matters. To be more precise, she could

ask the question: “How well does a machine learning algorithm with access to roommate

health do relative to one that does not have access to roommate health?” If pessimism is

right, having access to roommate health ought to improve prediction. We call this approach

inductive testing.

The steps for inductive testing are slightly different from deductive testing. As before, a

theory must be formulated and, given a data set, a variable relevant to the theory must be

found in it. Greater care must now be taken though to ensure that other variables in the

data strongly related to the theory are also excluded. For example, if some other variable

proxies for roommate health that too must be noted. But unlike deductive testing, inductive

testing does not curate the control variables. Instead as many of the control variables as
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possible are included. This is the sense in which inductive testing makes full use of machine

learning. The inductive test then involves comparing predictive performance (on y) between

an algorithm given access to the full variable set and the variable set that excludes those

related to the theory to be tested. Inductive testing is appealing because it addresses omitted

theory bias to a degree. It allows us not just to control for known theories but some of the

unknown ones.

Three important points are worth noting about the inductive method. First, the quality

of an inductive test — its power so to speak — depends on the scope of the data. A data

set with very few other variables will inevitably produce a weak inductive test. Second,

theories that exclude a large set of variables as auxiliary variables are poor candidates for

inductive tests. In the extreme, if every variable is in principle explainable by the theory,

then an inductive test is not feasible. Of course, one could ask whether theories of this kind

are well-formed. Finally, inductive tests are only tests. When they reject a theory, they do

not necessarily give guidance as to why. Looking at the prediction function, one might gain

some insight into what is happening. But it need not be the case. In the example above,

induction simply says that the presence of bacteria predicts mortality: it does not “discover”

the germ theory of disease, although it may provide a roadmap to guide future scientific

research.

In this paper, we first develop these ideas by creating a simple model of science. This

model helps to clarify, among other things, the distinction between a theory test and an

empirical hypothesis test. For example, it clarifies how even if there is no omitted variable

bias a theory test can fail, as in the fictional medical example above. In this model, we define

a deductive test and then show how a machine learning algorithm can be used to create

an inductive test. We show how, under performance guarantees of the machine learning

algorithm, an inductive test can outperform a deductive one.

We apply these ideas by inductively revisiting a classic deductive test. One of the

key observations in behavioral finance is the disposition effect: the idea that investors are

reluctant to realize their losses. Theories for the disposition effect are based in part on the
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notion of loss aversion, i.e. losses loom larger than gains. While their is no consensus in

the literature, a popular theory–“realization utility”–makes the further assumption that

this disutility is only realized when the gains or losses are realized (Barberis and Xiong,

2012).6 Realization utility is an interesting theory because of its broad applicability, affecting

everything from stock markets to housing markets (Genesove and Mayer, 2001). It is also

important because evidence for realization utility forms one of the most interesting pieces

of evidence in behavioral finance that is not directly related to predictability of asset prices.

We begin by replicating the classic Odean (1998) study on this topic. Using his data, we

find–as he did– strong deductive evidence of realization utility: stocks are much more likely

to be sold when they are in the gain domain than in the loss domain. For the inductive test

we create a large set of variables unrelated to realization utility, such as: How does the price

today compare to the price in the last t days? Importantly, these variables do not include

any information on the purchase price, but only on recent price movements. We find, of

course, that our full variable set does much better at predicting selling behavior than the

gain information alone. But, importantly, we find that once these variables are available to a

machine learning algorithm, incorporating information about gain relative to purchase price

does not improve predictive performance at all. Whatever was generating the disposition

effect does not appear to be related to purchase price.

As noted above, an inductive test does not directly give guidance as to why a theory is

rejected. But indirectly one can examine the variables that are included in the model and

gain some informal understanding. In this case, we note that a variable which indicates

whether the purchase price is in the top quartile of prices seen recently matters significantly

for selling. Being in the bottom quartile also matters somewhat, though significantly less. Of

course, if prices for this stock are high relative to what the investor has seen, the stock will

also be (on average) more likely to be in the gain domain. But once this fact is accounted for

being in the gain domain adds no value at all.

6It is important to note that by realization utility we mean here the combination of realization utility and
some loss-averse utility function based on purchase price.
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Put simply, realization utility (based on purchase price) passes a deductive test but not

the inductive one. The caveat regarding purchase price is important here, of course, since

other realization utilities might be defined differently. At the least, though, the original

disposition effect does not seem robust to an inductive test.

In summary, the contributions of this paper are three-fold. First, we introduce a formal

framework for theory testing that illustrates what scientists are assuming in hypothesis

testing and how hypothesis testing is related to theory testing. Second, we propose the idea

of inductive testing, and combine existing findings in the machine learning literature to

propose a procedure for inductive testing. Third, we apply our framework and conduct

inductive testing to the disposition effect.

The paper is organized as follows. Section 2.2 develops our theory more concretely and

provides conditions under which deductive and inductive tests work. Section 2.3 describes

how we apply inductive testing to the disposition effect. Section 2.4 concludes.

2.2 Model

Setup and assumptions. This section outlines a theoretical framework to think about the

relation between a (binary) outcome of interest, an underlying theory and its empirical

proxies. We define deductive and inductive tests and derive conditions under which the

two lead to the same or different answers, respectively. The reader should note that this

section is tentative but highlights some of the main ideas and concepts. A more complete

model is work in progress.

Our goal is to examine an outcome variable Y as a function of unobserved concepts

or theories M0, M1 and M2, where Y = g(M0, M1, M2). Here, M0 is the theory that the

researcher wants to test, M1 are other theories that are known to the researcher and M2 are

unknown theories. In our example in the introduction, Y would be patient mortality, M0

would be the pessimism theory and M1 would be doctor quality. We would like to know

how well these theories explain patient mortality.
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Assumption 1 (Data-generating process). Let binary Y be a function of underlying models with

Y = g(M0, M1, M2) and let Mj = h(Xj), ∀j such that by composition Y = f (X). X is drawn from

distribution D.

In any empirical application, the data generating process can therefore be written in

terms of Y as a function of X, where X have a distribution that we leave unspecified and

the number of measurable variables X can potentially be infinite.

In what follows, we will work with an abstract performance function Π(Y; Z) to measure

how well Y is explained by Z. This performance measure can be a statistical loss function or

some other function; for know, we only assume that it exists and that it has nice properties.

Definition 1 (Performance measure). A performance measure Π(Y; Z) that reports how well Y

is explained by Z is available for any set of Zs. Normalize Π(Y; ∅) = 0.

Models Mj only exist in scientists’ minds. They allow generalization to different contexts

and their structure extends past any one data set. In any particular context, however,

the scientist has to choose one or more empirical variables that stand in for the model

under investigation. The distinction is often glossed over but we aim to model it explicitly.

Normally, the test of an empirical relationship is synonymous with testing a theory, but, of

course, a deduced hypothesis may be empirically true while the theory is false. It could

simply be the case that other theories also imply the same hypothesis. While we know

this distinction, it is rarely part of the formal empirical framework. Rather, it is left to the

iterative process of science itself.

Let us define what it means for a set of variables X to be an empirical approximation to

model Mj as follows.

Definition 2 (Proxy). A set of variables Xj is a proxy for theory Mj if, for all X−j

Π(Mj; Xj, X−j)−Π(Mj; X−j) > γ.

In words, Xj is a proxy for theory Mj if there is at least some residual signal in Xj to

explain Mj.
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We then assume that researchers can find proxies for the theory under investigation and

for known theories.

Assumption 2. Researchers are able to find empirical proxies for known theories M1 and for the

theory under investigation M0.

Assumption 2 reduces the role of the researcher to the curation of the appropriate Xj

variables for any theory Mj.

Assumption 3 implies that having better proxies leads to better performance in explaining

the outcome variable.

Assumption 3 (Smooth model relevance). Let M̂j be an empirical approximation to Mj and let

Y = g(M0, M1, M2) as before. Define K implictly by

Π(Y; M̂0, M̂1, M̂2)

Π(Y; M0, M1, M2)
= K(Π(M0, M̂0), Π(M1, M̂1), Π(M2, M̂2)).

Mj is smooth-relevant if

∃θj > 0 : K(Π(Mj, M̂j), .)−K(Π(Mj, M̂′j), .) > θj(Π(Mj, M̂′j)−Π(Mj, M̂′j)).

We will use relevant and smooth relevant interchangeably. The smooth relevance assump-

tion implies that, as we find better proxies for a theory, we observe an increase in the

performance of predicting Y.

Finally, definition 3 lays out what it means for a function f () to be learnable with high

probability.

Definition 3 (Learnability). f (X) is learnable if and only if, given data drawn from D and

Y = f (X), we can find a function f̂ (X) such that the performance of f̂ (X) is close to the performance

of f (X) when the sample is sufficiently large. Formally, f is learnable if and only if

∀1
2
> ε > 0,

1
2
> δ > 0, ∃n′ : If n > n′, then Pr(|Π̂(Y; X)−Π(Y; X)| > ε) ≤ δ.

This definition is motivated by results in the field of statistical learning theory, a field that

tries to provide statistical guarantees for the generalization error (the error when predicting
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new data points) of estimated prediction functions under minimal assumptions.7 Such

guarantees have been derived for a variety of algorithms, including decision-trees that we

use below. We, therefore, make the following assumption about learning algorithms that we

use.

Assumption 4 (Technology). The researcher has access to a learning technology such that f is

learnable.

Deductive and inductive testing. We define a deductive test as follows. First, estimate

Π(Y; X0, X1) and Π(Y; X1). The relevance of M0 is assessed by comparing these two

quantities; in particular, M0 is accepted as a relevant theory if

Π̂(Y; X0, X1)− Π̂(Y; X1) > κ.

In contrast, an inductive test accepts M0 as relevant if

Π̂(Y; X)− Π̂(Y; X− {X0}) > κ.

Note that a deductive test can at most control for all theories that are known. An inductive

test, on the other hand, controls for all theories, known and unknown, that can possibly

be covered by measurable variables X. The inductive test relies on key insights from the

machine learning literature. First, the recent literature has developed ways to estimate

models, even when there are more explanatory variables than there are observations. In an

inductive test, we want to include as many X variables as possible (as long as they provide

diverse information) since, by definition, we do not know which variables could proxy for

unknown models M2. This implies a change in the scientific approach to measurement of

variables: Scientists should not only measure and use what they think is important; in fact,

“useless” variables can turn out to be very useful. At the same time, to set up an inductive

test, scientists need to carefully curate the variables X0 that relate to the theory to be tested,

while curation of other variables is unnecessary. Second, in such a variable-rich situation,

7See e.g. Valiant (1984).
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concerns about overfitting the data naturally arise. But the machine learning literature has

developed ways to deal with this issue (cross-validation, boosting) that we explain in more

detail below. Statistical performance guarantees bound the generalization error on new data

and, they imply that this error becomes very small with high probability when the number

of observations in the estimation data increases.

Proofs. We first establish conditions under which deductive and inductive testing both

accept a theory M0.

Theorem 1 (Acceptance). Suppose M0 is relevant, X0 is a proxy for M0 and Y is learnable,

X = {X0, X1, X2}. Then deduction and induction accept.

Proof. Let us denote the sample size by n. Because Y is learnable, there exist ε, δ and n′ so

that

∀n > n′ : Pr(|Π̂(Y; X)−Π(Y; X)| > ε) < δ

∀n > n′ : Pr(|Π̂(Y; X− X0)−Π(Y; X− X0)| > ε) < δ,

thus

∀n > n′ : Pr(Π̂(Y; X) > Π(Y; X)− ε) ≥ 1− δ

∀n > n′ : Pr(Π̂(Y; X− X0) < Π(Y; X− X0) + ε) ≥ 1− δ.

On the other hand, because M0 is relevant and X0 is a proxy for M0,

Π(Y; X)−Π(Y; X− X0) > θ0(Π(M0; X)−Π(M0; X− X0)) > θ0γ

It follows that

∀n > n′ : Pr(Π̂(Y; X)− Π̂(Y; X− X0) > θ0γ− 2ε) ≥ (1− δ)2 > 1− 2δ.

Hence, if n → ∞, ε → 0 and δ → 0, as long as θ0γ > κ, induction accepts the theory.

The proof works analogously for deduction if we replace X−0 with X1.
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Theorem 1 implies that a theory M0 is accepted if it is sufficiently relevant (θ0 is large)

and it can be proxied well (γ is large).

Hence, if a theory M0 is true, then both deductive and inductive tests accept it under the

same conditions. If a theory is false, however, there are situations in which a deductive test

accepts it as true, while an inductive test rejects it, as illustrated in theorem 2.

Theorem 2 (Counterexample). Suppose Y = g(M1, M2) (M1 and M2 are relevant), and X0 is a

proxy for M2 conditioned on X1 but is no longer a proxy conditioned on X2. Then deduction accepts

but induction rejects.

Proof. First, deduction accepts, because following the proof of theorem 1, as n → ∞,

Π̂(Y; X1, X0)− Π̂(Y; X1) > θ2γ > κ.

On the other hand, for the inductive test, because Π(M1; X) − Π(M1; X − X0) → 0,

Π(M2; X)−Π(M2; X− X0)→ 0 and θ0 = 0, Π̂(Y; X)− Π̂(Y; X− X0)→ 0.

2.3 An Application to the Disposition Effect

We apply inductive testing to the disposition effect: the idea that investors are reluctant to

realize their losses. Theories for the disposition effect are based in part on the notion of loss

aversion, i.e. losses loom larger than gains. While there is no consensus in the literature, a

popular theory makes the further assumption that this disutility is only realized when the

gains or losses are realized (Barberis and Xiong, 2012). We refer to this combination of loss

aversion with purchase price as the reference point and that this utility is felt at the time of

sale as “realization utility.”8 This is an interesting theory because of its broad applicability.

The disposition effect is directly implied by realization utility and could potentially affect

everything from stock markets to housing markets (Genesove and Mayer, 2001). It is also

8The specific assumption here is that the purchase price is the reference price. Other reference points are
obviously possible and could also be called realization utility.
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important because evidence for realization utility forms one of the most interesting pieces

of evidence in behavioral finance that is not directly related to predictability of asset prices.

The best-known piece of evidence for the disposition effect is provided by Odean (1998)

who focuses on data from a large brokerage house. His transaction level data allows him to

know, for each trader, which stocks were sold and which stocks were kept day-by-day for

several years. Using this data, he performs a simple deductive test. He compares whether

stocks in the gain domain — whose current prices are above purchase price — are more

likely to be sold than those in the loss domain — whose current price are below purchase

price. In fact, he finds that stocks in the gain domain are almost 50% more likely to be sold,

an effect that reverses in December, presumably due to tax reasons (Ivkovic et al., 2005).

This example has all the key ingredients for an inductive test. First, the data set is very

large. We use data from 40,000 traders. The scope — containing at least the entire time

series of price data for every stock — is also large. Second, the theory to be tested is precise.

It does not suggest many auxiliary variables that might matter. Because the disposition

effect is so clearly focused on the experienced gain or loss, using the initial prices as the

reference point, the auxiliary set of variables the theory could explain is not large.

To implement inductive testing, we look at a prediction problem. We view each obser-

vation as a time series of data that begins with a purchase at time 0. Each point in the

time series is labeled “sell” if the account sold the stock on that day, otherwise “hold”.

Some observations involve a “sell” at the end and others involve a “hold” at the end.

Notice that if someone holds a stock for T time periods, they create in effect T such time

series. This creates a prediction task: classify whether an observation was “sell” or “hold”

(corresponding to the outcome Y), given features of the time series. For each time series, we

encode a large set of variables, including a variable that encapsulates the disposition effect.

We call this variable Gain (X0 in our framework).

First, as a simple check, we replicate Odean (1998)’s original finding that Gain is in fact

predictive on its own. Indeed, we find that traders are significantly more likely to sell a stock

in gain than in loss. Second, for the inductive test, we then run two prediction algorithms
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on this large data set. In all the cases, we find that — though Gain is individually valuable

— it does not help the predictive performance much when all the variables are considered.

But as an inductive test, this might be too restrictive. After all, our variables also include

other variables that are close to Gain. We, therefore, repeat the test excluding not only

Gain but also a number of auxiliary variables. Again, we find no reduction in performance.

When we subsequently exclude more and more auxiliary variables that could be related to

Gain, performance never changes. All this suggests that while Gain appears to be strong

support for the disposition effect in a deductive test, it is in fact likely capturing some other

phenomenon.

To diagnose more carefully exactly what Gain is proxying for, we move to a simpler

version of this classification problem in section 2.3.5. We use a brute-force table lookup

procedure to enumerate all possible combinations of variables. This is an extreme form of a

very wide dataset that allows us to zoom in and understand actually what is happening for

every configuration of values. We analyze a scatterplot of performance values as a function of

every possible subset of a reduced variable set to show that a stock’s price quartile relative

to the history of prices matters instead of Gain. We also find that recent price changes are

very predictive of selling. These findings suggest that, in fact, Gain may really be the tip of

the iceberg for some other phenomenon, one unrelated to the disposition effect. As noted

earlier, an inductive test cannot give firm guidance to new theories but, as in this case, it can

give some clues. The fact that quartile matters so strongly suggests that individuals might

be trying to market-time their sales based on the prices they have observed. There is some

evidence that their attempts at timing depend both on the long run of prices they have seen

— they sell when the price is in the top quartile — as well as the short run price dynamics —

recent consistent upward or downward trends are both very predictive of selling. These

results hint at directions for future theoretical and empirical research.
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2.3.1 Data description

Data for our study come from two datasets. Terrance Odean provided us with individuals’

trading record data that are also used in Barber and Odean (2000). The dataset originates

from a large discount brokerage house and contains all trading activities for a sample of

78,000 households in 158,034 accounts from 1991 to 1996. A typical observation in that

dataset is made up of an account identifier, a security identifier, a date, an action (buy or sell),

the quantity that is traded and the trading price. Using CUSIP numbers as a joint identifier,

we supplement these data with stock-specific information from the Center for Research in

Security Prices’ (CRSP) daily stock file. The information from both datasets allows us to

construct and evaluate security and portfolio returns for each individual account on a daily

basis.

For the purpose of our study, we adjust our sample in line with the previous literature

(see, for example, Odean (1998)). We restrict the dataset to trades in common stocks, we

drop short-selling activities, we drop observations that include buys before the beginning of

our sample, and we adjust stock prices for stock splits. A trade by an investor is sampled

into our study if the security is held for at least 25 trading days and if there is only one

selling action over the 250 trading days following the buying decision. We call each (account

number, security number) - combination that is part of the study a time series.9 Sales can

be partial reductions or full liquidations of the position. In order to employ all variables

discussed in section 2.3.4, we require that for each time series price information for at

least 200 days before the purchase day is available. Table 2.1 shows summary statistics

for the time series that are part of our study. Subject to our selection criteria, we sampled

166,894 time series that come from 39,956 different accounts and that contain 6,141 different

securities. The average holding time is 103 days.

9If an account sells a security entirely and then buys it again, this is counted as a new time series.
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Table 2.1: Summary Statistics

Total number of time series 166,894

Average holding days 103.08

Number of accounts 39,956

Number of securities 6,141

2.3.2 Deductive testing

Following Odean (1998), we define Gain(X0) as I(selling price > purchase price) to capture

the disposition effect. Table 2.2 replicates the findings of Odean (1998) for our two datasets

(the full sample and the balanced sample in the classification task). For every (account

number, security number) - combination in the sample and each day t in the sample, we

compute whether the security was trading at a gain or at a loss on that day relative to

purchase price, and whether it was sold or not. This differs from Odean (1998) because he

only evaluates gains and losses on days when the investor was active (traded at least one

security). Our results can be regarded as an unconditional version of the statistics that he

reports. We follow Odean in computing the proportion of gains that were realized (PGR) as

the number of realized gains divided by the sum of realized gains and gains that investors

held on to. The proportion of realized losses (PLR) is computed in the same fashion. Table

2.2 shows that the proportion of realized gains is significantly higher than the proportion of

realized losses in either dataset, which confirms the validity of an unconditional version of

Odean’s finding in his original study using trading accounts of 10,000 investors. Thus, a

simple deductive test lends support to the hypothesis that investors are more likely to sell

gains than losses.10

10Here, we present the Odean test in its original form. Note that it can also be written as the regression
problem

Sellit = β0 + β1 I(selling priceit > purchase priceit) + uit

which implies β̂1 = PGR− PLR. Using e.g. R2 as a performance measure, the simple t-test here and the
deductive test as a function of a performance measure in section 2.2 are equivalent.
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Table 2.2: PGR and PLR for two datasets.

Classification task Full data

PGR 0.535 0.0049

PLR 0.452 0.0038

Difference 0.083 0.0011

t-statistic 46.558∗∗∗ 50.748∗∗∗

This table compares the aggregate Proportion of Realized Gains (PGR) to the aggregate Pro-
portion of Realized Losses (PLR), where PGR is the number of realized gains divided by the
number of realized gains and the number of gains investors held on to, and PLR is defined
likewise. Gains and losses are defined relative to the security’s purchase price. The t-statistic
reported is for the hypothesis that PGR and PLR are equal. The test statistic is computed

as (PGR− PLR)/
√

PGR(1−PGR)
nug+nrg

+ PLR(1−PLR)
nul+nrl

, where nug, nrg, nul and nrl are the numbers of

unrealized gains, realized gains, unrealized losses and realized losses.
*** p < .001, ** p < .01, * p < .05.

2.3.3 The prediction problem

To map this problem into our framework in Section 2.2, we formulate a prediction problem

to explain traders’ selling actions. For all the time series that satisfy the requirements in

Section 2.3.1, we construct a dataset that includes all days on which a stock is sold and

we randomly sample another day from the same time series on which the stock was not

sold.11 The prediction task can now be formulated as follows: given an observation of a

time series, can we predict whether it is a selling day or a holding day? We call this the

classification task. For the classification task, an algorithm can use any combination of the

features discussed in section 2.3.4. We randomly sampled 100,000 time series as training

data and the remaining 66,894 time series as testing data to evaluate the expectation of the

performance of different algorithms. We use cross-validation to select parameters in the

11It is computationally too expensive if we include all points in the time series in the prediction task (17M
data points). Instead we create a dataset by choosing a selling point and randomly sampling a holding point for
all time series where the holding time is longer than 25 days and shorter than 250 days. We require the “hold”
day to be at least 20 days after purchase to leave enough space for computing the features defined below in
Section 2.3.4.
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machine learning method. Cross-validation works as follows: we split the sample into five

parts; four parts are then used to estimate the model, and one part is used to evaluate the

prediction error. The procedure is repeated using each of the five parts as testing part in

turn. We apply this procedure in the training data and choose the parameter that gives

the best average cross-validation performance. We then use that parameter and estimate a

model based on all the training data, and report the expected performance of the estimated

model based on the held-out testing data.

2.3.4 Inductive testing

Now we investigate whether an algorithm will discover the disposition effect when it is

presented with a large number of potentially important variables. Given the time series

that we see until a given day, we can, of course, extract many different variables other than

Gain. A large subset of these variables will not be related to the theory of realization utility,

but may be able to explain traders’ selling behavior. In Section 2.3.4, we first introduce the

variables that we construct. We then explain the different machine learning methods that we

use in this paper. Finally, we present results based on the inductive testing framework that

show that the disposition effect becomes irrelevant once other variables are accounted for.

Variable description

The disposition effect can be represented by a particular function of past and present price

movements: if a security is trading at a price higher than the purchase price, an investor

should be more inclined to sell the security. The standard notion of the disposition effect

would tell us that this feature is helpful to predict investors’ selling actions. We, therefore,

make sure that our variable set includes variables that can be related to the disposition effect

so that they can potentially be discovered in the learning exercise.

Define p0 as the buying price and pj as the price on day j. In order to predict a selling

action on day t, the algorithm can use functions of p0, . . . , pt. In principle, there is an infinite

number of functions of prices that might be related to trading decisions. We discipline the
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search by permitting the algorithm to use five types of functions that operate on a given

price domain, and that naturally cover a variety of theories. Some notation will be helpful

to define functions and domains.

The domain on which functions can operate is defined by two types of mappings from

integers (i, j) into prices, which we term A-ranges and B-ranges. A-ranges start from both

ends of the price series and move towards the middle, A : (i, j) → {pi, . . . , pt−j}. For

instance, A(0, 0) denotes the set of all prices p0, . . . , pt. B-ranges start at date t and go back

in time, B : (i, j), j > i → {pt−j, . . . , pt−i}. For instance, B(0, 1) defines the domain that

includes only the two most recent prices, pt−1 and pt. These two types of domains allow

us to compute information that is based on the entire holding period of traders until the

selling day as well as short-term and long-term price changes. In our analysis, we consider

the following domains on which a function can operate:

• A(i, j), where 0 ≤ i < 10, 0 ≤ j < 10. These domains define a broad range of prices

from the distant past around the buying action to the recent past close to time t. They

are also commonly associated with the disposition effect.

• B(i, j), where 0 ≤ i < 5, i + 1 ≤ j < 5. These define recent price movements.

• B(i, j), where i = 0, j ∈ {20, 40, . . . , 200}. These define medium term to long-term

price movements relative to t.

We define five different types of functions that operate on these domains. The functions

are chosen to reflect a broad array of potential theories that we might or might not have

little knowledge about. Each function defines a variable for a given price domain A(i, j) or

B(i, j). Some of the variables that can be generated by these functions have the flavor of the

disposition effect even though they slightly differ from the original implementation. These

are the auxiliary variables in our exercise. Other variables are not related to the disposition

effect at all. They mimic the process of scientific discovery when we move to inductive

testing. The variables fall into the following five categories:
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• Gain: This function is equal to 1 if the price at the end of the range is higher than

the price at the beginning of the range, -1 if it is lower and 0 if it is identical. Note

how the gain function defined on an A-range re-builds variables that are typically

related to the disposition effect. To provide an example of how our notation works,

Gain(A(0, 0)) = 1 if pt > p0 and Gain(A(0, 0)) = −1 if pt < p0, which is the most

basic definition of a variable that is used in studies of the disposition effect. (This

serves as our variable X0.) We vary the domains to generate auxiliary variables that

still preserve qualities of the disposition effect.12

• Quartile: These functions are equal to 1 if pt is in a certain quartile of a given price

range. For instance, if pt is in the lowest quartile of the prices {p0, p1, . . . , pt−1}, the

function Q1(A(0, 1)) is equal to 1, and it is zero otherwise.

• Max: This function is equal to 1 if pt is higher than the maximum of prices in a given

price range, -1 if it is lower and 0 if it is identical. For instance, if pt is the maximum

price over {p0, . . . , pt}, the function Max(A(0, 0)) is equal to 1.

• Min: This function is equal to 1 if pt is higher than the minimum of prices in a given

price range, -1 if it is lower and 0 if it is identical. For instance, if pt is the minimum

price over {p0, . . . , pt}, the function Min(A(0, 0)) is equal to 1.

• RefGain: While Gain indicates whether the current price is greater than some fixed price

in the past, RefGain allows for comparison between the current price and a reference

price that is evolving over time. In particular, iteratively define Re f Price(t, η) =

η ∗ Re f Price(t− 1, η) + (1− η) ∗ pt, where η is a parameter that adjusts the weight

between the current prince and the past price. RefGain is equal to one if the current

price exceeds the current RefPrice, and it is zero otherwise. We construct four such

variables, operating on the A(0,0) domain for parameters η = 0.9, 0.99, 0.999, 0.9999.

12In the original work by Odean (1998) only the purchase price is considered as the reference point, but
others have argued that the reference point would be better modeled as expectations (Barberis and Xiong (2009),
Meng (2013))
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Applying these functions on the 120 domains yields a total of 120 · 7+ 4 = 844 candidate

features to consider.

Learning algorithms

We apply three different learning algorithms to our classification problem to make sure that

results do not depend on a particular machine learning method. Here, we describe in more

detail how each of them is implemented.

Lasso. Lasso (least absolute shrinkage and selection operator) was first introduced in

Tibshirani (1996). The Lasso objective function minimizes the squared deviations from an

outcome variable (as in ordinary least squares regression) subject to a penalty term on the

regression coefficients:

min
β

1
2n
‖Y− Xβ‖2

2 + λ ‖β‖1 .

This estimator enforces a sparse representation of Y, that is, many coefficients will be

exactly equal to zero. The penalty parameter λ is chosen by cross-validation, that is, we

pick the λ that results in the lowest value of the cross-validated objective function. As

discussed in section 2.2, cross validation guarantees the selection of a λ parameter that

performs approximately as well as an ideal λ that recovers the true model. The performance

is measured by the reduction in the squared loss from a classifier that guesses randomly,

0.25− 1
n ‖Y− Xβ‖2

2. We also report accuracy as a commonly used metric in the machine

learning literature, which is the percentage of correctly predicted outcomes. We use the

implementation in Pedregosa et al. (2011).

Logistic regression. Logistic regression is a model familiar to both computer scientists

and economists. Using the two classes (sell/hold) as a binary outcome variable, we aim

at maximizing a log-likelihood function on the training sample. Similar to lasso, we use

L1-regularization in the logistic regression framework. Thus the objective function is
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min
β

C
n

∑
i=1

log(1 + e−yi β
T xi) + ||β||1.

We run cross validation on the training data and select the best C. Performance im-

provements are measured relative to the average log probability (log(0.5)− 1
n ∑n

i=1 log(1 +

e−yi β
T xi)). In addition, we report accuracy on the held-out test data. The estimations use the

optimization procedure of Fan et al. (2008).

The decision tree algorithm. The decision tree algorithm is fairly distinct from the family

of generalized linear classifiers. For several reasons, decision-tree learning lends itself very

naturally to our problem. It is robust to monotone transformations of variables, it is easily

scalable to large datasets and it deals relatively well with irrelevant variables.13

Decision tree learning tries to construct a decision tree from a given dataset by working

top-down from a root node. The name stems from the fact that the results can be visualized

as a decision tree that, at each node, splits the remaining observations into two branches,

based on the value of a feature and based on some threshold value. Both the feature

that is used for the split and the threshold need to be estimated. In general, multi-class

classification is possible, but in our case, the decision tree algorithm needs to classify

instances into only two categories, a selling and a holding category.14 We define the best

split to be the one that provides the largest information gain at a given node, that is, at each

node the algorithm searches for the feature that is most discerning for the data at that node.

A split is defined by a variable x f and a value v such that observations that satisfy x f ≤ v

end up in one group and observations that satisfy x f > v end up in the other group. For

example, Gain(A(0, 0)) ≤ 0 is one potential split at a node.

Starting with the root node, we estimate the decision tree with a greedy algorithm, i.e.

we compute the information gain for all possible splits resulting from all features x f and

13See (Hastie et al., 2009, ch. 10) for an extensive discussion of the relative merits of different learning
algorithms.

14For a more detailed description of the decision tree algorithm, see also chapter 1 of this dissertation.
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values v, and at each node choose the combination of x f and v that maximizes information

gain.

We repeat the procedure on the next level of the tree, and stop when the number of

observations in a node becomes smaller than a minimum threshold. The best minimum

threshold is again selected by cross-validation. For the decision tree classifier, we simply

use accuracy to measure the performance (noting that randomly guessing would result in

an accuracy of 50%).

Results of inductive testing

The idea of inductive testing is that we give an algorithm access to many variables such

that we can check whether performance changes significantly when we add variables that

represent the theory to be tested (X0). If significant improvement is made, it suggests that

the theory is valid. In this particular example, we look at whether Gain(A(0, 0)) affects the

performance of the algorithm. We also formulate a more relaxed version of the disposition

effect hypothesis, by comparing the performance of all the variables except the full set

of {Gain(A(i, j))} to the performance of all the variables including all of {Gain(A(i, j))}.

Thus for ease of comparison, we show the performance in a reverse order, i.e., we show the

performance using all variables and then the performance when we remove certain variables

related to the theory.

Table 2.3 shows the performance of different variable sets using the Lasso algorithm.

The first two rows show the performance using either the standard disposition variable

only or all variables jointly. Gain(A(0, 0)) by itself is useful in predicting traders’ selling

behavior: The accuracy is above 50% and the improvement in MSE is larger than 0. Not

surprisingly, it is significantly worse than the performance using all features in the second

row.

Following the inductive testing procedure, the third row computes the performance using

all variables except for Gain(A(0, 0)). Note that there is neither a significant difference in

mean squared error nor in accuracy relative to the second row which includes all variables
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Table 2.3: Inductive testing using Lasso regression

Variable set MSE improvement Accuracy

Gain(A(0, 0)) only 0.002∗∗∗ 0.541∗∗∗

All variables 0.018 0.606

Remove Gain(A(0, 0)) 0.018 0.606

Remove Gain(A(0, 0)) and all RefGain 0.018 0.606

Remove Gain(A(i, j)), 0 ≤ i,j < 3 and all RefGain 0.018 0.606

Remove all Gain(A(i, j)) and all RefGain 0.018 0.606

Remove all Quartile 0.015∗∗∗ 0.591∗∗∗

The table shows the performance on the held out testing data using regularized linear regression
with an L1 norm. The performance in column (1) is measured by mean squared error and in column
(2) is measured by accuracy defined as the proportion of observations that the algorithm predicts
correctly. In column (1), mean squared error is normalized by the mean squared error of a model
that has no explanatory variables.
For each cell in the table, we test whether performance in that cell is significantly different from the
cell that uses all variables. The p-value is computed by a permutation test.
*** p < .001, ** p < .01, * p < .05.

(and Gain(A(0, 0)). A natural concern is whether this result might arise because other

Gain(A(i, j)) variables that are close to Gain(A(0, 0) can stand in for that particular variable

or because we might be considering too narrow a definition of the disposition effect.

However, when we remove all gain features on A-ranges within 3 days from the purchase

day and the last day in the time series, that is, we remove all Gain variables with A(i, j), 0 ≤

i < 3, 0 ≤ j < 3, there are no significant performance difference either (row 4). Row

5 removes all Gain variables on the A-ranges, again having no effect on the prediction

performance.

Thus, an inductive test provides evidence that the disposition effect does not matter for

stock trading decisions. Again, we note that an inductive test cannot directly suggest new

theories; rather, it can only suggest directions for future iterations of theory-development.
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With such future iterations in mind, the last row of table 2.3 shows the performance after

we remove all quartile variables. Here, the drop in MSE performance compared to the set of

all variables is roughly 18% and it is significant.

Table 2.4 conducts the equivalent analysis for logistic regressions and decision trees. The

exact same findings are also seen with these two methods, indicating that the conclusion is

fairly robust to the particular learning method that is used.

Table 2.4: Inductive testing using logistic regression and decision tree.

Logistic regression Decision tree

Variable set Improvement Accuracy Accuracy

Gain(A(0, 0)) 0.003∗∗∗ 0.541∗∗∗ 0.541∗∗∗

All variables 0.038 0.606 0.626

Remove Gain(A(0, 0)) 0.038 0.605 0.626

Remove Gain(A(0, 0)) and all RefGain 0.038 0.606 0.627

Remove Gain(A(i, j)), 0 ≤ i,j < 3 and all RefGain 0.038 0.606 0.628

Remove all Gain(A(i, j)) and all RefGain 0.037 0.605 0.624

Remove all Quartile 0.031∗∗∗ 0.592∗∗∗ 0.601∗∗∗

The table shows the performance on the held out testing data using logistic regression regularized with
an L1 norm and with decision trees as described in the text. Improvement in column (1) is measured by
improvement in the mean log probability as discussed in the text and accuracy in columns (2) and (3) is
measured as the proportion of observations that the algorithm predicts correctly. P-values are computed by
a bootstrap procedure analogous to the one in table 2.3.
*** p < .001, ** p < .01, * p < .05.

To summarize, although gain functions look individually valuable, they turn out not to

be relevant when they are considered jointly with many other variables. The inductive tests

reject the theory that disposition-related variables are relevant for the selling decision, and

the results suggest that the gain functions are likely capturing other phenomena. While our

results unambiguously support this conclusion, they do not give guidance as to why gain
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functions do not pass the inductive test. In the next section, we move to a simpler version of

the classification task to get more insight into the underlying forces that drive the results.

2.3.5 A simpler problem

The inductive tests in the previous section indicate that the disposition effect is not relevant

to predicting selling actions. In this section, we use a smaller set of variables to better

understand how the disposition effect’s influence diminishes in the presence of selected

other variables. We also try to shed light on the question which variables other than

disposition effect - related ones can account for the prediction performance.

Table lookup

Many complex machine learning algorithms are designed to optimize predictions. When

large sets of variables are used, the outputs of such algorithms are often difficult to interpret.

By using a smaller set of variables, we can move to a more interpretable method that allows

us to dig deeper into the underlying interplay between the different variables. When the

variable set is small, we can compute the joint distribution of all variables’ values and all

selling decisions. For instance, suppose we only consider two variables, Gain(A(0, 0)) and

Gain(A(0, 1)). We would then group instances by each possible combination of values of

the two variables, i.e. (Gain(A(0, 0)) = i, Gain(A(0, 1))) = j, i ∈ {−1, 0, 1}, j ∈ {−1, 0, 1},

for a total of 9 different combinations. For each combination, we compute whether it is

more likely to sell or to hold a security in the training data. This is then used to classify

observations of the test data. We call this method table lookup since we literally have a table

from which we learn the prediction for each possible pattern. Of course, this method is

really only feasible when the set of variables is small, although the number of combinations

can be relatively large.

The variable set that we consider is a small subset of the variables that we use in Section

2.3.4 and that we think is representative for each group of variables. We include variables

and domains that convey both long- and short-run information about prices. In particular,
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we define the following variables:

• Gain: This is Gain(A(0, 0)), the gain function operating on the entire domain of past

prices. It is the original notion of gain and loss as in Odean (1998).

• Trendt: This is Gain(B(0,1)). It describes how the price of today compares to yesterday’s

price.

• Trendt−1: This is Gain(B(1,2)). It describes how the price yesterday compares to the

price two days ago.

• Trendt−2: This is Gain(B(2,3)). It describes how the price two days ago compares to the

price three days ago.

• Max: This is Max(A(0, 0)). It describes whether today’s price is greater than the

maximum price during the holding period.

• Min: This is Min(A(0, 0)). It describes whether today’s price is greater than the

minimum price during the holding period.

• Quartile1: This is Q1(A(0, 0)). It describes whether today’s price is in the lowest quartile

of the holding period.

• Quartile2: This is Q2(A(0, 0)). It describes whether today’s price is in the second-to-

lowest quartile of the holding period.

• Quartile3: This is Q3(A(0, 0)). It describes whether today’s price is in the second-to-

highest quartile of the holding period.

• Quartile4: This is Q4(A(0, 0)). It describes whether today’s price is in the highest

quartile of the holding period.

Table 2.5 shows summary statistics for the subset of features that we use.
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Table 2.5: Summary statistics for variables in both tasks (mean and
standard deviation).

Variable Classification Game

Gain
0.211

(0.970)

0.171

(0.980)

Quartile1
0.281

(0.450)

0.291

(0.454)

Quartile2
0.135

(0.342)

0.154

(0.361)

Quartile3
0.154

(0.361)

0.169

(0.375)

Quartile4
0.430

(0.495)

0.386

(0.487)

Trendt
-0.050

(0.929)

-0.016

(0.927)

Trendt−1
-0.002

(0.931)

-0.016

(0.927)

Trendt−2
0.016

(0.929)

-0.016

(0.927)

Max
-0.793

(0.589)

-0.879

(0.461)

Min
0.884

(0.443)

0.927

(0.352)

Variables are defined in the text. Gain, Trendt, Trendt−1, Trendt−2,
Max and Min can take on values in {−1, 0, 1}; Quartilej can take
on values in {0, 1} for j ∈ {1, . . . , 4}. Standard deviations are in
parentheses.

A new prediction problem

In order to better understand the effects of different variables, we return to the full sample

and we switch from the classification task to a new prediction game that we introduce now.
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The payoff of the guessing game is defined in Table 2.6. Suppose you are presented with the

price path of a security, starting at the buying price and then evolving for 250 trading days.

If you were to bet on which day the investor sold his position (full or partial), on which day

would you bet? The entries in table 2.6 display the payoff structure for that gamble. The

payments are designed in such a way that a naive prediction that predicts holding on all

days or selling on all days receives a payoff of zero. The parameter α determines the relative

rewards for predicting selling versus predicting holding on to a security.15

In practice, the selling days are not evenly distributed over the time interval between

25 and 250. For instance, many more sales happen on day 25 than on day 249. In order to

avoid biases towards long or short holding periods, we adjust the payoffs for betting on

different days by correcting for their baseline probability probt. In other words, the potential

reward for betting on day 25 being the selling day is lower than the potential reward for

betting on day 249 being the selling day. A nice property of this game and table lookup is

that the reward is additive for different feature combinations. For instance, the reward of

betting on selling for Gain = 1 is independent of that for Gain = −1.

In the game, we randomly split all the time series into training data and held-out testing

data. The entries for our lookup table are learned on the training data and the variables

are then evaluated on the test data. The training data contain 145,705 time series, while the

held out testing data contain 29,141 time series.

Results

We replicate the inductive tests with the smaller set of variables using table lookup. A 5-fold

cross validation on the training data is used to find the set of variables that provides the

best performance.16

As in section 2.3.4, our inductive tests compare the best performance using all variables

15Throughout this section, we set α = 1, that is, one can only get a reward by predicting selling correctly. We
confirmed in unreported computations that the choice of α does not affect the main results.

16Note that because of overfitting (fitting training data too well to generalize on testing data), the best set
may not be the full set that uses all features.
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Table 2.6: Payoff matrix.

Realized sell Realized hold

Predicted sell α( 1
probt
− 1) −α

Predicted hold −(1− α) (1− α)( 1
1−probt

− 1)

This table shows the payoff matrix for the prediction game introduced in section
2.3.5. Each cell shows the payoff for a predicting sell/hold-realized sell/hold
combination. probt is the probability to sell on day t. The parameter α determines
the relative rewards for predicting selling versus predicting holding on to a security.

to the best performance when a particular variable is not used. Note that we use all available

data in this section and not only the balanced subsample of section 2.3.4.

Table 2.7 shows the results for the Game task. Column 2 reports, in each row, the

reward that could have been achieved by using only the row variable(s) to make predictions.

Column 3 reports the reward that could have been achieved by using all variables except for

the row variable(s). All variables are individually important as is apparent from column

2. But when we sequentially exclude variables from the set of all variables, a different

picture emerges: In some cases, the performance deteriorates significantly, while in other

cases performance is completely unaffected. Excluding the Gain variable does not have any

significant effect on the performance. It seems that, even within this small set of variables,

Gain is not very helpful for making predictions. The last two rows show results when we

exclude groups of features that relate to short-term movements. In both cases, performance

is significantly worse, indicating the importance of recent price movements for the selling

decision. We also see a complementary effect, meaning that the reward of using Trendt and

Trendt−1 jointly is better than the combined reward of using Trendt or Trendt−1 separately.

Discussion

Table 2.7 shows that Gain is not a key determinant of selling, even when only a few other

variables are considered. With this smaller variable set, we are able to dig deeper into the
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Table 2.7: Performance using table lookup in the Game task

Variable(s) Using only row Using all but row

All 31.973

Trendt 8.651∗∗∗ 26.638∗∗∗

Trendt−1 4.307∗∗∗ 29.618∗∗∗

Trendt−2 5.480∗∗∗ 32.178

Gain 11.950∗∗∗ 31.973

Max 13.191∗∗∗ 31.286∗

Min 4.840∗∗∗ 30.900∗∗

Quartile4 21.575∗∗∗ 28.943∗∗∗

Trendt, Trendt−1 15.975∗∗∗ 26.660∗∗∗

Trendt, Trendt−1, Trendt−2 18.810∗∗∗ 26.415∗∗∗

The first row shows the reward that the algorithm achieves on the testing data using all
variables. Column 2 reports, in each row, the reward that could have been achieved by using
only the row variable(s) to make predictions. Column 3 reports the reward that could have
been achieved by using all variables except for the row variable(s). P-values are computed by
a bootstrap procedure analogous to the one in table 2.3.
*** p < .001, ** p < .01, * p < .05.

underlying mechanism. Table 2.7 indicates that short-term price movements and quartile

variables are very relevant to predict the selling decision.

In this section, we investigate in more detail the relative relevance and the interplay of

short-term price movements and quartile features.

Focusing on Trendt and Trendt−1 and all quartile variables, there are 16 different ways

in which these variables can be combined (ignoring Trendt or Trendt−1 being equal to zero).

For instance, one combination would be two price increases over the last two days and the

price at day t being in the highest quartile. This combination would require Trendt = 1,

Trendt−1 = 1 and Quartile4 = 1. We find all observations in the data that obey this pattern
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and compute the average reward that one could earn based on betting on that pattern.

Table 2.8 shows all the possible variable-value combinations of Trendt, Trendt−1, and

Quartilej. The top pattern is the one that we just discussed. Observing this pattern, one

should predict a selling decision for an average reward of 11.986. The remaining columns

answer a thought experiment: How would the prediction change if we altered only one

of the variables’ values? For the top pattern, we see that changing the sign of the short-

term price variable Trendt−1 changes the prediction from selling to holding. Moreover,

Quartile4 = 1 is essential in this pattern; if we change the price to be in any other quartile of

the price distribution, the predicted result flips. Another interesting thing about the first

row is that flipping Trendt does not affect the prediction result, but flipping Trendt−1 does.

This suggests that if the price goes up yesterday, and is right now in the top quartile of

the history, people are more likely to sell no matter whether the price is going up or down

today.

More generally, the table allows us to investigate which variables are essential or pivotal

to a pattern’s prediction. Note that many predictions flip depending on whether or not

the price is in the highest quartile of the price distribution. In addition, note that flipping

short-term price movements often results in opposite predictions, too. This suggests that

these variables play a pivotal role in informing an investor’s selling decision.

A failure of exclusion

When we think about a particular variable X0, we have thus far implicitly acted as if our

assumptions about X0 from Section 2.2 fully held. Often, however, this is hard to tell in

practice. For instance, one special case that often occurs in empirical work is what we might

call the clone problem: Suppose we have an army of clones of a useful feature, and we observe

that removing the useful feature does not have a significant effect on some performance

measure. According to our inductive tests, we may think that this feature is not useful.

People have tried to avoid this problem by proposing features that are almost “orthogonal”.

Here we propose the beginnings of an alternate solution to this problem; we highlight
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some results that seem intriguing and suggest the need for a more complete formalization.

Suppose the variable that we are interested is f , and the overall performance is P. We will

introduce a new task in which the goal is to predict f ; we will denote the performance on

this prediction task by Pf . The idea is to see how the overall performance P changes as a

function of Pf . Now let us see how this helps solve the clone problem. If there is a clone of

variable f , causing us to find that removing f does not degrade P, then we will also see that

Pf is high in the subset of variables with f deleted. Thus if there is a clone problem, we will

see that P increases as Pf increases. On the other hand, if P does not increase as Pf increases,

it shows an even stronger consequence of the inductive test: a better understanding of f

does not help our prediction task at all.

In the particular problem of optimizing performance in the game we are studying here,

because we have a small number of variables, we can enumerate every possible variable

subset, and plot the performance in the game vs the accuracy of predicting a given fixed

variable. Figure 2.1 shows the scatter-plot of the performance in the game vs the accuracy

of predicting three specific features: Disposition (Gain), q4 (Quartile4), and t0 (Trendt). Each

point in the scatter-plot corresponds to a single subset of the features, representing this

subset’s accuracy in predicting disposition, q4, or t0 on the x-axis, and its reward in the

game on the y-axis. Note, for interpreting these scatter-plots, that whenever the feature on

the x-axis is included in a subset of the features, the accuracy for predicting that feature

becomes 1 by definition, and so the maximum x-value over the points in the scatter-plot is

always 1.

As we can see in the figures, the reward from the game gets saturated as the accuracy

of predicting disposition increases, which serves as an indication of the ineffectiveness of

disposition as a prediction variable. For t0 and q4, on the other hand, the increase in the

performance in the game is almost linear with the increase in accuracy on the x-axis. Note

that the structure of the scatter-plots for t0 and q4 are actually quite different from one

another. For t0, it is very hard to predict the value of t0 from any set of other variables

that does not include it (consistent with the notion that stock price changes are difficult to
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forecast), while for q4, we can see that as the accuracy increases, there is a consistent linear

trend of increase, which validates the effectiveness of q4.

2.4 Conclusion

The emergence of powerful machine-learning techniques has made it possible to perform

robust prediction in settings where the number of variables is very large relative to the

number of observations. Here we have shown how these techniques can be adapted to

provide methods for testing theories. Instead of traditional deductive tests, which can only

control for known theories, we develop inductive tests that make use of large variable sets and

can be interpreted as implicitly controlling for theories that have not yet been formulated,

provided only that they are sufficiently covered by the available variables. We apply this

inductive testing methodology to analyze the disposition effect, a long-standing issue in

behavioral finance; our inductive tests have revealed potential limitations of the disposition

effect in ways that escape the power of standard deductive tests.

This work suggests a number of directions for further investigation, of which we

highlight two here. First, we have constructed the inductive testing framework so that it can

be applied quite broadly, ideally with relatively little adaption from one domain to another.

Our understanding of inductive testing would clearly benefit from further theoretical

development at a general level beyond the specifics of any one particular machine learning

technique, since the underlying principles seem clearly to operate at this more general level.

But the formulation we give here already suggests some of the power of the approach for

basic questions in the social sciences, and it would be interesting and arguably relatively

straightforward to apply this framework to other problems where it is possible to evaluate

theories in light of large feature sets.

Second, our focus here is on tests to accept or reject a known theory M0; as we have

noted at several points, the inductive testing framework does not directly give guidance in

the formulation of new competing theories. But it would be interesting to consider whether

techniques from machine learning could be useful for this latter task — the problem of
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generating new theories from large variable sets. This leads to a range of further questions

that could help deepen our understanding of the trade-offs between deduction and induction

as modes of investigation and evaluation in these areas.
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Chapter 3

The disposition effect and the size of

returns: Reconciling evidence from

individual investors1

3.1 Introduction

A long-standing puzzle in finance research is investors’ tendency to hold losing investments

too long and to sell winning investments too soon, a phenomenon that has been coined

the “disposition effect" by Shefrin and Statman (1985). In a careful study, Odean (1998)

brings the effect to individual trading data, and rules out various competing explanations.

The disposition effect is persistent, even when controlling for higher transaction costs of

selling losers or tax incentives.2 Other explanations, such as re-diversification or private

information, similarly fail to capture important features of the data.

Several theories have been proposed to explain the disposition effect. The most prominent

explanation invokes prospect theory, developed by Kahneman and Tversky (1979). Odean

(1998) argues that with reference-dependent preferences, investors are risk-averse over gains

1Co-authored with Frank Schilbach

2Ivkovic et al. (2005) show that the disposition effect interferes with a "lock-in effect" for capital gains.
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and risk-seeking over losses, such that they sell winning stocks prematurely and gamble on

stocks that lost value in the past.3

However, Barberis and Xiong (2009) challenge this informal argument by presenting a

stylized asset pricing model involving investors with prospect theory preferences.4 This

model does not predict a disposition effect for many reasonable parameter values, since

loss aversion pushes investors to only purchase stocks with high enough expected returns.

In particular, if an investor is in the gain region, she will in expectation be further away

from the reference point than when she is in the loss region, such that a disposition effect

may not arise for mild curvature of the value function. In a related paper, Barberis and

Xiong (2012) introduce the concept of realization utility and apply it to the disposition effect.

In their model, investors derive utility from realizing gains and losses, implying that an

investor only sells a stock once the return exceeds a certain, potentially investor-specific,

threshold.

The main contribution of this paper is to contrast these competing explanations based

on their predictions for realizing different sizes of gains and losses. We use the Barber and

Odean (2000) data to establish two empirical facts. First, for all holding periods longer

than one month, and, for both gains and losses, the probability to sell a stock declines

monotonically in the size of the absolute return. That is, individual investors are not only

more likely to sell gains than to sell losses, but they are also more likely to sell stocks with

small absolute returns (i.e. stocks with prices close to the purchase price) than to sell stocks

with large absolute returns. Second, the disposition effect is more pronounced for relatively

high returns, i.e. the difference in selling probability between gains and losses of similar

magnitude is more pronounced for large returns (i.e. comparing large gains to large losses)

than for small returns (i.e. comparing small gains to small losses). Theories that attempt

3Odean (1998) notes that an irrational belief in mean reversion of stock returns could also explain the
disposition effect, but he is not able to separate the two hypotheses. He speculates that investors themselves
might not make a clear distinction: "For example, an investor who will not sell a stock for a loss might convince
himself that the stock is likely to bounce back rather than admit his unwillingness to accept a loss." Weber and
Camerer (1998) control for individuals’ beliefs in an experimental setting and find the disposition effect as well.

4Barberis and Xiong (2009) do not include probability weighting.
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to explain the disposition effect also need to be consistent with these additional facts. In

particular, we argue that our first fact is not consistent with the model of realization utility

as proposed by Barberis and Xiong (2012), but it is consistent with a version of prospect

theory that we outline below.

Our empirical analysis employs two methodologies. First, in our preferred approach,

we follow Ivkovic et al. (2005) and construct portfolios of investors’ stock holdings for each

month. This method allows us to measure the survival time of stocks in investors’ portfolios,

conditional on the stock being in the gain or in the loss region. We extend this approach by

splitting up the sample into gain and loss quantiles, and then consider the selling patterns

across quantiles, controlling for stock holding periods, which generates the results described

above.

Second, following the original estimation approach of Odean (1998), we construct an

investor’s portfolio for every day at which an investor made at least one trade. Replicating

Odean’s results, we compute the fraction of stocks valued at a gain (loss) that were actually

sold relative to all stocks that could have been sold at a gain (loss). Extending this approach

to stock returns of different magnitudes, again controlling for the holding period, we find

that the disposition effect persists for all return sizes. However, in contrast to the results

from our first approach, the selling probability increases in the size of the return for gains

and is constant in returns for losses.

We trace the apparent tension between results from the two approaches to different

conditioning sets of the estimates. The duration model of Ivkovic et al. (2005) computes

an unconditional probability of selling (for given holding periods), while the Odean (1998)

methology estimates a probability of selling a stock conditional on investor activity. To

reconcile the results from the two estimation approaches, we establish that an investor’s

propensity to make a trade is largest for small absolute portfolio returns, using several

parametric and non-parametric estimators.

Our paper is closely related to a recent contribution by Ben-David and Hirshleifer (2012),

who investigate the relationship between past security returns and subsequent sales using
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an approach similar to ours. Ben-David and Hirshleifer find that the probability to sell a

security is “asymmetrically V-shaped". That is, larger returns are more likely to be sold,

this effect is more pronounced for positive returns compared to negative returns, and the

selling probability does not have a discontinuity at a stock return of 0. Since these results

appear to be in contrast to our findings, we reconcile these findings with our results. We

document that the probability to sell is asymmetrically V-shaped only for short holding

periods. In particular, if results are pooled over different horizons, we do find a pronounced

discontinuity at 0 returns. We also find that the selling probability decreases in the absolute

value of the return, in line with our previous findings.

The remainder of the paper is organized as follows. Section 3.2 derives simple theoretical

predictions for prospect theory and realization utility. Section 3.3 describes the data and

our methodological approach. In section 3.4 we present our main empirical results and

robustness checks, and in section 3.5 we relate our results to Ben-David and Hirshleifer

(2012). Section 3.6 concludes.

3.2 Theoretical background

In this section, we provide a sketch of models of realization utility and of prospect theory

that have been suggested as explanations for the disposition effect. We are particularly

interested in the predictions of these models for the probability to sell a stock for different

returns, and we show that the models we consider generate quite different predictions in

this regard. This allows us to disentangle the explanations by comparing their predictions

to the actual probability to sell a stock for different returns.

3.2.1 Realization Utility

Barberis and Xiong (2012) argue that investors derive utility from realizing gains and losses

of assets that they own (as opposed to from consumption of the proceeds). The authors set

up a dynamic optimization problem and show that investors with realization utility will

sell a stock when the return exceeds some (positive) liquidation point. In other words, "if the
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investor buys a stock, he voluntarily sells it only if its price rises a sufficient amount above

the purchase price". In particular, an investor only sells at a loss if he is forced to do so by a

liquidity shock.

For illustrative purposes denote by P0 the investor’s purchase price and by Pt the price

in period t. Define gt := Pt/P0. An investor will then sell the stock if gt ≥ gi
∗, where gi

∗ ≥ 1

is the investor’s liquidation point which depends on individual and stock characteristics.5

Figure 3.1 shows the trading behavior of the individual investor depending on gt. The

probability to sell a stock below gt is drawn to be greater than zero to take liquidity shocks

into account. If gt exceeds the investor’s liquidation point, the stock is sold in t. While

realization utility predicts a step function for the individual’s probability to sell a stock, the

function is smoothed out when we consider the aggregated prediction. Since the liquidation

point depends on individual characteristics,6 there will be heterogeneity of liquidation

points across investors.

Figure 3.1: Realization utility prediction for individual trading

Figure 3.2 illustrates the implications for the aggregate probability that a stock is sold.

5gi
∗ is strictly greater than 1 if the investor faces some transaction cost.

6It depends, for instance, on the time discount rate, the transaction cost, and the likelihood of a liquidity
shock, which might all vary across investors.
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As investors do not realize losses, the probability to sell is constant in the loss region

(liquidity shocks). When the return is slightly positive, some investors start selling the asset

because they have a relatively low liquidation point. A higher return implies that additional

liquidation points are exceeded. The exact shape of the function obviously depends on the

distribution of liquidation points among investors. Of course, there is no reason to expect

this relationship to be linear7, but the probability to sell should certainly be an increasing

function of the realized return.

Figure 3.2: Implied trading pattern in the realization utility model

3.2.2 Prospect Theory

In their pioneering work, Shefrin and Statman (1985) and Odean (1998) linked prospect

theory to the disposition effect using informal arguments. In a formal analysis, however,

Barberis and Xiong (2009) find that a model including investors with prospect theory

preferences8 does not generate the disposition effect for many combinations of parameter

7e.g. a positively skewed distribution (many observations close to 1) would yield a concave function

8The authors abstract from probability weighting.
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values.9 Prior arguments had neglected the effect of the kink on the initial buying decision.

Because of the kink, an investor will only buy a stock initially if the expected return is

high enough. That implies that, in the next period, the investor is relatively far away from

the reference point when the stock trades in the gain region, whereas she is closer to the

reference point when the stock is in the loss domain. When the value function has only

mild curvature, the investor is almost risk-neutral in the gain region when she is relatively

far away from the reference point and she will therefore hold the stock after a gain. On the

other hand, after a loss, she is still close to the reference point and sells the stock for many

parameter values of the value function. Meng (2013) argues that a modified reference point

can help to get around this result. Using expectations as reference point, she proposes a

simple model in which prospect theory generates a disposition effect for investors.

We present two views of prospect theory both of which are able to generate the dis-

position effect. First, we consider Barberis (2012) implementation of prospect theory in a

model of casino gambling. This model, very different from most other models in this area

of research, takes nonlinear probability weighting into account. It features some interesting

predictions that we think are transferable to a model of individual investment decisions.

Consider an asset that in every period with probability 0.5 either increases or decreases

by h. Figure 3.3 shows the possible prices after six periods. Barberis’ model implies that

even though this stock has an expected return of 0, a prospect theory agent might buy it

because she can give its return a favorably skewed distribution by overweighting small

probabilities and by choosing a suitable ex-ante exit strategy (e.g. sell the stock as soon

as you acquire losses). Note that this is in stark contrast to Barberis and Xiong (2012)’

s model which implies that prospect theory agents only buy stocks with high expected

return. Barberis (2012) then investigates implications for subsequent gambling behavior. He

finds that naive prospect theory agents (that is, those who are not aware of their nonlinear

probability weighting) almost never exit after making losses and stop gambling too early

after making gains; in other words, they do not stick to their original plans. The actual exit

9This has also been studied by Hens and Vlcek (2011).
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pattern is illustrated by the curved line in figure 3.3. Intuitively, the pattern comes from

a trade-off between the nonlinear probability weighting (which pulls towards keeping on

gambling, but less so if the gain is already large) and the concavity of the utility function in

the gain region.

Figure 3.3: Stock price for six periods and resulting exit behavior

Carrying this result over to the stock market, it implies that higher positive returns are

more likely to be realized. Figure 3.4 shows the trading pattern that can be derived from

the model. In particular, investors never realize losses under this specification, but are

increasingly willing to realize gains.

Figure 3.4: Implied trading pattern in the casino gambling model
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A different, quite natural prediction arising from prospect theory focuses on the kink

in the value function. As is well-known (see e.g. Barberis et al. (2006)), the kink induces

first-order risk aversion around the reference point (Figure 3.5 illustrates this). Even though

investors are risk-seeking in the loss domain, the kink induces them to reject a fair bet

involving small amounts if the price is close to the reference price.10 Being far away from

the reference return, on the other hand, implies only mild curvature of the utility function

(i.e. mild concavity/convexity) and, therefore, very similar behavior in these regions.

Figure 3.5: Local risk aversion in the value function

This gives rise to the prediction that the probability to sell will be higher around the

reference point, a phenomenon that we label bunching, and lower for larger gains and larger

losses. If, in addition, we assume that some degree of concavity/convexity away from

the reference point is preserved, we can also conclude that the probability to sell gains is

generally higher than the probability to sell losses (risk aversion vs. risk loving). This is

summarized in figure 3.6. Note that the plot is qualitatively similar to Kaustia (2010) or

Meng (2013) who develop models along these lines.

10Note that a fundamental problem of this explanation is the question of why they would buy stocks in the
first place.

127



Figure 3.6: Implied trading pattern in the bunching model

3.3 Data and Methodology

In this section, we describe the data that we use for our analysis. We then describe two

different approaches to estimation of the disposition effect that have been used in the related

literature. Section 3.3.2 discusses the duration model approach of Ivkovic et al. (2005) and

how it can be applied in our context. Section 3.3.3 describes the original approach of Odean

(1998). We apply both approaches and reconcile their results later in section 3.4.4.

3.3.1 Data

Terrance Odean kindly provided us with the dataset used in Barber and Odean (2000), which

is very similar to the one used in Odean (1998). This dataset from a large discount brokerage

house contains all trades as well as end-of-the-month positions for 158,034 US accounts

(belonging to 78,000 households) for the time period 1991-1996. Among other variables,

the data comprises household and account identifiers, dates, selling and purchase prices,

quantities and security identifiers.11 The data also feature some demographic information

that we use to control for investor characteristics in robustness checks of our analysis below.

Table 3.1 shows the the main demographic variables used in our analysis. Our data contain

11A detailed description of the data can be found in Barber and Odean (2000).
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relatively few female individuals, more than 50% of the individuals say they have some

knowledge about the stock market (self-reported), and 15% of the households are labeled as

frequent traders by the brokerage house (i.e. they trade more than 48 times per year).

Table 3.1: Demographic characteristics of investors

Variable Obs Mean Std Min Max

Married 37642 0.78 0.41 0 1

Female 47586 0.13 0.34 0 1

Age 41654 50.63 12.76 18 94

Home owner 54914 0.77 0.42 0 1

Knowledge 27179 0.56 0.5 0 1

Equity (’000s) 77981 53 277 -.97 51900

Frequent trader 77984 0.15 0.36 0 1

Taxable account 77984 0.63 0.48 0 1

We match the trades file with specific information for each account and trade (e.g.

account type, trading activity, product type). We get monthly and daily price data of

securities from the Center for Research in Security Prices (CRSP). Prior to our analysis, we

eliminate all trades other than trades of common stocks (e.g. foreign stocks), all trades that

involve short-selling and all trades including securities purchased before 1991. Also, we

drop all observations for which price data are not available and accounts that own only one

stock. This procedure closely follows Odean (1998). To get a sense of the data, and because

it is going to be important for our subsequent analysis, figure 3.7 shows the histogram of

security holding durations in the sample. As one would expect, a lot of stocks are being

held for a short period of time, and the number of observations declines monotonically in
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the holding duration.

Figure 3.7: Histogram of stock holding durations

3.3.2 Duration model

Ivkovic et al. (2005) expand the same dataset that we use by including every month between

an initial purchase of a stock and the first sale of the stock (or the end of the observation

period, if the security had not been sold by then). For every month they match price data to

their dataset and determine whether the stock was sold/could have been sold for a gain

or a loss by comparing the buying price to the daily price, just like in Odean (1998). For

a given duration they calculate the hazard rate for both gains and losses (i.e. the share of

gains/losses that are sold). The resulting figure plots the frequency of selling (and leaving

the sample) given that an investor has not sold the security yet, conditional on whether it is

a gain or a loss (relative to the buying price), an estimator that is commonly referred to as

the nonparametric Kaplan-Meier estimator of the hazard rate.12

12The estimate of the hazard rate is given by

λ̂(tk) =
sk
nk
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We take this analysis further and, for every holding period, compute the hazard rate as

a function of return magnitude. For illustrative purposes, we show a graph with 3 quantiles

of returns for all holding periods (small, medium and large) below, but due to the large

sample we can focus on a much finer grid in our analysis when we keep the holding period

fixed.

As in Ivkovic et al. (2005), we then turn to the estimation of a Cox-proportional hazard

model of the form

λ(t, xi) = λ0(t)exp(x′i β), (3.1)

where λ0(t) is the baseline hazard rate and xi contains individual-specific information which

will allow us to control for various stock-holder (and stock) characteristics, such as those

presented in table 3.1.

3.3.3 Proportion of realized gains and losses - The Odean (1998) approach

Odean (1998) does not simply compare realized gains and losses13 but constructs a more

sophisticated measure. He calculates portfolios for each account at each trading date by

adding up trading records in chronological order. Every time a sale takes place, he compares

the average buying price14 to the selling price. An observation counts as a realized gain if the

selling price is higher than the average buying price. It counts as a realized loss if the average

buying price exceeds the selling price. The observation is omitted if the prices are equal.

Paper gains and paper losses are defined similarly. Consider, for example, a security that is in

an investor’s portfolio at the beginning of the day, and it is not sold. The observation counts

as a paper gain if the average buying price is lower than both the high and low price on

that day. It is omitted if the average buying price lies between the high and low price for

where nk is the number of observations in the sample in period tk and sk is the number of observations that
leaves the sample in tk. Both numbers can be conditioned on gains and losses.

13This would yield spurious results in an upward-trending market.

14i.e. the average price of a security for all purchases up to that date
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the day. Paper losses are defined equivalently. Odean (1998) then computes the proportion

of realized gains of all gains(PGR):

PGR =
# of realized gains

# of realized gains + # of paper gains
(3.2)

The proportion of realized losses (PLR) can be calculated in the same way. Odean then tests

for the presence of a disposition by testing whether PGR>PLR.

The original implementation of the approach suffers from a bias which comes from the

differential treatment of paper gains/losses relative to realized gains/losses. Note that paper

gains/losses are only counted when the average buying price is less than/exceeds both the

high and low price of that day, otherwise they are not counted. Realized gains and losses,

on the other hand, are determined relative to the actual selling price regardless of whether

the average buying price lies within the daily high and low price of that stock. Since it is

more likely that small returns are between the daily high and low prices, this procedure

systematically overstates small realized gains/losses relative to small paper gains/losses.

Figure 3.8 illustrates this. The lower panel shows an observation that counts as a realized

gain although Pb ∈ [low, high], whereas the observation would not have been considered a

paper gain had it not been sold (upper panel).

Figure 3.8: Bias towards realized returns in the Odean approach

This bias can, of course, be avoided by applying the same rule to both paper gains/losses

and realized gains/losses (that is, by dropping realized gains when their average buying

price falls in the interval between the low and high price of that day), a convention that we

follow throughout our analysis. While we think that our approach is more rigorous than

the original treatment of gains and losses in Odean (1998), we have confirmed that it does
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not have a substantial effect on any of the results.

3.4 Results

Our main analysis consists of evaluating the duration model Kaplan-Meier estimates for

different returns, fixing the holding period. But first, we show how the main results can be

seen in simple histograms. In section 3.4.3, we present results using the methodology of

Odean (1998).

3.4.1 A first look at the data using histograms

Figure 3.9 shows histograms of the returns for a fixed holding period of 12 months. Panel

3.9a shows the histogram for all returns, whereas panel 3.9b conditions on returns that were

realized.15 The conditional histogram contains relatively fewer observations in the tails and

is more concentrated around 0.

Figure 3.10, which shows the corresponding kernel density estimates, illustrates that

fact. The dashed line is the kernel density conditional on selling, and the solid line is the

unconditional kernel density function. Probability mass is more concentrated around 0

conditional on selling than it is for all returns. This suggests that investors are overly likely

to sell stocks that trade close to a zero return. Note that the figure is for a fixed holding

period of 12 months for illustration but the implied pattern is robust and holds for all

different holding periods. We turn to a more rigorous analysis of those patterns in the next

section.

3.4.2 Duration model

Next we consider the Kaplan-Meier estimates. Figure 3.11 provides the starting point of the

analysis. This figure plots the estimated hazard rate as a function of the holding period for

both gains and losses for the entire sample for holding periods between 1 and 30 months.

15We deal with outliers by truncating the histograms at a return of 200%.
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Figure 3.10: Kernel density estimates

The results are qualitatively and quantitatively in line with Ivkovic et al. (2005). In particular,

the probability to sell gains is greater than the probability to sell losses for all holding

periods, that is, we observe a disposition effect for all holding periods. Notice also that the

probability to sell a stock declines with the holding period.

Figure 3.12 extends the analysis to the case of different return quantiles. We use quantiles

instead of return intervals for two reasons. First, since we are interested in comparing

differently-seized gains and losses, we want to make sure that the respective classes of

returns that we compare contain equal numbers of observations. Second, we cannot match

very high returns with same-sized low returns, because losses cannot exceed 100 %.16. The

quantile procedure has proven valuable when trying to estimate non-linear functions and

has been used by others before (e.g. DellaVigna and Pollet (2009)). Analyzing a very rich

dataset enables us to split the data into many quantiles in the subsequent analysis. For

illustrative purposes, figure 3.12 considers only 3 quantiles, small, medium and large gains

16If we restrict ourselves to gains smaller than 100% and use intervals instead of quantiles, we do get
qualitatively similar results.
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Figure 3.11: Conditional hazard rate for gains and losses

and losses respectively. In the figure, solid lines correspond to gains relative to purchase

price and dashed lines correspond to losses. Circles denote the smallest gains and losses,

triangles denote medium-sized ones and squares denote the largest tercile of gains and

losses, respectively. The disposition effect is apparent for all three quantiles of returns (that

is, the probability to sell gains exceeds the probability to sell losses for each respective pair

of quantiles) , and that the overall probability to sell appears to decrease with higher returns

(inward shift of the respective graphs).

Figure 3.12: Conditional hazard rate for gains and losses by return tercile
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We will investigate these preliminary findings in more detail. In particular, note that

figure 3.12 is suggestive, but not conclusive. It plots the probability to sell as a function of

the holding period. However, we are interested in the probability to sell a stock as a function

of the return in order to compare the empirical results to the theories that we considered in

section 3.2. Therefore, we repeat the calculations behind figure 3.12, split the sample into 25

gain and 25 loss quantiles and plot the probability to sell as a function of those quantiles

keeping the holding period fixed.

Figure 3.13 presents our main finding. It shows the hazard rate as a function of return

quantiles for four different holding periods of 1, 6, 12 and 24 months (the findings are robust

for other holding periods).

The disposition effect is apparent in all four panels: The probability to sell gains is larger

than the probability to sell losses throughout most holding periods and return magnitudes.

Small returns with short holding periods and large returns with long holding periods do

not display a disposition effect.17 Even more remarkable, however, is the pattern of the

probabilities as a function of return. For both gains and losses, the probability of selling

is largest for small returns and steadily declines for higher (absolute) returns, a consistent

pattern throughout all panels.

This finding stands in stark contrast to most model predictions that we have derived

in section 3.2. The realization utility view and the casino gambling prospect theory view

imply an increasing probability to sell in the gain region. Now we see that the opposite is

actually the case, smaller returns are more likely to be sold than high returns. In addition,

the probability to sell in the loss region is not constant, which also does not speak in favor

of the realization utility view. On the other hand, the bunching view of prospect theory at

the end of section 3.2 appears consistent with this evidence.

To further explore the relationship between the propensity to sell a stock and its return

relative to purchase price, we estimate a Cox proportional hazard model. The parametric

17Note that we have relatively few observations for holdings of exactly 24 months which makes the estimates
less precise.
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approach has the advantage that we can control for other investor characteristics. Every

investor-security combination is treated as an observation i, such that the hazard rate is

given by:

λi(t, x) = λ0(t)exp{x′itδ}, where (3.3)

x′itδ = gl,itβl + gm,itβm + gh,itβh + ll,itγl + lm,itγm + lh,itγh + demoi (3.4)

Here, gl,it is a dummy that is equal to 1 if individual-security combination i trades at

a low gain in holding period t, the other dummies are interpreted likewise with m being

medium gains and losses and h being large gains and losses. demoi denotes the additional

individual-level demographic control variables from table 3.1 such as age, gender and

wealth. E.g. β1 is the effect of a small gain on the probability to sell a security that has not

been sold yet.

We divide the stock returns into three groups such that we can exclude the middle

group and are able to compare effects for small and large gains respectively.18 Note that the

previous findings can be rewritten in terms of the model’s coefficients: For instance, if the

probability of selling declines away from a 0 return, we should observe γ1 ≥ γ2 ≥ γ3 and

β1 ≥ β2 ≥ β3.

Columns (1) and (2) in table 3.2 report results with and without control variables. They

are in line with the findings in the figures we presented in the preceding section. In

particular, we find that the probability of selling declines with the size of returns. Small

gains are more likely to be sold than medium-sized gains (the left-out category), and large

gains are less likely to be sold than medium-sized gains. The same hold true for small and

large losses relative to medium-sized losses.

Note also that the coefficients between quantiles differ significantly, rejecting the hy-

pothesis that the probability of selling a security is constant across returns. The size of

coefficients is in line with the hypothesized order in the preceding paragraph. Adding

demographic control variables does not change results significantly.

18We have tried other splits into 2 to 10 groups with no qualitative change in results or interpretation.
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Hartzmark (2015) shows that investors are more likely to sell stocks with more extreme

returns among the stocks in a portfolio. In columns (3) and (4) of table 3.2, we therefore

add two dummies as additional control variables: "‘Best"’ is equal to 1 if a stock is the

best performing stock in an investor’s portfolio in a given month, and "‘Worst"’ is equal

to 1 if a stock is the worst performing stock in an investor’s portfolio in a given month.

Adding these controls does not alter our results. Given that the number of observations

varies widely across specifications,19, the stability of coefficients is actually remarkable.

Table 3.2: Cox proportional hazard model for the probability to sell
a stock given its return relative to purchase price.

Dependent variable: Dummy for selling

Variable (1) (2) (3) (4)

gl 1.613∗∗∗ 1.630∗∗∗ 1.640∗∗∗ 1.628∗∗∗

gh -1.095∗∗∗ -1.107∗∗∗ -1.268∗∗∗ -1.297∗∗∗

ll 1.332∗∗∗ 1.345∗∗∗ 1.420∗∗∗ 1.415∗∗∗

lh -1.796∗∗∗ -1.816∗∗∗ -1.730∗∗∗ -1.722∗∗∗

Worst -0.110∗∗∗ -0.151∗∗∗

Best 0.045∗∗∗ 0.027

Controls X X

N 4439680 1978133 1418624 578739

∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5% and 10% signifi-
cance level, respectively.

19The sample size varies for two reasons: First, demographic control variables are only available for a
subset of regressors. Second, Hartzmark (2015) only includes observations that have at least five stocks in their
portfolio, and we follow this approach in columns (3) and (4) of table 3.2.
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3.4.3 Odean approach

Table 3.3 replicates Odean’s main result. We use the proposed correction of the bias towards

realized gains and losses that we discussed in section 3.3.3. As a result, all estimates are

slightly lower than without bias correction, but qualitatively they are the same. We view

this as evidence that the disposition effect cannot be explained by this simple estimation

bias. For all months except for December, we find the disposition effect. PGR exceeds PLR

in magnitude and the difference is significantly different from zero.20 From January to

November, investors realize 12% of their gains but only 6.7% of their losses. In December,

the disposition effect is reversed and investors realize 9.9% of their gains but 10.5% of their

losses. As discussed in Odean (1998) and Ivkovic et al. (2005), investors face a trade-off

between realizing their losses and foregoing tax benefits. Since December is the last month

for realizing tax-loss savings, investors choose more often to sell their losers in that month.

Odean (1998) actually shows that the ratio of PGR and PLR declines over the year, implying

that tax motives become more important in the course of the year. Note that our estimates

have higher t-statistics than Odean (1998)’s results, mainly because our dataset is much

larger.

Figure 3.14 goes beyond the original approach in Odean (1998) and plots the proportions

of realized gains and losses as functions of stock returns for different holding periods.21 For

all panels, the proportion of realized gains exceeds the proportion of realized losses for all

return quantiles, that is, the disposition effect is apparent for all sizes of returns and for all

holding periods. Furthermore, for short holding periods, small gains are less likely to be

sold than large gains, while for larger holding periods, stocks with small and large returns

are equally likely to be sold.

20The standard error is computed in the same way as in Odean (1998), that is, the standard error of the
respective difference is given by: √

PGR(1− PGR)
nrg + npg

+
PLR(1− PLR)

nrl + npl

where nrg, npg, nrl , npl are the numbers of realized gains, paper gains, realized losses and paper losses.

21For the same reasons as in the previous section, we use quantiles rather than return intervals.
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Table 3.3: PGR and PLR for the Entire Data Set (bias corrected)

Entire Year Dec Jan-Nov Entire Year (Odean)

PLR 0.070 0.105 0.067 0.098

PGR 0.118 0.099 0.120 0.148

Difference -0.048 0.007 -0.053 -0.05

t-stat -151.773 5.551 -160.598 -35

At first sight, these results appear to be quite different from our previous findings but

recall that the Odean approach is biased towards trading activity, that is, the probability

that is computed is not the unconditional probability to sell, but the conditional probability

to sell, given some trading activity takes place in the portfolio. In the next section, we show

that the Odean graphs in figure 3.14 display the behavior that one would expect if small

returns are (unconditionally) more likely to be sold.

3.4.4 The propensity to trade

As noted in the previous section, at first sight, the results from the empirical approaches

that we presented appear to lead to quite different conclusions. In this section, we show that

this is actually not true. Rather, we argue that the two methods compute different objects

and we show that there is a simple relationship between the two. While the duration model

computes a conditional probability of selling a stock, given that one has not sold the stock

before, the Odean approach estimates the probability to sell given that some activity in the

portfolio takes place. Hence, the conditioning set is different in the two estimations, and

this is at the heart of why the figures look so different.
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One can illustrate the difference via Bayes’ rule. I.e. if P(Sell) is the hazard rate, then

P(Sell|active) =

=1︷ ︸︸ ︷
P(active|Sell) P(Sell)

P(active)
. (3.5)

The left-hand side is the quantity that is estimated by the Odean approach. Therefore, e.g.

if P(Sell|active) is constant over returns, then P(Sell) must be proportional to P(active) in

order to explain our findings, that is, P(active) must also fall with absolute size of returns.

Hence, the link between the results is given by P(active) which we would like to compute

in this section.

We estimate P(active) using parametric probit regressions as well as a nonparametric

approach. To start, we construct stock portfolios for each investor at the investor-month

level as in section 3.3.2. We then collapse the data, compute the portfolio return for each

investor-month combination and construct a dummy that is equal to one if the investor

traded at all (sold or bought any stock) in a particular month and that is zero otherwise.

Our resulting dataset therefore has one observation for each investor and each month .22

We then regress this dummy on the portfolio return to get an estimate of the propensity

of trading as a function of the portfolio return. Since we do not have a strong prior about

how this relationship should look like, we start with a nonparametric regression using the

Nadaraya-Watson estimator.23 The nonparametric model that we want to estimate is given

by:

g(x) = E[y|X = x], (3.6)

where x denotes the portfolio return, and y is our activity dummy.

Hence, an estimate of g(x) can be obtained from the regression

y = g(x) + ε, ε ∼ (0, σ2(x)) (3.7)

22We require that an investor holds at least two stocks in a given month to be included in the sample.

23Our procedure follows Haerdle (1990).
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Figure 3.15 shows the estimated regression function and 95% confidence bands. The

propensity to trade is highest around zero returns and declines in absolute size of returns.

As argued above, this is what one would expect given the conditional estimates of the

Odean approach.

Figure 3.15: Nonparametric estimate of propensity to trade. Grey area denotes the 95% confidence bands.

Table 3.4 confirms this result parametrically. We regress the portfolio activity dummy

on a (first and third order) polynomial of the portfolio return and we allow for a structural

break in the relationship at a portfolio return of 0. The first two columns show results for a

linear regression while the last two show results for a probit model. All models confirm the

significant impact of the portfolio return on the propensity to trade at all, and the regression

function is in line with the non-parametric model above, that is, it is upward-sloping for

negative returns and downward-sloping for positive returns.

To summarize, the results of the duration model and the Odean approach can be recon-

ciled when we take into account that the two estimates condition on different information
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Table 3.4: Propensity to trade as a function of portfolio return

Dependent variable: Dummy for any trade

Regressors Linear model Probit model

I(Retp > 0) 0.005∗∗∗ 0.007∗∗∗ 0.022∗∗∗ 0.031∗∗∗

Retp 0.222∗∗∗ 0.509∗∗∗ 1.753∗∗∗ 2.600∗∗∗

I(Retp > 0)Retp -0.452∗∗∗ -1.051∗∗∗ -3.497∗∗∗ -5.106∗∗∗

Ret2
p 1.026∗∗∗ 3.463∗∗∗

Ret3
p 0.887∗∗∗ 3.447∗∗∗

I(Retp > 0)Ret2
p -0.062 -2.261∗∗

I(Retp > 0)Ret3
p -1.468∗∗∗ -1.553

Constant 0.115∗∗∗ 0.131∗∗∗ -1.158∗∗∗ -1.119∗∗∗

N 1254918 1254918 1254918 1254918

∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5% and 10% significance level,
respectively.
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sets. The link is given by the probability that an investor makes any trade as a function

of the stocks’ returns in her portfolio. We find that this probability declines in the size of

absolute returns which reconciles our seemingly different results in sections 3.4.2 and 3.4.3.

3.5 Relation to Ben-David and Hirshleifer (2012)

Our approach is closely related to a recent article by Ben-David and Hirshleifer (2012)

who also investigate the relation between past security returns and subsequent sales using

the same data as we do. Their main result is that the probability to sell a security is

"‘asymmetrically V-shaped"’, that is, larger returns are more likely to get sold and more so

for positive returns, and that the selling probability does not have a discontinuity at a stock

return of 0. While the latter is consistent with our results (recall that we find a stronger

disposition effect for larger returns), the former fact seemingly stands in contrast to our

reported results and we investigate the causes in this section.

In contrast to the approach in Ivkovic et al. (2005), Ben-David and Hirshleifer (2012)

follow the holding of a stock on each day after it was purchased without conditioning on

portfolio activity as in Odean (1998). This approach hugely expands the data set and most

of our results are based on a random sample of 25% of accounts.24 For the short holding

horizons in figure 3.16 below, we are able to use the entire data set.

We start by successfully replicating the main results in Ben-David and Hirshleifer (2012).

First, we follow their procedure to construct each investor’s portfolio on each possible

trading day. This enables us to follow each stock from the purchase day to the selling day.

Table 3.5 reports the unconditional probability that a stock gets sold for different holding

periods. In general, stocks are sold infrequently: The probability that a stock is sold in the

first 30 (trading) days after purchase is .79 percent and it monotonically decreases for longer

holding horizons.

Figure 3.16 shows our replication of the motivating results in Ben-David and Hirshleifer

24Ben-David and Hirshleifer (2012) follow the same strategy and base their estimates on a random sample of
10,000/77,000 ≈ 12% of accounts.
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Table 3.5: Unconditional probability (in %) of selling for different numbers of holding days. Note: Days are
trading days.

Holding days 1-30 31-60 61-90 91-120 121-150 151-180 181-210 211-240

Probability to sell .790 .508 .391 .309 .258 .230 .201 .174

(2012) (that is, their figure 1). We document a sharp decrease of the selling probability

around small stock returns and we find that the difference between small positive and small

negative returns is negligible.25 The results thus support the existence of an asymmetrically

V-shaped selling schedule, that is, stocks with small returns are unlikely to be sold and

stocks with higher returns are more likely to be sold, more so for positive returns. Note,

however, that the results in figure 3.16 are conditional on the specific holding periods of 1

or 5 days, both of which are extremely short.

Figure 3.17 illustrates the results of the same exercise when data are pooled over different

holding horizons. The left panel pools all holding periods less than 30 days and is generally

in line with the results in figure 3.16, although there is an apparent small discontinuity

around 0. The right panel pools all holding periods of less than 250 trading days and looks

very different: The discontinuity of the selling probability around 0 is more apparent and

the probability to sell appears to decrease with the absolute value of the return.

Table 3.6 provides a more detailed account of the relation between the discontinuity

result around a return of 0 and the holding period. We regress an indicator for stock sales

(multiplied by 100) on an indicator of whether a stock’s return was greater than zero, on

a third-order polynomial of a stock’s return and on interactions of the indicator and the

polynomial terms. Each column reports the regression results for a different stock holding

period. For ease of interpretability, we report results for the linear probability model here

but we have checked that non of the results change when a logistic regression model is

25Our replication is based on a quadratic polynomial in the stock return on each side of the threshold of 0,
while Ben-David and Hirshleifer (2012) use higher-order polynomials. We produced additional results using
nonparametric kernel density regressions (available on request) that looked even more similar to the original
results.
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used instead. Note that the indicator for a positive return comes in significantly in each

regression. For instance, for a holding period of up to 30 days, a positive return increases

the likelihood to sell the stock by .367 percentage points. To assess whether this is large or

small, we scale the coefficient by the unconditional probability of selling for each holding

interval (from table 3.5 above) in the last row of the table. For shorter holding horizons, the

discontinuity is about 40% of the unconditional probability to sell, while for longer holding

horizons it is about 20%.

The effect of positive returns relative to purchase price on the probability to sell a stock is

sizeable for all horizons within one year of stock purchase. The long-lasting effect is in line

with other research that investigates how investment decisions depend on past prices. For

instance, Heath et al. (1999) show that employees are more likely to exercise stock options

when the stock price is greater than the maximum achieved over the previous year, and

Baker et al. (2012) show that the 52-week high is an important anchor for merger offers.

Here, we show that the purchase price of a stock affects trading decisions for (at least) one

year, an unsurprising finding in light of the aforementioned studies.

To summarize, we document that the probability to sell is asymmetrically V-shaped

only for very short holding periods. If results are pooled over different horizons, we find a

pronounced discontinuity at 0 returns and we also find that the selling probability decreases

in the absolute value of the return, in line with our previous findings.

It seems plausible that investors that trade at very short horizons are different from

those that trade at longer horizons. Indeed, Ben-David and Hirshleifer (2012) report weaker

results for infrequent traders (their figure 5). As our study generally focuses on holding

periods greater than one month (and up to two years), it can also be read as a study of the

behavior of those less frequent traders.

3.6 Conclusion

What drives the disposition effect? In this paper, we investigate the explanatory power of

two leading explanations, prospect theory and realization utility. We derive implications
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of the theories for the probability to sell as a function of the return size, and contrast the

predictions to empirical findings.

Our main finding is that, for all but very short holding horizons, investors are more

likely to sell stocks with small returns (i.e. stocks with prices close to the purchase price)

than to sell stocks with large returns. Since this is such a puzzling fact, we establish trust in

the result by showing it using a couple of different methods. Using the duration model of

Ivkovic et al. (2005), we find that larger absolute returns are less likely to be sold than small

returns. Using the Odean (1998) methodology, we find that for small holding periods, small

gains are less likely to be sold than large gains, while for larger holding periods, stocks with

small and large returns are equally likely to be sold.

We show how to reconcile the seemingly contradictory empirical findings by pointing

out that the two approaches estimate different probabilities. While Ivkovic et al. (2005)

consider the probability of selling a stock with a given return in a given month (conditional

on still holding it), Odean considers the probability of selling a stock, given that the investor

sells or buys a stock in her portfolio. That is, when we compare the two approaches, we

need to take into account that the probability of undertaking any transaction in the portfolio

is a function of the individual returns of the stocks in the portfolio. We find that individuals

are more likely to make transactions for small returns than for large returns.

Jointly, these findings pose yet another challenge: An investor is more likely to perform

any action (i.e. sell or buy stocks, look into her portfolio?) if returns of stocks in her portfolio

are small. Once the investor decides to act, however, she is more likely to sell large returns.

It is hard to think of a theory that would predict this.

In any case, it should be apparent that realization utility cannot explain important

features of the data. A version of prospect theory, on the other hand, that puts emphasis on

"bunching" around the kink appears to be consistent with the facts. Obviously, consistency

with the facts alone does not make a theory the true explanation. For instance, an explanation

that combines elements of prospect theory, realization utility and overconfidence might very

well be at the heart of the disposition effect. In any case, a debate-settling explanation of the
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disposition effect has to account for the empirical facts that we presented.

Despite the fact that the choice of the reference point is crucial for any analysis of

reference-dependent utility, the existing literature on the disposition effect has not thor-

oughly investigated this choice (with the exception of Meng (2013)). Instead, it solely focuses

on a stock’s buying price as "a noisy proxy for the investor’s true reference point" (Odean,

1998). While Odean discusses the possibility of other determinants of the reference point (in

particular, expectations), his focus remains on variants of the purchase price26.

Koszegi and Rabin (2006) argue that expectations rather than the status quo play a key

role in the formation of individuals’ reference points. In particular, when people do not

plausibly expect to maintain the status quo, "equating the reference point with expectations

generally makes better predictions". For trading decisions, this suggests that the purchase

price might not be a good choice of a reference point. While it may be a good proxy in

times of low returns, with soaring stock prices like in the 1990s (the coverage of the data set

falls within that time period)27, investor may have higher expectations, and, hence, a higher

reference point than the status quo.

Future research should take into account the possibility that investors’ reference points

may be driven by expectations or might generally deviate from a stock’s purchase price.

The application in Kleinberg et al. (2015), which is also part of this thesis, can be viewed as

one attempt to allow for a more flexible effect of past returns on trading decisions.

26For investors who buy the same stock several times, Odean considers the average purchase price, the
highest purchase price, the first purchase price, and the most recent purchase price

27Our dataset covers transaction from 1991 through 1996, a time period during which on average the S&P
500 index rose over 15% annually.
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Appendix A

Appendix to Chapter 1

A.1 Illustration of a conditional portfolio sort

In our illustration, we consider conditional portfolio sorts that are each based on two of the

following variables: short-term reversal, momentum, intermediate momentum, size, gross

profitability, and book-to-market. Our results complement Fama and French (2008) who sort

stocks into three size portfolios first and then sort each portfolio subsequently on a further

firm characteristic. We follow the same approach with a few modifications:

Each month, we sort stocks into one of three portfolios based on the value of a sorting

variable from the following list: short-term reversal, momentum, intermediate momentum,

size, gross profitability, and book-to-market. Short-term reversal is defined as the return

over the most recent prior month, momentum is the return over the past twelve months

(excluding the most recent month) and intermediate momentum is the return over the

past twelve months excluding the most recent six months. Accounting-based variables are

constructed in a standard fashion (see appendix A.3.1).

Each portfolio is then further divided into ten portfolios based on a second sorting

variable from the same list and we compute the equal weighted hedge return based on the

second sorting within each of the three portfolios. Table A.1 reports the equal weighted

hedge returns, their associated t-statistics, and the test of Patton and Timmermann (2010) for
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the monotonicity of returns over the decile sort.1 Columns labeled "Low" contain estimates

based on firms in the lowest tercile of the first sorting variable, "Middle" and "High" denote

the next two terciles, and "All" uses all observations without a sort on the first sorting

variable for comparison.2

First, note that all of the sorting variables achieve significant returns in the equal-

weighted hedge portfolios and pass the monotonicity test of Patton and Timmermann. To

delve into the details of the results: When firms are sorted on short-term reversal first,

momentum, intermediate momentum and value still manage to pass the t-test and the

monotonicity test within each short-term reversal tercile portfolio. Size does not work in the

top tercile, and gross profitability passes the t-test, but fails to provide monotone returns

throughout all terciles. A similar picture emerges when returns are sorted on momentum

first. Value and short-term reversal work throughout all terciles, while intermediate momen-

tum yields (weakly) significant t-statistics in each tercile but does not pass the monotonicity

test for the low and middle groups of momentum-sorted returns. Size passes all t-tests,

but fails to provide monotone returns in the lowest two terciles. Interestingly, momentum

sorts continue to work well when firms are sorted on intermediate momentum first but

the reverse is not true: Intermediate momentum sorts do not consistently give a significant

hedge return (only in low momentum stocks) or monotone returns (only in the middle

tercile of momentum stocks). Initial sorts on value or size leave the monotonicity of return

sorts intact, but interfere with the monotonicity and t-tests of gross profitability. When firms

are sorted on gross profitability first, equal-weighted hedge returns are significant for all

variables in all terciles, but the returns to medium gross profitability firms is not monotone

when sorted by value.

The overall picture that emerges is that of return sorts being relatively stable while

1Since the Patton and Timmermann test for monotonicity is not (yet) standard, here is a brief summary:
It computes the pairwise difference between the average returns of adjacent decile portfolios, and then tests
whether the minimum of these differences is greater than zero (if the research hypothesis is that returns are
increasing over deciles). If the test rejects, this provides support for the research hypothesis.

2In other words, the column "All" gives the results for an unconditional sort on the row variable.
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accounting-based sorts are less robust to initial sorts on some other return- or accounting-

based variable. The results illustrate the potential relevance of correlated return- and

accounting-based characteristics, and the necessity to consider conditional returns when

the objective is to evaluate the importance of a new candidate predictor variable. Variable

interactions can also be relevant as is evident from the fact conditional sorts often work only

in some of the tercile portfolios.3

3It is also possible to condition on more than one variable in this setting by first doubly sorting all stocks
on two variables into, say, three categories each for a total of nine portfolios. Within each portfolio, one could
then compute the same statistics as above, and discuss the effects of conditioning on levels and interactions
of variables. While, in principle, feasible for a few variables, the approach does not lend itself to an easy
interpretation in higher dimensions.
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A.2 Greedy algorithm

To illustrate estimation of a deep conditional portfolio sort start with the conditional

portfolio sort in figure 1.3. Consider the portfolio S1 in that figure which is defined by

variable R(g(1), 1) being less than threshold τ(1) and variable R(g(2a), 1) being smaller than

threshold τ(2a). Other portfolios can be defined similarly by their relations between sorting

variables and associated thresholds. Within each portfolio Sl , the predicted expected return

is just the average return, µl , of all firms in the portfolio, that is,

µ̂l = Mean(ri,t+1|Firm i ∈ Sl in period t) (A.1)

In other words, analogous to linear regression, we are interested in approximating the

conditional mean of the outcome variable at a value of the regressor by the average of the

outcome variable over observations with close values of the regressors. The conditional

portfolio sort therefore generates subsets of firm observations that are more homogenous.

Suppose for a moment that we have found such a homogenous allocation of firms into

portfolios. The prediction function could then be written as

r̂i,t+1 =
L

∑
l=1

µ̂l1(Firm i ∈ Sl in period t), (A.2)

giving a portfolio-specific expected return prediction for each observation. What we have

described so far is nothing more than a formal definition of the common conditional sorting

methodology that we carried out in the previous section.

Of course, the conditional sort does not need to end after two levels but can be computed

at greater depth. We consider the case in which the depth of the conditional sort, the sorting

variables and associated thresholds are not pre-selected but need to be identified from

the data. Finding the optimal solution to this problem requires solving an optimization

problem that is NP complete (see (Hyafil and Rivest (1976))), that is, there does not exist a

computationally fast solution to optimizing over both portfolios and predictions.

Instead, we adopt a greedy algorithm from the machine learning literature that proceeds

in a step-wise fashion. Let S1(g, τ) and S2(g, τ) be two portfolios that are defined by a

168



firm’s past return decile ranking R(g, 1) and a threshold value τ such that, as before, all

observations for which R(g, 1) ≤ τ are in portfolio S1, and all observations for which

R(g, 1) > τ are in portfolio S2. At each node, all observations that are members of that node

are split into two such portfolios. The greedy algorithm finds the past return characteristic

R(g, 1) and the threshold value τ such that

(g∗, τ∗) = arg min
g,τ

SC(g, τ), (A.3)

where SC(g, τ) is a split criterion function which we adopt from the related machine learning

literature. The split criterion function selects the predictor variable and the associated

threhold that minimize the sum of mean squared errors in the resulting portfolios with

respect to the expected returns, that is,

SC(g, τ) = min
µ1

 ∑
Rit(g,1)∈S1(g,τ)

(ri,t+1 − µ1)
2

+ min
µ2

 ∑
Rit(g,1)∈S2(g,τ)

(ri,t+1 − µ2)
2

 (A.4)

and the inner minimizations are solved by equation (1.7).This algorithm reduces a complex

non-linear estimation problem into subsets of simpler linear ones. The problem is solved in

a brute-force fashion where the value of the split criterion function is computed for each

firm characteristic and each threshold value. The optimization is repeated in each of the

resulting portfolios until a. the number of observations in a node gets too small for further

splits, or b. no variable provides a sufficient improvement of the mean squared error in

equation (A.4). The result is a conditional portfolio sort with many levels.4

A.3 Robustness

We start by adding a set of eighty-six additional firm characteristics to the estimation and

show that, again, the most recent returns are discovered as the most important ones. The

4The question of when to stop adding new levels to the conditional sort relates to a standard bias-variance
trade-off. Using many levels potentially results in overfitting which would worsen the predictive power of
equation (1.8) out of sample. Estimating only a few levels might miss important aspects of the data leading to
bias. Within this sphere the number of levels can be chosen. We stop when the number of firms in a portfolio is
smaller than 100 and make sure to validate all our estimates out of samples as described in section 1.3.2.
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same holds true when we consider a much larger set of correlated past return variables; re-

sults are presented in section A.3.2. In all cases, we find that the derivatives and interactions

are similar to our main results.

We then turn to the question of how our return term structure result varies across firm

size categories. We repeat the analysis for three groups of stocks that are sorted by firm size

first in section A.3.3.

A.3.1 Including firm characteristics

We investigate whether our results on the structural relation between future and past returns

are robust to including other firm characteristics. For this paper, we focus on the changing

nature of the return term structure result although the effect of firm characteristics (and the

question of which of them can be found by our agnostic procedure) is an interesting one in

itself.5

Going back to our original set of one-month return functions, we add eighty-six common

firm characteristics, including size, book-to-market, gross profitability, earnings surprises,

leverage and many more. The full set is described in detail in the appendix to Green

et al. (2014); we generate the same set of variables from annual and quarterly data on firm

fundamentals from Compustat, daily and monthly stock price data from CRSP, and earnings

expectations and firm recommendations data from IBES.

Table A.2 mirrors table 1.4 and shows that the strategy returns are slightly higher

when accounting variables are included in the deep conditional sorts. The out-of-sample

performance is not better on all dimensions though: The information ratio decreases in this

setting. The characteristics-augmented strategy appears to load higher on the size factor

than the returns-only strategy in table 1.4 but loads similarly on other factors.

Table A.3 reports the top ten return-based predictor variables. The top ten return

functions for rolling and entire period optimization, again, evolve around the most recent

5In ongoing work, a companion paper focuses exclusively on a large set of (mostly accounting- and
earnings-based) firm characteristics.
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Table A.2: Strategy factor loadings: Including firm characteristics

(1) (2) (3) (4)

Intercept 2.56 2.46 2.46 2.28

(15.65) (14.25) (14.27) (11.99)

MKT 0.12 0.06 0.10

(2.75) (1.61) (2.44)

SMB 0.27 0.28

(3.80) (4.53)

HML 0.01 0.07

(0.11) (0.96)

UMD 0.18

(3.44)

R2 0.03 0.09 0.15

IR 2.66 2.75 2.63

This table shows time-series regressions of strategy returns on factors. Returns are specified in
percent per month. Strategies are based on the predictions of a deep conditional portfolio sort
that relates future returns to past decile sorts of returns and 86 firm fundamentals. Past return
sorts include decile rankings R(g,l) with length l equal to 1 and gap g between 0 and 24 months
(i.e. all one-month returns over the two years before portfolio formation). Strategies go long the
highest predicted return decile and go short the lowest predicted return decile. The sample period
covers 1968 to 2012, and all results are based on rolling out-of-sample estimates of the models.
MKT is the market return, SMB and HML are the Fama-French factors for size and value, and
UMD is the momentum factor. SR is the Sharpe ratio and IR is the information ratio. T-statistics
are in parentheses, and standard errors were clustered using Newey-West’s adjustment for serial
correlation.
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returns, and, apart from some changes in the exact order of predictor variables, are largely

unaffected by the inclusion of other firm characteristics.

When comparing the top ten variables to the top ten in table 1.6, we see that nine out of

ten show up in either list, with the exact ordering sometimes slightly altered. Recent returns

are again the most important predictors.

Table A.3: Most important predictor variables: Including firm
characteristics

Rolling optimization Entire period optimization

R(0,1) 1 R(0,1) 1

R(1,1) 0.5 R(1,1) 0.53

R(2,1) 0.45 R(2,1) 0.47

R(5,1) 0.44 R(3,1) 0.44

R(8,1) 0.41 R(11,1) 0.38

R(4,1) 0.4 R(5,1) 0.36

R(3,1) 0.39 R(6,1) 0.35

R(11,1) 0.39 R(7,1) 0.34

R(6,1) 0.38 R(8,1) 0.34

R(7,1) 0.37 R(4,1) 0.33

This table shows the most important return functions for
the deep conditional portfolio sorts that use all one-month
returns over the two years before portfolio formation and
86 additional firm characteristics. Results are shown for
both the rolling model estimation and for optimization over
the entire horizon. For rolling estimates, return functions
are sorted by their median importance over forty-five years.
Variable importance is measured as described in section
1.3.2.

The second row of average partial derivatives for the most recent one-month return
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functions in figure 1.9 mirror the patterns from the first row that did not include firm

characteristics. In particular, we observe stable linear relationships between past performance

and prediction for returns that are further than four months in the past and for the most

recent past return, but we also observe non-monotone or non-linear relationships for recent

past returns in between.

Figure A.1 shows double partial derivatives for return characteristics when firm charac-

teristics are included and corresponds to figure 1.10. In both cases, we observe patterns that

are qualitatively very similar and only differ in details, e.g. the interaction between R(1,1)

and R(3,1) is somewhat more pronounced.

Overall, we conclude that the discovered structure among return characteristics is largely

unaffected by the inclusion of additional firm characteristics.
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A.3.2 Expanded set of return functions

In this section, we directly give the algorithm access to standard notions of momentum,

R(1,11) in our notation, and other past return functions. More precisely, we define an

expanded set of past return functions that includes return-based characteristics {R(g, l)}, g =

0, . . . , 6; l = 1, . . . , 18, that is, the set includes a total of 126 return-based predictor variables

that are often highly correlated. Our main findings show that the algorithm derives its

predictive power from optimally using the variation in relatively short-term returns. Is the

algorithm just trying to re-create standard momentum? Or is there more information in the

individual returns than in a summary return like R(1,11)?

We repeat all of the calculations above for an algorithm that has access to this expanded

set of return functions. The first four columns of table A.4 show excess returns and

factor loadings for the implementable trading strategy based on rolling estimation of deep

conditional portfolio sorts. Excess returns are about as high as in table 1.4 where we used

the smaller set of past return functions. The strategy’s loadings on the value and size

factors are similar to the loadings in table 1.4 while the loading on the momentum factor

is somewhat higher. The four-factor model explains around 20% of the variation in the

strategy return. The information ratio is again much higher than what is usually reported in

the literature that employs methods that do not comprehensively deal with characteristics’

interactions and non-linearities.

For comparison, the last four columns of table A.4 show (non-implementable) strategy

returns on the hold-out sample for optimization over the entire horizon. Factor loadings

are generally similar (with the exception of the value loading in the four factor model), and

excess returns are higher which, again, should not be surprising given that optimization

over the entire period uses contemporary information on cross-sectionally correlated stocks.

We have also looked at the factor loadings of the individual decile portfolios. Since the

results are very similar to our previous results, we only briefly describe them here (avail-

able on request). Throughout all specifications, predicted return portfolios are positively

correlated with market beta, with no apparent relation between decile portfolio and beta
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Table A.4: Strategy factor loadings: Expanded set of return functions

Rolling optimization Entire Period optimization

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 2.37 2.31 2.36 2.10 3.13 3.04 3.05 2.84

(17.65) (17.22) (18.51) (17.08) (22.48) (21.05) (21.12) (19.28)

MKT 0.07 0.04 0.09 0.10 0.08 0.12

(2.22) (1.26) (3.35) (2.69) (2.28) (3.34)

SMB 0.06 0.07 0.07 0.07

(0.91) (1.36) (1.20) (1.19)

HML -0.09 -0.01 -0.02 0.05

(-1.36) (-0.12) (-0.33) (0.90)

UMD 0.27 0.21

(8.06) (4.99)

R2 0.02 0.03 0.23 0.02 0.03 0.11

IR 3.09 3.18 3.16 3.55 3.56 3.47

This table shows time-series regressions of strategy returns on factors. Returns are specified
in percent per month. Strategies are based on the predictions of a deep conditional portfolio
sort that relates future returns to past decile sorts of returns. Past returns include return-based
functions R(g,l) with length g = 1, . . . , 18 and gaps g = 0, . . . , 6. The sample period covers 1968 to
2012. Results in columns 1-4 are based on rolling out-of-sample estimates of the model, results in
column 5-8 are based on optimizing over the entire horizon. The strategy return used in columns
5-8 is computed on a hold-out sample of 30% of the data. MKT is the market return, SMB and
HML are the Fama-French factors for size and value, and UMD is the momentum factor. IR
is the information ratio. T-statistics are in parentheses, and standard errors are clustered using
Newey-West’s adjustment for serial correlation.
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value. In the four-factor model, the loading on the market factor is around one for all

deciles. Loadings on size seem to be non-monotonic but stronger in the extreme portfolios.

Interestingly, only the portfolios based on entire sample predictions display a significant

monotone relation with the value factor. We also find again the by now familiar result that

return deciles are monotonically related to the momentum factor, which holds for all decile

portfolios except for the highest one. In general, loadings on the momentum factor are low

(around -.1) but significant.

Turning to predictor variable importance in table A.5, the deep conditional portfolio

sorts recover recent past returns as the most important ones. The rolling optimization in

column 1 yields that the ten most important return functions are all related to the most

recent six months of returns and, what is more, the top seven return functions are returns

of length one that, taken together, summarize the most recent six month return. Notice that

all one-month return-based functions in the expanded set actually show up as the most

important functions. The same result holds for optimization over the entire period in the

second column. The momentum term structure result appears to hold on average over the

entire period.

Recall that the return R(0,6), that is, the total return over the most recent six months,

could have been chosen by the algorithm in the expanded set. The fact that this return is not

chosen but its components are, illustrates that using the return over the previous year alone

(and not the one-month returns that it is based on) leads to a loss of relevant information.

A.3.3 Estimation by size categories

We re-estimate the model for three separate size categories of firms. Following Fama and

French (2008), we divide the sample of firms into three size categories based on NYSE

breakpoints. Micro stocks are defined as the smallest 20% of companies by market value,

small companies are the next 30% of companies, and the upper 50% make up the category

of large firms. We repeat our analysis within each size category, and compute the most

relevant predictor variables for both our standard set of one-month return variables and
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Table A.5: Most important predictor variables: Expanded set
of return functions

Rolling optimization Entire period optimization

R(0,1) 1 R(1,1) 1

R(1,1) 0.88 R(2,1) 0.8

R(2,1) 0.69 R(3,1) 0.76

R(6,1) 0.69 R(4,1) 0.74

R(3,1) 0.66 R(6,1) 0.72

R(4,1) 0.66 R(0,1) 0.62

R(5,1) 0.61 R(5,1) 0.62

R(0,2) 0.52 R(6,13) 0.43

R(1,2) 0.45 R(5,10) 0.42

R(1,3) 0.43 R(6,12) 0.42

This table shows the most important return functions for a
deep conditional portfolio sort that uses past returns func-
tions R(g,l) with length g = 1, . . . , 18 and gaps g = 0, . . . , 6.
Results are shown for both the rolling model estimation
and for optimization over the entire horizon. For rolling
estimates, return functions are sorted by their median impor-
tance over forty-five years. Variable importance is measured
as described in section 1.3.2.
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for the expanded set of return functions from appendix A.3.2. Table A.6 shows that the

most important predictor variables are remarkably consistent across size categories, apart

from some variations in exact rank of each predictor variable. Furthermore, most predictor

variables in both sets relate to relatively recent returns.

Table A.6: Most important predictor variables: Within size category

One-month returns Expanded set

Micro Small Big Micro Small Big

R(0,1) 1 R(0,1) 1 R(0,1) 0.99 R(0,1) 1 R(0,1) 1 R(1,1) 1

R(2,1) 0.54 R(2,1) 0.75 R(3,1) 0.72 R(1,1) 0.72 R(1,1) 0.65 R(2,1) 0.7

R(5,1) 0.51 R(4,1) 0.6 R(4,1) 0.6 R(3,1) 0.63 R(0,2) 0.65 R(3,1) 0.66

R(1,1) 0.5 R(1,1) 0.59 R(8,1) 0.6 R(5,1) 0.62 R(2,1) 0.63 R(5,1) 0.66

R(3,1) 0.5 R(3,1) 0.59 R(1,1) 0.51 R(2,1) 0.61 R(5,1) 0.56 R(6,1) 0.66

R(6,1) 0.49 R(5,1) 0.58 R(2,1) 0.5 R(6,1) 0.59 R(6,1) 0.56 R(4,1) 0.6

R(4,1) 0.42 R(6,1) 0.55 R(5,1) 0.5 R(0,2) 0.56 R(3,1) 0.52 R(0,1) 0.57

R(11,1) 0.4 R(7,1) 0.52 R(9,1) 0.5 R(4,1) 0.51 R(4,1) 0.5 R(0,2) 0.42

R(7,1) 0.39 R(8,1) 0.47 R(11,1) 0.5 R(1,2) 0.42 R(2,2) 0.43 R(6,4) 0.34

R(8,1) 0.38 R(23,1) 0.43 R(18,1) 0.5 R(0,3) 0.38 R(3,2) 0.43 R(6,6) 0.34

This table shows predictor variable importance in portfolios that are first sorted on size. Micro stocks
are defined as the smallest 20% of companies by market value, small companies are the next 30%
of companies, and the upper 50% make up the category of large firms. One-month returns include
all one-month returns over the two years before portfolio formation. The expanded set consists
of 126 return-based characteristics R(g,l) over the two years before portfolio formation with length
g = 1, . . . , 18 and gaps g = 0, . . . , 6. Results are shown for both the rolling model estimation and for
optimization over the entire horizon. For rolling estimates, return functions are sorted by their median
importance over forty-five years. Variable importance is measured as described in section 1.3.2.
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