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Figure 1: There aremany kinds of gate-defined semiconductor spin qubits. In general, as one addsmore electrons to

define the qubit, qubit readout and control become easier.
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Figure 1.1: Left: The Bloch sphere representation of a pure two-level quantum system, with one qubit state at the

north pole and one qubit state at the south pole. Right: The Bloch sphere representation of a qubit is analogous to the

surface of a sphere.
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Figure 2.1: Left: a side view of a GaAs-AlGaAs heterostructure with a two dimensional electron gas (2DEG) at the

interface between GaAs and AlGaAs, and the surface gates used to deplete the 2DEG. Right: A top view of a device

with the various top gates used to define, control, and read the charge state of the quantum dots.
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Figure 2.2: a. The energy diagram for a single charge qubit with two levels, (0,2) and (1,1) that do not mix. b. Adding

a tunnel couplingTc between the two quantum dots opens an avoided crossing between the qubit state. c. The spin

states can be identified on the charge diagram. The singlet state can occupy any charge configuration, but the triplet

states are blockaded from the lowest energy configuration of (0,2) since triplets are symmetric under exchange. d.

Turning on a static, uniformmagnetic field splits the |T+⟩ and |T−⟩ by the Zeeman energy. e. After turning on amag-

netic field gradient, we obtain the final energy diagram for the two energy levelsS-T0 qubit. f. The Bloch sphere rep-

resentation of theS-To qubit with the two axes of control,J and∆Bz .
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electrons. c, A schematic of the electronic charge configurations for the |S⟩ (blue) and the |T0⟩ (red) at non-zero
J . This difference in charge configuration is the basis for the electrostatic coupling between the qubits d, The pulse
sequence used to entangle the qubits: initialize each qubit in a |S⟩, perform aπ/2 rotation around the x-axis, allow
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Figure 6.1: Experimental apparatus. a,A scanning electronmicroscope image of the double QDwith a schematic of

the apparatus used for adaptive qubit control. A floatingmetal gate protruding from the right can be seenwhich in-

creases the capacitance between the qubit and an adjacent qubit (not pictured), which is left inactive for this work.

The reflected readout drive signal is demodulated to DC, digitized by a correlated double sampler (CDS), and∆Bz

is estimated in real time by the field programmable gate array (FPGA). The FPGA updates the digital to analog con-

verter (DAC) in order to keep the voltage controlled oscillator (VCO) resonant with the estimated value of∆Bz . The

VCO controls the voltage detuning, ϵ(t) between theQDs, which, in turn, modulatesJ atΩJ . b, The Bloch sphere

representation for theS-T0 qubit showing the two axes of control,J and∆Bz .
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Figure 6.2:∆Bz oscillations. a, The pulse sequence used to estimate∆Bz . b,Using nuclear feedback,∆Bz oscilla-

tions decay in a coherence timeT ∗
2 = due to residual slow fluctuations in∆Bz . c, The Ramsey sequence used

to operate theS-T0 qubit in the rotating frame. d, The Ramsey contrast (blue dots) decays in a characteristic time

(solid line fitT ∗
2 = 68ns) similarly to the oscillations in (c) due to the same residual slow fluctuations in∆Bz . e, The

Rabi pulse sequence used to drive the qubit in the rotating frame. f, The rotating frameS-T0 qubit exhibits the typical

behavior when sweeping drive frequency and time (top). When driven on resonance (bottom), the qubit undergoes

Rabi oscillations, demonstrating control in the rotating frame.
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control, we perform a Ramsey experiment (deliberately detuned to see oscillations) and obtain coherence times of

T ∗
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Ramsey experiments with adaptive control lasting 250 s in total. A value of 1 corresponds to |T0⟩ and 0 corresponds
to |S⟩. Stabilized oscillations are clearly visible in the data, demonstrating the effect of adaptive control.
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Figure 6.5: a. An electronmicroscope image of the device used. Two qubits each comprising a double quantum dot

and an additional quantum dot for charge sensing are fabricated in close proximity. A floatingmetal gate is fabricated

between the qubits to increase the inter-qubit capacitance. The right qubit is left inactive for this work. b. The Bloch

sphere representation for theS-T0 qubit. c. The Bloch sphere representation for theS-T0 qubit in the rotating frame,

where rotations are drivenmymodulatingJ .
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Figure A.1: The growth sheet for thematerial used in this work
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Figure A.2: Left: Annealing theOhmic contacts prevents the subsequent wet etch from reliably starting, leaving a

“swiss cheese” pattern instead. Right: If the etch is performed before annealing it can be done reliably.
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)2



χ =
S̃1ω2

J t
2

2ϵ20
ln

(
1

ωIRt

)
=

t2

T 2
2

S̃1

S̃1 =
2ϵ20

ω2
JT

2
2 ln

(
1

ωIRt

) =
ϵ20

2π2Q2ln
(

1
ωIRt

)

S̃1
V 2

f(Hz) Q = ωT2/2π

ln
(

1
ωIRt

)
≈ 21 Q = 10

√
S̃ν(f) = 1.2

µV√
f(Hz)

|S > |T0 > π
2 δBZ

|Ψi >= (α|S > +β|T >)⊗ (γ|S > +δ|T >)

H2−qubit = J1 + J2 + J12



|SS >

|TS > J1

|ST > J2

|TT > J12

|Ψ >= αγ|SS > +αδei
∫ T
0 J2dt|ST > +βγei

∫ T
0 J1dt|TS > +βδei

∫ T
0 J1+J2+J12dt|TT >

J1 J2 J12 Ji =

Ji + δJi π

|Ψ >= ei(J1+J2)T
{
eiJ12T

(
αγei

∫ 2T
T δJ1+δJ2+δJ12 |TT > +βδei

∫ T
0 δJ1+δJ2+δJ12 |SS >

)
+

αδei
∫ T
0 δJ2ei

∫ 2T
T δJ1 |TS > +βγei

∫ T
0 δJ1ei

∫ 2T
T δJ22 |ST >

}

α, γ = 1√
2

β, δ = i√
2

ρ =
1

4

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −ieiJ12T η112χ2 −ieiJ12T η112χ1 −χ1χ2χ12

1 χ1χ2 −ie−iJ12T η212χ1

1 −ie−iJ12T η212χ2

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

χi =< ei
∫ T
0 δJi−i

∫ 2T
T δJi >



η1i =< ei
∫ T
0 δJi >, η2i =< ei

∫ 2T
T δJi >

J1 J2 J12

χ1η112 ≡< ei
∫ T
0 δJ12+

∫ T
0 δJ1−

∫ 2T
T δJ1 >

J12 = MJ1J2 M

δJ12 = M (J1δJ2 + J2δJ1) =

(
J12
J1
δJ1

)
+

(
J12
J2
δJ2

)

χ1η
1
12 ≡< ei

∫ T
0 δJ12+

∫ T
0 δJ1−

∫ 2T
T δJ1 >=

< e
∫ T
0

(
1+

J12
J1

)
δJ1−

∫ 2T
T δJ1+

∫ T
0

(
1+

J12
J2

)
δJ2−

∫ 2T
T δJ2 >

χ1η
1
12 = η1M1

η1M2
χ1

η1M1
=< e

i
∫ T
0

J12
J1

δJ1 >

χ1χ2χ12 ≡< ei
∫ T
0 δJ1+δJ2+δJ12−i

∫ 2T
T δJ1+δJ2+δJ12 >



T → T
(
1 + J12

J1

)
T → T

(
1 + J12

J2

)

χ1(T )χ2(T )χ12(T ) = χ1

(
T

(
1 +

J12
J1

))
χ2

(
T

(
1 +

J12
J2

))

ρ =
1

4

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −ieiJ12T η1M1
η1M2

χ2 −ieiJ12T η1M1
η1M2

χ1 −χ1

(
T
(
1 + J12

J1

))
χ2

(
T
(
1 + J12

J2

))

1 χ1χ2 −ie−iJ12T η2M1
η2M2

χ1

1 −ie−iJ12T η2M1
η2M2

χ2

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

J12

η2Mi
= η1Mi

= ηMi

ρ =
1

4

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −ieiJ12T ηM1ηM2χ2 −ieiJ12T ηM1ηM2χ1 −χ1

(
T
(
1 + J12

J1

))
χ2

(
T
(
1 + J12

J2

))

1 χ1χ2 −ie−iJ12T ηM1ηM2χ1

1 −ie−iJ12T ηM1ηM2χ2

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

F =
1

4

{
1 +

1

2

(
χ1χ2 + χ1

(
T (1 +

J12
J1

)

)
χ2

(
T (1 +

J12
J2

)

))
+ ηM1ηM2sin (J12T ) (χ1 + χ2)

}

χ, η



< Y I >= −ηM1ηM2χ1cos (J12T )

< Y I >= −ηM1ηM2χ2cos (J12T )

< XZ >= ηM1ηM2χ1sin (J12T )

< XZ >= ηM1ηM2χ2sin (J12T )

< XX >=
1

2

(
χ1χ2 − χ1

(
T (1 +

J12
J1

)

)
χ2

(
T (1 +

J12
J2

)

))

< Y Y >=
1

2

(
χ1χ2 + χ

(
T (1 +

J12
J1

)

)
χ2

(
T (1 +

J12
J2

)

))



µ
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