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Edoardo Airoldi iago Barros Rodrigues Costa

A non-parametric perspective on the analysis of massive

networks

A

is dissertation develops an inferential framework for a highly non-parametric

class of networkmodels called graphons, which are the limit objects of converging

sequences in the theory of dense graph limits. e theory, introduced by Lovász

and co-authors, uses structural properties of very large networks to describe a no-

tion of convergence for sequences of dense graphs. Converging sequences define

a limit which can be represented by a class of random graphs that preserve many

properties of the networks in the sequence. ese randomgraphs are intuitive and

have a relatively simplemathematical representation, but they are very difficult to

estimate due to their non-parametric nature. Our work, which develops scalable

and consistentmethods for estimating graphons, offers an algorithmic framework

that can be used to unlock the potential of applications of this powerful theory.

To estimate graphons we use a stochastic blockmodel approximation approach

that defines a notion of similarity between vertices to cluster vertices and find the

blocks. We show how to compute these similarity distances from a given graph

and how to properly cluster the vertices of the graph in order to form the blocks.

e method is non-parametric, i.e., it uses the data to choose a convenient num-

ber of clusters. Our approach requires a careful balance between the number of

blocks created, which is associated with stochastic blockmodel approximation of

the graphon, and the size of the clusters, which is associated with the estimation

of the stochastic blockmodel parameters. We prove insightful properties regard-
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ing the clustering mechanism and the similarity distance, and we also work with

important variations of the graphon model, including a sparser type of graphon.

As an application of our framework, we use the stochastic blockmodel nature of

our method to improve identification of treatment response with social interac-

tion. We show how the graph structure provided by our algorithm can be explored

to design optimal experiments for assessing social effect on treatment response.
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1
Introduction to the theory of graph limits

is chapter is an introduction to the theory of graph limits, which the essential

background and mathematical foundation of most of the work presented in this

dissertation.
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1.1 G      

Recently, L. Lovász and co-authors developed a theory of graph limits that beauti-

fully unifies different notions of convergence for a sequence of dense graphs and

predicts the existence of a limit object that preserves many local and global prop-

erties of the graphs in the sequence. ese objects, called graphons, can be repre-

sented in many ways and one intuitive definition is described as follows. We say

that (Gn) is convergent if, for every graph F, the proportion of copies of F as a sub-

graph of Gn converges, i.e., if the density t(F,Gn) of adjacency-preserving maps

from F to Gn converges as n → ∞. Converging sequences are associated with a

limit object that can be used to describe a highly non-parametric class of random

graph models. In this dissertation, we develop a scalable computational frame-

work to explore these random graphs in a way to unlock the potential of this rich

mathematical theory for applications.

To precisely define t(F,G) in a general setting, let G be a weighted graph with a

weight αi >  on each node i and a weight βij ∈ R on each edge ij (for unweighted

graphs we set αi =  for all i, βij =  for all edges, βij =  for all non-edges). If F

is a simple graph, let the number of homomorphisms from F to G be:

hom(F,G) =
∑

ϕ:V(F)→V(G)

∏
i∈V(F)

αϕ(i)(G)
∏

ij∈E(F)

βϕ(i)ϕ(j)(G). (1.1)

Normalization of hom(F,G) gives the homomorphism density:

t(F,G) =
hom(F,G)

αk
g

, (1.2)
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where k is the number of nodes in F and αG =
∑

i αi(G) (the notation followed

from [16]).

When the limit limn→∞ t(F,Gn) exists for every simple graph F, we say that the

sequence (Gn) is left-convergent. Lovász shows in [41] that if (Gn) left-converges

then there exists a symmetric measurable function w : [, ] → [, ] such that

limn→∞ t(F,Gn) = t(F,w), where t(F,w) is the density of F in w defined by

t(F,w) =
∫
[,]|V(F)|

∏
ij∈E(F)

w(xi, xj)dx. (1.3)

For a given converging sequence, the function w is unique up to measure preserv-

ing transformations. ese equivalence classes defining the limit objects are called

graphons.

Lovász’s representation of the limit object provides a natural way to interpret

graphons as randomgraphs. Given a symmetricmeasurable functionw : [, ] →

[, ] and an integer n, one can define the random graph G(n,w) with n vertices

by first sampling i.d.d. u, . . . , un ∼ Uniform[, ], then independently connect-

ing every pair of vertices (i, j) with probability w(ui, uj). Clearly, G(n,w) doesn’t

change with any measure preserving transformation on w, therefore it only de-

pends on the graphon defined by w. Conversely, given G(n,w), one may get the

graphon associated with it by taking the limit of a sequence of graphs (Gn) sam-

pled fromG(n,w), with n→∞. It is proved in [41] that a sequence (Gn) generated

this way converges, with high probability, to the graphon associated with w.

Given the highly non-parametric nature of graphons, estimating G(n,w) from

observed data is a complex task. In this thesis, we develop a class of stochastic
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blockmodel approximation algorithms to solve the problemof graphon estimation

with a scalable computational framework. We show how our results connect with

the theory and develop applications in indetification of treatment response with

social interactions.

1.2 S   

emethods used by L. Lovász to develop the graph limits theory for dense graphs

strongly rely on the Szemerédi Regularity Lemma. e lemma shows that one

can partition the vertex set of large graphs in a way that connections between

partitions have some interesting regularity patterns. In this sectionwe review this

result, as it provides intuition and motivation for much of the work presented in

the following chapters.

For a given weighted graph G and given subsets S,T ⊂ V(G), let

eG(S,T) =
∑

i∈S,j∈T
αi(G)αj(G)βij(G). (1.4)

When G is unweighted, eG(S,T) corresponds to the number of edges connecting

vertices of S to vertices of T.

Given two weighted graphs G and G′ on the same vertex set V, their cut distance

(or rectangular distance) is defined as:

d□(G,G′) = maxS,T⊂V

α
G
|eG(S,T)− eG′(S,T)| . (1.5)

A small cut distance between G and G′ means that the frequency of connections

4



between any two subsets of vertices is similar in the two graphs.

To have a distance that doesn’t depend on the labeling of the vertices, one may

consider

δ̂□(G,G′) = min
G̃∼=G

d□(G̃,G′), (1.6)

where G̃ ranges over graphs that are isomorphic to G.

e notion of cut distance can be extended to graphs of different sizes. Consider

two weighted graphs G and G′, with respective sizes n and n′, assuming that their

total nodeweight is 1. We say that an n × n′ matrix X is a fractional overlay of G

and G′ if
n′∑
u=

Xiu = αi(G),
n∑
i=

Xiu = αu(G′). (1.7)

e space of fractional overlays is denoted by X (G,G′). Given X ∈ X (G,G′), one

may define the overlaid graphs G[X] andG′[XT]: the weight of an node (i, u) ∈ [n]×

[n′] is Xiu; the weight of an edge ((i, u), (j, v)) in G[X] is βij, and in G′[XT] is β′uv.

Since G[X] and G′[XT] have the same vertex set, the cut distance d□(G[X],G′[XT]) is

well defined. Analogous to (1.6) we let

δ□(G,G′) = min
X∈X (G,G′)

d□(G[X],G[XT]). (1.8)

We apply this definition to describe the Szemerédi partitions. For a partition

P = {V, . . . ,Vk} of V(G), the weighted graphG/P (quotiente graph) on k vertices

is defined as: αi(G/P) = αVi/αG are the nodeweights and βij(G/P) =
eG(Vi,Vj)
αViαVj

are the edgeweights, where αVi =
∑

x∈Vi
αx(G). G/P is in some sense an average

of G in the given partitions. e Weak Regularity Lemma (introduced in [27] but

5



reproduced here from [16]) states that:

Lemma 1. (Weak Regularity Lemma ) For every ϵ > , every weighted graph G has a

partitionP into at most /ϵ classes such that

d□(G,GP) ≤ ϵ||G||, (1.9)

where ||G|| =
(∑

i,j
αiαj
α
G
β
ij

)/

e lemmameans that everyG can be approximated to a smaller weightedG/P

in a way to somehow preserve the frequency of connections between subsets of

nodes. It is a very strong and powerful result, which is used by Lovász to prove

the existence of graphons as limits of a sequence of graphs. In his developments,

the graphon function w : [, ] → [, ] emerges as the limit of step functions

defined from the Szemerédi partitions. is idea of approximating w with step

functions (or, equivalently, approximating G(n,w) with stochastic blockmodels)

is the heart of our SBA algorithm.

1.3 R   

e left-convergence defined above gives a very good intuition about some useful

local properties of the limit object, as it preserves density of any type of subgraph

of the graphs in the sequence. It turns out that, under certain conditions, left-

convergence is related to other notions of convergence, enriching the theory of

graph limits with a global flavor and empowering the space of graphons withmore

structure. ese connections are explored in this section.
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1.3.1 E 

efirst interesting connection we consider is deeply discussed in [25] and relates

the theory of graphons to the theory of exchangeable arrays of Aldous-Hoover.

We review the main points from [25] here.

Let Xij,  ≤ i, j < ∞, be a collection of binary random variables. We say that

they are separately exchangeable if

P
(
Xij = eij,  ≤ i, j ≤ n

)
= P

(
Xij = eσ(i)τ(j),  ≤ i, j ≤ n

)
, (1.10)

for all n, all permutations σ, τ of [n] and all eij ∈ {, }. ey are jointly exchange-

able if the above equation holds in the particular case of τ = σ.

A binary random array is defined as follows: let ui, vj,  ≤ i, j ≤ ∞ be

independent and Uniform[, ]. Consider W : [, ] → [, ] and let Xij ∼

Binomial(W(ui, vj)).

e Aldous-Hoover theorem (replicated from [25]) states that:

eorem 2. (Aldous-Hoover). Let X = {Xij},  ≤ i, j ≤ ∞, be a separably exchange-

able random array. en, there is a probability µ such that

P{X ∈ A} =
∫

Pw(A)µ(dw). (1.11)

Diaconis draws a connection between the measure Pw of the Aldous-Hoover

theorem and the limit object w of the theory of graph limits ([25] ): every proper

graph limit corresponds to an extreme point in the set of distributions of ex-
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changeable random graphs. It is important to point out that the graph limits the-

ory brings a whole new perspective to Algous-Hoover’s work, as it allows useful

algorithmic developments and builds important connections with other fields.

1.3.2 R-

e notion of left-convergence described before, in which t(F,Gn) converges to ev-

ery F, permits a very local perspective to the theory of graph limits as it is en-

tirely based on counting subgraphs. Surprisingly, left-convergence is equivalent to

another type of convergence based on global properties Gn, the right-convergence

[17]. Instead of counting homomorphisms from a small F to Gn, right-convergence

counts homomorphisms from Gn to F, being essentially a global coloring of Gn

using nodes of F as colors.

To precisely define right-convergencewe first need some notation (which we fol-

low from [17]). Let (Gn) be a sequence of simple graphs andH a weighted soft-core

graph, i.e., a graph with all loops present, positive nodeweights αi(H) >  and

positive edgeweights βij(H) = βji(H) > . If q is the number vertices inH, let Pdq

be the set of vectors a ∈ Rq for which
∑q

i= ai = , ai > ∀i. Define:

Ωa(G) = {ϕ : V(G)→ [q] :
∣∣|ϕ−({i})| − ai|V(G)|

∣∣ ≤ , ∀i ∈ [q]} (1.12)

and

homa(G,H) =
∑

ϕ∈Ωa(G)

∏
uv∈E(G)

βϕ(u)ϕ(v)(H). (1.13)

We say that a sequence of simple graph Gn converges if, for every soft-core graph

8



H and every probability distribution a ∈ Pdq in V(H), the expression


|V(G)|

ln homa(Gn,H) (1.14)

converges as n→∞.

1.3.3 T  

Left and right convergence are equivalent to convergence under δ□, the metric

defined in (1.8): a sequence of simple graphs (Gn) is left-convergent if and only if

it is a Cauchy sequence on δ□ [17].

An analogous notion of cut distance can also be defined in the space of graphons.

Given a graphonW, let

||W||□ = sup
S,T⊂[,]

∣∣∣∣∫
S×T

W(x, y)dxdy
∣∣∣∣ (1.15)

e cut distance of two graphons is defined by

δ□(U,W) = inf
ϕ:[,]→[,]

||U−Wϕ||, (1.16)

where ϕ : [, ] → [, ] is invertible and is such that both ϕ and it’s inverse are

measurable preserving, andWϕ(x, y) = W(ϕ(x), ϕ(y)).

It is not hard to prove that every weighted graph G has a natural graphon as-

sociated with it such that δ□(G,G′) = δ□(WG,WG′). WG can be described as fol-

lows: from a family of disjoint intervals I, . . . , In ⊂ [, ] of respective length

α(G)
αG

, . . . , αn(G)
αG

, letWG : [, ] → [, ] be the step-function such thatWG(x, y) =

9



βu,v(G) if x ∈ Iu and y ∈ Iv. is allows to define the cut distance between a graph

and a graphon by δ□(G,W) = δ□(WG,W). [42] proves that the space of graphons

empowered with metric δ□ is compact.

e topology defined by the cut distance on the space of graphons has some in-

teresting applications. [21] and[22] devolpes a notion of large deviation for Erdös-

Rényi random graphs, i.e., random graphs G(n, p) defined by constant graphons,

whichhave beenused to prove that a large class of exponential randomgraphmod-

els [51] are asymptotically equivalent to Erdös-Rényi random graphs.

1.4 E 

It is great that such rich mathematical theory can be materialized into this simple

limit object called graphon. And the fact that graphons are closely related to an

intuitive class of random graph models (G(n,w)) gives the whole theory tremen-

dous potential for applications. But estimatingG(n,w) from observed data is very

difficult because of the highly non-parametric nature of w. In this section we dis-

cuss this problem under the perspective considered by this thesis, which involves

approximating G(n,w) using stochastic blockmodels.

Stochastic blockmodels are a particular class of G(n,w) for which w has a step-

function representation. Intuitively, it is like a random graph in which individu-

als of an heterogenous population are assigned to homogeneous subpopulations

(blocks) in a way that connections happen independently with a probability that

only depends on which block they belong to. It is a well studied model which

has been explored in many variations and was largely applied in practice. How-
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ever, to the best of our knowledge, this is the only stochastic blockmodels method

that consistently estimates graphons and is at the same time computationally

tractable.

Other attempts to develop stochastic blockmodels methods for estimating

graphons are limited in scope either because they make unreasonable assump-

tions on the data or because they are computationally unfeasible. Patrick Wolfe’s

[64] uses likelihood methods to prove consistent estimation of graphons, but he

doesn’t provide a way for finding the blocks of the stochastic blockmodels, leaving

the exponential-size space of partitions to be explored. Other approaches, such as

[18], make the assumption that the vertex degree is enough to define the clusters,

ignoring the fact that in practice graphs have vertex with similar degree but very

different patterns of connection. It turns our that finding a reasonable and ap-

plicable solution is a hard challenge, and this problem is solved by the stochastic

blockmodel approximation framework presented in the following chapters.

1.5 S  

e stochastic blockmodel approximation (SBA) framework developed here gives

a complete solution for the problem of estimating graphons. It is based on very

parallelizable local computations that can be easily implemented in a distributed

frameworks such asMap Reduce, offering great scalability. Because it consistently

approximates graphons, our non-parametric approach can be applied to a general

setting to find a stochastic blockmodel that preserves many properties of the esti-

mated graph, such as density of subgraphs and other characteristics predicted by

the theory of graph limits. In this section, we introduce themain results presented
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in this thesis.

e SBA has two major steps, first it clusters vertices that are similar according

to a similarity distance to find the blocks of the blockmodel, then it estimates the

probabilities of connection between blocks averaging the edges connecting them.

e clustering step is a greedy algorithm that tests if vertices are “similar” enough

in order to be allowed in the same block, by “similar” we mean the similarity dis-

tance is smaller than a threshold parameter. We show how to choose this parame-

ter in a way to guarantee a good balance between defining enough clusters to have

a good step-function approximation of the graphon and having enough nodes in

each block in order to estimate the probabilities of connection. We prove several

theorems showing that this choice of parameters leads to an overall consistent

method.

e heart of our algorithms is the computation of the similarity distances. e

challenges of finding ametric of similarity using only local calculations brought us

to find a solutions that requires at least two observations ofG(n,w). Even though

this requirement doesn’t stop themethod fromhaving someuseful applications, it

undesirably limits its scope. is problem led us to design a method that mimics a

second observation of the edges in the graph by pairing every vertex i with a twin

i′ for which the curves w(ui, ·) and w(ui′ , ·) should be very similar. is way we

use the edges from i′ as second observations of the edges from i, eliminating the

unwanted assumption without compromising the consistency of the method.

We present some possible applications of the developed methodology. First we

show two uses of SBA motivated by the graphon’s theory: one is to compute the

density any type of subgraph using the estimated stochastic blockmodel, and the
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other is to compute the percolation threshold (the threshold in which in the large

connected component of the network breaks down if you start deleting edges with

given probability, see[11]). Second, we present a stochastic blockmodels method-

ology to optimally design experiments for identification of treatment responses

with social interactions.

e thesis also discusses some possible variations of the models. e first vari-

ation allows analysis of undirected graphs. e secondworks with a “sparser” type

of graphon in which the probability of connections are multiplied by a scaling fac-

tor. We give asymptotic bounds for which our model still works under the sparser

scenario.

1.6 USVT

eonly other alternative for estimating graphons that we know to be at the same

time consistent and computationally feasible is Chatterjee’s universal singular value

decomposition (USVT) [20]. His work was developed in parallel with SBA but uses

a very different strategy: his spectral approach de-noises the adjacency matrix

of the graph to recover the probabilities of connection of the edges, while SBA

approximates graphonswith stochastic blockmodels. emethodworks great and

requires just one singular value decomposition, but from our simulations it seems

to underperform SBA in many scenarios.
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1.7 C

We present a new non-parametric perspective for the analysis of massive net-

works. Our methodology, which offers consistent and scalable algorithms, adds

a valuable inferential framework to the theory of dense graph limits. e theory

defines a notion of convergence for sequences of graphs and predicts the existence

of a limit object, called graphon, that is closely related to an intuitive but highly

non-parametric class of random graphmodels. We propose a method for estimat-

ing graphons using stochastic blockmodels. Because the theory offers powerful

results connecting intuitive ideas in a variety of settings, we believe that it has

tremendous potential for applications. We hope the work presented in this dis-

sertation will help to unlock this potential.
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2
Stochastic blockmodel approximation

is chapter presents a fast non-parametric algorithm that uses stochastic block-

models to consistently approximate graphons. Given a set of graphs observed

from G(n,w), we find a function w′ : [, ] → [, ] such that w′(ui, uj) is close

to w(ui, uj) for any two nodes i and j. We prove that, with proper choice of param-

eters, the algorithm is consistent, i.e, the error in estimation vanishes with high

probability as the size of the network increases. e algorithm, whichworks based
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on local computations, seems to outperform existingmodels both in terms of time

complexity and error estimation.

2.1 S  A

Suppose that w : [, ] → [, ] is piecewise Lipschitz with Q blocks, i.e., there

exist α =  < α < α < · · · < αQ and a constant L >  such that, for each

i, j ∈ {, , . . . ,Q} and every (x, y), (x, y) ∈ Iij = (αi−, αi)× (αj−, αj),

|w(x, y)− w(x, y)| ≤ L(|x − x|+ |y − y|).

Let G(n,w) be the random graph with n vertices defined as follows: first sample

u, u, . . . , un ∼ Uniform[, ], i.i.d., then connect any two vertices i and j with

probability w(ui, uj). If u = (u, u, . . . , un) is given, define G(n,w, u) similarly:

it is the random graph with n vertices that assigns an edge between vertices i

and j with probability w(ui, uj). Suppose that G,G, . . . ,GT are T ≥  observa-

tions fromG(n,w, u), where u = (u, u, . . . , un) is a realization of u, u, . . . , un ∼

Uniform[, ]. Given G,G, . . . ,GT, our goal is to find w′ : [, ] → [, ] such

that G(n,w′) is a stochastic blockmodel that approximates G(n,w), and w′(ui, uj)

is close to w(ui, uj) for any pair of vertices i, j.

In a stochastic blockmodel, the existence of an edge between two vertices only

depends on which blocks they belong to, i.e., two vertices in the same block use

similar rule to connect to all other vertices in the graph. Since the edges from

a vertex i are generated using the function fi(·) = w(ui, ·), in a stochastic block-

model that approximatesG(n,w), two vertices i and j that belong to the sameblock
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should have similar fi(·) and fj(·). e similarity between fi and fj can bemeasured

by their mean squared difference:

dij =
∫

(fi(x)− fj(x))dx. (2.1)

We call dij the similarity distance between i and j, and we say that i and j are “sim-

ilar” if dij is small.

Computing similarities is a fundamental piece of our algorithm, which can be

described in two steps: first cluster vertices that are close with respect to the dis-

tance dij, then use the clusters to estimate the blockmodelG(n,w′). In the cluster-

ing step, an estimator d̂ij computes dij by considering the connections from i and j

to a randomly chosen subset of vertices Sij, where the size S of Sij is a fixed param-

eter of the model called the precision parameter. Using this notion of distance,

the clustering scheme is designed to have the property that each cluster Bi has a

pivot bi ∈ Bi which is at least∆-close to any other vertex v ∈ Bi, i.e, d̂biv < ∆ for

any v ∈ Bi, where∆ is an accuracy parameter. e resulting clusters represent the

blocks of the blockmodel, and the probability of connection between vertices in

any two blocks A and B is estimated by averaging the number of edges from A to B.

More detailed description of the algorithm is presented in the following sections.

2.1.1 C

LetG,G, . . . ,GT be T >  graphs with common vertex setV observed from some

G(n,w, u), as in the above setting. e distance between two vertices i and j is
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given by:

dij =
∫ 


(fi(x)− fj(x))dx =

∫ 


fi(x)dx+

∫ 


fi(x)dx− 

∫ 


fi(x)fj(x)dx. (2.2)

Define

rij =
∫ 


fi(x)fj(x)dx =

∫ 


w(ui, x)w(uj, x)dx. (2.3)

en

dij = rii − rij − rji + rjj

Take k ∈ V such that k ̸= i and k ̸= j, and let uk be the position of k in the [, ]

interval. Consider the estimator

r̂kij =

 ⌊T+


⌋ ∑
≤t≤⌊ T+

 ⌋
Gt [i, k]


 
T−

⌊T+


⌋ ∑
⌊ T+

 ⌋<t≤T

Gt [j, k]

 , (2.4)

Since each Gt[i, k] are independent observations from a Bernoulli(w(ui, uk)),

and uk ∼ Uniform[, ],

E[̂rkij|ui, uj, uk] = w(ui, uk)w(uj, uk)

Integrating out uk,

E[̂rkij|ui, uj] =
∫ 


w(ui, uk)w(uj, uk)duk = rij (2.5)

To estimate rij, the idea now is to sample at random a subset of vertices Sij from
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V\{i, j}, whose size is given by the precision parameter S, and then to average r̂kij

over k ∈ Sij:

r̂ij =

S

∑
k∈Si,j

r̂kij. (2.6)

e estimator for dij is defined by

d̂ij = r̂ii + r̂jj − r̂ij − r̂ji. (2.7)

Using this estimator to compute similarities, the clustering algorithm is de-

scribed as follows. Initially, there are no blocks, i.e., the set of pivots is empty.

en, vertices are sequentially assigned to blocks. If v is the first vertex in the se-

quence, a newblock is createdhaving v as pivot. Otherwise, the algorithmsearches

blocks bv for which the distance between v and the pivot of bv is at most∆. If the

distance between v and the closest pivot is less than∆, v is assigned to the corre-

sponding closest block. If no pivot is at distance less than∆ from v, a new block is

started with v as pivot. Algorithm 1 presents pseudocode for this procedure. e

code runs in O(T ∗ S ∗ K ∗ n) steps, where T is the number of observed graphs, S

is the size of the local subsets we use to estimate similarities, and K is the number

of blocks in G(n,w).
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Input: A set of observed graphs {G,G, . . . ,GT} defined in a common
vertex set V; accuracy parameter∆; precision parameter S. We
assume that T ≥ ,∆ >  and S ≤ |V| − .

Output: Cluster assignment representing the blocks in the blockmodel.
e output is a vector indexed by elements v ∈ V (let’s call it
Block) such that Block[v] == b iff vertex v belongs to block b.

begin
NumberOfBlocks←− ; /* Number of blocks. */
Pivot←− ∅ ; /* Pivot[b] == i if vertex i is pivot of block b.
*/
Block←− ∅; /* Block[v] == b if vertex v belongs to block b.
*/
for v ∈ V do

if NumberOfBlocks ==  then
NumberOfBlocks←− NumberOfBlocks+ ;
Pivot[NumberOfBlocks]←− v;
Block[v] = NumberOfBlocks;

else
for b ∈ range(1,NumberOfBlocks) do

Sample set Svb of size S uniformly from V\{v,b} ;
Compute d̂v,b (given Svb) from ;

end
ClosestBlock = argminNumberOfBlocksb= (d̂vPivot[b]);
if d̂v,Pivot[ClosestBlock] ≤ ∆ then

Block[v] = ClosestBlock;
else

NumberOfBlocks←− NumberOfBlocks+ ;
Pivot[NumberOfBlocks]←− v;
Block[v] = NumberOfBlocks;

end
end

end
return Block;

end
Algorithm 1: Clustering algorithm.
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T    L    

esimilarity distance dij as defined above is the square of the L distance between

the curves w(ui, ·) and w(uj, ·). In this section we discuss why L. Would it be

possible to use other measures, such as L or Lp? If yes, how do they compare to

L?

L 

A key property of our algorithm is fact that the similarity distance between two

vertices i and j are computed using only local information, as they depend only on

the connections between i, j and the other vertices . Would it be possible to design

such an estimator to compute the L distance dij =
∫ 
 |w(ui, ·) − w(uj, ·)|? e

answer is no, because the sufficient statistics describing the pair of vectors G[i, ·]

and G[j, ·] are not enough to estimate dij. Since we ignore the order of the vertices,

the information given by the pair of vectors can be summarized by:

ŝ(i, j) := number of vertices k such that G[i, k] = G[j, k] = 

ŝ(i, j) := number of vertices k such that G[i, k] = G[j, k] = 

ŝ(i, j) := number of vertices k such that G[i, k] = ,G[j, k] = 

ŝ(i, j) := number of vertices k such that G[i, k] = ,G[j, k] = 

Consider a graphon defined by
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w(x, y) =



 if x ≥ 

 or y ≥ 
 ;

 if x ≤ 
 or y ≤ 

 ;

 otherwise.

and let v, v, v be three vertices such that uv , uv >

 and uv <


 . en the ex-

pected value of the sufficient statistics s, s, s, s for the pairs (v, v) and (v, v)

are:

s(v, v) = s(v, v) =

s(v, v) = s(v, v) =

s(v, v) = s(v, v) =

s(v, v) = s(v, v) = /

(2.8)

So, it is impossible to distinguish v and v when we compare their similarity

to v with respect to the way they connect to the other vertices. However, the

L distances are different, as L(f, f) =  and L(f, f) = /. is counter

example shows that the data is not enough to compute the similarity distances dij

using the same type of method we used in the L case. So L isn’t an option.

Lp 

Now suppose that we wish to use Lp, where p is an even number greater than 2.

en the intuition to define an estimator for dpij =
∫ 
 (w(ui, ·)−w(uj, ·))

p is similar

to the case L but it requires at least p samples of the network instead of . e p

independent samples are necessary to compute the p-th powers of the expression

(w(ui, ·) − w(uj, ·))p. e approach works, but we wouldn’t recommend for two
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reasons: first, it requires more sampled graphs, which might not be available; sec-

ond, estimating dpij requires larger graphs. In this Lp setupwe are trying to estimate∫ 
 (w(ui, ·)−w(uj, ·))

p, which is a quantitymuch smaller then
∫ 
 (w(ui, ·)−w(uj, ·)



asw is bounded in [, ].erefore, it is much harder to estimate dpij than our orig-

inal dij, as the error in estimation resulting from the sample size might become

smaller than the values we are trying to estimate. So, we believe that there aren’t

many advantages of using Lp instead of L.

2.1.2 H

e last step of the algorithm estimates the stochastic blockmodelG(n,w′), whose

blocks are defined by the clusters B,B, . . . ,BK obtained in the clustering step.

ere are two types of parameters we need to compute to describe G(n,w′): the

probability that a vertex belongs to a given block and the probability of connection

between vertices in each pair of blocks. e probability of belonging to block BI is

estimated by

pI =
|BI|
n
, (2.9)

and the probability of connection between elements of blocks BI and BJ is

pIJ =


|BI||BJ|
∑

xi∈BI,yj∈BJ

G[xi, yj] + G[xi, yj] + . . .+ GT[xi, yj]
T

. (2.10)

One can get an explicit representation of the function w : [, ] → [, ] by

splitting the unit interval [, ] into subintervals ZI of size pI, I ∈ {, . . . ,K}, and

defining, ∀ui, uj ∈ [, ],

w(ui, uj) = pIJ
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where I and J are such that ui ∈ ZI and uj ∈ ZJ. Since graphons are invariant under

any measure preserving transformation, the way [, ] splits into Z ∪ Z . . . ∪ ZK

doesn’t change the graphon associated with w.

To specify the probability of connection between two vertices in the observed

graphs, one can directly use the graphon estimated above. If v, v, . . . , vn are the

vertices, and u, u, . . . , un are their respective position in the interval [, ], the

ground-truth probability of observing an edge between vi ∈ BI and vj ∈ BJ is

given by w(ui, uj). Define the estimator ŵvivj for w(ui, uj) by

ŵvivj = pIJ. (2.11)

2.2 R  C

2.2.1 E 

e distance dij is a measure of how similarly two vertices i and j connect to the

other vertices. To compute the estimator d̂ij, we pick a randomly selected subset

Sij of V\{i, j}, whose size is given by the precision parameter S, and study the con-

nections from i and j to the vertices in Sij. While increasing S clearly improves

accuracy, one might want to bound this parameter to gain algorithmic efficiency.

e follow theorem explains how S relates to the precision of d̂ij. A proof is given

in the appendix.
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eorem 3. e estimator d̂ij for dij is unbiased and satisfies

P(|dij − d̂ij| > ϵ) ≤ e
− Sϵ


T−+

ϵ
 , (2.12)

for any ϵ > ,

From theorem 3 and because both dij and d̂ij are bounded in [, ],

E[|dij− d̂ij|] ≤ ϵ∗P(|dij− d̂ij| ≤ ϵ)+ |dij− d̂ij| ∗P(|dij− d̂ij| > ϵ) ≤ ϵ+ e
− Sϵ


T−+

ϵ


To see that this estimator is consistent, it is enough tomake ϵ ∈ ω(S−

 )∩o().

2.2.2 N  

e performance of the algorithm is sensitive to the number and size of blocks it

defines: in one hand the number of clusters needs to be large enough so the bias

from the blockmodel approximation is small, on the other hand clusters have to

be large enough to allow accurate estimation of the blockmodel parameters. is

tradeoff can be controlled with a proper choice of the accuracy parameter∆, as in

general it is expectable that large∆ defines a small number of large clusters, while

small∆ defines a large number of small clusters. e following theorem explains

the relationship between∆ and the number of clusters in G(n,w′).

eorem4. Let∆ be the accuracy parameter and S be the precision parameter used in

the SBA algorithm. en, the number K′ of blocks in G(n,w′) the algorithm estimates
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satisfies

P(K′ >
cw
∆
) ≤ ne

− cS∆


T−+∆
, (2.13)

where c is a constant and cw only depends on the graphon defined by w.

e proof is in the appendix.

2.2.3 C

is section presents the main consistency result of the SBA algorithm: we prove

that, with proper choice of parameters, the algorithm consistently estimates the

probabilities of connection between any two vertices in the observed graphs. e

error in estimation vanishes as n→∞ even if the number of observations doesn’t

increase, i.e., the additional information provided by increasing the number of

vertices is enough to improve accuracy in estimation of all edges.

Let v, . . . , vn be the vertices of the observed graph, and let u, . . . , un be their

respective position in the interval [, ]. Consider the estimator ŵ defined in equa-

tion (2.11), and define the error of estimation as

Err(ŵ) =

n
∑
i,j∈V
|w(ui, uj)− ŵij| (2.14)

We say that ŵ is consistent if

lim
n→∞

E [ Err(ŵ)] =  (2.15)

As explained in sections 2.2.1 and 2.2.2, an appropriate choice of S and ∆ is im-
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portant to ensure good performance of the algorithm. e following theorem, for

which we give a complete proof in appendix A, explains how the precision and ac-

curacy parameters relate to Err(ŵ).

eorem 5. a) If S ∈ Θ(n) and∆ ∈ ω
((

log(n)
n

) 


)
∩ o(), then

lim
n→∞

E [Err(ŵ)] = .

b) ere exists a constant c depending only on w such that, if S ∈ Θ(n) and∆ is

constant, then

lim
n→∞

E [Err(ŵ)] ≤ c
√
∆.

2.2.4 C  

eorem 5 shows that, with appropriate choice of parameters, our estimator is

consistent. For instance, if one chooses S ∈ Θ(n) and∆ = n−

 , it is expected that

the error of ŵ approaches zero as n → ∞. However, since these are asymptotic

results, it is not clear how large n needs to be so the suggested setup for S and ∆

leads to good performance. To account for practical situations, where the value of

n might be small, we suggest a cross validation method of choosing ∆ based on

the observed data.

e parameter∆ relates to the accuracy of ŵ, as decreasing∆ reduces the bias

of the estimator. However, if∆ is small, the algorithm might create a large num-

ber of clusters, some of them too small, what could compromise the estimation

of the blockmodel parameters. We use a cross validation score from the theory

of histogram estimation (see [62]) to study the risk of the algorithm provide a
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clustering scheme that doesn’t allow a good estimation of the parameters of the

model. e idea is to test a range of values for∆ to choose the one giving smaller

risk.

Let B̂, . . . , B̂K be the blocks given by the clustering algorithm. For each block j,

define p̂j =
|B̂j|
n . e cross validation estimator of risk is computed as:

Ĵ =


K(n− )
− n+ 

k(n− )

m∑
j=

p̂j . (2.16)

2.2.5 C  

From eorem 3, it is clear that the parameter S is closely related to the precision

of the similarity estimator d̂ij, in the sense that, the larger the S the best is the esti-

mation. e greatest possible value for S is n− , which is the size of V\{i, j}, but,

aseorem5 shows, any setup S ∈ Θ(n) is enough for consistency. A consequence

of the result is that, if we assume that data is missing at random with some prob-

ability p <  per edge, we would still have asymptotic consistency. In that case, to

compute d̂ij one could just ignore missing edges and use only the observed data.

In case the size of the network is very large, if one is comfortable having some

level of error, it might make sense to bound S to improve algorithmic efficiency.

As we discussed in section 2.1.1, the algorithm runs in O(T ∗ S ∗ K ∗ n) steps,

so bounding S could have a considerable positive effect in the complexity of the

algorithm.
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2.3 V

In this section we consider two variations of G(n,w) for which SBA can be used

to estimate the kernel function of the underlying random graph model: first, we

assume w changes with n by a scaling factor, i.e., we consider the random graph

model G(n,wn), where wn =

ρn
w; second, we consider the asymmetric version of

the problem, where w isn’t necessarily symmetric and G(n,w) is a random model

for undirected graphs.

2.3.1 S

A limitation of the theory of graph limits developed in [41] is that it only works for

dense graphs. In the definition of limit, graphs in a converging sequence should

preserve the density of any subgraph, in particular, the overall probability of an

edge should converge. e fact that graphons arise as the limit objects in this

notion of convergence gives important evidence that the random graph model

G(n,w) is a good representation for very large networks. However, in this type of

model, the degree of a node grows as Ω(n), but in many real world large network

the average degree is small compared to n. So a reasonable variation of G(n,w) is

to assume that w changes with n by a scaling factor ρn. In this section, we con-

sider observations of G(n,wn), where wn = ρnν and
∫ 


∫ 
 ν(x, y)dxdy = . Our

goal is to find an estimator ν̂ for ν and to show conditions for ρn that guarantee

consistency of ν̂.

LetG,G, . . . ,GT be graphs observed fromG(n,wn, u), for someu ∼Uniform(, ).

We estimate ν = wn
ρ , where ρn =

∫ 


∫ 
 wn(x, y)dxdy in two steps: first use SBA to

29



get an estimator ŵn for wn, then we divide ŵn by an estimator of ρn.

e estimator for ρn, which is the probability of an edge, is straightforward:

ρ̂n =


Tn

T∑
t=

n∑
i=

n∑
j=

GT[i, j]

Having applied the SBA algorithm on the data to get an estimator ŵn forwn, we

define the estimator ν̂ for ν as

ν̂ =
ŵn

ρ̂n

e error of this estimator is defined as

Errν(ν̂) =

n
∑
i,j∈V
|ν(ui, uj)− ν̂ij| (2.17)

e following theorem shows that, if ρn ∈ ω(
√
∆), then ν̂ is a consistent esti-

mator for ν. is means that, with proper choice of ∆, the algorithm works well

if the overall probability of an edge is at least ω
((

log(n)
n

) 


)
.

eorem 6. Let S ∈ Θ(n) and∆ ∈ ω
((

log(n)
n

) 


)
∩ o(). If ρn ∈ ω(

√
∆), then

lim
n→∞

E [Errν(ν̂)] = .

A proof is presented in the appendix.
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S, Lp     

Graphons, as originally defined in the theory of graph limits, represent probabili-

ties of connection and are bounded in [, ]. In the case of sparse graphons, how-

ever, it might make sense to generalize this idea and let w to be unbounded: w :

[, ]→ R. In this case, the generative process of the random graph G(n,wn) de-

fines the probability of connection between two vertices i and j asmin (wn(i, j), ) ,

wherewn = ρnν. Note that ρn and ν are not well defined as they can be rescaled by

a factor η in a way to leavewn = (ρnη)(

ην) constant. But the intuition behind this

description is that ρn controls the sparsity of the generated graph as n increases,

while ν : [, ] → R describes structural properties of the graph. ese structural

properties represented by ν are generally true for any level of sparsity, but now as

wn might be greater than  there might be hidden structures that only happen in

very sparse settings.

e ideas described above were first introduced in [12], and then generalized

and further developed in [14] and [15]. In [12], Bollobás and Riordan define a

notion of sparse graphons that allows wn to be greater than  but requires ν to

have a “bounded” density. It explains the intuition that two graphs with different

densities might have similar structure, but is does that under a boundedness as-

sumptionwhich requires the random graph to have no specially dense spot, i.e., all

regions of the graph have asymptotically the same density. is is an important

limitation as many real world networks, such as the ones with scale free proper-

ties, have some areas that are intrinsically denser than the rest of the network

and some nodes with potentially unbounded degrees as the graph grows. Borgs

and co-authors introduces then in [14] and [15] the Lp graphons, a type of sparse
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graphons that requires ν to be bounded in the Lp space but allows the function

ν : [, ] → R to be unbounded. ese unbounded regions are fundamentally

denser than other parts of the graph. e papers develops a whole new theory of

graph limits under this setting and even prove a generalization of the Szemerédi

regularity theorem.

is generalized notion of sparse graphons define a random graphmodel with a

generating process similar to the one defined by original graphons, as the probabil-

ities of connection w∗
n = min (wn(i, j), ) are bounded in [, ] for any particular

level of sparsity. Out stochastic blockmodel framework can be used to estimate

w∗
n, but since w∗

n it is just an approximation of wn we cannot guarantee that we

will be able to estimate ν consistently under the Lp graphon settings. Certainly we

will need to impose conditions on ρn, like the ones considered in theorem 6. To

find these conditions, however, we need to relax an important assumption of our

methodology: because of the unbounded regions we cannot require the graphon

to be piecewise Lipschitz anymore. An idea is to approximate the Lp graphon to

a piecewise Lipschitz graphon and let the Lipschitz constant increase with n. We

then need to find a balance between howmuch sparsity we want to allow, i.e., how

much we let ρn to decrease, and how dense we want certain areas of the graphon

to be.

2.3.2 T   

e theory we developed so far considers undirected graphs generated from

G(n,w), where w : [, ] → [, ] is a symmetric measurable function. One can

easily extend the idea to directed graphs, by assuming that w : [, ] → [, ]
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is not necessarily symmetric, and considering the following data generating pro-

cess: first sample ui ∼ Uniform[, ] for each vertex i, then construct a directed

edge from vertex i to vertex j with probability w(ui, uj), for each pair (i, j). Let

Gd(n,w) be the directed random graph generated this way, and, if u is given, let

Gd(n,w, u) be the corresponding random graph conditional to u. In this section

we discuss ways to adapt the SBA algorithm to the directed networks case. We

leave simulations and deeper analysis of this method for a later paper, but we

record the procedure here for future purposes.

e general idea of the modified method is to change the way we compute the

similarity score by considering the similarity distances in both dimensions. e

overall score of similarity is defined by the sum of similarities in both dimensions.

In the first dimension, we use the same similarity score as before:

d̂ij = r̂ii + r̂jj − r̂ij − r̂ji, (2.18)

where

r̂ij =

S

∑
k∈Si,j

r̂kij, (2.19)

and

r̂kij =

 ⌊T+


⌋ ∑
≤t≤⌊ T+

 ⌋
Gt [i, k]


 
T−

⌊T+


⌋ ∑
⌊ T+

 ⌋<t≤T

Gt [j, k]

 (2.20)
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In the second dimension, we compute r̂kij differently,

r̂kij =

 ⌊T+


⌋ ∑
≤t≤⌊ T+

 ⌋
Gt [k, i]


 
T−

⌊T+


⌋ ∑
⌊ T+

 ⌋<t≤T

Gt [k, j]

 . (2.21)

e overall score of similarity is defined by

d̂ij = d̂ij + d̂ij (2.22)

is distance is then used in the clustering step, and the histogram step proceeds

as before.

2.4 S

In this simulation study we use data generated from multiple samples of

G(n,w, u), where u ∼ Uniform[0,1] is assumed to be common for all samples

and is called the ground truth position of the vertices. We test different values of

functions w : [, ] → [, ] to define the graphon, and the goal is to use ŵij to

recover w(ui, uj). e error is estimated using (2.14), and our model is compared

with the universal singular value decomposition threshold (USVT), introduced

in [20]. We show that our model is able to provide very good estimation of the

considered graphons, and that the estimation gets better and better as the size of

the network increases.

We use six types of data generating process. First, data is generated from a

stochastic blockmodel with 10 blocks, each block having the same probability 
 .

We randomly choose the probability of connection of each pair of blocks i and j by

34



sampling pij ∼ Uniform[, ]. We also test another type of stochastic blockmodel,

with two blocks in a core-periphery structure: the size of the core is sampled from

Uniform[, .]; any two members in the core are connected with a common high

probability sampled from Uniform[., ]; members in the periphery don’t con-

nect with each other, but they connect with the core with a fixed moderate proba-

bility sampled from Uniform[., .].We then test other three different types of

networks that can be generated by graphons: scale free, small world, and networks

generated by a latent space model. For scale free network, we use the graphon

w(ui, uj) = 

√

u∗i .u
∗
j
, where u∗k = uk if uk > 

 , or u
∗
k =


 otherwise (as a refer-

ence, [50] presents a deep analysis on similar types of graphons that define scale

free networks). e small world networks are created with the following graphon:

w(ui, uj) = . if |ui−uj| < . or |ui−uj| > ., andw(ui, uj) = . otherwise.

Finally, we execute the algorithm with data generated by the latent space model

defined by the graphon w(ui, uj) = 
+e(−ui−uj+) . For each of these data generat-

ing processes, we run our model in 100 samples, where a sample is composed of ,

 or  observations of graphs generated from the same graphon.

e accuracy parameter∆ is chosen as described in section 2.2.4: run the algo-

rithm in a range of values for ∆ (in this case from 0.05 to 0.25, with increments

of 0.01), and pick the ∆ that gives the lowest cross validation score Ĵ, defined in

(2.16). Figure 2.1 compares the cross validation score and the ground truth esti-

mation error for the different values of∆, considering the stochastic blockmodels

simulations with 10 blocks, on data composed by 2 observation of graphs with

250 nodes. Notice that the estimation error of the ∆ defining the lowest cross

validation score is fairly close to the minimum estimation error.
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Figure 2.1: Cross validation score and estimation error

Tables 2.1 compares the estimation error from our model with the estimation

error from USVT. For USVT, which is a model that estimates random matrices

using a single observation, we take each of the 2, 4 or 8 observed graphs, and

individually estimate the graphon. e final estimation is the average of the 2,4,

or 8 estimated graphons. Notice that ourmodel outperforms UVST inmost cases.
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2.5 A

2.5.1 C 

A defining property that characterizes graphons as the limit of a sequence of

graphs is the fact that they preserve density of subgraphs, in the sense that, if

(Gn) converges, the density of any graph F as a subgraph of Gn converges to the

density of F in the limiting graphon. Here we call density of F in G the number of

adjacency preserving mappings from vertices of F to vertices of G, divided by the

total number of mappings from F to G. In the graphon space, the density of F in

w is defined by

t(F,w) =
∫
[,]|V(F)|

∏
ij∈E(F)

w(xi, xj)dx.

is property suggests a useful application for our model. If the stochastic block-

model approximation ŵ is close enough to the graphon w, we might be able to

estimate the density of a subgraph F in a set of graphs observed from w by com-

puting t(F, ŵ). e densities of subgraphs are important structural properties of

the graphs, and they are largely used by the machine learning community as pa-

rameters of randomnetworkmodels. ese densities can be very hard to compute,

but our algorithm gives an efficient solution for the problem: since the stochastic

blockmodel ŵ is parametric and finite, one can find an analytic formula for t(F, ŵ)

as a function of a relatively small number of parameters.

Given a stochastic blockmodel ŵ on K blocks B . . . ,Bk, where the probability

of a block Bi is pi and the probability of connection between elements of blocks Bi
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and Bj ismij, the density of any graph F can be computed by

t(F, ŵ) =
∑

≤v,v,...vn≤K

∏
ij∈E(F)

mvivj

n∏
i=

pvi

In table 2.2 we test this idea by estimating the density of 3, 5 and 10 cycles

on the data described in section 3.3, comparing the ground truth density in the

observed graphs with the density in the estimated stochastic blockmodel. As the

table shows, the error in estimation is very small in all simulations.
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2.5.2 P 

Consider a very large network G, initially connected, and randomly delete some

of its edges. Clearly, if the proportion of removed edges is small, the resulting

network will likely have a giant connected component containing most of the ver-

tices inG, but, as the number of deleted edges increases, the giant component will

eventually break down into small pieces, until all vertices are disconnected. e

problem of understanding the collapse of the connected components inG is called

percolation, and one of the most striking results in percolation theory is the fact

that many networks have a percolation threshold that defines a rapid transition

between two very different qualitative states: if the probability of deleting an edge

is smaller than the threshold, the network tends to have a giant component, but

if this probability is larger than the threshold, the network tends to disintegrate

into several small isolated components. is surprising result is very useful for

applications, because it helps understand how robust to attacks networks are. In

this section we explain how to use the SBA algorithm to estimate the percolation

threshold of the observed graphs.

To bemore specific about the percolationprocesswe are considering, we assume

that each edge in a graph G is kept with probability p and deleted with probability

− p, for some p ∈ [, ]. Under this setting, the case of percolation in graphons

is a direct consequence of percolation in inhomogeneous random graph (see [11]

and [10] for reference). In an inhomogeneous random graph, the probability of

connection between two vertices i and j is given by

pij = min
{
k(ui, uj)

n
, 
}
,
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where k : [, ] → R+ is a kernel function and n is the size of the graph. In the

context of graphons, we consider k(ui, uj) = n · w(ui, uj), so pij = w(ui, uj).

eorem 3.1 in [11] shows that the percolation threshold is a determined by

the norm of a functional operator Tk defined by:

(Tkf)(x) =
∫
[,]

k(x, y)f(y)dy,

where f is any measurable function defined in [, ]. e norm of Tk is given by

||Tk|| = sup {||Tkf|| : f ≥ , ||f|| ≤ } ≤ ∞.

where ||f|| = (
∫ 
 f(x)dx)


 . Expanding this expression using Tk = n · w

||n.w|| = n. sup

{(∫ 



∫ 



∫ 


f(y)w(y, x)w(x, y)f(y)dxdydy

) 


: f ≥ , ||f|| ≤ } .

(2.23)

e follow theorem formalizes the notion of phase transition in this percolation

scheme. It is a direct consequence of theorem 3.1 in [11], so we skip the proof in

this paper.

eorem 7. Let Gp(n,w) be a random graph with n vertices generated from the

graphon w, followed by a percolation procedure that deletes edges with probability

 − p, and keep edges with probability p, and call C(Gp(n,w)) the size of the largest

connected component of Gp(n,w). If p < 
||n·w|| , then C(Gp(n,w)) = o(n), while

if p > 
||n·w|| , then C(Gp(n,w)) = Θ(n) whp. We call pt = 

||n·w|| the percolation

threshold of G(n,w).
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e integral (2.23) is non-trivial to be computed for general w. But, by ap-

proximating the graphon with a stochastic blockmodel, we discretize the original

model into a finite parametric form. is simple representation allow us to com-

pute (2.23) very efficiently. e following theorem, for which a proof is given in

the appendix, explains how to compute the expected percolation threshold of a

stochastic blockmodel.

Proposition 8. Letwbe a stochastic blockmodelwithB blocks defined by a probability

matrix M, for the connections, and a probability vector p, for the blocks. Let M′ be the

matrix whose i, j entry is p


i Mijp



j , and λ be the largest eigenvalue, in absolute value, of

M′. en the percolation threshold of theorem 7 is:

pt =


n.λ.
(2.24)

Note that the percolation threshold is not an intrinsic property of the graphon

w, but it is a property of the random graph model defined by w if we specify its

size. So, when using the matching mechanism to run SBA on a single network,

one should divide pt by 2 in order to estimate the percolation threshold of the

initial network.
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Figure 2.2: Phase transition and percolation threshold for latent space model data.

Figure 2.3: Phase transition and percolation threshold for small world data.

Figure 2.4: Phase transition and percolation threshold for scale-free data.

We test our results in networks generated from three types of non-blockmodel
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graphons: scale free, small world and latent space models. For each type, we use

networks of size 250, 500 and 1000. e idea is to compare our predicted percola-

tion threshold pt with empirical observations of the phase transition. To compute

the threshold, we use the simulation output from section 2.4: for each graphon

and each network size, we run SBA and use the estimated stochastic blockmodel

to compute the pt according with proposition 8. To observe the phase transition,

we consider each type of simulation and generate 100 samples, each one with 100

observation of G(n,w, u). We take the observed networks, and simulate percola-

tion with probability p varying in a range of 1000 values. For each level or per-

colation, we take the proportion of graphs that end up with a large component,

defining large component as any component of size at least n
 . Results are pre-

sented figures 2.2, 2.3 and 2.4. e vertical line represents the estimated percola-

tion threshold, and the curves show the rate of occurrence of a giant component.
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3
Estimating vertex similarity from single

observation

e setup of SBA requires more than one observation from G(n,w, u), so the algo-

rithm can compute the similarity distances dij. A second observation is necessary

because, to estimate the terms rii =
∫ 
 w(ui, x)w(ui, x)dx from equation (2.3), we

need at least two independent samples from Benoulli(w(ui, uk)), for every uk. In
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this chapter, we suggest an extension of SBA that can be applied to single net-

works. e idea is to match “similar” vertices in a way that every vertex i is associ-

ated with a twin vertex i′ such that fi(·) = w(ui, ·) is close to fi′(·) = w(ui′ , ·), and

then run SBA by assuming that twin edges eij and ei′j are multiple observations of

the same w(ui, uj). e matching mechanism not only relaxes the requirement of

multiple observation, but does that offering consistent estimation of the graphon.

3.1 M 

To define the matching mechanism, we create a new notion of similarity that can

be computed using a single observation. e idea behind the method comes from

the fact that even though at least two samples are required for computing rii, when

i ̸= j it is possible to estimate rij from a single graph using the expression:

r̂ij =


n− 

∑
k̸=i,j

G[i, k]G[j, k]. (3.1)

Moreover, if the similarity distance between i and i is small, then one should

expect that rik =
∫ 
 fi(x)fk(x)dx is close to rik =

∫ 
 fi(x)fk(x)dx for every vertex

k, since dij is the square of the L distance between fi(·) = w(ui , ·) and fi(·) =

w(ui , ·). erefore, one way to measure the similarity between two vertices i and

j is to compare the values rik and rjk, for k ̸= i, j.

is intuition can be generalized as follows. Associate to every vertex i a trans-

formation Fi : F→ [, ], from the space of functions F = {g : [, ]→ [, ]} to

the unit interval, defined by Fi(g) =
∫ 
 fi(x)g(x)dx. en dij can be derived from

Fi and Fj as dij = Fi(fi) + Fj(fj) − Fi(fj) − Fj(fi). Note that two vertices i and j
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are such that fi(·) = fj(·) if and ony if Fi(g) = Fj(g) for every g.

ese ideas are used to define a notion of distance which is the basis of the

matching mechanism. For any two vertices i and j, define the “matching” distance

mij by

mij =


n− 

∑
k̸=i,j

|rik − rjk| =


n− 

∑
k̸=i,j

|Fi(fk)−Fj(fk)|, (3.2)

and the estimator m̂ij by

m̂ij =


n− 

∑
k̸=i,j

|̂rik − r̂jk|. (3.3)

e matching algorithm is described by the steps:

1. Randomly choose a vertex i that doesn’t have a twin yet.

2. Find a vertex i′ that is closest to i according to the matching distance. e

vertex i′ is called the twin of i, and it is randomly chosed among all vertices

with smallest positive distance m̂ii′ , including the ones that already have a

twin.

3. Repeat the process until all vertices have a twin.

Note that the twin relation is not symmetric, in the sense that if i′ is the twin

of i, then the twin of i′ could be a vertex i′′ different from i.
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3.2 C

e method described above, which, for every vertex i, finds another vertex i′

whose edges mimic a second observation of the edges from i, lets SBA run on a

single graph, as the algorithm assumes that the edges from i and the edges from i′

are generated using the samew(ui, ·). is assumption, however, might just be an

approximation, since i and i′ are not in the same position, i.e., ui ̸= ui′ . In this sec-

tion, we study how this approximation affects the performance of the algorithm,

and we show that, as the size of the network increases, the twin couples obtained

in the matching process are arbitrarily similar, what makes this extended version

of SBA to be consistent.

Let’s start by defining rij and r̂ij as in section 2.1.1:

rij =
∫ 


w(ui, x)w(uj, x)dx. (3.4)

and

r̂kij = G[vi, vk]G[vj, vk]

Since E(G[x, y]) = w(ux, uy),

E[̂rkij|uvi , uvj , uvk ] = w(uvi , uvk)w(uvj , uvk) (3.5)

Assuming that uvk ∼ Uniform[, ], the above expression implies that every r̂kij is
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an unbiased estimator for rij:

E[̂rkij|uvi , uvj ] =
∫

w(uvi , x)w(uvj , x)dx (3.6)

us, from the Hoeffding inequality,

P
(
|̂rij − rij| > ϵ|uvi , uvj

)
≤ e−Sϵ

Integrating out the u′s and considering the union over i, j

P
(
max

ij
|̂rij − rij| > ϵ

)
≤ ne−Sϵ (3.7)

Suppose thematchingmechanism generates the pairs (v, v′), . . . , (vn, v
′
n), and

let ξn = maxi,k∈{,,...,n} |w(uvi , uvk)− w(uv′i , uvk)|. For each i, j, k let

r∗ij =
∫

w(uvi , x)w(uv′j , x)dx

and consider the estimators:

r̂kij′ = G[vi, vk]G[v′j, vk],

r̂∗ij =


n− 

∑
k̸=i,j

r̂kij′ ,

and

d̂∗ij = r̂∗ii + r̂∗jj − r̂∗ij − r̂∗ji,
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eorem 9, which has a proof in the appendix, shows how d̂∗ij relates to ξn.

eorem 9. e estimator d̂∗ij satisfies

P(|dij − d̂∗ij| > ϵ+ ξn) ≤ ne−
Sϵ

 , (3.8)

for any ϵ > ,

e following theorem 10 is the equivalent to theorem 4 for this noisy scenario.

A proof is presented in the appendix.

eorem 10. Consider a single observation G of G(n,w). Apply the matching proce-

dure defined above and run SBA using accuracy parameter ∆ >
√
ξn and precision

parameter S. en, the estimated number of blocks satisfies

P
(
K∗ >

cw√
∆ − ξn

)
≤ ne−

S∆

 , (3.9)

where cw is a constant that only depends on the graphon defined by w.

Note that theorem 10 requires∆ >
√
ξn. is is related to the fact that, if the

bias of the estimator d̂∗ij is too large comparedwith∆, wewon’t be able to decide if

the two vertices are similar enough so they belong to the same block. is means

the the accuracy parameter∆ defines how much bias it is possible to accept from

adding noise to the computation of similarity distances.

e following theorem shows that, with the matching procedure defined here,

ξn vanishes as n increases.

eorem 11. Suppose that the matching procedure generates the following pairs
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of twins (v, v′), (v, v
′
), . . . , (vn, v

′
n), and let ξn = maxi,k∈{,,...,n} |w(uvi , uvk) −

w(uv′i , uvk)|. en, for any ζ ∈ (, )

P
(
ξn > (L)


 n−

−ζ


)
≤

ne− n−
n nζ + ne−(n−)ζ + L/n−

+ζ


In particular, for any ϵ > 

lim
n→∞

P(ξn > ϵ) = . (3.10)

A full proof for this result if provided in the appendix, and it is based on four

observations:

1. m̂ii′ is an unbiased estimator formii′ .

2. As n increases, the matching distancemii′ between any vertex i and its twin

i′ decreases.

3. Small matching distancemii′ implies small similarity distance dii′ .

4. Small similarity distance between vertices and its twins implies small ξn.

is theorem, together with theorem 9, proves that the bias of d̂∗ij vanishes as

n→∞. As a result, we have consistency of the entire process.

eorem12. Given anetworkwith n vertices sampled fromG(n,w), apply thematch-

ing procedure and run the SBA algorithmusing parameters S and∆ to find an estimator

ŵ for w .
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a) If S ∈ Θ(n) and∆ ∈ ω
(
n−




)
∩ o(), then

lim
n′→∞

E [Err(ŵ)] = .

b) ere exists a constant c depending only on w such that, if S ∈ Θ(n) and∆ is

constant, then

lim
n→∞

E [Err(ŵ)] ≤ c(∆ + ξn)

 .

We sketch the proof of this theorem in the appendix.

3.3 O  .  

e procedure developed in this chapter adapts the original SBA algorithm, which

requires two sampled graphs, so it can run using only one sample. But what if we

have the choice of either observing a single graph of size n or two graphs of size

n
 (for an experiment in which de budget depends on the number of people in the

sample)? Of maybe one graph of size n vs. two of size n√
 (for experiments in

which the cost is defined by the number of edges in the sample)?

eorem 12.b) states that in case only one graph is observed.

lim
n→∞

E [Err(ŵ)] ≤ c(∆ + ξn)

 , (3.11)

where ξn = maxi,k∈{,,...,n} |w(uvi , uvk)− w(uv′i , uvk)|.
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e two graphs observation is equivalent to ξn = .

lim
n→∞

E [Err(ŵ)] ≤ c(∆)

 , (3.12)

As∆→  the estimation is consistent as stated by theorem 5.

Asymptotically, the one sample observation is clearly worse or at most equiv-

alent to the two samples option, as suggested by equations (3.11) and (3.12).

From theorem 5 we notice the two sample case allows ∆ to decrease with rate

ω

((
log(n)

n

) 


)
, which faster than the required by theorem 12 for the one sam-

ple case, which needs ∆ ∈ ω
(
n−




)
. Despite the asymptotical disadvantage,

however, it might be prudent to choose the one sample procedure as it works

with weaker assumptions, since the two samples method relies on the fact that

the two observation are sampled without much noise. Unfortunately, this as-

sumption is unreasonable for many real world applications, where it is hard to

even guarantee that the observations are being sampled from the same (or even

a similar) graphon. Suppose for instance that the second sample is not exactly

from the same G(n,w, u), but from G(n,w, u′), where u′ is a perturbation of u

such that |w(uvi , uvk) − w(u′vi , uvk)| are not exactly zero. Essentially suppose that

ξ′n = maxi,k∈{,,...,n} |w(uvi , uvk)−w(u′vi , uvk)| > . As observed in theorem10, our

consistency results require∆ >
√

ξ′n. is happens because, if∆ ismuch smaller

than
√
ξ′, the error in estimation of the similarity distances would be larger than

the accuracy parameter (see theorem 9), what could badly affect the whole clus-

tering process, since in our algorithm the parameter ∆ works as a threshold that

defines the maximum similarity distances allowed between elements of a cluster.

If the error is too large, very distinct vertices could pass the similarity threshold.
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In fact, statements of theorem 10 regarding the number of clusters generated by

SBA are not true if ∆ <
√

ξ′n, and so in that case the procedure might not be

consistent. erefore the noise in the second sample limits the decrease of the

accuracy parameter.

In the case of a single graph being transformed in two observations using the

procedure described in this chapter, we show that as n increases it is always pos-

sible to find, for each vertex vi, another vertex v′i inside the graph which is close

enough to vi, i.e., the noise becomes smaller and smaller guaranteeing to achieve

consistency. So, in practice it is recommendable to work with a single observation

using the full SBA procedure.

3.4 S

In this section, we simulate the setup of section 2.4 to test the idea of running

SBA on a single graph G with n vertices by using the matching mechanism to du-

plicate the edges of G. We use the same graphons as in section 2.4: stochastic

blockmodels, core-periphery, latent space, small world, and scale free. For each

type of dataset we generate 100 networks with 1000 vertices, and compare the

performance of SBA and USVT. Results are shown on table 3.1.

We also compare the matching mechanism with two other ways of applying

SBA. First, instead of using a single graph with 1000 vertices and mi possible

edges, we consider two graphs with  vertices each and a total number of edges

of  ·  ∼ mi. is accounts for the practical situations where the cost of run-

ning the experiment depends only on the number of edges in the graph, and so we
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have to make a decision between observing a single large graph or observing two

smaller graphs with the same total number of edges. We run these simulation by

generating 100 samples of G(,w, u) with 2 observations each and then apply-

ing SBA. e second scenario we consider accounts for the case where the cost of

the experiment depends on the number of time a vertex is observed. So, instead

of observing 1000 vertices a single time, we consider that 500 are observed twice.

For this case, we generate 100 samples of G(,w, u) with 2 observations each.

Results are shown on table 3.1.

We notice that the SBA outperforms USVT in most cases. e idea of using

the matching mechanism to apply SBA to a single network, not only makes the

method more applicable to real situation, where more than one sample might not

be available, but it also shows to be almost equivalent to the two scenarios we

assume it is possible to make multiple observations.
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3.5 C

is is a non-parametric method of estimating graphons based on stochastic

blockmodel approximation. e algorithm, which in its initial form requires at

least two samples of graphs observed from the random model defined by the

graphon, works by defining a similarity score between vertices, then clustering

similar vertices to estimate the blocks of the stochastic blockmodel. We present

a method of applying SBA to single observation by using a matching mechanism

to obtain a second observation of each edge in the graph. e theory of graph

limits guarantees that, if our estimation is good enough, the resulting stochastic

blockmodel preserves many properties of the original graphon, such as the den-

sity of subgraphs. We prove that, with proper choice of parameters, our estimator

is consistent, i.e., the error in estimation vanishes with high probability as the

size of the network increases. Our applications confirm that the method can be

used to efficiently compute network properties such as density of subgraphs and

percolation threshold.
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4
A stochastic blockmodels framework for

the analysis of treatment response with

social interaction

In this chapterwe use the stochastic blockmodels approximation framework to de-

velop a methodology for assessment of social interaction in treatment response,
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assuming that the response of each individual is influenced by the treatment given

in his social neighborhood. We show how information provided by the SBA about

the structure of the network can be used to improve identifiability and to optimize

estimation of social effect. Identifiability of treatment response is determined by

the space of realized effective treatments, so in order to design optimal assign-

ments it is necessary to describe this space. Understanding the space of realized

effective treatment associated with a given treatment strategy can be a difficult

challenge, given the complex ways the individuals’ reference groups usually inter-

sect. We propose a method to design treatment assignments that uses connec-

tion patterns given by the SBA to control the formation of effective treatments,

potentially increasing the identification power of the experiment and improving

estimation of model parameters. We apply our ideas to develop a methodology

of experimental design for optimal estimation of treatment and social effects in

linear models.

4.1 B

Rubin’s potential outcomes model for causal inference has been used by social sci-

entists as the main framework for learning about the relationship between coun-

terfactuals of interests and estimated conditional probabilities [54, 55]. emodel

works under the stable-unit-treatment-value-assumption (SUTVA), which doesn’t

allow interference between units. If SUTVA is satisfied, random assignment is

believed to balance observed and unobserved confounders across treatment and

control groups in a way to permit unbiased causal inference. In practice, however,

response to a treatment is often influenced by social effects, and to account for
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these effects it is necessary to model social interactions. In this section, we re-

view the social science literature, in particular the work by Manski introduced in

[46], which builds a theoretical framework for analyzing the impact of social in-

teraction on identifiability under various model assumptions.

We start with a few definitions. Let J be a population of size n, T the space of

potential treatments and Y the set of possible outcomes. Suppose that every j ∈ J

has a response function yj(·) : TJ → Y mapping a vector of potential treatments

tJ ∈ TJ ≡ ×k∈JT into anoutcome yj(tJ), so a person’s outcomevaries not onlywith

his own treatment but also with the treatment given to other members of J. For

each j ∈ J we observe a realized treatment zj ∈ T and a realized outcome yj ∈ Y.

Given a treatment tJ and a subset K ⊂ J, we call yK(tJ) the vector indexed by

elements ofKwhose k-th position is yk(tJ). We also let {yK(tJ)} be the distribution

of elements in the vector yK(tJ), i.e., it is a probability measure on Y that assigns

for each y ∈ Y a weight proportional to the number of times y appears in the

vector yK(tJ). Note that {yJ(zJ)} is the distribution of observed outcomes across

the population.

A common question in treatment response is: given empirical data (zJ, yJ(zJ)),

is it possible to identify the distribution of outcomes for other potential treat-

ments tJ? Manski approaches this problemby analyzing how various assumptions

on the shape of yi(·) and on the joint distribution of (zJ, yJ(zJ)) affects the iden-

tification of {yJ(tJ)} given experimental data. In the general treatment response

with social interaction setup, the identification region of {yJ(tJ)} is described as

H[{yJ(tJ)}] ≡ [{yJ(zJ)} · (zJ = tJ) + δ · (zJ ̸= tJ), δ ∈ ∆Y], (4.1)
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where∆Y denotes the space of all probability measures on Y. Notice that if no re-

striction is made on Y(·), this region is degenerate: it is a singleton when zJ = tJ

and the entire ∆Y when zJ ̸= tJ. Under these settings, the identification power

of H[{yJ(tJ)}] is very low, but if we assume certain conditions on y it is possible

to identify {yJ(tJ)} for values tJ ̸= zJ. ese conditions are described by Manski

in [46], and we review his results as follows. Here, knowledge about the sampling

process, the topology of the network or its generating process doesn’t help to es-

timate {yJ(tJ)} because we have no information about the shape of y on tJ.

Under the above assumptions, the identification power of H[{yJ(tJ)}] is very

low, but if we impose certain conditions on y it is possible to identify {yJ(tJ)} for

values tJ ̸= zJ. ese conditions are described by Manski in [46], and we review

his results as follows.

I   (ITR)

Assumption that a person’s outcome varies onlywith his own treatment, not being

influenced by othermembers of the population. It is equivalent to Rubin’s SUTVA.

Under ITR, the identification region becomes:

H[{yJ(tJ)}] ≡
[
{yJ(z=t)(zJ)} · |J(z = t)|

|J|
+ δ · |J(z ̸= t)|

|J|
, δ ∈ ∆Y

]
, (4.2)

where J(z = t) = {j ∈ J|zj = tj} and J(z ̸= t) = {j ∈ J|zj ̸= tj}. Here sam-

pled data reveals the distributions P(z) and {yJ(z=t)(tJ)}, but it is not informative

about missing treatments yJ(z ̸=t)(tJ).

is is equivalent to standard Rubin’s SUTVA assumption, in which the topol-
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ogy of the network is ignored and {yJ(tJ)} only depends on the shape of y and on

the sampling process.

C   (CTR)

Assumption that a person’s outcome remains constant when tJ varies within spec-

ified subsets of TJ. ese subsets, called the person’s effective treatments, can be

represented by a function cj(·) : TJ → Cj. Under this notation, CTR is equivalent

to

cj(tJ) = cj(sJ)⇒ yj(tJ) = yj(sJ). (4.3)

Using the Law of Total Probability and the above equation, the identification re-

gion becomes:

H[{yJ(tJ)}] ≡
[
{yJ(c(zJ)=c(tJ))(zJ)} · |J(c(z

J) = c(tJ))|
|J|

+

δ · |J(c(z
J) ̸= c(tJ))|
|J|

, δ ∈ ∆Y

]
,

(4.4)

where J(c(zJ) = c(tJ)) = {j ∈ J|c(zJj ) = c(tJj )} and J(c(zJ) ̸= c(tJ)) = {j ∈

J|c(zJj ) ̸= c(tJj )}.

e effective treatment function c doesn’t need to be defined in the context of a

network. For instance, one could let yi to be a function on the number of people re-

ceiving the same treatment as i. In this toy case, tJ would fall in the same effective

treatment as zJ if for each individual i the number of people receiving treatment ti

in tJ is the same as the number of people receiving treatment zi in zJ. e effective

treatment of the population would be given by the vector c(zJ) defined with entry

ci(zJ) = |{j ∈ J : cj(zJ) = ci(zJ)}| for each i. With proper sampling strategy,
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the larger the number of people j receiving the same effective treatment as i, the

best we will be able to estimate the distribution of the response function in the

subpopulation with effective treatment ci(zJ). On the other hand, estimation of

P(y(tJ)) for tJ ̸= zJ is limited to the tJ′s with overall effective treatment vector

c(zJ).

I    (IRG)

is is a particular case of CTRwhere eachmember j of the population has a known

reference group G(j) ∈ J. e outcome of person j is assumed to depend only on

the treatment received by the members of his reference group, i.e., yj depends on

tG(j) = [tk, k ∈ G(j)]. IRG can be described usingCTRnotation by lettingCj = TG(j)

and cj(tJ) = tG(j) for any j ∈ J and tJ ∈ TJ.

In our notation, we assume that each person j always belongs to his own refer-

ence group tG(j) and we separate G(j) = {j} ∪ Nj, where Nj = G(j)/{j} is called

the neighborhood of j. Note that the set of reference groups can be described by

a directed graph G, where each person j ∈ J is represented by a node with value

tj, and an edge G[i, j] exists if and only if j is in the neighborhood Ni. e effective

treatment person i is exposed to depends on the treatment given to his reference

group, so two treatment strategies zJ and tJ have similar effective treatment if for

each i the treatment in zNi is similar to the treatment in tNi .
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A  (AI)

IRG can be strengthened with the assumption that interactions are anonymous,

i.e., the outcome of an individual is invariant under permutation of the treatments

received bymembers of his neighborhood. In this case, the outcome depends only

on the person’s treatment, the size and the distribution of treatments describ-

ing the neighborhood. Here, the effective treatment of individual i is ci(zJ) =

(zi, |Ni|, pi), where pi is the distribution of treatment in node i. Clearly, this treat-

ment response setting depends a lot on the network topology, and given the com-

plex connection patterns one might find in a network, it is generally not trivial

to understand how does the space of realized effective treatments look like in a

general network.

To build intuition on how the network topology affects the realization of effec-

tive treatments, let’s consider a toy example of a simplistic core-periphery network

generating process. Assume that the population is composed by three disjoint

subgroups: JA, the national core, is % of the population and has themost popu-

lar individuals, each one being connected to any other individual with probability

%; JB is the local core, it has % of the population and its elements are con-

nected to members of J\JA with probability %; JC is the periphery, it contains

% of the population and each individual is connected within JC with probability

%. is is a stochastic blockmodel with three blocks of sizes ., . and . and

probability matrix 
. . .

. . .

. . .

 .
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Also, assume that the treatment space is binary, meaning that a person can only

be treated or not treated, and that people are treated at random with probability

ρ. Note that people in block JA, which are connected with probability % to the

rest o the population, have an expected number of friends . ∗ |J| and its neigh-

borhood has an expected number of treatment assignments .∗ρ∗|J|. Similarly,

the expected number of people treated in neighborhoods of elements in JB and JC

are, respectively, . ∗ ρ ∗ |J| and . ∗ ρ ∗ |J|. So, the distribution of effective

treatments is concentrated in three modes, which are the expected values for ele-

ments of JA, JB and JC. In this case, any treatment strategy performed at random

without considering the topology of the network, will imply very rigid space of re-

alized effective treatments, so structural properties of the network is essentially

the only factor determining the shape of the distribution of effective treatments.

D  (DI)

An anonymous interaction that doesn’t depend on the size of the neighborhood

is called distributional interaction. Assumption DI implies that the treatment re-

sponse varies with the person’s own treatment and with the distribution of treat-

ment in his neighborhood. So, the effective treatment given to person i is ci(zJ) =

(zi, pi).

In the case, the space of realized effective treatments is evenmore restricted by

the network topology. If we consider the core-periphery toy example of the previ-

ous section, the expected number of friends receiving treatment in each neighbor-

hood is ρ, which is a constant across the network if treatment happens at random.

So the distribution of the social treatments, i.e, the part of the effective treat-
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ment associated with the neighbors, has only one mode centered in ρ. As briefly

discussed in the CTR assumption, the space of treatment assignments tJ for which

we can infer he distribution {yJ(tJ)} out of the observations from y(zJ) is deter-

mined by these realized effective treatments. So, the identification region of an

experiment whose sampling strategy ignores the topology of the network is too

restricted by the network. e theory developed in this chapter defines treatment

strategies that will help to better shape the identification region, leaving it less

dependent of structural properties of the network.

S I (SI)

Manski explains that, despite the unobserved data, it might be possible to trans-

parently estimate the distribution of y(tJ) from experimental data if, in addition

to restrictions on the shape of y(·), we assume statistical independence (SI)

of potential outcomes and realized treatments. In the case of ITR, assumption SI

allows point identification of potential outcomes whenever there is positive prob-

ability that realized treatment z and potential treatment t coincide.

Manski also analyzes the combination of assumptions CTR and SI. He decom-

poses the population into sets of effective treatment typesm ∈ M and shows that

point identification is possible if and only if every potential effective treatment has

positive probability of appearing in the support of realized effective treatments.

Formally, following Manski’s notation, we say that two persons i and j are of

the same type if there exists a permutation πij : TJ → TJ for which ci(tJ) =

cj(πij(tJ)) for all tJ ∈ TJ. Call Jm ⊂ J the subset of individuals of type m and Cm
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the set of effective treatments for persons of type m. Given tJ ∈ TJ and γ ∈ Cm,

denote Jmγ as the set of persons having effective treatment γ when the potential

treatment is tJ. e statistical independence assumption states that for each Jmγ

with P(Jmγ) > ,

{yJmγ (tJ)} = {yJmγ(c(zJ)=γ)(tJ)}, (4.5)

where {yJmγ(c(zJ)=γ)(tJ)} is the distribution of outcomes of elements j ∈ Jmγ sat-

isfying c(zJi ) = γ.Manski shows that, given SI and CTR, the identification region

for {yJ(tJ)} is

H[{yJ(tJ)}] =
∑

m∈M,γ∈Cm:P[c(zJ)=γ|Jmγ ]>

{yJmγ(c(zJ)=γ)(tJ)} · |Jmγ(c(z
J) = γ)|
|J|

+δ.
∑

m∈M,γ∈Cm:P[c(zJ)=γ|Jmγ ]=

|Jmγ(c(zJ) ̸= γ)|
|J|

, δ ∈ ∆Y.

(4.6)

us, {yJ(tJ)} is point-identified if and only if P[c(zJ) = γ|Jmγ ] >  for allm ∈ M

and γ ∈ Cm such that P(Jmγ) > , i.e., every effective treatment for all treat-

ment types must occur with positive probability. As noted in [46], this condition

is difficult to satisfy, specially when reference groups are large or when there exist

people belonging to several reference groups.

Usually, treatments are assigned at random to guarantee statistical indepen-

dence, but, as we will see later in this chapter, using a treatment distribution

that ignores the topology of the network describing the reference groups exposes

the population to a very limited set of realized effective treatments. is poor

setup potentially limits the identification power of the experiment. We present a

stochastic blockmodel framework for treatment assignment that offers more flex-
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ibility to shape the set of realized effective treatments, as it allows different distri-

butions of treatment for different groups of the population. e groups, which are

essentially the blocks of the stochastic blockmodel provided by the SBA, capture

important structural properties of the network. is new method of assigning

treatment considering social interactions is the main result of this chapter, and

we show how to apply our ideas to find optimal designs of experiments.

4.2 B S  

Tomodel the distribution of outcomes froman experiment inwhich social interac-

tion affects treatment response, we describe in the section two types of assump-

tions: first, we impose restrictions on the shape of y(·) to explain how effective

treatments influence outcomes; second, we assume that the generating process of

the network is a stochastic blockmodel, this will help us describe the distribution

of effective treatments later in the chapter.

4.2.1 A    

Our basic assumption on the shape of the response function yi(·) is that the out-

come depends only on the individual’s treatment ti and the treatment tNi assign-

ment in his social neighborhoodNi. We consider two cases: first, we suppose that

yi only depends on ti and on the distribution of treatments inNi; second, we let yi

also vary with the size of Ni.
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A    

Assume that interactions are with reference groups, i.e., the outcome of each per-

son j varies only with the treatment given to his reference group G(j), which is

composed by j itself and by his neighborhood Nj ⊂ J. In addition, suppose that

interactions are anonymous and that the space of possible treatments is finite of

size k = |T| < ∞. We call this set of assumptions anonymous interactions

with reference groups (AIRG).

Because T = {τ, . . . , τk} is finite and the interactions are anonymous, the ef-

fective treatment cj(tJ) of person j can be described by a (k+)-vector (tj,mj, pj) ∈

T×Z+× [, ]k, where tj is j’s potential treatment,mj = |Nj|, and pj is a k-vector in

[, ] whose q-th component represents the proportion of neighbors of j receiving

treatment τq (here the sum of elements in pj is 1). Manski’s effective treatments

types are represented in this context by the person’s neighborhood size mj, since

it is possible to define bijections πij : TJ → TJ mapping tNi to tNj and t{i} to t{j}

whenever mi = mj. Note that response for members of the same effective treat-

ment type m can be described by a common effective treatment function cm(·, ·)

on T× [, ]k:

cj(tJ) = cm(tj, pj) = (tj,mj = m, pj), (4.7)

where pj is a vector representing the treatment distribution of tNj . It is worthy

to observe that for a particular m, every entry of pj belongs to a discrete subset

{ = 
m ,


m , . . . ,

m
m = }. We denoteΥm the (discrete) set of possible distributions

of treatment pj in the neighborhood of elements of treatment typem.
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D    

We also work with a variation of AIRG based on distributional interaction, the

distributional interactions with reference groups (DIRG). In distributional

interactions, the response function yj(·) of person j varies only with the treatment

tj attributed to j and with the distribution of treatments in his neighborhood Nj,

namely pj. e effective treatments are given by cj(tJ) = (tj, pj).

4.2.2 S B   

Manski’s analysis on treatment response with social interaction gives some the-

oretical understanding on the identification power of randomized treatment

strategies under various assumptions shaping the response function. However, it

doesn’t provide a methodology to study the complex patterns these social struc-

tures might form throughout the network. In order to estimate response, it is

essential to understand the formation of the set of effective treatments associated

with the given assignments. In practice most networks generate complex sets

of effective treatments and developing a methodology of treatment design that

takes into account the network structure and the corresponding distribution of

effective treatments is generally quite challenging.

In our framework we model social interaction using stochastic blockmodels.

ere are two main reasons for choosing this type of model: first, the theory of

graphs limits shows that graphons and stochastic blockmodels are good represen-

tations to massive dense networks; second, as we will see later in the chapter,

patterns of connection provided by stochastic blockmodels are useful to describe
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effective treatments under reasonable assumptions on the response function and

under flexible treatment assignments. In our procedures, we apply SBA to esti-

mate a stochastic blockmodel from the network and use the model parameters to

find optimal treatment strategies.

4.3 T  

Tomotivate our methodology, let’s analyze how I.I.D treatment assignments gen-

erate distributions of effective treatment across the population. We start con-

sidering the assumption DIRG. Since for any two individuals i and j the sets Ni

and Nj are exposed to similar distributions of treatment, if |Ni| and |Nj| are large

we should expect pi and pj to be very close. us, if i and j happen to receive

the same treatment ti = tj = t, they should have similar ci(tJ) = (t, pi) and

cj(tJ) = (t, pj), as all individuals are exposed to similar social effect. It is expected

that the outcomeswill be observed froma very homogeneous set of response func-

tions. e same happens for AIRG. In that case, individuals i and j with the same

treatment and the same number of neighbors would have similar effective treat-

ment ci(tJ) = (t,m, pi) and cj(tJ) = (t,m, pj). In both cases, the space of re-

alized effective treatments is too rigid. e homogeneity described above limits

the space of potential effective treatments and, consequently, the identification

power of the experiment.

In order to generate richer sets of realized effective treatments, it is necessary

to design treatment strategies that somehow considers the topology of the social

graph. But using complicated assignments brings many challenges to the analysis

of the set of realized effective treatment. As effective treatments are defined by
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the treatment in the reference groups and as the reference groups usually intersect

forming quite complex structures, estimating the distribution of realized affective

treatments can be very difficult. e main question we explore in this section is:

how to define a treatment strategy that uses the social graph structure to possibly

sample treatments from different distributions for different people in a way to

better control the set of realized effective treatments?

4.3.1 S   

e idea of our method is to use the regular connections given by the stochastic

blockmodels to design a treatment assignment mechanism that creates rich sets

of realized effective treatments. e stochastic blockmodels regularities help us

understand how overlapping reference groups participate in mutual interactions

and how these interdependencies affect the realization of effective treatments.

e method consists of assigning a particular probability of treatments to each

block of the blockmodel.

Formally, let G be a graph representing the social ties defined by the reference

groups: every member of J is a node, and an edge between I and J exists if and

only if J ∈ NI. Apply the SBA algorithm on G and let the outcome be a stochastic

blockmodel (α,Mq×q) whose blocks B, . . . ,Bq have respective sizes (probabili-

ties) A, . . . ,Aq and are connected with probabilities given by a q × q matrix M,

i.e., i ∈ BI connects with j ∈ BJ with probabilityMIJ. Finally, suppose that to each

block Bi we assign a distribution of treatments defined by the vector of probabil-

ities FI = (fI, . . . , fIk) and let F be a k × q matrix whose columns are the vectors

FI.
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4.4 D   

We would like to estimate the distribution of effective treatments across the pop-

ulation for the treatment assignment described above when we assume AIRG and

DIRG.

Let’s first use the outcome of the SBA algorithm to approximate G to a ran-

dom graph G̃ defined in the same set of vertices. In a realization Ĝ of G̃, vertices

have the same label and belong to the same blocks B, . . . ,Bq as in G, but connec-

tion between vi ∈ BI and vj ∈ BJ are assigned independently with probability

Mij. e treatment assignment in Ĝ follows the same procedure described in last

section, with elements of block BI being treated independently with distribution

Mult(, FI) = (fI, . . . , fIk). Since vertices i and i in the same block BI connect

with vertices from any other block BJ with the same frequency, and since treat-

ment within each BJ is assigned from using the same distribution FJ, i and i are

exposed to the same distribution of social treatments rI and pI.

Now, let’s define some notation. For given Blocks BI and BJ, treatment τ ∈ T

and individual vi ∈ BI, let Aτ
IJ(vi) be the number of individuals inNvi∩BJ receiving

treatment τ , Aτ
I be the number of individuals in BI receiving treatment τ , and AI

be the size of block BI. Note that the number of neighbors of vi ∈ BI receiving

treatment τ is Cτi (vi)
=
∑

J A
τ
IJ(vi), so the distribution of treatments in NI(vi) is

given by the vector rI(vi) = (
∑

J A
τ
IJ(vi), . . . ,

∑
J A

τk
IJ(vi)), for the case AIRG, and

pI(vi) =
(
∑

J A
τ
IJ (vi),...,

∑
J A

τk
IJ (vi))∑

τ

∑
J A

τ
IJ(vi)

, for the case DIRG. e following proposition de-

composes the distribution of effective social treatmentwith respect to the random

variables defined above.
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Proposition 13. e probability distribution of social treatments for a node vi ∈ BI

is

P
(
{sI(vi)}I,vi∈BI |A, . . . ,Aq, F,M

)
=∑

∑
τ AτI =AI,∀I

∏
I

[
P(Aτ

I , . . . ,A
τk
I |AI, Fi)

∏
vi∈BI

P
(
sI(vi)|Aτ

 , . . . ,A
τk
q ,M

)] (4.8)

where si equals pi or ri for DIRG or AIRG, respectively. Moreover,

P(Aτ
I , . . . ,A

τk
I |AI, FI) = Mult(Aτ

I , . . . ,A
τk
I ;AI, FI). (4.9)

Proof. e result is a straightforward consequence of the definitions presented in

the previous two paragraphs.

Evaluating the expression in equation 4.8 involves dealing with the sum of an

exponential number of terms. To facilitate computations and motivated by the

fact that the AI’s tend to increase as the number of vertices in the network in-

creases, we approximate (Aτ
I , . . . ,A

τk
I ) to its average (AIfI, . . . ,AIfIk), what intu-

itively means that the number of people receiving treatment τ in each block BI

is its expected value AIfIτ . is requirement can actually be accomplished with a

small change in the treatment assignment: instead of treatment within a block

BI being assigned independently with distribution FI, assignment is made at ran-

dom in a way to satisfy the constraint (Aτ
I , . . . ,A

τk
I ) = (AIfI, . . . ,AIfIk), i.e., every

possible assignment satisfying the constraint receives the same probability.
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In this scenario, equation 4.8 becomes:

P
(
{sI(vi)}I,vi∈BI |A, . . . ,Aq, F,M

)
=
∏
I

[∏
vi∈BI

P
(
sI(vi)|Aτ

 = Afτ , . . . ,A
τk
q = Aqfqτk ,M

)]
(4.10)

4.4.1 D     AIRG

Proposition 14. Under AIRG,

P({rI(vi)}I,vi∈BI |A, . . . ,Aq, F,M) ∼=
∏
I

∏
vi∈BI

N (rI(vi);µI, ςI )

where

µI =

(∑
J

AJfjτMIJ, . . . ,
∑
J

AJfJτkMIJ

)

and

ςI = diag

(∑
J

AJfJτMIJ(−MIJ), . . . ,
∑
J

AJfjτkMIJ(−MIJ)

)

Proof. Considering the stochastic blockmodels data generating process for the

network and using the definitions described in section 4.4,

P(Aτ
IJ(vi)|Aτ

J ,Mij) = Bin(Aτ
IJ(vi);A

τ
J ,MIJ). (4.11)

Because AJ is large, we approximate (4.11) to normal:

P(Aτ
IJ(vi)|Aτ

J ,MIJ) ∼= N(Aτ
IJ(vi);A

τ
JMIJ,Aτ

JMIJ(−MIJ)) (4.12)
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From the definition of ri,

P(rI(vi)|Aτ
 , . . . ,A

τ
q , . . . ,A

τk
 , . . . ,A

τk
q ,M) ∼=

N

[(∑
J

Aτ
IJ(vi), . . . ,

∑
J

Aτk
IJ(vi)

)
;µI, ς


I

] (4.13)

where µI =
(∑

J A
τ
J MIJ, . . . ,

∑
J A

τk
J MIJ

)
and

ςI = diag

(∑
J

Aτ
J MIJ(−MIJ), . . . ,

∑
J

Aτk
J MIJ(−MIJ)

)

e result now comes from the fact that Aτ
I = AIfIτ (as discussed in section (as

discussed in section 4.4).

4.4.2 D     DIRG

Proposition 15. Under DIRG,

P({pI(vi)}I,vi∈BI |A, . . . ,Aq, F,M) ∼=
∏
I

∏
vi∈BI

N (pI(vi);µI, ςI )

where

µI ∼=

(∑
J AJfJτMIJ∑

jMIJAJ
, . . . ,

∑
J AJfJτkMIJ∑
JMIJAJ

)

and

ςI =


(
∑

jMIJAJ)
diag

(∑
J

AJfJτMIJ(−MIJ), . . . ,
∑
J

AJfjτkMIJ(−MIJ)

)
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Moreover, as n→∞, the social effect of node vi ∈ BI asymptotically approaches

pI(vi) ∼=
(∑

J AJfJτMIJ∑
JMIJAJ

, . . . ,

∑
J AJfJτkMIJ∑
JMIJAJ

)
(4.14)

Proof. e result is a direct consequence of proposition 14 and of the fact that

pI(vi) = ri∑
τ

∑
J A

τ
IJ(vi)

,. When n→∞ each AI →∞, so the variance ςI approaches

zero and pi becomes assumptotically equivalent to mI. We call WIJ =
AJMIJ∑
J AJMIJ

, so

the expression for µI becomes µI ∼=
(∑

J fJτWIJ, . . . ,
∑

J fJτkWIJ
)
.

Under the asymptotic setting of proposition (15), individuals in the same block

of the stochastic blockmodel have approximately the same distribution of treat-

ments in their neighborhood. e effective treatment of vi is then defined by

(ti, pI(vi)), where ti is the treatment received by vi and pI(vi) is defined above. Since

the treatment assignment in BI is given by FI, for each τ approximately AIfIτ indi-

viduals of block BI should have effective treatment (τ, pI(vi)).

4.5 O      -



In this section we show how the stochastic blockmodel treatment assignment can

be used to improve estimation of treatment and social effects in a linear model.

e setup and the distribution of effective treatments follow the description in

sections 4.3.1 and 4.4, but here we assume that the space of treatments is T =

{, }, where  represents no-treatment and  represents treatment.
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We consider the following linear model for the response function

yvi = α+ βtvi + γsvi(vi) + ϵvi ,

ϵvi ∼ N(, σ
vi),

(4.15)

where the svi = pvi in case of DIRG and svi = rvi in case of AIRG. Since the dis-

tribution of treatments is randomized within blocks, and since members of the

same blocks are exposed to similar distribution of social effect svi , for a matter of

estimating the overall distribution of outcomes y, we assume that they share the

same σvi , i.e., the variance of ϵvi can be described by a σI common amongmembers

of block BI ∋ vi.

Our goal is to design a treatment assignment that optimizes the estimation of

α, β and γ. More precisely, we want to minimize the variance of their estimators.

e covariance of the estimators is the inverse of the Fisher information matrix,

and the Fisher information is computed as a function of the stochastic blockmod-

els parameters and the treatment probability in each block. We want to find treat-

ment probabliities that provide good estimation forα, β and γ satisfying a certain

budget constraint that limits the number of people to be treated.

We present optimal and suboptimal designs for estimating treatment and so-

cial effects. For optimality, we consider the network as a random graph model

defined from the output of SBA. In this case, we consider the social effect a nui-

sance parameter that is integrated out in the computation of the Fisher informa-

tion. For the suboptimal designs, we explore limiting properties of the stochastic

blockmodels distribution.
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4.5.1 O   DIRG  AIRG

To find optimal designs for DIRG and AIRG models, we use the stochastic block-

model given by the SBA tomodel the connections of the network. We assume that

the block assignment doesn’t change, i.e., vertices are assigned to the same blocks

as in the output of the algorithm. e connections happen independently with

probabilities given by the connectionmatrix provided by the SBA.We assume a di-

rected graph to facilitate computation, as independence in edge direction implies

more independence in the formation of effective treatments among units. is

random graph is used to integrate out the social component of the likelihood of

the response in the linearmodel, so we use the likelihood to find a Fisher informa-

tion matrix associated with the regression parameters. e optimal design finds

treatment assignments that maximize the information about the parameters or,

equivalently, minimizes the variance of the estimators.

Under this setup, the Fisher information is described in the following theorem.

eorem 16. Consider a random graph model in which vertices have been assigned

to blocks B,B, . . . ,Bk and connection between any pair of vertices i ∈ BI and j ∈ BJ

happen independently with known probability MIJ that depends only on which block

they belong to. Assume that the response function is given by the linear model 4.15,

where the social effect si is pi, for the case DIRG, or ri, for the case of AIRG. en the

fisher information matrix associated with model parameters α, β, γ is given by

I = −


L C D

C C E

D E F

 ,
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where the entries are L = 
n

∑
I
AI
σ
I

(
γςI

(γςI +σ
I )
− 
)
, C 

n

∑
I
AIfI
σ
I

(
γςI

(γςI +σ
I )
− 
)
,

D = − 
n

∑
I

AIµI

(γςI +σ
I )
, E = − 

n

∑
I

AIµIfI
(γςI +σ

I )
, and

F =

n

∑
I

AI

 γςI − ςI σ
I

(γςI + σ
I )

 +
(ςI + µ

I )
γςI

σ (γςI + σ
I )
− γςI

(
(ςI +µ

I )
γςI

σ
I

+ µγ
)

(γςI + σ
I )



+
(ςI γ

 − σ
I )
[
(µIγ

ςI + µiσ

I )

 + γςI
]

σ
I (γ

ςI + σ
I )



]

Here AI is the size of block BI, fI is the probability of treatment in block BI, σ
I is

the variance of the response for members of block BI, γ is the social effect parameter

of the linear model, and (µi, ςI ) are defined in proposition 14 for AIRG models, or in

proposition 15 for DIRG models.

Proof. e proof is given in appendix C.

As I− is multidimensional, to define a notion of optimality we need consider

a unidimensional functional of I. In following subsections we analyze optimal

strategies the social effect parameter, represented by the γ, and treatment effect

paremeter, represented by β.

O    

If the goal is to find optimal experimental design to estimate the social effect pa-

rameter, we could focus on minimizing the variance of the γ estimator. is cor-

responds to minimizing the element in position (, ) of I−, i.e., we would like to

minimize H(f) = 
det(I) [LC− C]. e minimization problem we need to solve in
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order to design an optimal experiment for estimation of the social effect is:

• Find f, . . . , fq,.

• at minimize

H =
LC− C

LCF+ CDE− CD − CF− LE (4.16)

• Given the constraints:

– 
n

∑q
i= AIfI = S.

–  ≤ fI ≤ , ∀I.

e constraints guarantee that the fI’s are indeed probabilities and that the budge

constraint is satisfied.

O    

For estimating treatment effect, we shouldminimize the element in position (, )

of I−, i.e., our goal should be to minimize

H(f, . . . , fq) =


det(I)
[LF− D] =

Subject to

• 
n

∑q
i= AIfI = S.

•  ≤ fI ≤ , ∀I.
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4.5.2 S 

emethodology developed in section 4.5 involves computing the Fisher informa-

tion I described in theorem 16. e matrix I, however, depends on the parameter

model γ, which is actually what we would like to estimate. Here we develop a sub-

optimal methodology that considers the asymptotic setup of proposition 15 to

define an approximation of the Fisher information matrix in a way that it doesn’t

depend on the regression parameters.

D    DIRG  

We considerDIRG linearmodels and the asymptotic setup of theorem16, inwhich

the social treatment of an individual vi in block BI is given by

pI(vi) ∼=
∑
J

fJWIJ

erefore the treatment type of vi can be written as

cvi(z
J) =

(
tvi ,
∑
J

fJWIJ

)
. (4.17)

For each vi ∈ BI, there are approximately AIfI individuals receiving effective treat-

ment
(
,
∑

j fJWIJ

)
and Ai(− fI) receiving treatment

(
,
∑

J fJWIJ
)
.

e fisher information under this setup is then
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I =

n

∑
BI

∑
vi∈BI


σ
BI


 tvi pI(vi)

tvi tvi tvipI(vi)

pi(vi) tvipi(vi) pI(vi)

 =


n

q∑
I=

AIfI
σ
BI


 

∑
j fjWIJ

 
∑

j fjWIJ∑
j fJWIJ

∑
j fJWIJ

(∑
J fJWIJ

)

+


n

∑
I

AI(− fI)
σ
I


 

∑
J fJWIJ

  ∑
J fJWIJ 

(∑
J fJWIJ

)

 =


L C D

C C E

D E F

 ,

where

L =

n

∑
I

Ai

σ
BI
,C =


n

∑
I

AI

σ
BI
fI,D =


n

∑
I

AI

σ
BI

(∑
J

fJWIJ

)
,

E =

n

∑
I

AI

σ
BI

fI

(∑
J

fJWIJ

)
and F =


n

∑
I

AI

σ
BI

(∑
J

fJWIJ

)

.

ismatrix can be used to find an approximated covariance matrix for the esti-

mator is the parameters α, β and γ so we follow the optimization setup presented

in section 4.5.1 to define a suboptimal treatment assignment methodology.
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D    AIRG  

We follow similar ideas as in the DIRG suboptimal case and approximate ri to its

mean
∑

J fJAJMIJ. e information matrix becomes


 C D

C C E

D E F

 ,

where

C =

n

q∑
I=

AIfI,D =

n

∑
I

AI

(∑
J

fJAJMIJ

)
,

E =

n

∑
I

AIfI

(∑
J

fJAJMIJ

)
and F =


n

∑
I

AI

(∑
J

fJAJMIJ

)

.

Optimal estimation of the peer effect and treatment effect follows then similar

analysis as the one developed in section 4.5.1.

4.6 E   

In this section, we review the causal estimands of peer-influence introduced in [61]

and apply them to our setup. e peer influence is measured in different levels,

each level k corresponding to the number of friends receiving treatment in the

person’s neighborhood. Using the paper’s notation, let Z(Ni, k) be the set of all

assignments on Ni in which exactly k neighbors are treated. ere are two types

of estimands:
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1. Estimand for primary effect:

ξ =

n

∑
i

Yi(, z = )− Yi() (4.18)

2. Estimand of level k for peer-influence:

δk =

|Vk|

∑
i∈Vk

 ni!
k!(ni − k)!

∑
z∈Z(Ni,k)

Yi(, z)− Yi()

 , (4.19)

where Vk is the set of nodes with at least k neighbors.

In the paper’smodel-based approach for causal inference, the authorsworkwith

a linear model defined as follows:

yvi = α+ βtvi + γ
(
OTZ

)
+ ϵvi ,

ϵvi ∼ N(, σ),

(4.20)

with O being a weighted direct matrix. ey show that the primary estimand re-

duces to β:

ξ =

n

∑
i

Yi(, z = )− Yi() =

n

∑
i

β = β. (4.21)

e peer influence effect estimand δk is reduced to τ :

δk =

|Vk|

∑
i∈Vk

 ni!
k!(ni − k)!

∑
z∈Z(Ni,k)

Yi(, z)− Yi()

 =
kγ
|Vk|

∑
i

Wi ∝ γ, (4.22)

whereWi is the average weight in the incoming edge to i.

Note thatmodel 4.15 can be expressed in format 4.20 for both AIRG andDIRG:

in the AIRG case the edges ofO haveweight 1, and in theDIRG case the edges have
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weight 
deg(i) . So, the k-level peer-influence effect is given by

• In case of AIRG: δk = kγ

• In case of DIRG: δk =
kγ
|Vk|
∑

i∈Vk


deg(i)

4.7 E 

In this section we present simulations to show the performance of the stochastic

blockmodel treatment assignment. In our experiments, data is generated using

six types of treatment strategies:

• At random: each vertex receives treatment I.I.D with probability p.

• Heuristics: randomly choose blocks from SBA and treat everybody from that

block (or the maximum number of people) until it reaches a desirable num-

ber pn of treatments.

• Suboptimal (DIRG): suboptimal design for estimation of social effect DIRG

described in section 4.5.2.

• Suboptimal (AIRG): suboptimal design for estimation of social effect under

AIRG described in section 4.5.2.

• Optimal (DIRG): optimal design for estimation of social effect under DIRG

described in section 4.5.1.

• Optimal (AIRG): optimal design for estimation of social effect under AIRG

described in section 4.5.1.
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e outcome is generated using three types of response functions:

• DIRG linear model: model described in 4.15 with si = pi.

• AIRG linear model: model described in 4.15 with si = ri

• Markov Random Field: we follow the model introduced in [43] where a

Markov Random Field defines a response mechanism with social inter-

action in which the response of each individual depends on the response

of people in his neighborhood. In this model, outcome is binary and the

probability of yi =  is given by a probit function of a linear combination

involving the proportion of people in Ni with outcome 1. Formally,

P (yi = |Y−i,G, ψ, γ) = Φ

(
α+ γ

∑
j∈Ni

yj
|Ni|

)
(4.23)

We work with a variation of this method in which the linear combination in

the probit function has one more term that depends on the treatment the

individual received:

P (yi = |Y−i,G, ψ, γ) = Φ

(
α+ βti + γ

∑
j∈Ni

yj
|Ni|

)
(4.24)

is way, the probability of outcome yi depends indirectly on the treatment

given to the elements on Ni. We implemented the MCMC mechanism de-

scribed in [43] to sample from such distribution.
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4.7.1 E 

We randomly generated 1000 networks of 500 nodes each from stochastic block-

models with 5 blocks. e parameters of the stochastic blockmodels are sampled

from I.I.D. uniform distribution on [, ] for the probabilities of connection be-

tween blocks and dirichlet distribution with parameter 1 for the probabilities of

the blocks. After sampling one graph from each stochastic blockmodel, we applied

all six treatment strategies described above in a way to cover in each case approx-

imately 30% of the vertices in the graph. en we sample the outcome using each

one of the three models presented above. Finally, we compare the different treat-

ment strategies by running a linear model on the generated data and then observ-

ing the distance to ground truth and the variance of the regression estimators.

e models are defined using the following parameters:

• DIRG linear model: the response function is defined with parameters: α =

, β = , γ = .e variances θI of the error for each block BI are sampled

independently from a inverse-gamma distribution with mean  and stan-

dard deviation .. We use a DIRG linear regression model to evaluate the

performance of the treatment strategies.

• AIRG linear mode: the response functions defined with parameters: α =

, β = , γ = .. e variances θI of the error for each block BI are

sampled independently from a inverse-gamma distribution with mean 

and standard deviation . We use a AIRG linear regressionmodel to evaluate

the performance of the treatment strategies.

• MRF: response function for the Markov Random Field is defined with pa-
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rameters: α = , β = , γ = . We use a DIRG linear regression model to

evaluate the performance of the treatment strategies.

4.7.2 R

Results are shown on tables 4.1, 4.2 and 4.3. Table 4.1 presents the results of a

DIRG regression fit on data generated using the DIRGmodel described in last sec-

tion. Note that the social and treatment effects parameter have lowest distance to

the ground truth and lowest variance when the optimal DIRG treatment assign-

ment is used. Table 4.2 has results of a AIRG linear regressionfit on data generated

using the AIRG linear model. Here the best treatment strategy for estimating so-

cial and treatment effects shows to be the optimal AIRG described in section 4.5.2.

Finally, table 4.3 shows results of DIRG regression fit on data generated using the

Markov Random Field. Despite the model misspecification , here again our the-

ory is confirmed as the optimal DIRG outperforms the other treatment strategies.

Also notice that the heuristics outperforms the “at random” assignment on es-

timation of the social effect in all three groups of simulations. is shows how

useful it is to consider the graph structure, in particular the SBA block structure,

when estimating social effect using these types of models.
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I  

eoptimal treatment strategies provide a clear gain to the estimationof the social

effect parameter, as the results presented on tables 4.1, 4.2 and 4.3 confirm that

the variance of these estimators decrease when we use SBA to optimize assign-

ment. is improvement is directly associated with the increase in identifiability:

the stochastic blockmodel framework allows the construction ofmore flexible and

disperse set of effective treatments, potentially leading to optimal inputs to the

regression.

Figures 4.1 and 4.2 illustrate the increase in identifiability by showing the dis-

tribution of the social effects pi and ri, for a DIRC and a AIRC simulation respec-

tively, under different treatment strategies. Note that the optimal treatment as-

signments generate more modes in the distribution, what allows the exploration

of different areas of the space of inputs.
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Figure 4.1: Distribution of DIRC social effect under different treatment strategies.
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Figure 4.2: Distribution of AIRC social effect under different treatment strategies.
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e increase in the number of modes is also clear from the results of table 4.4.

For each observed treatment described in the experimental setup, we compute

the DIRG social effect pi and the AIRG social effect ri. e p′is and the r′is are then

clustered using a non-parametric kernel algorithm described in [5, 47] and imple-

mented by the R package ‘pdfCluster’. Table 4.4 reports the number of clusters

and the variance of pi and ti. Note the the number of clusters and the variances

are higher for the optimal assignments. is shows that the optimal strategies

generate richer sets of effective treatments and allow better identifiability.

Table 4.4: DIRC and AIRC Social Effects under different treatment strategies

DIRG Social Effect
Number of Clusters Var(pi)

At random 1.394± 0.587 0.00051± 0.00034
Heuristics 2.421±0.630 0.00890± 0.00907
Suboptimal (Social Effect) 2.487± 0.634 0.01370± 0.01323
Suboptimal (Treatment) 2.318± 0.724 0.00966± 0.01099
Optimal (Social Effect) 2.579± 0.656 0.01862± 0.01472
Optimal (Treatment) 2.164± 0.723 0.00313± 0.00352

AIRG Social Effect
Number of Clusters Var(ri)

At random 2.279± 0.706 340.895± 234.789
Heuristics 2.424± 0.750 891.254± 690.870
Suboptimal (Social Effect) 2.429± 0.701 1039.032± 808.796
Suboptimal (Treatment) 2.357± 0.716 611.107± 549.751
Optimal (Social Effect) 2.499± 0.687 1422.044± 717.596
Optimal (Treatment) 2.284± 0.703 464.967± 355.567
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4.8 C

Wedeveloped amethodology for assessment of treatment response with social in-

teraction based on the stochastic blockmodels approximation framework. Under

the assumption that an individual’s response to a treatment depends not only on

his treatment but also on the treatment assigned to his neighbors in a social graph,

we show a way to use the block structure generated by the SBA to design optimal

treatment strategies for estimating treatment and social effects. Two classes of

models for assessment of social interaction are considered, and for each class we

test our ideas considering data generated from linear and non-linear models and

using different treatment strategies. Experimental results confirm the optimality

of our methodology for parameters’ estimation.
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A
Appendix to Chapter 2

A.1 P  T 3

Proof. Equation (2.5) shows that

E[̂rkij|ui, uj] = rij.
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From the definition of r̂kij in (2.4), one can bound its variance:

Var(̂rkij|ui, ui) =
Var(Gt[i, k]) ∗ Var(Gt[j, k])(

T−
⌊T+



⌋) (⌊T+


⌋) +
Var(Gt[i, k])(
T−

⌊T+


⌋)E(G[j, k])+
Var(Gt[j, k])(⌊T+



⌋) E(G[i, k]) =
w(ui, uk)(− w(ui, uk))w(uj, uk)(− w(uj, uk))(

T−
⌊T+



⌋) (⌊T+


⌋) +

w(ui, uk)(− w(ui, uk))(
T−

⌊T+


⌋) w(uj, uk) +
w(uj, uk)(− w(uj, uk))(⌊T+



⌋) w(ui, uk)

As w is bounded in [, ],

Var(̂rkij|ui, uj) ≤
(

T−
⌊T+



⌋) (⌊T+


⌋) + (
T−

⌊T+


⌋) + (⌊T+


⌋) ≤ 
T− 

Define r̂ij as average over all observations r̂kij, k ∈ Sij, and using Bernstein in-

equality for bounded random variables with known variance,

P
(
|̂rij − rij| > ϵ

)
≤ e

− Sϵ


T−+
ϵ
 (A.1)

Since

dij = rii − rij − rji + rjj

d̂ij = r̂ii − r̂ij − r̂ji + r̂jj

we know that

|dij − d̂ij| ≤ |rii − r̂ii|+ |rij − r̂ij|+ |rji − r̂ji|+ |rjj − r̂jj|
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erefore,

P(|dij − d̂ij| > ϵ) ≤ P(|rii − r̂ii|+ |rij − r̂ij|+ |rji − r̂ji|+ |rjj − r̂jj| > ϵ) ≤

P(|rii − r̂ii| >
ϵ


) + P(|rij − r̂ij| >

ϵ


)+

P(|rji − r̂ji| >
ϵ


) + P(|rjj − r̂jj| >

ϵ


) ≤

e
− Sϵ


T−+

ϵ


at finishes the proof.

A.2 P  T 4

Proof. Let B,B, . . . ,BK′ be the blocks of the blockmodel G(n,w′), and let

b, b, . . . , bK′ be their respective pivots. Divide each of the intervals I = (α, α),

. . . , IQ = (αQ−, αQ) that define the pieces in which w is Lipschitz in R = L
√


∆

subintervals of equal size. Clearly, the size of each subinterval is at most 
R ,

because the union of these disjoint subintervals is in [, ]. us, since L is

the Lipschitz constant, two points i and j in the same subinterval must satisfy

dij =
∫ 


(
fi(x)− fj(x)

) dx < (
L 
R

)
= ∆

 . Supposing that K′ > QR = QL
√


∆ ,

by the pigeonhole principle, there should be at least two pivots bi and bj in the

same subinterval, for which dbibj <
∆

 . But we know, by the algorithm, that the

estimated distance between two pivots is at least∆. So d̂bibj ≥ ∆, and therefore

d̂bibj−dbibj >
∆

 . Let E be the event that there exists two pivots b′i and b
′
j for which
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d̂b′i b′j − db′i b′j >
∆

 . Clearly, P(K′ > QL
√


∆ ) ≤ P(E), because, as we have just seen,

E is a consequence of K′
n >

QL
√


∆ . To compute P(E), remember from eorem 3

that given, bi and bj,

P(|dbibj − d̂bibj | >
∆


) ≤ e

− S∆

T−+

∆
 , (A.2)

So, given b, b, . . . , bK′ ,

P(E|b, b, . . . , bK′) ≤
∑
bibj

P(|dbibj − d̂bibj | >
∆


) ≤ ne

− S∆

T−+

∆
 (A.3)

us,

P(E) =
∑

b,b,...,bK′

P(E|b, b, . . . , bK′)P(b, b, . . . , bK′) ≤

∑
b,b,...,bK′

ne
− S∆


T−+

∆
 P(b, b, . . . , bK′) = ne

− S∆

T−+

∆


Because P(K′ > QL
√


∆ ) ≤ P(E), we finally have

P(K′ >
QL
√


∆
) ≤ ne

− S∆

T−+

∆
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A.3 P  T 5

In this section, we prove theorem 5. As previously, assume that the numbersα =

 < α < α < · · · < αQ define intervals Ir = (αr−, αr) such that w : [, ] →

[, ] is Lipschitz in each block Iij = Ii × Ij, with Lipschitz constant L. Let λ =

mini∈{,,...,K}(αi − αi−).

We start the proof with the following lemma:

Lemma 17. For any i, j ∈ [, ], define hij(·) = (w(i, ·)− w(j, ·)). us, if  < ϵ <

λL is such that dij =
∫ 
 hij(x)dx ≤ ϵ

L , then supx∈[,](hij(x)) ≤ ϵ.

Proof. Fix i and j, and let hsupij = supx∈[,](hij(x)). Let Ik = (αk−, αk) be such that

there exists a sequence x, x, . . . ∈ Ik satisfying h
sup
ij = limn→∞hij(xn), and define

λk = |αk − αk−|. For θ < λk
 , define hsupij (θ) = supx∈[αk−+θ,αk−θ](hij(x)). Clearly

hsupij = limθ→ h
sup
ij (θ).

e set [αi− + θ, αi− θ] is compact, so there exists xmaxij (θ) ∈ [αi− + θ, αi− θ]

such that hsupij (θ) = hij(xmaxij (θ)). Assume, without loss of generality, that xmaxij (θ)+

λk
 −θ ∈ [αi−+θ, αi−θ] (if xmaxij (θ)+ λk

 −θ > αi−θ, consider xmaxij (θ)− λk
 +θ ∈

[αi− + θ, αi − θ]).

For  < ϵ <
ϵ
L − θ ≤

λ
 − θ ≤

λk
 − θ,

hij(xmaxij (θ))− hij(xmaxij (θ) + ϵ)

ϵ
=

(w(i, xmaxij )− w(j, xmaxij )) − (w(i, xmaxij (θ) + ϵ)− w(j, xmaxij (θ) + ϵ))


ϵ
≤
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(w(i, xmaxij )− w(j, xmaxij )) − (w(i, xmaxij ) + Lϵ − w(j, xmaxij ) + Lϵ)

ϵ
≤

L(w(j, xmaxij )− w(i, xmaxij )) ≤ L

A rearrangement of

hij(xmaxij (θ))− hij(xmaxij (θ) + ϵ)

ϵ
≤ L

gives us

hij(xmaxij (θ))− Lϵ ≤ hij(xmaxij (θ) + ϵ)

Integrating ϵ in the interval (, ϵ
L − θ)

hij(xmaxij (θ))(
ϵ

L
− θ)− L


(
ϵ

L
− θ) ≤

∫ ϵ
L−θ


hij(xmaxij (θ) + x)dx ≤

∫ 


hij(x)dx = dij

us,

hij(xmaxij (θ)) ≤
dij

ϵ
L − θ

+ L(
ϵ

L
− θ)

erefore,

hsupij = lim
θ→

hsupij (θ) = lim
θ→

hij(xmaxij (θ)) ≤
Ldij
ϵ

+
ϵ



If dij ≤ ϵ

L ,

hsupij ≤ ϵ.

Obs: λϵ is a function of w and ϵ, and doesn’t depend on the choice of i and j.
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Proposition 18. Let B̂i = {i, i, . . . , iKi} and B̂j = {j, j, . . . , jKj} be two clusters

given by the algorithm, and suppose that {ui , ui , . . . , uiKi} and {uj , uj , . . . , ujKj}

are the ground truth labels of the vertices in B̂i and B̂j, respectively. Let w̄ij =


KiKj

∑
xi∈B̂i,yj∈B̂j w(uxi , uyj). If the accuracy parameter of the algorithm is such that

∆ < λL. , then for each vi ∈ Bi and vj ∈ Bj,

P(|w(uvi , uvj)− w̄ij| > 
√

∆
√
L) ≤ KiKje

− S∆


(T−)+
∆
 .

Proof. By the definition of the algorithm, we know that there are bi ∈ B̂i and bj ∈

B̂j, such that, for anyother vertices vi ∈ Bi and vj ∈ Bj, |d̂bivi | ≤ ∆ and |d̂bjvj | ≤ ∆.

|d̂bivi | ≤ ∆

us,

dbivi ≤ dbivi − d̂bivi +∆ ≤ |dbivi − d̂bivi |+∆

erefore,

P(dbivi > ∆) ≤ P(|dbivi − d̂bivi |+∆ > ∆) = P(|dbivi − d̂bivi | > ∆)

From eorem 3, P(|dij − d̂ij| > ∆) ≤ e
− S∆


(T−)+

∆
 . us,

P(dbivi > ∆) ≤ e
− S∆


(T−)+

∆
 .

Analogously,

P(dbjvj > ∆) ≤ e
− S∆


(T−)+

∆
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From the last two equations:

P(dbivi > ∆ or dbjvj > ∆) ≤ P(dbjvj > ∆) + P(dbivi > ∆) ≤

e
− S∆


(T−)+

∆


(A.4)

From lemma 17, for any  <
(
ϵ


)
< λL, if dbivi <

ϵ

L ,

(w(uvi , uvj)− w(ubi , uvj))
 ≤ supx∈[,]((w(uvi , x)− w(ubi , x)

) <
( ϵ


)

Analogously, if dbjvj <
ϵ

L

(w(uvj , ubi)− w(ubj , ubi))
 ≤ supx∈[,]((w(uvj , x)− w(ubj , x))

) <
( ϵ


)

us, if dbivi <
ϵ

L and dbjvj <
ϵ

L

|w(uvi , uvj)− w(ubi , ubj)| ≤ |w(uvi , uvj)− w(ubi , uvj)|+

|w(uvj , ubi)− w(ubj , ubi)| < ϵ.

(A.5)

Assuming ∆ < λL., making ϵ = 
√

∆
√
L leads to  < ϵ < λL. In that

case, by equation (A.5),

(
dbivi <

ϵ

L
= ∆ and dbjvj <

ϵ

L
= ∆

)

us, (
|w(uvi , uvj)− w(ubi , ubj)| < 

√
∆
√
L
)
.
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erefore,

P(|w(uvi , uvj)− w(ubi , ubj)| > 
√

∆
√
L) ≤ P(dbivi > ∆ or dbjvj > ∆) (A.6)

From equations (A.4) and (A.6)

P(|w(uvi , uvj)− w(ubi , ubj)| > 
√

∆
√
L) ≤ e

− S∆


(T−)+
∆
 (A.7)

So, for any xi ∈ B̂i and yj ∈ B̂j,

P(|w(uvi , uvj)− w(ubi , ubj) + w(ubi , ubj)− w(uxi , uyj)| > 
√
∆
√
L) ≤

P(|w(uvi , uvj)− w(ubi , ubj)| > 
√

∆
√
L)+

P(|w(uxi , uyj)− w(ubi , ubj)| > 
√

∆
√
L)

≤ e
− S∆


(T−)+

∆


erefore,

P(|w(uvi , uvj)− w(uxi , uxj)| > 
√

∆
√
L) ≤ e

− S∆


(T−)+
∆
 .

Averaging over xi ∈ B̂i and xj ∈ B̂j

P(|w(uvi , uvj)− w̄ij| > 
√

∆
√
L) =

P(|
∑

xi∈B̂i,yj∈B̂j

(w(uvi , uvj)− w(uxi , uxj))| > KiKj
√

∆
√
L) ≤
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∑
xi∈B̂i,yj∈B̂j

P(|w(uvi , uvj)− w(uxi , uxj)| > 
√
∆
√
L) ≤

∑
xi∈B̂i,yj∈B̂j

e
− S∆


(T−)+

∆


So we finally have

P(|w(uvi , uvj)− w̄ij| > 
√

∆
√
L) ≤

KiKje
− S∆


(T−)+

∆
 .

Proposition 19. Let ŵij =


KiKj

∑
xi∈B̂i,yj∈B̂j

G[xi,yj]+G[xi,yj]+...+GT[xi,yj]
T . Under the

conditions of Proposition 18,

P(|ŵij − w̄ij| > 
√
∆L) ≤ e−TKiKj

√
L∆ + K

iK

j e

− S∆


(T−)+
∆
 .

Proof. From proposition 18, for any vi ∈ B̂i and vj ∈ B̂j

P(|w(uvi , uvj)− w̄ij| > 
√

∆
√
L) ≤ KiKje

− S∆


(T−)+
∆
 .

Considering all KiKj possible values of (vi, vj), let Eij be the event that all these

values satisfy |w(uvi , uvj) − w̄ij| ≤ 
√

∆
√
L, and name Ēij the complement of Eij .

Clearly,

P(Ēij) ≤
∑

xi∈B̂i,yj∈B̂j

P(|w(uvi , uvj)− w(uxi , uxj)| > 
√

∆
√
L) ≤

K
i K


j e

− S∆


(T−)+
∆
 .

(A.8)
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Now, assume that Eij has happened and let ϵ = 
√

∆
√
L. en,

w̄−ϵ
ij = w̄ij − ϵ ≤ w(uvi , uvj) ≤ w̄ij + ϵ = w̄+ϵ

ij

Each G[vi, vj],G[vi, vj], . . . ,GT[vi, vj] comes from the realization of a Bernoulli

variable with mean w(uvi , uvj). us, from the Hoeffding inequality, if we average

them over all values of vi ∈ B̂i and vj ∈ B̂j,

P(


KiKj

∑
vi∈B̂i,vj∈B̂j

G[vi, vj] + . . .+ GT[vi, vj]
T

> w̄+ϵ
ij + ϵ = w̄ij + ϵ|Eij) ≤

e−TKiKjϵ

and,

P(


KiKj

∑
vi∈B̂i,vj∈B̂j

G[vi, vj] + . . .+ GT[vi, vj]
T

< w̄−ϵ
ij − ϵ = w̄ij − ϵ|Eij) ≤

e−TKiKjϵ

us,

P(|ŵij − w̄ij| > ϵ|Eij) ≤ e−TKiKjϵ

Since ϵ = 
√
∆
√
L,

P(|ŵij − w̄ij| > 
√
∆
√
L|Eij) ≤ e−TKiKj

√
L∆
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From equation (A.8), P(Ēij) < K
i K


j e

− S∆


(T−)+
∆
 .erefore,

P(|ŵij − w̄ij| > 
√

∆
√
L) ≤ P(|ŵij − w̄ij| > 

√
∆
√
L|Eij) + P(Ēij) ≤

e−TKiKj
√
L∆ + K

i K

j e

− S∆


(T−)+
∆
 .

Proposition 20. Let vi ∈ B̂i and vj ∈ B̂j be two vertices, and let uvi and uvj be

their respective ground truth positions in the [, ] interval. If ŵij is the estimation for

w(uvi , uvj) provided by the algorithm, then

P(|w(uvi , uvj)− ŵij| > 
√

∆
√
L) ≤

e−TKiKj
√
L∆ + K

iK

j e

− S∆


(T−)+
∆
 + KiKje

− S∆


(T−)+
∆
 .

Proof. From the proposition 18,

P(|w(uvi , uvj)− w̄ij| > 
√

∆
√
L) ≤ KiKje

− S∆


(T−)+
∆
 .

and from proposition 19

P(|ŵij − w̄ij| > 
√

∆
√
L) ≤ e−TKiKj

√
L∆ + K

i K

j e

− S∆


(T−)+
∆
 .

us,

P(|w(uvi , uvj)− ŵij| > 
√

∆
√
L) ≤
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e−TKiKj
√
L∆ + K

iK

j e

− S∆


(T−)+
∆
 + KiKje

− S∆


(T−)+
∆
 .

Proposition21. Let E be a subset of edges (vi, vj). Under the above setup, there exists

constants c and c, that depend only on w, such that

P

 
|E|

∑
vi,vj∈E

|w(uvi , uvj)− ŵij| > c
√
∆

 ≤
|E|ne

− S∆


(T−)+
∆
 +

∑
vi,vj∈E

e−cTKiKj∆

(A.9)

Proof. From proposition 20, for any two vertices vi and vj,

P(|w(uvi , uvj)− ŵij| > 
√

∆
√
L) ≤

e−TKiKj
√
L∆ + K

iK

j e

− S∆


(T−)+
∆
 + KiKje

− S∆


(T−)+
∆
 ≤

ne
− S∆


(T−)+

∆
 + e−TKiKj

√
L∆.

Averaging the above expression over all pairs (vi, vj) ∈ E,

P(

|E|

∑
vi,vj∈E

|w(uvi , uvj)− ŵij| > 
√

∆
√
L) ≤

∑
vi,vj∈E

P(|w(uvi , uvj)− ŵij)| > 
√

∆
√
L) ≤

|E|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈E

e−TKiKj
√
L∆.
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Choosing c = L/ and c = 
√
L,

|E|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈E

e−TKiKj
√
L∆ ≤

|E|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈E

e−cTKiKj∆,

we finally have

P

 
|E|

∑
vi,vj∈E

|w(uvi , uvj)− ŵij| > c
√
∆

 ≤
|E|ne

− S∆


(T−)+
∆
 +

∑
vi,vj∈E

e−cTKiKj∆.

(A.10)

Now we are ready to prove eorem 5.

Proof. Suppose we execute the algorithm in a set of observed graphs with n ver-

tices using parameters∆ and Sn, and call K′
n be the number of blocks generated in

the clustering step. Assume that, as n grows, we use a sequence of accuracy and

precision parameters satisfying Sn ∈ Θ(n) and∆ ∈ ω
((

log(n)
n

) 


)
∩ o().

Our proof is based on proposition 21. e intuition is to show that the three

terms c
√
∆, |V|ne

− S∆


(T−)+
∆
 and

∑
vi,vj∈V e−cTKiKj∆ vanish as n → ∞.

is is clearly true for the first two terms if we choose S ∈ Θ(n) and ∆ ∈

ω

((
log(n)

n

) 


)
∩ o(). For the third term, it is necessary to consider the size of

the clusters the algorithm generates. We prove that the number of small clusters
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is asymptotically irrelevant, and that indeed most of the error come from vertices

whose cluster is large enough to make e−cTKiKj∆ vanish.

From the proof of eorem 4:

P(K′
n >

QL
√


∆
) ≤ ne

− Sn∆

T−+

∆
 (A.11)

Let En be the event K′
n ≤

QL
√


∆ . Note that S ∈ Θ(n) and ∆ ∈ ω

((
log(n)

n

) 


)
implies

lim
n→∞

P(En) = .

Now suppose En happens, and define rn as the number of blocks with less than

n∆

QL
√

 elements. Let Vn be the union of these blocks, and call V̄n the complement

of Vn, i.e, V̄n = V\Vn. en

|Vn| ≤ rn
n∆

QL
√

≤ K′

n
n∆

QL
√

≤ n∆

us,
|Vn|
n
≤ ∆ (A.12)

Letting n→∞

lim
n→∞

(
|Vn|
n

)
= .

is limit shows that, as n increases, the set of vertices belonging to small blocks

becomes irrelevant in comparison with the total number of vertices.
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Looking at the error of estimation,

Err(ŵ) =

n
∑

vi,vj∈V
|w(ui, uj)− ŵij| =

|Vn|

n

∑
vi,vj∈Vn

|w(ui, uj)− ŵij|
|Vn|

+

+
|Vn||V̄n|

n

∑
vi∈Vn,vj∈V̄n |w(ui, uj)− ŵij|

|Vn||V̄n|
+
|V̄n|

n

∑
vi,vj∈V̄n

|w(ui, uj)− ŵij|
|V̄n|

Using equation A.12 and the fact that |w(ui, uj)− ŵij| ≤  and V̄n
n ≤ ,

Err(ŵ) ≤ |V̄n|

n

∑
vi,vj∈V̄n |w(ui, uj)− ŵij|

|V̄n|
+ ∆+ |∆|

Since∆ ∈ o(), for n large enough,

Err(ŵ) ≤ |V̄n|

n

∑
vi,vj∈V̄n |w(ui, uj)− ŵij|

|V̄n|
+ ∆ (A.13)

erefore, using proposition 21 with E = V̄n:

P(Err(ŵ) > c
√
∆+ ∆|En) ≤

P

(
|V̄n|

n

∑
vi,vj∈V̄n |w(ui, uj)− ŵij|

|V̄n|
+ ∆ > c

√
∆+ ∆ | En

)
≤


P(En)

P

(
|V̄n|

n

∑
vi,vj∈V̄n

|w(ui, uj)− ŵij|
|V̄n|

> c
√
∆

)
≤

≤ 
P(En)

|V̄n|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈V̄n

e−cTKiKj∆
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us

P(Err(ŵ) > α
√
∆|En)P(En) ≤

|V̄n|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈V̄n

e−cTKiKj∆


where α = c +  > c + ∆.

Since S ∈ Θ(n) and ∆ ∈ ω
((

log(n)
n

) 


)
∩ o(), and since each vertex is V̄n is

in a block with at least n∆

QL
√

 elements,

lim
n→∞

P(Err(ŵ) > α
√
∆|En)P(En) = 

For any ϵ > ,

lim
n→∞

P(Err(ŵ) > ϵ) = , (A.14)

because lim∆ =  and limP(En) = .

From the fact that ŵ is bounded in [, ],

E(Err(ŵ)) ≤ ϵP(Err(ŵ) ≤ ϵ) + P(Err(ŵ) > ϵ)

Making ϵ→  and using equation A.14,

lim
n→∞

E(Err(ŵ)) ≤ lim
n→∞

P(Err(ŵ) > ϵ) = 

at finishes the proof of part a).

For part b), assuming that S ∈ Θ(n) and that ∆ is constant, we can use

the same arguments as above to prove that the terms |V|ne
− S∆


(T−)+

∆
 and∑

vi,vj∈V e−cTKiKj∆ of equation A.9 vanish as n → ∞. However, term c
√
∆
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doesn’t vanish, and equation (A.14) becomes

lim
n→∞

P(Err(ŵ) > c
√
∆) = . (A.15)

And the result comes as a direct consequence of this equation.

A.4 P   6

Proof. ∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρ̂n

∣∣∣∣ = ∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρn

ρn
ρ̂n

∣∣∣∣ =∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρn

(
− ρ̂n − ρn

ρ̂n

)∣∣∣∣ =∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρn

+
ŵn(i, j)
ρn

(
ρ̂n − ρn
ρ̂n

)∣∣∣∣ ≤∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρn

∣∣∣∣+ ∣∣∣∣ ŵn(i, j)
ρ̂n

(
ρ̂n − ρn
ρn

)∣∣∣∣
erefore


n
∑
i,j

∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρ̂n

∣∣∣∣ ≤

n

∑
i,j

∣∣∣∣wn(ui, uj)
ρn

− ŵn(i, j)
ρn

∣∣∣∣+ ∣∣∣∣ ŵn(i, j)
ρ̂n

(
ρ̂n − ρn
ρn

)∣∣∣∣


Which then becomes:

Errν(ν̂) ≤
Err(ŵ)
ρ

+

(
ρ̂− ρ
ρ

)
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Since ρ ∈ ω(
√
∆), we can assume that ρ >

√
∆. us,

Errν(ν̂) ≤
Err(ŵn)

ρn
+

(
ρ̂n − ρn√

∆

)
(A.16)

From the proof of eorem 5,

P(
Err(ŵn)

ρn
> α

√
∆

ρn
) = P(Err(ŵ) > α

√
∆) ≤

|V̄n|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈V̄n

e−cTKiKj∆ (A.17)

To estimate ρ̂n−ρn√
∆

, let deg(i) =
∫ 
 (wn(ui, x)dx be the expected normalized degree

of i and consider d̂eg(i) = 
nT

∑
j
∑

t Gt[i, j] an estimator for deg(i).

For each j, we know that E(
∑

T Gt[i, j]) = wn(ui, uj) and Var(
∑

T Gt[i, j]) =

wn(ui,uj)(−wn(ui,uj))
T ≤ 

T . Since uj ∼ Uniform(, ), we can now use Bernstein in-

quality to see that

P
(
|deg(i)− d̂eg(i)| > ϵ

)
≤ e

− nϵ

T+ ϵ



Summing over the i′s

P

(

n

n∑
i=

|deg(i)− d̂eg(i)| > ϵ

)
≤ ne

− nϵ

T+ ϵ



Which then becomes

P

(
| 
n

n∑
i=

deg(i)− 
n

n∑
i=

d̂eg(i)| > ϵ

)
≤ ne

− nϵ

T+ ϵ
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And finally,

P

(
| 
n

n∑
i=

deg(i)− ρ̂| > ϵ

)
≤ ne

− nϵ

T+ ϵ

 (A.18)

By definition, ρn =
∫ 
 deg(x)dx. us, if we make ui ∼ Uniform(, ), then

E(deg(ui)) = ρn. From Hoeffding inequality, we then have

P

(
|ρn −


n

∑
i

deg(i)| > ϵ

)
≤ e−nϵ (A.19)

From (A.18) and (A.19)

P

(
|ρn −


n

∑
i

deg(i)|+ | 
n

n∑
i=

deg(i)− ρ̂n| > ϵ

)
≤ e−nϵ + ne

− nϵ

T+ ϵ



us,

P (|ρn − ρ̂n| > ϵ) ≤ e−nϵ + ne
− nϵ


T+ ϵ



Which is equivalent to

P
(
|ρn − ρ̂n|√

∆
>

ϵ√
∆

)
≤ e−nϵ + ne

− nϵ

T+ ϵ



Making ϵ = ∆,

P
(
|ρn − ρ̂n|√

∆
>
√
∆

)
≤ e−n∆

+ ne
− n∆


T+ ∆

 (A.20)

Summing equations (A.17) and (A.20)

P(
Err(ŵn)

ρn
> α

√
∆

ρn
) + P

(
|ρn − ρ̂n|√

∆
>
√
∆

)
≤
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|V̄n|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈V̄n

e−cTKiKj∆ + e−n∆
+ ne

− n∆

T+ ∆



From equation (A.16), we finally have

P(Errν(ν̂) > α

√
∆

ρn
+
√
∆) ≤

|V̄n|ne
− S∆


(T−)+

∆
 +

∑
vi,vj∈V̄n

e−cTKiKj∆ + e−n∆
+ ne

− n∆

T+ ∆



e result is a consequence of the facts that ρn ∈ ω(
√
∆) and

∆ ∈ ω

((
log(n)

n

) 


)
∩ o()

.

A.5 P   8

Proof. From theorem 7 and equation (2.23), it is enough to prove that

λ = sup

{(∫ 



∫ 



∫ 


f(y)w(y, x)w(x, y)f(y)dxdydy

) 


: f ≥ , ||f|| ≤ }

(A.21)

Since w is a blockmodel with B blocks, the unit interval [, ] can be split in
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subintervals U, . . . ,UB for which w(ui, uj) = MI,J, ∀ui ∈ UI, uj ∈ UJ. us

∫ 



∫ 



∫ 


f(y)w(y, x)w(x, y)f(y)dxdydy =

B∑
I=

B∑
J=

B∑
K=

∫
y∈I

∫
y∈J

f(y)MIK.MKJ.pKf(y)dydy =

B∑
I=

B∑
J=

B∑
K=

(∫
y∈I

f(y)dy

)
MIK.MKJ.pK

(∫
y∈J

f(y)dy

)
=

B∑
I=

B∑
J=

B∑
K=

FI.MIK.MKJ.FJ.pIpJpK

where FI =
∫
y∈I f(y)dy is the I-th position of a vector F.

B∑
I=

B∑
J=

B∑
K=

FI.MIK.MKJ.FJ.pIpJpK =

B∑
I=

B∑
J=

B∑
K=

(p


I .FI).(p



I .MIK.p



K).(p



K.MKJ.p



J ).(p



J .FJ) =

F̂M′F̂T.

where F̂I = p


I .FI. Also note that

||f|| =
∫ 


f(x)dx =

B∑
I=

F̂
I

So, our problemof verifying (A.21) is reduced to solving the optimizationproblem:

1. Maximize F̂M′F̂T.

2. Subject to
∑B

I= F̂

I = 
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Clearly, F̂M′F̂T reaches its maximumwhen F̂ is an eigenvector of λ, the maximum

eigenvalue (in absolute value) ofM′. In that case,

sup

{(∫ 



∫ 



∫ 


f(y)w(y, x)w(x, y)f(y)dxdydy

) 


: f ≥ , ||f|| ≤ 

}
= λ

And we finish the proof.
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B
Appendix to Chapter 3

B.1 P   9

Proof. From the definition of ξ, we know that

w(uvi , uvk)− ξ ≤ w(uv′i , uvk) ≤ w(uvi , uvk) + ξ
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Using this fact, observe that

w(uvi , uvk)(w(uvj , uvk)− ξ) ≤ w(uvi , uvk)w(uv′j , uvk) ≤

w(uvi , uvk)(w(uvj , uvk) + ξ)

Since w ≤ ,

w(uvi , uvk)w(uvj , uvk)− ξ ≤ w(uvi , uvk)w(uv′j , uvk) ≤

w(uvi , uvk)w(uvj , uvk) + ξ

us,

rij − ξ =
∫ 


w(uvi , uvk)w(uvj , uvk)duvk − ξ ≤

r∗ij ≤
∫ 


w(uvi , uvk)w(uvj , uvk)duvk + ξ = rij + ξ

erefore,

|r∗ij − rij| ≤ ξ (B.1)

But from equation (3.7) we know that

P
(
max

ij
|̂rij − rij| > ϵ

)
≤ ne−Sϵ

en,

P
(
|̂rij′ − rij′ | > ϵ

)
≤ ne−Sϵ
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Substituting ϵ with ϵ
 ,

P
(
|̂r∗ij − r∗ij| >

ϵ



)
≤ ne−

Sϵ



us, using this result and equation (B.1) we finally have:

P
(
|̂r∗ij − rij| >

ϵ


+ ξ

)
≤ ne−

Sϵ



e bias of r̂∗ij is transmitted to the estimator d̂∗ij = r̂∗ii + r̂∗jj − r̂∗ij − r̂∗ji as:

P(|dij − d̂∗ij| > ϵ+ ξ) ≤ ne−
Sϵ

 , (B.2)

B.2 P   10

Proof. is proof is an adaptation of the proof for theorem 4.

Let B,B, . . . ,BK∗ be the blocks obtained in the clustering step of SBA, and

let b, b, . . . , bK∗ be their respective pivots. Divide each of the intervals I =

(α, α), . . . , IQ = (αQ−, αQ) that define the pieces in which w is Lipschitz in

R = L
√


∆−ξ subintervals of equal size. Clearly, the size of each subinterval is

at most 
R , because the union of these disjoint subintervals is in [, ]. us, two

points i and j in the same subinterval must satisfy dij <
( L
R

)
= ∆

 − ξ. Sup-

posing that K∗ > Q.R = QL
√

√
∆−ξ , by the pigeonhole principle, there should be at

least two pivots bi and bj in the same subinterval, for which dbibj <
∆

 − ξ. But
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we know, by the algorithm, that the estimated distance between two pivots is at

least ∆. So d̂bibj ≥ ∆, and therefore d̂bibj − dbibj >
∆

 + ξ. Let E be the event

that there exists two pivots b′i and b′j for which d̂b′i b′j − db′i b′j >
∆

 + ξ. Clearly,

P(K∗ > QL
√

√
∆−ξ ) ≤ P(E), because, as we have just seen, E is a consequence of

K∗
n >

QL
√

√
∆−ξ . To compute P(E), remember fromeorem 9 that given, bi and bj,

P(|dbibj − d̂bibj | >
∆


+ ξ) ≤ ne−

S∆

 , (B.3)

So, given b, b, . . . , bK′ ,

P(E|b, b, . . . , bK∗) ≤
∑
bibj

P(|dbibj − d̂bibj | >
∆


+ ξ) ≤ ne−

S∆

 , (B.4)

us,

P(E) =
∑

b,b,...,bK′

P(E|b, b, . . . , bK′)P(b, b, . . . , bK′)

Using equation (B.4)

P(E) ≤
∑

b,b,...,bK′

ne−
S∆

 P(b, b, . . . , bK∗) = ne−
S∆



And we finally have,

P(K∗ >
QL
√
√

∆ − ξ
) ≤ ne−

S∆
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B.3 P   11

Apply the matching algorithm in a graph G with n vertices, and for any ver-

tex i ∈ {, . . . , n} call i′ the twin of i (remember that the twin of i is de-

fined by i′ ∈ argminj(m̂ij)). We want to prove that, as n increases, ξ =

maxi,k∈{,,...,n} |w(ui, uk) − w(ui′ , uk)| vanishes. e proof is based in four obser-

vations:

1. m̂ii′ is an unbiased estimator formii′ .

2. As n increases, the matching distancemii′ between any vertex i and its twin

i′ decreases.

3. Small matching distancemii′ implies small similarity distance dii′ .

4. Small similarity distance between vertices and its twins implies small ξ.

ese steps are approached in the following lemmas.

Lemma 22. e estimator m̂ij for mij satisfies

P (|mii′ − m̂ii′ | > ϵ) ≤ ne−(n−)ϵ

Proof. By definition,

mij =


n− 

∑
k̸=i,j

|rik − rjk|

=


n− 

∑
k̸=i,j

|
∫ (

w(ui, x)− w(uj, x)
)
w(uk, x)dx|,

(B.5)
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and

m̂ij =


n− 

∑
k̸=i,j

|̂rik − r̂jk|. (B.6)

where

r̂ij =


n− 

∑
h ̸=i,j

r̂hij =


n− 

∑
h ̸=i,j

G[i, h]G[j, h]. (B.7)

Clearly,

E(̂rhik − r̂hjk|ui, uj, uh) = E(G[i, h]G[k, h]− G[j, h]G[k, h]) =

(
w(ui, uh)− w(uj, uh)

)
w(uk, uh)

Since uh ∼ uniform(, ),

E(̂rik − r̂jk) =
∫ (

w(ui, x)− w(uj, x)
)
w(uk, x)dx = rik − rjk

From the Hoeffding inequality,

P
(
|(̂rik − r̂jk)− (rik − rjk)| > ϵ

)
≤ e−(n−)ϵ

en

P
(∣∣|̂rik − r̂jk| − |rik − rjk|

∣∣ > ϵ
)
≤ e−(n−)ϵ

From the definition ofmij and m̂ij,

P
(
|mij − m̂ij| > ϵ

)
≤ ne−(n−)ϵ
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Taking the union over all i, j

P
(
max

ij
|mij − m̂ij| > ϵ

)
≤ ne−(n−)ϵ

So finally

P (|mii′ − m̂ii′ | > ϵ) ≤ ne−(n−)ϵ .

Lemma 23. For any vertex i and any constant  < ζ < 

P
(
m̂ii′ > ϵ+

L
n−ζ

)
≤ ne−(n−)ϵ + e−(n−)ζ

Where L is the Lipschitz constant.

Proof. Consider a vertex i and let E
i be the event that there exists no other vertex

j such that |ui − uj| < 
n−ζ , for some  < ζ < . en

P(E
i ) < (− 

n−ζ
)n− < e−

n−
n−ζ < e−(n−)ζ (B.8)

So, suppose that E
i didn’t happen, and let j be such that |ui − uj| < 

n−ζ . Since w

is Lipschitz, |w(ui, x)− w(uj, x)| < L
n−ζ for any  ≤ x ≤ . en,

|rik − rjk| = |
∫ 



(
w(ui, x)− w(uj, x)

)
w(uk, x)dx| <

L
n−ζ

us,

mij <
L

n−ζ
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From lemma 22 and equation (B.8), we then know that

P
(
m̂ij > ϵ+

L
n−ζ
|E

i

)
≤ ne−(n−)ϵ

where E
i is the complement of event E

i . erefore

P
(
m̂ij > ϵ+

L
n−ζ

)
=

P
(
m̂ij > ϵ+

L
n−ζ
|E

i |
)
P(E

i ) + P
(
m̂ij > ϵ+

L
n−ζ
|E

i |
)
P(E

i ) ≤

ne−(n−)ϵ + e−(n−)ζ

By definition i′ ∈ argminj(m̂ij), thus

P
(
m̂ii′ > ϵ+

L
n−ζ

)
≤ ne−(n−)ϵ + e−(n−)ζ

Lemma 24. Let η be a small positive constant is the size of the smallest Lipschitz

component of w. en

P(mij <
ηdij

− Lη) ≤ 

nη

Proof. LetΨi be the set of vertices j in the sameLipschitz component as i satisfying

|ui − uj| < η. Since the u′k are chosen Uniform[, ],

E
(
|Ψi|
n

)
≥ η, var

(
|Ψi|
n

)
=
η(− η)

n
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From Chebyshev’s inequality,

P
(∣∣∣∣ |Ψi|

n
− η
∣∣∣∣ > ϵ

)
≤
(
η(− η)

nϵ

)
≤ η

nϵ

using ϵ = ηn


P
(
|Ψi| <

ηn


)
≤ 

nη

Let E
i be the event that |Ψi| > ηn

 and assume that it has happened.

For each k ∈ Ψi, by the Lipschitz property of w, we know that

|w(uj, ui)− w(uj, uk)| ≤ L(ui − uk) ≤ Lη

is implies

|rji − rjk| = |
∫ 


(w(ui, x)− w(uk, x))w(uj, x)dx| < Lη

erefore,

mij =


n− 

∑
k̸=i,j

|rik − rjk| >


n− 

∑
k∈Ψi

|rik − rjk| =


n− 

∑
k∈Ψi

|rik − rii + rii − rij + rij − rjk| ≥


n− 

∑
k∈Ψi

(
|rii − rij| − |rik − rii| − |rij − rjk|

)
>


n− 

∑
k∈Ψi

(
|rii − rij| − Lη

)
us,

mij >
|Ψi|
n− 

(
|rii − rij| − Lη

)
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From our assumption that E
i has happened, this becomes

mij >
ηn

(n− )

(
|rii − rij| − Lη

)
> η|rii − rij| − Lη

Since

P
(
E

)
≤ 

nη

we have

P(mij < η|rii − rij| − Lη) ≤ P(E
i ) ≤


nη

(B.9)

If we apply analogous procedure to j instead of to i, we have

P(mij < η|rjj − rij| − Lη) ≤ 
nη

(B.10)

From B.9 and B.10

P(mij < η|rii − rij − rji + rjj| − Lη) ≤

P(mij < η|rii − rij|+ |rjj + rji| − Lη) ≤

P(mij < η|rii − rij| − Lη) + P(mij < |rjj + rji| − Lη) ≤ 
nη

erefore,

P(mij <
ηdij

− Lη) ≤ 

nη

Now, let’s finish the proof of eorem 11.
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From lemma 24,

P(dij >
mij

η
+ Lη) ≤ 

nη

From lemma 22

P
(
mij > m̂ij + ϵ

)
≤ ne−(n−)ϵ

Putting the last two equations together

P(dij >
(m̂ij + ϵ)

η
+ Lη) ≤

P(dij >
(m̂ij + ϵ)

η
+ Lη,mij ≤ m̂ij + ϵ) + P(mij > m̂ij + ϵ) ≤

P(dij >
mij

η
+ Lη,mij ≤ m̂ij + ϵ) + P(mij > m̂ij + ϵ) ≤

P(dij >
mij

η
+ Lη) + P(mij > m̂ij + ϵ) ≤

ne−(n−)ϵ +

nη

On the other hand,

P
(
dii′ >

(m̂ij + ϵ)

η
+ Lη

)
≥

P
(
dii′ >

(m̂ij + ϵ)

η
+ Lη, m̂ii′ ≤ ϵ+

L
n−ζ

)
≥

P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη, m̂ii′ ≤ ϵ+

L
n−ζ

)
=

P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη

)
−
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P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη, m̂ii′ > ϵ+

L
n−ζ

)
≥

P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη

)
− P

(
m̂ii′ > ϵ+

L
n−ζ

)

From lemma 23

P
(
m̂ii′ > ϵ+

L
n−ζ

)
≤ ne−(n−)ϵ + e−(n−)ζ

us the above equation becomes

P
(
dii′ >

(m̂ij + ϵ)

η
+ Lη

)
≥

P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη

)
− ne−(n−)ϵ − e−(n−)ζ

From previous considerations, we know that

P(dij >
(m̂ij + ϵ)

η
+ Lη) ≤

ne−(n−)ϵ +

nη

erefore we finally have

P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη

)
− ne−(n−)ϵ − e−(n−)ζ ≤

ne−(n−)ϵ +

nη
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Which then becomes,

P
(
dii′ >


η

(
ϵ+

L
n−ζ

)
+ Lη

)
≤

ne−(n−)ϵ + e−(n−)ζ +

nη

For this probability to vanish as n → ∞, we need ϵ to decrease slower than√


n− . By making ϵ = 
n(−ζ)/ the above equation becomes

P
(
dii′ >


η

(


n(−ζ)/
+

L
n−ζ

)
+ Lη

)
≤

ne− n−
n nζ + e−(n−)ζ +


nη

Since 
n(−ζ)/ dominates L

n−ζ we simplify this to

P
(
dii′ >


ηn(−ζ)/

+ Lη
)
≤

ne− n−
n nζ + e−(n−)ζ +


nη

For choosing η, notice that the right hand side of the expression inside the prob-

ability vanishes with best asymptotics rates when ne− n−
n nζ and e−(n−)ζ + 

nη

have similar asymptotics, since the product of these two expressions don’t depend

on ζ. Let’s choose η = 

L/n
−ζ


and so we have

P

(
dii′ >

L/

n
−ζ


)
≤
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ne− n−
n nζ + e−(n−)ζ + L/n−

−ζ


Now the result come as a consequence of lemma 17. e lemma says that for

any  < ϵ < cw, where cw is a constant that depends only on the graphon, if

dij ≤ ϵ

L then supx∈[,] (w(i, ·)− w(j, ·)) ≤ ϵ. is essentially means that if dij is

small enough then supx∈[,] |w(i, ·)− w(j, ·)| ≤
(
Ldij

)/. In that case,

P

(
sup
x∈[,]

|w(i, ·)− w(j, ·)| 
L/

>
L/

n
−ζ


)
≤

ne− n−
n nζ + e−(n−)ζ + L/n−

−ζ


us,

P

(
sup
x∈[,]

|w(i, ·)− w(j, ·)| > (L)

 n−

−ζ


)
≤

ne− n−
n nζ + e−(n−)ζ + L/n−

−ζ


Since ξ = maxi,k∈{,,...,n} |w(ui, uk)− w(ui′ , uk)|,

P
(
ξ > (L)


 n−

−ζ


)
≤

ne− n−
n nζ + ne−(n−)ζ + L/n−

+ζ


B.4 P   12

Proof of eorem 12 is based on the following propositions 25, 26, 27 and 28 ,

which are respective analogous of propositions 18, 19, 20 and 21. We provide

a proof for proposition 25, but skip the details for 26, 27 and 28 because, given
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proposition 25, they are straightforward adaptations of propositions 19, 20 and

21.

Proposition 25. Let B̂i = {i, i, . . . , iKi} and B̂j = {j, j, . . . , jKj} be two clusters

given by the algorithm, and suppose that {ui , ui , . . . , uiKi} and {uj , uj , . . . , ujKj}

are the ground truth labels of the vertices in B̂i and B̂j, respectively. Let w̄ij =


KiKj

∑
xi∈B̂i,yj∈B̂j w(uxi , uyj). If the accuracy parameter of the algorithm is such that

∆ < λL. , then for each vi ∈ Bi and vj ∈ Bj,

P(|w(uvi , uvj)− w̄ij| > ((∆ + ξ)L)

 ) ≤ nKiKje

− S∆

 .

Proof. By the definition of the algorithm, we know that there are bi ∈ B̂i and bj ∈

B̂j, such that, for anyother vertices vi ∈ Bi and vj ∈ Bj, |d̂bivi | ≤ ∆ and |d̂bjvj | ≤ ∆.

en

dbivi ≤ dbivi − d̂bivi +∆ ≤ |dbivi − d̂bivi |+∆

Which implies

P(dbivi > ∆ + ξ) ≤ P(|dbivi − d̂bivi |+∆ > ∆ + ξ) =

P(|dbivi − d̂bivi | > ∆ + ξ)

From eorem 9, P(|dij − d̂ij| > ∆ + ξ) ≤ ne−
S∆

 . us,

P(dbivi > ∆ + ξ) ≤ ne−
S∆

 .

Analogously,

P(dbjvj > ∆ + ξ) ≤ ne−
S∆
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P(dbivi > ∆ + ξ or dbjvj > ∆ + ξ) ≤

P(dbjvj > ∆ + ξ) + P(dbivi > ∆ + ξ) ≤ ne−
S∆



(B.11)

From lemma 17, for any  <
(
ϵ


)
< λL, if dbivi <

ϵ

L ,

(w(uvi , uvj)− w(ubi , uvj))
 ≤ supx∈[,]((w(uvi , x)− w(ubi , x))

) <
( ϵ


)

Analogously, if dbjvj <
ϵ

L

(w(uvj , ubi)− w(ubj , ubi))
 ≤ supx∈[,]((w(uvj , x)− w(ubj , x))

) <
( ϵ


)

us, if dbivi <
ϵ

L and dbjvj <
ϵ

L

|w(uvi , uvj)− w(ubi , ubj)| ≤

|w(uvi , uvj)− w(ubi , uvj)|+ |w(uvj , ubi)− w(ubj , ubi)| < ϵ.

(B.12)

Assuming∆+ ξ < λL., making ϵ = ((∆+ ξ)L)

 leads to  < ϵ < λL.

In that case, by equation (B.12), the following event

(
dbivi <

ϵ

L
= ∆ + ξ and dbjvj <

ϵ

L
= ∆ + ξ

)
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implies (
|w(uvi , uvj)− w(ubi , ubj)| < ((∆ + ξ)L)




)
.

erefore,

P(|w(uvi , uvj)− w(ubi , ubj)| > ((∆ + ξ)L)

 ) ≤

P(dbivi > ∆ + ξ or dbjvj > ∆ + ξ)
(B.13)

From equations (B.11) and (B.13)

P(dbivi > ∆ + ξ or dbjvj > ∆ + ξ) ≤ ne−
S∆



us

P(|w(uvi , uvj)− w(ubi , ubj)| > ((∆ + ξ)L)

 ) ≤ ne−

S∆

 (B.14)

So, for any xi ∈ B̂i and yj ∈ B̂j,

P(|w(uvi , uvj)− w(ubi , ubj) + w(ubi , ubj)− w(uxi , uyj)| > ((∆ + ξ)L)

 ) ≤

P(|w(uvi , uvj)− w(ubi , ubj)| > ((∆ + ξ)L)

 )+

+P(|w(uxi , uyj)− w(ubi , ubj)| > ((∆ + ξ)L)

 ) ≤ e−

S∆



us

P(|w(uvi , uvj)− w(uxi , uxj)| > ((∆ + ξ)L)

 ) ≤ e−

S∆

 .

Averaging over xi ∈ B̂i and xj ∈ B̂j
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P(|w(uvi , uvj)− w̄ij| > ((∆ + ξ)L)

 ) =

= P(|
∑

xi∈B̂i,yj∈B̂j

(w(uvi , uvj)− w(uxi , uxj))| > KiKj((∆ + ξ)L)

 ) ≤

P(
∑

xi∈B̂i,yj∈B̂j

|(w(uvi , uvj)− w(uxi , uxj)| > KiKj((∆ + ξ)L)

 ) ≤

∑
xi∈B̂i,yj∈B̂j

P(|w(uvi , uvj)− w(uxi , uxj)| > ((∆ + ξ)L)

 ) ≤

∑
xi∈B̂i,yj∈B̂j

ne−
S∆



erefore

P(|w(uvi , uvj)− w̄ij| > ((∆ + ξ)L)

 ) ≤ nKiKje−

S∆

 .

Proposition 26. Let ŵij =


KiKj

∑
xi∈B̂i,yj∈B̂j G[xi, yj]. Under the conditions of Propo-

sition 25,

P(|ŵij − w̄ij| > ((∆ + ξ)L)

 ) ≤ ne−KiKj

√
(∆+ξ)L + nK

iK

j e

− S∆

 .

Proposition 27. Let vi ∈ B̂i and vj ∈ B̂j be two vertices, and let uvi and uvj be

their respective ground truth positions in the [, ] interval. If ŵij is the estimation for

w(uvi , uvj) provided by the algorithm, then

P(|w(uvi , uvj)− ŵij| > ((∆ + ξ)L)

 ) ≤

ne−KiKj
√

(∆+ξ)L + nK
i K


j e

− S∆

 + nKiKje−
S∆

 .
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Proposition 28. Let E be a subset of edges (vi, vj). Under the above setup, there exist

constants c and c, that depends only on w, such that

P

 
|E|

∑
vi,vj∈E

|w(uvi , uvj)− ŵij| > ((∆ + ξ)L)



 ≤
|E|(n)e−

S∆

 +
∑
vi,vj∈E

ne−cKiKj
√

(∆+ξ)L

(B.15)

To finish the proof of theorem12, one has to follow the similar steps of theorem

5, but now using propositions 25, 26, 27, 28 and theorem 10. e only major

change is that one needs to attempt to the fact that 10 requires∆ >
√
ξ, since, in

our theorem11 ξ approaches with rate (L)

 n−

−ζ
 , we now requireω

(
n−




)
∩

o() instead of ω
((

log(n)
n

) 


)
∩ o() in 5.
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C
Appendix to Chapter 4

C.1 P  T 16

Proof. Let zi = yi − α − βti, and µI and ςI be as described in proposition 14, for

DIRG models, or proposition15, for AIRG models. In either case,

P({γsI(vi)}I,vi∈BI |A, . . . ,Aq, F,M) ∼=
∏
I

∏
vi∈BI

N (γsI(vi); γµI, γςI ) ,
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where sI is the social component, i.e., si = pi, if the model is DIRG, or si = ri, if

the model is AIRG.

us, the probability of zi given parameters γ and {σI}I, the output of SBA, and

the probabilities of treatment fi (which are used to compute µI and ςI) is:

p(zi|γ, {σI}I,A, . . . ,Aq, F,M) =

∏
i

∫
√
πσ

I
exp

(
−(zi − γsi)

σ
I

)
√
πςI

exp

(
−(γsi − γµi)

γςI

)

γ
dγsi =

∏
i

∫


πςIσγ
exp

(
−(zi − γsi)

σ
I

− (γsi − γµi)

γςI

)
dγsi =

∏
i

∫


πςIσγ
exp

(
−γsi

(


σ
I
+


γςI

)
+ γsi

(
zi
σ

I
+

γµi
γς

)

−
(

zi
σ

I
+
γµ

i

γςI

))
dγsi =

∏
i

 √
πςI σγ

(

σ
I
+ 

γς

) exp


(

zi
σ

I
+ γµi

γςI

)(


σ
I
+ 

γςI

) − ( zi
σ

I
+
µ
i

ςI

)

∫
√

π
(


σ
I
+ 

γς

)−
exp

−
(
γsi −

(
zi
σ
I
+ γµi

γς

)(

σ
I
+ 

γς

)−
)


((


σ
I
+ 

γς

)−/
)

dγsi


Since the last line is the probability function of a normal, its integral is 1. us

p(zi|γ, {σI}I,A, . . . ,Aq, F,M) =

∏
i

 √
π (γςI + σ

I )
exp


(
ziγςI
σI

+ µiσI
ςI

)

 (γςI + σ
I )
−
(

zi
σ

I
+
µ
i

ςI

)
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Taking the log

log p(zi|γ, {σI}I,A, . . . ,Aq, F,M) =
∑
i

log

(
√

π (γςI + σ
I )

)
+

∑
i


(
ziγςI
σI

+ µiσI
ςI

)

 (γςI + σ
I )
−
(

zi
σ

I
+
µ
i

ςI

) =

∑
i

log

(
√

π (γςI + σ
I )

)
+

∑
i


(
(yi−α−βti)γςI

σI
+ µiσI

ςI

)

 (γςI + σ
I )

−
(
(yi − α− βti)

σ
I

+
µ
i

ςI

)
e gradient of the log with respect to parameters α, β and γ is

∇ log p(zi|γ, {σI}I,A, . . . ,Aq, F,M) =

∑
i


−γ

(
(yi−α−βti)γςI

σ
I

+µI

)
(γς

I +σ
I )

+ (yi−α−βti)
σ
I

−tiγ
(

(yi−α−βti)γςI
σ
I

+µI

)
(γς

I +σ
I )

+ ti
(yi−α−βti)

σ
I

− γς
I

γς
I +σ

I
+

(
(yi−α−βti)

γςI
σ
I

+µ(yi−α−βti)
)

(γς
I +σ

I )
−

ς
I γ

(
(yi−α−βti)γςI

σI
+

µiσI
ςI

)

(γς
I +σ

I )



e Herssian matrix is then


n

q∑
i=


L∗ C∗ D∗

C∗ O∗ E∗

D∗ E∗ F∗

 ,

Where

L∗ =

n

∑
i


σ
I

(
γςI

(γςI + σ
I )
− 
)
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C∗ =

n

∑
i

ti
σ
I

(
γςI

(γςI + σ
I )
− 
)

O∗ =

n

∑
i

ti
σ
I

(
γςI

(γςI + σ
I )
− 
)

D∗ =

n

∑
i

−
(

(yi−α−βti)γςI
σ
I

+ µI

)
(γςI + σ

I )
+ γςI

(
(yi−α−βti)γςI

σ
I

+ µI

)
(γςI + σ

I )




E∗ =

n

∑
i

ti

−
(

(yi−α−βti)γςI
σ
I

+ µI

)
(γςI + σ

I )
+ γςI

(
(yi−α−βti)γςI

σ
I

+ µI

)
(γςI + σ

I )




− γςI
γςI + σ

I
+

(
(yi−α−βti)γςI

σ
I

+ µ(yi − α− βti)
)

(γςI + σ
I )

−
ςI γ
(
(yi−α−βti)γςI

σI
+ µiσI

ςI

)

(γςI + σ
I )



F∗ =
γςI

(γςI + σ
I )

 −
ςI

γςI + σ
I

+

(
(yi−α−βti)ςI

σ
I

)
(γςI + σ

I )
− γςI

(
(yi−α−βti)γςI

σ
I

+ µ(yi − α− βti)
)

(γςI + σ
I )



−
ςI (yi − α− βti)γ

(
(yi−α−βti)γςI

σI
+ µiσI

ςI

)
σI (γςI + σ

I )
 −

ςI

(
(yi−α−βti)γςI

σI
+ µiσI

ςI

)

(γςI + σ
I )



+
ςI γ


(
(yi−α−βti)γςI

σI
+ µiσI

ςI

)

(γςI + σ
I )

 =

γςI − ςI σ
I

(γςI + σ
I )

 +
(yi − α− βti)ςI
σ (γςI + σ

I )

−γςI

(
(yi−α−βti)γςI

σ
I

+ µ(yi − α− βti)
)

(γςI + σ
I )

 +
(γςI − σ

I )
(
(yi−α−βti)γςI

σI
+ µiσI

)

(γςI + σ
I )



Taking the expectations and evaluating the sums to find the Fisher information
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matrix:

L =

n

∑
I

AI

σ
I

(
γςI

(γςI + σ
I )
− 
)

C = O =

n

∑
I

AIfI
σ
I

(
γςI

(γςI + σ
I )
− 
)

D =

n

∑
I

−
(

µγςI
σ
I

+ µI

)
(γςI + σ

I )
+ γςI

(
µγςI
σ
I

+ µI

)
(γςI + σ

I )


 =


n

∑
I

−
(

µγςI
σ
I

+ µI

)
(γςI + σ

I )
+

γςI µI
σ (γςI + σ

I )

 =

n

∑
I

µI
(γςI + σ

I )
=

− 
n

∑
I

AIµI
(γςI + σ

I )

E = − 
n

∑
I

AIµIfI
(γςI + σ

I )

F =

n

∑
I

[
γςI − ςI σ

I

(γςI + σ
I )

 +
(ςI + µ

I )
γςI

σ (γςI + σ
I )

− γςI

(
(ςI +µ

I )
γςI

σ
I

+ µγ
)

(γςI + σ
I )

 +
(ςI γ

 − σ
I )
[
(µIγ

ςI + µiσ

I )

 + γςI
]

σ
I (γ

ςI + σ
I )




So the Fisher information is finally

I = −


L C D

C C E

D E F

 ,

where L, C, D, E and F are defined above.
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