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Exploring the Role of Randomization in Causal Inference

Abstract
This manuscript includes three topics in causal inference, all of which are under

the randomization inference framework (Neyman, 1923; Fisher, 1935a; Rubin, 1978).

This manuscript contains three self-contained chapters.

Chapter 1. Under the potential outcomes framework, causal e↵ects are defined

as comparisons between potential outcomes under treatment and control. To infer

causal e↵ects from randomized experiments, Neyman proposed to test the null hy-

pothesis of zero average causal e↵ect (Neyman’s null), and Fisher proposed to test the

null hypothesis of zero individual causal e↵ect (Fisher’s null). Although the subtle

di↵erence between Neyman’s null and Fisher’s null has caused lots of controversies

and confusions for both theoretical and practical statisticians, a careful comparison

between the two approaches has been lacking in the literature for more than eighty

years. I fill in this historical gap by making a theoretical comparison between them

and highlighting an intriguing paradox that has not been recognized by previous re-

searchers. Logically, Fisher’s null implies Neyman’s null. It is therefore surprising

that, in actual completely randomized experiments, rejection of Neyman’s null does

not imply rejection of Fisher’s null for many realistic situations, including the case

with constant causal e↵ect. Furthermore, I show that this paradox also exists in

other commonly-used experiments, such as stratified experiments, matched-pair ex-

periments, and factorial experiments. Asymptotic analyses, numerical examples, and
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Abstract

real data examples all support this surprising phenomenon. Besides its historical and

theoretical importance, this paradox also leads to useful practical implications for

modern researchers.

Chapter 2. Causal inference in completely randomized treatment-control studies

with binary outcomes is discussed from Fisherian, Neymanian and Bayesian perspec-

tives, using the potential outcomes framework. A randomization-based justification of

Fisher’s exact test is provided. Arguing that the crucial assumption of constant causal

e↵ect is often unrealistic, and holds only for extreme cases, some new asymptotic and

Bayesian inferential procedures are proposed. The proposed procedures exploit the

intrinsic non-additivity of unit-level causal e↵ects, can be applied to linear and non-

linear estimands, and dominate the existing methods, as verified theoretically and

also through simulation studies.

Chapter 3. Recent literature has underscored the critical role of treatment e↵ect

variation in estimating and understanding causal e↵ects. This approach, however, is

in contrast to much of the foundational research on causal inference; Neyman, for

example, avoided such variation through his focus on the average treatment e↵ect

and his definition of the confidence interval. In this chapter, I extend the Ney-

manian framework to explicitly allow both for treatment e↵ect variation explained

by covariates, known as the systematic component, and for unexplained treatment

e↵ect variation, known as the idiosyncratic component. This perspective enables es-

timation and testing of impact variation without imposing a model on the marginal

distributions of potential outcomes, with the workhorse approach of regression with

interaction terms being a special case. My approach leads to two practical results.

iv



Abstract

First, I combine estimates of systematic impact variation with sharp bounds on over-

all treatment variation to obtain bounds on the proportion of total impact variation

explained by a given model—this is essentially an R2 for treatment e↵ect variation.

Second, by using covariates to partially account for the correlation of potential out-

comes problem, I exploit this perspective to sharpen the bounds on the variance of

the average treatment e↵ect estimate itself. As long as the treatment e↵ect varies

across observed covariates, the resulting bounds are sharper than the current sharp

bounds in the literature. I apply these ideas to a large randomized evaluation in

educational research, showing that these results are meaningful in practice.
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Chapter 1

A Paradox from

Randomization-Based Causal

Inference

1.1 Introduction

Ever since Neyman’s seminal work, the potential outcomes framework (Neyman,

1923; Rubin, 1974) has been widely used for causal inference in randomized experi-

ments (Neyman and Iwaszkiewicz, 1935; Hinkelmann and Kempthorne, 2007). The

potential outcomes framework permits us to make inference about a finite population

of interest, with all potential outcomes fixed and randomness coming solely from the

physical randomization of the treatment assignments. Historically, Neyman (1923)

was interested in obtaining an unbiased estimator with a repeated sampling eval-

uation of the average causal e↵ect, which also corresponded to a test for the null
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hypothesis of zero average causal e↵ect. On the other hand, Fisher (1935a) focused

on testing the sharp null hypothesis of zero individual causal e↵ect, and proposed

the famous Fisher Randomization Test (FRT). Both Neymanian and Fisherian ap-

proaches are randomization-based inference, relying on the physical randomization of

the experiments. Neyman’s null and Fisher’s null are closely related to each other:

the latter implies the former, and they are equivalent under the constant causal e↵ect

assumption. Both approaches have existed for many decades and are widely used

in current statistical practice. They are now introduced at the beginning of many

causal inference courses (e.g., Rubin, 2004; Imbens and Rubin, 2015). Unfortunately,

however, a detailed comparison between them has not been made in the literature.

In the past, several researchers (e.g., Rosenbaum, 2002, page 40) believed that “in

most cases, their disagreement is entirely without technical consequence: the same

procedures are used, and the same conclusions are reached.” However, we show,

via both numerical examples and theoretical investigations, that Neyman’s method

tends to reject the null more often than Fisher’s method in many realistic randomized

experiments. In fact, Neyman’s method is always more powerful if there is a nonzero

constant causal e↵ect, the very alternative most often used for Fisher-style inference.

This finding immediately causes a seeming paradox: logically, Fisher’s null implies

Neyman’s null, so how can we fail to reject the former while rejecting the latter?

We demonstrate that this surprising paradox is not unique to completely random-

ized experiments, because it also exists in other commonly-used experiments such

as stratified experiments, matched-pair experiments, and factorial experiments. The

result for factorial experiments helps to explain the surprising empirical evidence

2
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in Dasgupta et al. (2015) that interval estimators for factorial e↵ects obtained by

inverting a sequence of FRTs are often wider than Neymanian confidence intervals.

The paper proceeds as follows. We review Neymanian and Fisherian randomization-

based causal inference in Section 1.2 under the potential outcomes framework. In Sec-

tion 1.3, we use both numerical examples and asymptotic analyses to demonstrate the

paradox from randomization-based inference in completely randomized experiments.

Section 1.4 shows that a similar paradox also exists in other commonly-used exper-

iments. Section 1.5 extends the scope of the paper to improved variance estimators

and comments on the choices of test statistics. Section 1.6 illustrates the asymptotic

theory of this paper with some finite sample real-life examples. We conclude with a

discussion in Section 1.7, and relegate all the technical details to Appendix A.

1.2 Completely Randomized Experiments and Ran-

domization Inference

We first introduce notation for causal inference in completely randomized ex-

periments, and then review the Neymanian and Fisherian perspectives for causal

inference.

1.2.1 Completely Randomized Experiments and Potential Out-

comes

Consider N units in a completely randomized experiment. Throughout our dis-

cussion, we make the Stable Unit Treatment Value Assumption (SUTVA; Rubin,

3
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1980), i.e., there is only one version of the treatment, and interference between sub-

jects is absent. SUTVA allows us to define the potential outcome of unit i under

treatment t as Yi(t), with t = 1 for treatment and t = 0 for control. The individual

causal e↵ect is defined as a comparison between two potential outcomes, for example,

⌧i = Yi(1)� Yi(0). However, for each subject i, we can observe only one of Yi(1) and

Yi(0) with the other one missing, and the individual causal e↵ect ⌧i is not observable.

The observed outcome is a function of the treatment assignment Ti and the potential

outcomes, namely, Y obs
i = TiYi(1) + (1� Ti)Yi(0). Let Y obs = (Y obs

1

, . . . , Y obs
N )0 be the

observed outcome vector. Let T = (T
1

, . . . , TN)0 denote the treatment assignment

vector, and t = (t
1

, . . . , tN)0 2 {0, 1}N be its realization. Completely randomized

experiments satisfy pr (T = t) = N
1

!N
0

!/N !, if
PN

i=1

ti = N
1

and N
0

= N �N
1

. Note

that in Neyman (1923)’s potential outcomes framework, all the potential outcomes

are fixed numbers, and only the treatment assignment vector is random. In general,

we can view this framework with fixed potential outcomes as conditional inference

given the values of the potential outcomes.

1.2.2 Neymanian Inference for the Average Causal E↵ect

Neyman (1923) was interested in estimating the finite population average causal

e↵ect:

⌧ =
1

N

N
X

i=1

⌧i =
1

N

N
X

i=1

{Yi(1)� Yi(0)} = Ȳ
1

� Ȳ
0

,
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where Ȳt =
PN

i=1

Yi(t)/N is the finite population average of the potential outcomes

{Yi(t) : i = 1, . . . , N}. He proposed an unbiased estimator

b⌧ = Ȳ obs
1

� Ȳ obs
0

(1.1)

for ⌧ , where Ȳ obs
t =

P

{i:Ti=t} Y
obs
i /Nt is the sample mean of the observed outcomes

under treatment t. The sampling variance of b⌧ over all possible randomizations of

treatment assignment is

var(b⌧) =
S2

1

N
1

+
S2

0

N
0

� S2

⌧

N
, (1.2)

depending on S2

t =
PN

i=1

{Yi(t)� Ȳt}2/(N � 1), the finite population variance of the

potential outcomes {Yi(t) : i = 1, . . . , N}, and S2

⌧ =
PN

i=1

(⌧i � ⌧)2 /(N�1), the finite

population variance of the individual causal e↵ects {⌧i : i = 1, . . . , N}. Since we can

never jointly observe the pair of potential outcomes for each unit, the variance of

individual causal e↵ects, S2

⌧ , is not identifiable from the observed data. Recognizing

this di�culty, Neyman (1923) suggested using

bV (Neyman) =
s2
1

N
1

+
s2
0

N
0

, (1.3)

as an estimator for var(b⌧), where s2t =
P

{i:Ti=t}(Y
obs
i � Ȳ obs

t )2/(Nt � 1) is the sample

variance of the observed outcomes under treatment t. However, Neyman’s variance

estimator bV (Neyman) overestimates the true variance var(b⌧), in the sense that

E{bV (Neyman)} � var(b⌧),

5
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with equality holding if and only if the individual causal e↵ects are constant: ⌧i = ⌧ or

S2

⌧ = 0. The randomization distribution of b⌧ enables us to test the following Neyman’s

null hypothesis:

H
0

(Neyman) : ⌧ = 0.

Under H
0

(Neyman) and based on the Normal approximation in Section 1.3.3, the

p-value from Neyman’s approach can be approximated by

p(Neyman) ⇡ 2�

8

<

:

� |b⌧ obs|
q

bV (Neyman)

9

=

;

, (1.4)

where b⌧ obs is the realized value of b⌧ , and �(·) is the cumulative distribution function

of the standard Normal distribution. When we have non-constant individual causal

e↵ects, Neyman’s test for the null hypothesis of zero average causal e↵ect tends to

be “conservative,” in the sense that it rejects less often than the nominal significance

level when the null is true.

1.2.3 Fisherian Randomization Test for the Sharp Null

Fisher (1935a) was interested in testing the following sharp null hypothesis:

H
0

(Fisher) : Yi(1) = Yi(0), 8i = 1, . . . , N.

This null hypothesis is sharp because all missing potential outcomes can be uniquely

imputed under H
0

(Fisher). The sharp null hypothesis implies that Yi(1) = Yi(0) =

Y obs
i are all fixed constants, so that the observed outcome for subject i is Y obs

i under

6
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any treatment assignment. Although we can perform randomization tests using any

test statistics capturing the deviation from the null, we will first focus on the ran-

domization test using b⌧(T ,Y obs) = b⌧ as the test statistic, in order to make a direct

comparison to Neyman’s method. We will comment on other choices of test statistics

in the later part of this paper. Again, the randomness of b⌧(T ,Y obs) comes solely from

the randomization of the treatment assignment T , since Y obs is a set of constants

under the sharp null. The p-value for the two-sided test under the sharp null is

p(Fisher) = pr
n

|b⌧(T ,Y obs)| � |b⌧ obs|
�

�

�

H
0

(Fisher)
o

,

measuring the extremeness of b⌧ obs with respect to the null distribution of b⌧(T ,Y obs)

over all possible randomizations. In practice, we can approximate the exact dis-

tribution of b⌧(T ,Y obs) by Monte Carlo. We draw, repeatedly and independently,

completely randomized treatment assignment vectors {T 1, . . . ,TM}, and with large

M the p-value can be well approximated by

p(Fisher) ⇡ 1

M

M
X

m=1

I
�

|b⌧(Tm,Y obs)| � |b⌧ obs|
 

.

Rubin (1980) first used the name “sharp null,” and viewed the FRT as a “stochastic

proof by contradiction” (Rubin, 2004). More discussion about randomization tests

can also be found in Rosenbaum (2002).
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1.3 A Paradox from Neymanian and Fisherian In-

ference

Neymanian and Fisherian approaches reviewed in Section 1.2 share some common

properties but also di↵er fundamentally. They both rely on the distribution induced

by the physical randomization, but they test two di↵erent null hypotheses and evolve

from di↵erent statistical philosophies. In this section, we first compare Neymanian

and Fisherian approaches using simple numerical examples, and highlight a surprising

paradox. We then explain the paradox via asymptotic analysis.

1.3.1 Initial Numerical Comparisons

We compare Neymanian and Fisherian approaches using numerical examples with

both balanced and unbalanced experiments. In our simulations, the potential out-

comes are fixed, and the simulations are carried out over randomization distributions

induced by the treatment assignments. The significance level is 0.05, and M is 105

for the FRT.

Example 1 (Balanced Experiments with N
1

= N
0

). The potential outcomes are in-

dependently generated from Normal distributions Yi(1) ⇠ N(1/10, 1/16) and Yi(0) ⇠

N(0, 1/16), for i = 1, . . . , 100. Further, once drawn from the Normal distributions

above, they are fixed. We repeatedly generate 1000 completely randomized treatment

assignments with N = 100 and N
1

= N
0

= 50. For each treatment assignment, we

obtain the observed outcomes and implement two tests for Neyman’s null and Fisher’s

null. As shown in Table 1.1(a), it never happens that we reject Fisher’s null but fail

8
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to reject Neyman’s null. However, we reject Neyman’s null but fail to reject Fisher’s

null in 15 instances.

Example 2 (Unbalanced Experiments with N
1

6= N
0

). The potential outcomes are

independently generated from Normal distributions Yi(1) ⇠ N(1/10, 1/4) and Yi(0) ⇠

N(0, 1/16), for i = 1, . . . , 100. They are kept as fixed throughout the simulations.

The unequal variances are designed on purpose, and we will reveal the reason for

choosing them later in Example 3 of Section 1.3.4. We repeatedly generate 1000

completely randomized treatment assignments with N = 100, N
1

= 70, and N
0

= 30.

After obtaining each observed data set, we perform two hypothesis testing procedures,

and summarize the results in Table 1.1(b). The pattern in Table 1.1(b) is more

striking than in Table 1.1(a), since it happens 62 times in Table 1.1(b) that we reject

Neyman’s null but fail to reject Fisher’s null. For this particular set of potential

outcomes, Neyman’s testing procedure has a power 62/1000 = 0.062, slightly larger

than 0.05, but Fisher’s testing procedure has a power 8/1000 = 0.008, much smaller

than 0.05 even though the sharp null is not true. We will explain in Section 1.3.4

the reason why the FRT could have a power even smaller than the significance level

under some alternative hypotheses.

1.3.2 Statistical Inference, Logic, and Paradox

Logically, Fisher’s null implies Neyman’s null. Therefore, Fisher’s null should be

rejected if Neyman’s null is rejected. However, this is not always true from the results

of statistical inference in completely randomized experiments. We observed in our

9
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Table 1.1: Numerical Examples.
(a) Balanced experiments

not reject H
0

(Fisher) reject H
0

(Fisher)
not reject H

0

(Neyman) 488 0
reject H

0

(Neyman) 15 497
power(Fisher)=0.497, power(Neyman)=0.512

(b) Unbalanced experiments

not reject H
0

(Fisher) reject H
0

(Fisher)
not reject H

0

(Neyman) 930 0
reject H

0

(Neyman) 62 8
power(Fisher)=0.008, power(Neyman)=0.070

numerical examples above that it can be the case that

p(Neyman) < ↵
0

< p(Fisher), (1.5)

in which case we should reject Neyman’s null, but not Fisher’s null, if we choose the

significance level to be ↵
0

(e.g., ↵
0

= 0.05). When (1.5) holds, an awkward logical

problem appears as illustrated in Figure 1.1. In the remaining part of this section,

we will theoretically explain the empirical findings in Section 1.3.1 and the logical

problem in Figure 1.1.

Logic: not reject H
0

(Fisher) =) not reject H
0

(Neyman)
Logic: reject H

0

(Fisher) (= reject H
0

(Neyman)
Statistical inference: not reject H

0

(Fisher) but reject H
0

(Neyman)

Figure 1.1: A paradox from randomization-based causal inference.

10
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1.3.3 Asymptotic Evaluations

While Neyman’s testing procedure has an explicit form, the FRT is typically ap-

proximated by Monte Carlo. In order to compare them, we first discuss the asymptotic

Normalities of b⌧ and the randomization test statistic b⌧(T ,Y obs). We provide a simpli-

fied way of doing variance calculation and a short proof for asymptotic Normalities of

both b⌧ and b⌧(T ,Y obs), based on the finite population Central Limit Theorem (CLT;

Hájek, 1960; Lehmann, 1998; Freedman, 2008). Before the formal asymptotic results,

it is worth mentioning the exact meaning of “asymptotics” in the context of finite

population causal inference. We need to embed the finite population of interest into

a hypothetical infinite sequence of finite populations with increasing sizes, and also

require the proportions of the treatment units to converge to a fixed value. Essen-

tially, all the population quantities (e.g., ⌧, S2

1

, etc.) should have the index N , and all

the sample quantities (e.g., b⌧ , s2
1

, etc.) should have double indices N and N
1

. How-

ever, for the purpose of notational simplicity, we sacrifice a little bit of mathematical

precision and drop all the indices in our discussion.

Theorem 1. As N ! 1, the sampling distribution of b⌧ satisfies

b⌧ � ⌧
p

var(b⌧)

d�! N (0, 1).

In practice, the true variance var(b⌧) is replaced by its “conservative” estimator

bV (Neyman), and the resulting test rejects less often than the nominal significance level

on average. While the asymptotics for the Neymanian unbiased estimator b⌧ does not

depend on the null hypothesis, the following asymptotic Normality for b⌧(T ,Y obs) is

11



Chapter 1: A Paradox from Randomization-Based Causal Inference

true only under the sharp null hypothesis.

Theorem 2. Under H
0

(Fisher) and as N ! 1, the null distribution of b⌧(T ,Y obs)

satisfies

b⌧(T ,Y obs)
q

bV (Fisher)

d�! N (0, 1),

where

bV (Fisher) = Ns2/(N
1

N
0

), s2 =
N
X

i=1

(Y obs
i � Ȳ obs)2/(N � 1), Ȳ obs =

N
X

i=1

Y obs
i /N.

Therefore, the p-value under H
0

(Fisher) can be approximated by

p(Fisher) ⇡ 2�

8

<

:

� |b⌧ obs|
q

bV (Fisher)

9

=

;

. (1.6)

From (1.4) and (1.6), the asymptotic p-values obtained from Neymanian and Fishe-

rian approaches di↵er only due to the di↵erence between the variances bV (Neyman)

and bV (Fisher). Therefore, a comparison of the variances will explain the di↵erent

behaviors of the corresponding approaches. In the following, we use the conventional

notation RN = op(N�1) for a random quantity satisfying N · RN ! 0 in probability

as N ! 1 (Lehmann, 1998).

Theorem 3. Asymptotically, the di↵erence between the two variance estimators is

bV (Fisher)� bV (Neyman) = (N�1

0

�N�1

1

)(S2

1

� S2

0

) +N�1(Ȳ
1

� Ȳ
0

)2 + op(N
�1).(1.7)

The di↵erence between the variance estimators depends on the ratio of the treat-

12
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ment and control sample sizes, and di↵erences between the means and variances of

the treatment and control potential outcomes.

In order the verify the asymptotic theory above, we go back to compare the

variances in the previous numerical examples.

Example 3 (Continuations of Examples 1 and 2). We plot in Figure 1.2 the variances

bV (Neyman) and bV (Fisher) obtained from the numerical examples in Section 1.3.1.

In both the left and the right panels, bV (Fisher) tends to be larger than bV (Neyman).

This pattern is more striking on the right panel with unbalanced experiments designed

to satisfy (N�1

0

�N�1

1

) (S2

1

� S2

0

) > 0. It is thus not very surprising that the FRT is

much less powerful than Neyman’s test, and it rejects even less often than nominal

0.05 level as shown in Table 1.1(b).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0020 0.0025 0.0030

0.
00
20

0.
00
25

0.
00
30

Balanced Experiments

V(Neyman)

V(
Fi
sh
er
)

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.004 0.006 0.008 0.010

0.
00
4

0.
00
6

0.
00
8

0.
01
0

Unbalanced Experiments

V(Neyman)

V(
Fi
sh
er
)

Figure 1.2: Variance estimators in balanced and unbalanced experiments
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1.3.4 Theoretical Comparison

Although quite straightforward, Theorem 3 has several helpful implications to

explain the paradoxical results in Section 1.3.1.

Under H
0

(Fisher), Ȳ
1

= Ȳ
0

, S2

1

= S2

0

, and the di↵erence between the two variances

is of higher order, namely, bV (Fisher)�bV (Neyman) = op(N�1). Therefore, Neymanian

and Fisherian methods coincide with each other asymptotically under the sharp null.

This is the basic requirement, since both testing procedures generate correct type one

errors under this circumstance.

For the case with constant causal e↵ect, we have ⌧i = ⌧ and S2

1

= S2

0

. The

di↵erence between the two variance estimators reduces to

bV (Fisher)� bV (Neyman) = ⌧ 2/N + op(N
�1). (1.8)

Under H
0

(Neyman), Ȳ
1

= Ȳ
0

, and the di↵erence between the two variances is of

higher order, and two tests have the same asymptotic performance. However, under

the alternative hypothesis, ⌧ = Ȳ
1

�Ȳ
0

6= 0, and the di↵erence above is positive and of

order 1/N , and Neyman’s test will reject more often than Fisher’s test. With larger

e↵ect size |⌧ |, the powers di↵er more.

For balanced experiments with N
1

= N
0

, the di↵erence between the two variance

estimators reduces to the same formula as (1.8), and the conclusions are the same as

above.

For unbalanced experiments, the di↵erence between two variances can be either

positive or negative. In practice, if we have prior knowledge S2

1

> S2

0

, unbalanced

14
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experiments with N
1

> N
0

are preferable to improve estimation precision. In this

case, we have (N�1

0

�N�1

1

) (S2

1

� S2

0

) > 0 and bV (Fisher) > bV (Neyman) for large N .

Surprisingly, we are more likely to reject Neyman’s null than Fisher’s null, although

Neyman’s test itself is conservative with nonconstant causal e↵ect implied by S2

1

> S2

0

.

From the above cases, we can see that Neymanian and Fisherian approaches gen-

erally have di↵erent performances, unless the sharp null hypothesis holds. Fisher’s

sharp null imposes more restrictions on the potential outcomes, and the variance of

the randomization distribution of b⌧ pools the within and between group variances

across treatment and control arms. Consequently, the resulting randomization distri-

bution of b⌧ has larger variance than its repeated sampling variance in many realistic

cases. Paradoxically, in many situations, we tend to reject Neyman’s null more of-

ten than Fisher’s null, which contradicts the logical fact that Fisher’s null implies

Neyman’s null.

Finally, we consider the performance of the FRT under Neyman’s null with Ȳ
1

=

Ȳ
0

, which is often of more interest in social sciences. If S2

1

> S2

0

and N
1

> N
0

, the

rejection rate of Fisher’s test is smaller than Neyman’s test, even though H
0

(Neyman)

holds butH
0

(Fisher) does not. Consequently, the di↵erence-in-means statistic b⌧(T ,Y obs)

has no power against the sharp null, and the resulting FRT rejects even less often

than the nominal significance level. However, if S2

1

> S2

0

and N
1

< N
0

, the FRT

may not be more “conservative” than Neyman’s test. Unfortunately, the FRT may

reject more often than the nominal level, yielding an invalid test for Neyman’s null.

Gail et al. (1996) found this phenomenon through simulation studies, and here we

provide a theoretical explanation. In the following, we use an example to illustrate
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this possibility.

Example 4. If Yi(1) = aYi(0) + (1 � a)Ȳ (0) for all i, then ⌧ = 0 but ⌧i = (a �

1)Yi(0) + (1 � a)Ȳ (0). We focus on the case with a > 1 and r = N
1

/N < 1/2. The

FRT yields invalid type one error when bV (Fisher) is asymptotically smaller than the

true sampling distribution of b⌧ . We show in Appendix A that certain combinations

of (a, r) lead to invalid FRT under Neyman’s null, and we illustrate the invalid region

of the FRT in Figure 1.3.

0 0.5

1
∞

r

a

Invalid region of the FRT under Neyman's null

(3 − 5) 2

FRT is invalid for Neyman's null
within this region.

Figure 1.3: FRT under Neyman’s null

1.3.5 Binary Outcomes

We close this section by investigating the special case with binary outcomes, for

which more explicit results are available. Let pt = Ȳ (t) be the potential proportion

16
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and bpt = Ȳ obs
t be the sample proportion of one under treatment t. Define bp = Ȳ obs

as the proportion of one in all the observed outcomes. The results in the following

corollary are special cases of Theorems 1 to 3.

Corollary 1. Neyman’s test is asymptotically equivalent to the “unpooled” test

bp
1

� bp
0

p

bp
1

(1� bp
1

)/N
1

+ bp
0

(1� bp
0

)/N
0

d�! N (0, 1) (1.9)

under H
0

(Neyman); and Fisher’s test is asymptotically equivalent to the “pooled”

test

bp
1

� bp
0

p

bp(1� bp)(N�1

1

+N�1

0

)

d�! N (0, 1) (1.10)

under H
0

(Fisher). The asymptotic di↵erence between the two tests is due to

bV (Fisher)� bV (Neyman)

= (N�1

0

�N�1

1

){p
1

(1� p
1

)� p
0

(1� p
0

)}+N�1(p
1

� p
0

)2 + op(N
�1).(1.11)

For the case with binary outcomes, we can draw analogous but slightly di↵erent

conclusions to the above. Under Neyman’s null, p
1

= p
0

and the two tests are

asymptotically equivalent. Therefore, the situation that the FRT is invalid under

Neyman’s null will never happen for binary outcomes. In balanced experiments,

Neyman’s test is always more powerful than Fisher’s test under the alternative with

p
1

6= p
0

. For unbalanced experiments, the answer is not definite, but Equation (1.11)

allows us to determine the region of (p
1

, p
0

) that favors Neyman’s test for a given
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level of the ratio r = N
1

/N. When r > 1/2, Figure 1.4 shows the regions in which

Neyman’s test is asymptotically more powerful than Fisher’s test according to the

value of r. When r < 1/2, the region has the same shape by symmetry. We provide

more details about Figure 1.4 in Appendix A.

1

2
< r <

−1 + 5

2

0 1

0
1

p0

p 1 Neyman Neyman

Fisher

Fisher

−1 + 5

2
< r < 1

se
q0
1

0 1

0
1

p0

p 1 Neyman Neyman

Fisher

Fisher

Figure 1.4: Binary Outcome with Di↵erent Proportions r = N
1

/N . Neyman’s test is
more powerful in the regions marked by “Neyman.”

Note that Fisher’s test is equivalent to Fisher’s exact test, and (1.10) is essentially

the Normal approximation of the hypergeometric distribution (Ding and Dasgupta,

2015). The two tests in (1.9) and (1.10) are based purely on randomization inference,

which have the same mathematical forms as the classical “unpooled” and “pooled”

tests for equal proportions under two independent Binomial models. Our conclusion is

coherent with Robbins (1977) and Eberhardt and Fligner (1977) that the “unpooled”

test is more powerful than the “pooled” one with equal sample size. For hypothesis

testings in two by two tables, Greenland (1991) observed similar theoretical results

as Corollary 1 but gave a di↵erent interpretation.
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1.4 Ubiquity of the Paradox in Other Experiments

The paradox discussed in Section 1.3 is not unique to completely randomized

experiments. As a direct generalization of the previous results, the paradox will

appear in each stratum of stratified experiments. We will also show its existence

in two other widely-used experiments: matched-pair designs and factorial designs.

In order to minimize the confusion about the notation, each of the following two

subsections are self-contained.

1.4.1 Matched-Pair Experiments

Consider a matched-pair experiment with 2N units and N pairs matched ac-

cording to their observed characteristics. Within each matched pair, we randomly

select one unit to receive treatment and the other to receive control. Let Ti be iid

Bernoulli(1/2) for i = 1, . . . , N , indicating treatment assignments for the matched

pairs. For pair i, the first unit receives treatment and the second unit receives control

if Ti = 1; and otherwise if Ti = 0. Under the SUTVA, we define (Yij(1), Yij(0)) as

the potential outcomes of the jth unit in the ith pair under treatment and control,

and the observed outcomes within pair i are Y obs
i1 = TiYi1(1) + (1 � Ti)Yi1(0) and

Y obs
i2 = TiYi2(0) + (1 � Ti)Yi2(1). Let T = (T

1

, . . . , TN)0 and Y obs = {Y obs
ij : i =

1, . . . , N ; j = 1, 2} denote the N ⇥ 1 treatment assignment vector and the N ⇥ 2

observed outcome matrix, respectively. Within pair i,

b⌧i = Ti(Y
obs
i1 � Y obs

i2 ) + (1� Ti)(Y
obs
i2 � Y obs

i1 )
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is unbiased for the within-pair average causal e↵ect

⌧i = {Yi1(1) + Yi2(1)� Yi1(0)� Yi2(0)}/2.

Immediately, we can use

b⌧ =
1

N

N
X

i=1

b⌧i

as an unbiased estimator for the finite population average causal e↵ect

⌧ =
1

N

N
X

i=1

⌧i =
1

2N

N
X

i=1

2

X

j=1

{Yij(1)� Yij(0)}.

Imai (2008) discussed Neymanian inference for ⌧ and identified the variance of b⌧

with the corresponding variance estimator. To be more specific, he found that

var(b⌧) =
1

4N2

N
X

i=1

{Yi1(1) + Yi1(0)� Yi2(1)� Yi2(0)}2,

which can be “conservatively” estimated by

bV (Neyman) =
1

N(N � 1)

N
X

i=1

(b⌧i � b⌧)2.

The repeated sampling evaluation above allows us to test Neyman’s null hypothesis

of zero average causal e↵ect:

H
0

(Neyman) : ⌧ = 0.

On the other hand, Rosenbaum (2002) discussed intensively the FRT in matched-
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pair experiments under the sharp null hypothesis:

H
0

(Fisher) : Yij(1) = Yij(0), 8i = 1, . . . , N ; 8j = 1, 2,

which is, again, much stronger than Neyman’s null. For the purpose of comparison, we

choose the test statistic with the same form as b⌧ , denoted as b⌧(T ,Y obs). In practice,

the null distribution of this test statistic can be calculated exactly by enumerating

all the 2N randomizations or approximated by Monte Carlo. For our theoretical

investigation, we have the following results.

Theorem 4. Under the sharp null hypothesis, we have

E{b⌧(T ,Y obs) | H
0

(Fisher)} = 0

and

bV (Fisher) ⌘ var{b⌧(T ,Y obs) | H
0

(Fisher)} =
1

N2

N
X

i=1

b⌧ 2i .

Therefore, for matched-pair experiments, the di↵erence in the variances is

bV (Fisher)� bV (Neyman) = ⌧ 2/N + op(N
�1).

The asymptotic Normality of the two test statistics holds because of the Lindberg–

Feller CLT for independent random variables, and therefore the di↵erent power behav-

iors of Neyman and Fisher’s tests is again due to the above di↵erence in the variances.

Under H
0

(Neyman), the di↵erence is a higher order term, leading to asymptotically

equivalent behaviors of Neymanian and Fisherian inferences. However, under the al-
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ternative hypothesis with nonzero ⌧ , the same paradox appears again in matched-pair

experiments: we tend to reject with Neyman’s test more often than with Fisher’s test.

For matched-pair experiments with binary outcomes, we let mobs
y1y0 be the number

of pairs with treatment outcome y
1

and control outcome y
0

, where y
1

, y
0

2 {0, 1}.

Consequently, we can summarize the observed data by a two by two table with cell

counts (mobs
11

,mobs
10

,mobs
01

,mobs
00

). Theorem 4 can then be further simplified as follows.

Corollary 2. In matched-pair experiments with binary outcomes, Neyman’s test is

asymptotically equivalent to

mobs
10

�mobs
01

p

mobs
10

+mobs
01

� (mobs
10

�mobs
01

)2/N

d�! N (0, 1) (1.12)

under H
0

(Neyman), and Fisher’s test is asymptotically equivalent to

mobs
10

�mobs
01

p

mobs
10

+mobs
01

d�! N (0, 1) (1.13)

under H
0

(Fisher). And the asymptotic di↵erence between the two tests is due to

bV (Fisher)� bV (Neyman) = (mobs
10

�mobs
01

)2/N3 + op(N
�1).

Note that the number of discordant pairs, mobs
10

+mobs
01

, is fixed over all randomiza-

tions under the sharp null hypothesis, and therefore Fisher’s test is equivalent to the

exact test based on mobs
10

⇠ Binomial(mobs
10

+ mobs
01

, 1/2). Its asymptotic form (1.13)

is the same as the McNemar test under a super population model (Agresti and Min,

2004).
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1.4.2 Factorial Experiments

Fisher (1935a) and Yates (1937) developed the classical factorial experiments in

the context of agricultural experiments, and Wu and Hamada (2009) provided a

comprehensive modern discussion of design and analysis of factorial experiments. Al-

though rooted in randomization theory (Kempthorne, 1955; Hinkelmann and Kempthorne,

2007), the analysis of factorial experiments is dominated by linear and generalized

linear models, with factorial e↵ects often defined as model parameters. Realizing the

inherent drawbacks of the predominant approaches, Dasgupta et al. (2015) discussed

causal inference from 2K factorial experiments using the potential outcomes frame-

work, which allows for defining the causal estimands based on potential outcomes

instead of model parameters.

We first briefly review the notation for factorial experiments adopted by Das-

gupta et al. (2015). Assume that we have K factors with levels +1 and �1. Let

z = (z
1

, . . . , zK)0 2 FK = {+1,�1}K , a K-dimensional vector, denote a particular

treatment combination. The number of possible values of z is J = 2K , for each of

which we can define Yi(z) as the corresponding potential outcome for unit i under

the SUTVA. We use a J-dimensional vector Yi to denote all potential outcomes for

unit i, where i = 1, . . . , N = r ⇥ 2K with an integer r representing the number of

replications of each treatment combination. Without loss of generality, we will discuss

the inference of the main factorial e↵ect of factor 1, and analogous discussion also

holds for general factorial e↵ects due to symmetry. The main factorial e↵ect of factor

1 can be characterized by a vector g
1

of dimension J , with one half of its elements

being +1 and the other half being �1. Specifically, the element of g
1

is +1 if the
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corresponding z
1

is +1, and �1 otherwise. For example, in 22 experiments, we have

Yi = (Yi(+1,+1), Yi(+1,�1), Yi(�1,+1), Yi(�1,�1))0 and g
1

= (+1,+1,�1,�1)0.

We define ⌧i1 = 2�(K�1)g0
1

Yi as the main factorial e↵ect of factor 1 for unit i, and

⌧
1

=
1

N

N
X

i=1

⌧i1 = 2�(K�1)g0
1

Ȳ

as the average main factorial e↵ect of the factor 1, where Ȳ =
PN

i=1

Yi/N.

For factorial experiments, we define the treatment assignment as Wi(z), with

Wi(z) = 1 if the ith unit is assigned to z, and 0 otherwise. Therefore, we use

Wi = {Wi(z) : z 2 FK} as the treatment assignment vector for unit i, and let W

be the collection of all the unit-level treatment assignments. The observed outcomes

are deterministic functions of the potential outcomes and the treatment assignment,

namely, Y obs
i =

P

z2FK
Wi(z)Yi(z) for unit i, and Y obs = (Y obs

1

, . . . , Y obs
N )0 for all the

observed outcomes. Since

Ȳ obs(z) =
1

r

X

{i:Wi(z)=1}

Y obs
i =

1

r

N
X

i=1

Wi(z)Yi(z)

is unbiased for Ȳ (z), we can unbiasedly estimate ⌧
1

by

b⌧
1

= 2�(K�1)g0
1

Ȳ obs,

where Ȳ obs is the J-dimensional vector for the average observed outcomes. Dasgupta
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et al. (2015) showed that the sampling variance of b⌧
1

is

var(b⌧
1

) =
1

22(K�1)r

X

z2FK

S2(z)� 1

N
S2

1

, (1.14)

where S2(z) =
PN

i=1

{Yi(z)� Ȳ (z)}2/(N � 1) is the finite population variance of the

potential outcomes under treatment combination z, and S2

1

=
PN

i=1

(⌧i1�⌧
1

)2/(N�1)

is the finite population variance of the unit level factorial e↵ects {⌧i1 : i = 1, . . . , N}.

Similar to the discussion in completely randomized experiments, the last term S2

1

in (1.14) cannot be identified, and consequently the variance in (1.14) can only be

“conservatively” estimated by the following Neyman-style variance estimator:

bV
1

(Neyman) =
1

22(K�1)r

X

z2FK

s2(z),

where the sample variance of outcomes under treatment combination z,

s2(z) =
X

{i:Wi(z)=1}

{Y obs
i � Ȳ obs(z)}2/(r � 1)

is unbiased for S2(z). The discussion above allows us to construct a Wald-type test

for Neyman’s null of zero average factorial e↵ect for factor 1:

H1

0

(Neyman) : ⌧
1

= 0.

On the other hand, based on the physical act of randomization in factorial exper-

25



Chapter 1: A Paradox from Randomization-Based Causal Inference

iments, the FRT allows us to test the following sharp null hypothesis:

H
0

(Fisher) : Yi(z) = Y obs
i , 8z 2 FK , 8i = 1, . . . , N. (1.15)

This sharp null restricts all factorial e↵ects for all the individuals to be zero, which

is much stronger than H1

0

(Neyman). For a fair comparison, we use the same test

statistic as b⌧
1

in our randomization test, and denote b⌧
1

(W ,Y obs) as a function of

the treatment assignment and observed outcomes. Under the sharp null (1.15), the

randomness of b⌧
1

(W ,Y obs) is induced by randomization, and the following theorem

gives us its mean and variance.

Theorem 5. We have E{b⌧
1

(W ,Y obs) | H
0

(Fisher)} = 0 and

bV
1

(Fisher) ⌘ var{b⌧
1

(W ,Y obs) | H
0

(Fisher)} =
1

22(K�1)r
Js2,

where

Ȳ obs =
N
X

i=1

Y obs
i /N, s2 =

N
X

i=1

(Y obs
i � Ȳ obs)2/(N � 1)

are the sample mean and variance of all the observed outcomes.

Based on Normal approximations, comparison of the p-values reduces to the dif-

ference between bV
1

(Neyman) and bV
1

(Fisher), as shown in the theorem below.

Theorem 6. With large r, the di↵erence between bV
1

(Neyman) and bV
1

(Fisher) is

bV
1

(Fisher)� bV
1

(Neyman) =
1

23K�1r

X

z2FK

X

z02FK

{Ȳ (z)� Ȳ (z0)}2 + op(r
�1). (1.16)
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Formula (1.8) is a special case of formula (1.16) with K = 1 and r = N
1

= N
0

=

N/2, since complete randomized experiments are special cases of factorial experiments

with a single factor. Therefore, in factorial experiments with the same replicates r at

each level, the paradox always exists under alternative hypothesis with nonzero ⌧
1

,

just as in balanced completely randomized experiments.

1.5 Improvements and Extensions

We have shown that Neyman’s test is more powerful than Fisher’s test in many re-

alistic situations. In fact, the original form of Neyman’s test is suboptimal. We discuss

improved Neymanian variance estimators below, which lead to even more powerful

tests. Moreover, the previous sections restrict the discussion on the di↵erence-in-

means statistic. We will further comment on the importance of this choice, and other

possible alternative test statistics.

1.5.1 Improvements of the Neymanian Variance Estimators

For completely randomized experiments, Neyman (1923) used S2

⌧ � 0 as a lower

bound, which is not the sharp bound. Recently, for general outcomes Aronow et al.

(2014) derived the sharp bound of S2

⌧ based on the marginal distributions of the

treatment and control potential outcomes using the Frechét–Hoe↵ding bounds. In

particular, when the outcome is binary, the sharp bound for the variance of b⌧ results

in the following simple variance estimator (Robins, 1988; Ding and Dasgupta, 2015):

bV c(Neyman) = bV (Neyman)� |b⌧ |(1� |b⌧ |)/(N � 1). (1.17)
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Note that the adjustment term |b⌧ |(1� |b⌧ |)/(N � 1) is always non-negative, resulting

in smaller variance estimators.

For matched-pair experiments, Imai (2008) improved the Neymanian variance

estimator by using the Cauchy–Schwarz inquality, which may not be sharp. We are

currently working on deriving sharp bounds for the variance of estimated factorial

e↵ects.

In summary, Neyman’s test is even more powerful with improved variance esti-

mators, which further bolsters the paradoxical situation wherein we reject Neyman’s

null but fail to reject Fisher’s sharp null.

1.5.2 Choice of the Test Statistic

Our discussion is restricted to tests using the di↵erence-in-means statistics, which

plays an important role in practice. First, as hinted by Ding and Dasgupta (2015),

for randomized experiments with binary outcomes, all test statistics are equivalent to

the di↵erence-in-means statistic. We formally state this conclusion in the following

theorem.

Theorem 7. For completely randomized experiments, matched-pair experiments,

and 2K factorial experiments, if the outcomes are binary, then all test statistics are

equivalent to the di↵erence-in-means statistic.

Therefore, for binary data, the choice of test statistic is not a problem.

Second, for continuous outcomes, the di↵erence-in-means statistic is important,

because it not only serves as a candidate test statistic for the sharp null hypothesis but

also an unbiased estimator for the average causal e↵ect. In the illustrating example in
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Section 1.6.3, practitioners are interested in finding the combination of several factors

that achieves an optimal mean response.

For continuous outcomes we have more options of test statistics. For instance, the

Kolmogorov–Smirnov and Wilcoxon–Mann–Whitney statistics are also useful candi-

dates for the FRT. However, the Neymanian analogues of these two statistics are not

established in the literature, and direct comparisons of the Fisherian and Neymanian

using these two statistics are not possible at this moment. In Appendix A, we il-

lustrate by numerical examples that the conservative nature of the FRT is likely to

be true for these two statistics, because we find that the randomization distributions

under the sharp null hypothesis is more disperse than those under weaker null hy-

potheses. Please see the Appendix A for more details, and it is our future research

topic to pursue the theoretical results.

1.6 Illustrations

In this section, we will use real-life examples to illustrate the theory in the previous

sections. The first two examples have binary outcomes, and therefore there is no

concern about the choice of test statistic. The goal of the third example, a 24 full

factorial experiment, is to find the optimal combination of the factors, and therefore

the di↵erence-in-means statistic is again a natural choice for a test statistic.

1.6.1 A Completely Randomized Experiment

Consider a hypothetical completely randomized experiment with binary outcome

(Rosenbaum, 2002, pp.191). Among the 32 treated units, 18 of them have outcome
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being 1, and among the 21 control units, 5 of them have outcome being 1. The

Neymanian p-value based on the improved variance estimator in (1.17) is 0.004. The

Fisherian p-value based on the FRT or equivalently Fisher’s exact test is 0.026, and the

Fisherian p-value based on Normal approximation in (1.10) is 0.020. The Neymanian

p-value is smaller, and if we choose significance level at 0.01 then the paradox will

appear in this example.

1.6.2 A Matched-Pair Experiment

The observed data of the matched-pair experiment in Agresti and Min (2004) can

be summarized by the two by two table with cell counts (mobs
11

,mobs
10

,mobs
01

,mobs
00

) =

(53, 8, 16, 9). The Neymanian one-sided p-value based on (1.12) is 0.049. The Fishe-

rian p-value based on the FRT is 0.076, and the Fisherian p-value based on Normal

approximation in (1.13) is 0.051. Again, Neyman’s test is more powerful than Fisher’s

test.

1.6.3 A 24 Full Factorial Experiment

In the “Design of Experiments” course in Fall 2014, a group of Harvard under-

graduate students followed Box (1992)’s famous paper helicopter example for factorial

experiments, and tried to identify the optimal combination of the four factors: paper

type (construction paper, printer paper), paperclip type (small paperclip, large paper-

clip), wing length (2.5 inches, 2.25 inches), and fold length (0.5 inch, 1.0 inch), with

the first level coded as �1 and the second level coded as +1. For more details, please

see Box (1992). For each combination of the factors, they recorded two replicates of

30



Chapter 1: A Paradox from Randomization-Based Causal Inference

the flying times of the helicopters. We display the data, as well as some summary

statistics, in Table 1.2.

We show the Neymanian and Fisherian results in the upper and lower panel of

Figure 1.5, respectively. Figure 1.5(a) shows both Neymanian point estimates and

p-values for the 15 factorial e↵ects. Seven of them, F
1

, F
2

, F
4

, F
1

F
2

, F
1

F
3

, F
1

F
4

and

F
1

F
2

F
4

, are significant at level 0.05, and after the Bonferroni correction, three of

them, F
1

, F
2

, F
1

F
2

F
4

, are still significant. Figure 1.5(b) shows the randomization dis-

tribution of the factorial e↵ects under the sharp null hypothesis by a grey histogram.

Note that all factorial e↵ects have the same randomization distribution, because all

of them are essentially a comparison of a random half versus the other half of the

observed outcomes. Even though the sample size 32 is not huge, the randomization

distribution is well approximated by the Normal distribution with mean zero and

variance bV
1

(Fisher). Strikingly, only two factorial e↵ects, F
1

and F
2

, are significant,

and after the Bonferroni correction only F
2

is significant. We further calculate the

variance estimates: bV
1

(Neyman) = 0.025 and bV
1

(Fisher) = 0.034. The empirical

findings in this particular example with finite sample are coherent with our asymp-

totic theory developed in Section 1.4.2. In this example, the Neymanian method can

help detect more significant factors for achieving optimal flying time, while the more

conservative Fisherian method may miss important factors.
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Table 1.2: A 24 Factorial Design, Observed Outcomes and Summary Statistics
F
1

F
2

F
3

F
4

replicate 1 replicate 2 mean standard deviation
-1 -1 -1 -1 1.60 1.55 1.58 0.04
-1 -1 -1 1 1.70 1.63 1.67 0.05
-1 -1 1 -1 1.44 1.38 1.41 0.04
-1 -1 1 1 1.56 1.61 1.58 0.04
-1 1 -1 -1 1.40 1.45 1.42 0.04
-1 1 -1 1 1.36 1.38 1.37 0.01
-1 1 1 -1 1.43 1.40 1.42 0.02
-1 1 1 1 1.32 1.27 1.29 0.04
1 -1 -1 -1 1.81 1.86 1.83 0.04
1 -1 -1 1 1.70 1.57 1.64 0.09
1 -1 1 -1 2.04 2.06 2.05 0.01
1 -1 1 1 1.68 1.61 1.65 0.05
1 1 -1 -1 1.58 1.28 1.43 0.21
1 1 -1 1 1.43 1.49 1.46 0.04
1 1 1 -1 1.51 1.54 1.52 0.02
1 1 1 1 1.53 1.38 1.46 0.11

1.7 Discussion

1.7.1 Historical Controversy and Modern Discussion

As pointed out by R. A. Fisher, “the actual and physical conduct of an experi-

ment must govern the statistical procedure of its interpretation (Fisher, 1935a, Sec-

tion II).” Neyman and Fisher both proposed statistical procedures for analysis of

randomized experiments, relying on the randomization distribution itself. However,

whether Neyman’s null or Fisher’s null makes more sense in practice goes back to

the famous Neyman–Fisher controversy in a meeting of the Royal Statistical Society

(Fisher, 1935b; Neyman and Iwaszkiewicz, 1935). Rosenbaum (2002, page 39) gave

a very insightful philosophical discussion about the controversy, and Sabbaghi and

Rubin (2014) revisited this controversy recently.
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While the answer may depend on di↵erent perspectives of practical problems, we

discussed only the consequent paradox of Neymanian and Fisherian testing procedures

for their own null hypotheses. Both our numerical examples and asymptotic theory

showed that we encounter a serious logical problem in the analysis of randomized

experiments, even though both Neyman’s and Fisher’s tests are valid Frequentists’

tests, in the sense of controlling correct type one errors under their own null hypothe-

ses. Our numerical examples and theoretical analysis reach a conclusion di↵erent

from the classical book by Rosenbaum (2002).

1.7.2 Randomization-Based and Regression-Based Inference

In current statistical practice, it is also very popular among applied researchers

to use regression-based methods to analyze experimental data (Angrist and Pischke,

2008). Assume the a linear model for the observed outcomes: Y obs
i = ↵ + �Ti + "i,

where "i, . . . , "N are independently and identically distributed (iid) as N (0, �2). The

hypothesis of zero treatment e↵ect is thus characterized by H
0

(LM) : � = 0. The

usual ordinary least squares variance estimator for the regression coe�cient may not

correctly reflect the true variance of b⌧ under randomization. Schochet (2010), Samii

and Aronow (2012), Lin (2013) and Imbens and Rubin (2015) pointed out that we

can solve this problem by using Huber–White heteroskedasticity-robust variance esti-

mator (Huber, 1967; White, 1980), and the corresponding Wald test is asymptotically

the same as Neyman’s test. In Theorem 17 of Appendix A, we further build an equiv-

alence relationship between Rao’s score test and the FRT. For more technical details,

please see Appendix A. Previous results, as well as Theorem 17, do justify the usage
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of linear models in analysis of experimental data.

1.7.3 Interval Estimation

Originally, Neyman (1923) proposed an unbiased estimator for the average causal

e↵ect ⌧ with a repeated sampling evaluation, which was later developed into the

concept of the confidence interval (Neyman, 1937). In order to compare Neyman’s

approach with the FRT, we converted the interval estimator into a hypothesis testing

procedure. As a dual, we can also invert the FRT for a sequence of null hypotheses to

get an interval estimator for ⌧ (Pitman, 1937, 1938; Rosenbaum, 2002). For example,

we consider the sequence of sharp null hypotheses with constant causal e↵ects:

H�
0

(Fisher) : Yi(1)� Yi(0) = �, 8i = 1, . . . , N.

The interval estimator for ⌧ with coverage rate 1� ↵ of ⌧ is

FI↵ =
�

� : Fail to reject H�
0

(Fisher) by the FRT at significant level ↵
 

.

Dasgupta et al. (2015) called the interval FI a “fiducial interval” or “Fisherian in-

terval,” and found some empirical evidence in 2K factorial designs that the “fiducial

interval” is wider than the Neymanian “conservative” confidence interval. Due to

the duality between hypothesis testing and interval estimation, our results about hy-

pothesis testing can partially explain the phenomenon about interval estimation in

Dasgupta et al. (2015).
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1.7.4 Practical Implications

We highlight the following practical implications of our theory developed in the

above sections.

First, the FRT is usually less powerful than Neyman’s test, even for the simplest

case with constant causal e↵ect. Practitioners should keep in mind that the FRT may

miss important treatment factors. Our examples in Section 1.6 and the empirical

evidence in Dasgupta et al. (2015) have confirmed our theoretical results.

Second, in the presence of treatment e↵ect heterogeneity, the FRT may not be a

valid test for the null hypothesis of zero average causal e↵ect as illustrated by Example

4. Therefore, practitioners, especially those who are interested in social sciences,

should always be aware of this potential danger of using the FRT, if the observed

data show substantive heterogeneity in treatment and control groups. Treatment

e↵ect variation is another important issue beyond the current scope of our paper.

Ding et al. (2015) investigate this problem under the randomization framework.

Third, although we have shown that the FRT is less powerful in many realistic

cases, we are not concluding that Neymanian inference trumps Fisherian inference.

All our comparisons are based on asymptotics under regularity conditions, and the

conclusion may not be true with small sample sizes or “irregular” potential outcomes.

Therefore, Fisherian inference is still useful for small sample problems and exact

inference. In practice, we should always check the discrepancy between the Normal

approximation and the exact randomization distribution as in Figure 1.5(b) before

applying our theoretical results to applied problems.
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(a) Neymanian Inference. Factorial e↵ects F1, F2, F4, F1F2, F1F3, F1F4 and F1F2F4 are significant at
level 0.05.
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(b) Fisherian Inference. Factorial e↵ects F1 and F2 are significant.

Figure 1.5: Randomization-Based Inference for a 24 Full Factorial Experiment
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Chapter 2

A Potential Tale of Two by Two

Tables from Completely

Randomized Experiments

2.1 Introduction

The theory of causal inference from randomized treatment-control studies using

the potential outcomes model has been well-developed over the past five decades and

has been applied extensively to randomized experiments in the medical, behavioral

and social sciences. The first formal notation for potential outcomes was introduced

by Neyman (1923) in the development of randomization-based inference, and subse-

quently used by several researchers including Kempthorne (1952) and Cox (1958) for

drawing causal inference from randomized experiments. The concept was formalized

and extended by Rubin (1974, 1977, 1978) for other forms of causal inference from
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randomized experiments and observational studies, and exposition of this transition

appears in Rubin (2010). The three broad approaches to causal inference under the

potential outcomes model are Fisherian, Neymanian and Bayesian.

The most common finite-population estimand in most causal inference problems is

the average causal e↵ect, defined as the finite-population average of unit-level causal

e↵ects. Since Neyman (1923)’s seminal work, additivity of unit-level treatment e↵ects

(or its lack thereof) and its influence on the inference for the average causal e↵ect has

been investigated thoroughly for continuous outcomes. In comparison, few researchers

(e.g., Copas, 1973) have studied this problem for binary outcomes, in which the

potential and observed outcomes can be summarized in the form of 2⇥2 contingency

tables. In this paper, we provide a characterization of additivity based on the 2 ⇥

2 table of potential outcomes, and use it to (i) justify Fisher’s exact test from a

randomization perspective, and (ii) propose an estimator of the variance of the average

causal e↵ect for binary outcomes that uniformly dominates the Neymanian variance

estimator. As advocated by Rubin (1978), we also propose a Bayesian strategy for

drawing inference about the average causal e↵ect using the missing data perspective.

Such a strategy is dependent on the assumptions related to model additivity, or more

specifically, the nature and strength of the association between potential outcomes.

We propose a novel sensitivity analysis which should help a practitioner understand

how the analysis results might change if the assumptions are violated.

Apart from the average causal e↵ect, other popular estimands for binary outcomes

are the log of the causal risk ratio and the log of the causal odds ratio. Although

of great practical interest, to the best of our knowledge, estimators of these causal
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measures have not been studied carefully from the Neymanian perspective, because

unlike the average causal e↵ect, non-linearity of these estimands and their estimators

make exact variance calculations intractable. We circumvent this problem by taking

an asymptotic perspective. By deriving asymptotic expressions for variances of these

estimators, we explore the adequacy of the widespread practice of drawing statistical

inference for such causal estimands on the basis of independent Binomial models, and

propose improved methods that are justified by randomization. We conduct simula-

tion studies under di↵erent settings to demonstrate the e↵ectiveness of the proposed

methods and also illustrate their application to a recent randomized controlled trial.

The paper is organized as follows. In the following section, we define the poten-

tial outcomes, the finite population estimands, the assignment mechanism and the

observed outcomes. In Section 2.3, we discuss the Fisherian and Neymanian forms

of inference for 2 ⇥ 2 tables. In Section 2.4, we propose a Bayesian framework for

causal inference, explore its frequentists’ properties and also propose a methodology

for sensitivity analysis to assess the e↵ect of violation of assumptions regarding addi-

tivity (or its lack thereof) on the inference. Causal inference for non-linear estimands

is discussed in Section 2.5. A detailed simulation study is conducted in Section 2.6

to compare the di↵erent methods of inference and to demonstrate the superiority of

the proposed methodology. Application of the proposed methodology to randomized

experiments with binary outcomes is demonstrated with a real-life example in Section

2.7. Some concluding remarks are presented in Section 2.8. Some technical details,

the proofs, additional simulation studies, and more details of the application are in

Appendix B.
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2.2 Potential Outcomes, Estimands, and the Ob-

served Data

The evolution of the potential outcomes framework was motivated by the need for

a clear separation between the object of interest (often referred to as the “Science”)

and what researchers do to learn about the Science (e.g., randomly assign treatments

to units). We assume a finite population of N experimental units that are exposed to a

binary treatment W and yield a binary response Y . Under the Stable Unit Treatment

Value Assumption (Cox, 1958; Rubin, 1980), we define Yi(t) as the potential outcome

for individual i when exposed to treatment t (t = 1 and t = 0 often refer to treatment

and control, respectively). The N⇥2 matrix of the potential outcomes {(Yi(1), Yi(0)) :

i = 1, . . . , N} is typically referred to as the Science (Rubin, 2005). Because the

response Y is binary, the information contained in the Science can be condensed into

a 2⇥ 2 table as shown in Table 2.1.

Table 2.1: “Science Table” of the Potential Outcomes
Y (0) = 1 Y (0) = 0 row sum

Y (1) = 1 N
11

N
10

N
1+

Y (1) = 0 N
01

N
00

N
0+

column sum N
+1

N
+0

N

2.2.1 Finite-Population Causal Estimands and Uniformity of

Unit-Level Causal E↵ects

Having defined the so-called Science, we now proceed to the definition of causal

estimands. A unit-level causal e↵ect is defined as a contrast between the potential
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outcomes under the treatment and the control, for example, ⌧i = Yi(1) � Yi(0). We

define the finite population average causal e↵ect as

⌧ =
1

N

N
X

i=1

⌧i = p
1

� p
0

,

where pt =
PN

i=1

Yi(t)/N is the finite population average of Y (t) for t = 0, 1. For

binary outcomes, the average causal e↵ect is also called the causal risk di↵erence

(CRD). From Table 2.1, it follows that

⌧ = N
1+

/N �N
+1

/N = (N
10

�N
01

) /N.

A measure of uniformity (or its lack, thereof) of the unit-level causal e↵ects is the

finite population variance of the individual causal e↵ect ⌧i, given by

S2

⌧ =
1

N � 1

N
X

i=1

(⌧i � ⌧)2 =
1

N(N � 1)
{(N

10

+N
01

)(N
11

+N
00

) + 4N
10

N
01

} . (2.1)

Note that S2

⌧ can also be represented as

S2

⌧ = S2

1

+ S2

0

� 2S
10

, (2.2)

where S2

t =
PN

i=1

{Yi(t)�pt}2/(N�1) is the finite population variance of the potential

outcome Yi(t), and

S
10

=
N
X

i=1

{Yi(1)� p
1

}{Yi(0)� p
0

}/(N � 1) = (N
11

N
00

�N
10

N
01

)/{N(N � 1)}
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is the finite population covariance between Yi(1) and Yi(0).

Note that constant causal e↵ect or additivity of unit-level causal e↵ects implies

that S2

1

= S2

0

, S
10

= S
1

S
0

, and the uniformity measure S2

⌧ = 0. Copas (1973) con-

sidered a representation of the potential outcomes similar to that in Table 2.1, and

defined parameters ↵ = ⌧ as the treatment e↵ect and � = (N
10

+N
01

)/N as a mea-

sure of “the di↵erential e↵ect.” However, we feel that �, which essentially equals

(
PN

i=1

⌧ 2i )/N , is not an adequate representation of the di↵erential e↵ect, because it

does not reduce to zero when all unit-level causal e↵ects are equal to 1 or �1. To dis-

cuss this aspect further, we consider the case of strict additivity of treatment e↵ects,

where ⌧i = ⌧ for all i = 1, . . . , N , and summarize its impact on the Science and its

summary measures ⌧ , S2

⌧ and � in Table 2.2.

Table 2.2: E↵ect of additivity on the Science
⌧(= ⌧i) Entries of Table 2.1 ⌧ = ↵ S2

⌧ �
1 N

11

= N
01

= N
00

= 0, N
10

= N 1 0 1
�1 N

11

= N
10

= N
00

= 0, N
01

= N �1 0 1
0 N

10

= N
01

= 0, N
00

+N
11

= N 0 0 0

Note that the last row of Table 2.2 represents a special case of additivity, with zero

treatment e↵ect for each unit. Such a hypothesis about the Science case is referred

to as Fisher’s sharp null hypothesis of no treatment e↵ect, and forms the basis of the

“Fisherian” inference described in Section 2.3.1.

To sum up our discussion on the degree of uniformity of treatment e↵ects, we

define another condition referred to as monotonicity (Angrist et al., 1996).

Definition 1. The Science table is said to satisfy the monotonicity condition if either

of the following two conditions hold: (i) Yi(1) � Yi(0) for all i (or equivalently
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N
01

= 0), (ii) Yi(1)  Yi(0) for all i (or equivalently N
10

= 0).

Under monotonicity, we have ⌧ = ↵ = � = N
10

/N, S2

⌧ = N
10

N
11

/{N(N � 1)}

if (i) holds, and ⌧ = ↵ = �N
01

/N, � = N
01

/N, S2

⌧ = N
01

N
11

/{N(N � 1)} if (ii)

holds. We also note that any one of the three additivity conditions as described in

Table 2.2 implies at least one of the monotonicity assumptions. We shall discuss the

impact of strict additivity and monotonicity on the inference for ⌧ in Section 2.3.2.

2.2.2 Treatment Assignment and the Observed Data

We consider a completely randomized treatment assignment in which N
1

and N
0

units receive treatments 1 and 0 respectively. Let W = (W
1

, . . . ,WN) be the vector

of treatment assignments and let w = (w
1

, . . . , wN) be a realization of W . Then, a

completely randomized experiment satisfies P (W = w) = N
1

!N
0

!/N ! if
PN

i=1

wi = N
1

and P (W = w) otherwise. The observed outcomes are deterministic functions of both

the treatment and the potential outcomes, since Y obs

i = WiYi(1)+ (1�Wi)Yi(0). Let

Y obs = (Y obs

1

, · · · , Y obs

N ) be the vector of the observed outcomes. Since the treatment

and the outcome are both binary, the observed data form a 2 ⇥ 2 contingency table

as shown in Table 2.3. The row sums in Table 2.3, (N
1

, N
0

), are the numbers of

individuals receiving treatment and control, and the column sums, (n
+1

, n
+0

), are the

number of individuals with outcomes 1 and 0, respectively.

Table 2.3: Summary of the Observed Data
Y obs = 1 Y obs = 0 row sum

W = 1 n
11

n
10

N
1

W = 0 n
01

n
00

N
0

column sum n
+1

n
+0

N
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We conclude this section by emphasizing that the fundamental problem of causal

inference is the missingness of one element of each pair (Yi(1), Yi(0)). Consequently,

the key idea is to infer about the entries of Table 2.1 (and the estimands that are

functions of these unknown entries) using those of Table 2.3 and the distribution of

these entries under randomization.

2.3 Fisherian and Neymanian Approaches to In-

ference

In this section, the potential outcomes of the finite population are assumed to be

fixed numbers, and the randomness in the observed outcomes comes only from ran-

domization of the treatment assignment (Neyman, 1923; Rubin, 1990). We discuss

two forms of finite-population inference — Fisherian and Neymanian — under this

set-up. Fisher’s form of randomization-based inference focuses on assessing the sharp

null hypothesis of no treatment e↵ect using the randomization distribution of a test

statistic, which is obtained by imputing the missing outcomes under the sharp null.

Neyman’s form of randomization-based inference can be viewed as drawing inferences

by evaluating the expectations of statistics over the distribution induced by the as-

signment mechanism in order to calculate a confidence interval for the typical causal

e↵ect. Using asymptotic results is one way of achieving this. In the following subsec-

tion (Section 2.3.1), we briefly discuss the Fisher randomization test and establish its

connection to Fisher’s exact test. In Section 2.3.2, we discuss Neymanian inference

and propose an improvement over the traditional Neymanian estimator.
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2.3.1 Fisherian Randomization Test and Its Connection to

Fisher’s Exact Test

According to (Fisher, 1935a), randomization yields “a reasoned basis for infer-

ence,” and it allows for testing the sharp null hypothesis of zero individual causal

e↵ect, i.e., Yi(1) = Yi(0) for i = 1, . . . , N , characterized by the last row of Table 2.2.

Such a null hypothesis permits imputation of all the missing potential outcomes. Al-

though in principle any test statistic can be used, the most natural one is b⌧ = bp
1

� bp
0

,

where bp
1

=
PN

i=1

WiY obs

i /N
1

= n
11

/N
1

, and bp
0

=
PN

i=1

(1 � Wi)Y obs

i /N
0

= n
01

/N
0

.

The test statistic b⌧ is a function of both the treatment assignment and the observed

outcomes. Under the sharp null hypothesis, the randomness of b⌧ comes only from the

randomization of the treatment assignment W . The p-value under the sharp null is a

measure of the extremeness of the observed value of the test statistic with respect to

its randomization distribution under the sharp null. For a two-sided test, the p-value

is typically defined as the proportion of values of |b⌧ | generated under all possible ran-

domizations that exceed its observed value |b⌧ obs|. In general, the null distribution of

b⌧ and the p-value can either be calculated exactly, or approximated by Monte Carlo.

However, we can obtain the “exact” distribution of the randomization test statistic

for a binary outcome. In Table 2.3, the margins N
1

and N
0

are fixed by design.

Under the sharp null hypothesis, the margins n
+1

and n
+0

represent the number

of observations with potential outcomes Yi(1) = Yi(0) = 1 and Yi(1) = Yi(0) = 0,

respectively, and are equal to N
11

and N
00

in Table 2.1. It follows that

b⌧ =
n
11

N
1

� n
01

N
0

=
n
11

N
1

� n
+1

� n
11

N
0

=
N

N
1

N
0

n
11

� N
11

N
0

, (2.3)
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i.e., the test statistic b⌧ is a monotone function of n
11

. Therefore, the rejection region

based on b⌧ is equivalent to the rejection region based on n
11

, which has the usual

Hypergeometric null distribution of the exact test for a two by two contingency table.

More interestingly, any randomization test using statistics other than b⌧ is also

equivalent to the test based on n
11

, since any test statistic is a function of n
11

under

Fisher’s sharp null hypothesis. Numerically, the test has exactly the same form as

Fisher’s exact test, although the two tests were originally derived based on completely

di↵erent statistical reasonings. In observational studies under Multinomial or inde-

pendent Binomial sampling, Fisher (1935c) justified his exact test for association as a

conditional test, by arguing that the marginal counts are nearly ancillary. However,

it turns out that the marginal counts contain some information about the association

(Cherno↵, 2004), and they are not ancillary. Here, we give a justification of the va-

lidity for Fisher’s exact test based on randomization, if the data truly come from a

completely randomized experiment. For more discussion about the hypothesis testing

issue, see Berkson (1978), Yates (1984) and Cherno↵ (2004) for observational studies,

and Ding (2014) for randomized experiments.

2.3.2 Neymanian Inference for the Average Causal E↵ect

Neyman (1923) showed that b⌧ = bp
1

� bp
0

is unbiased for ⌧ , with the sampling

variance

var(b⌧) =
N

0

N
1

N
S2

1

+
N

1

N
0

N
S2

0

+
2

N
S
10

=
S2

1

N
1

+
S2

0

N
0

� S2

⌧

N
, (2.4)

where S2

⌧ , S
2

1

and S2

0

are defined in Section 2.2.1. The proof can be found in Neyman
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(1923) or directly from Lemma 5 in Appendix B. Since the third term in (2.4), S2

⌧/N ,

depends on the joint distribution of the potential outcomes, it is not identifiable from

the observed data without further assumptions. Because of this di�culty, Neyman

(1923) proposed a “conservative” estimator for var(b⌧), defined as

bVNeyman =
s2
1

N
1

+
s2
0

N
0

, (2.5)

where s2
1

=
P

Wi=1

(Y obs

i � bp
1

)2/(N
1

� 1) and s2
0

=
P

Wi=0

(Y obs

i � bp
0

)2/(N
0

� 1) are

the sample variances of the observed outcomes under the treatment and the control,

respectively. For binary outcomes, the variance estimator can be simplified as

bVNeyman =
1

N
1

(N
1

� 1)

✓

n
11

�N
1

n2

11

N2

1

◆

+
1

N
0

(N
0

� 1)

✓

n
01

�N
0

n2

01

N2

0

◆

=
bp
1

(1� bp
1

)

N
1

� 1
+
bp
0

(1� bp
0

)

N
0

� 1
. (2.6)

As we will discuss later in Section 2.5.2, (2.6) is very close to the standard formula

for the variance of the di↵erence of sample proportions, except for the fact that the

coe�cient denominator in the latter are Nw instead of Nw � 1 for w = 0, 1.

The variance estimator bVNeyman is “conservative” in the sense that it only unbias-

edly estimates the first two terms of (2.4), S2

1

/N
1

+S2

0

/N
0

, and therefore E(bVNeyman) �

var(b⌧), a fact pointed out by several authors, e.g., Gadbury (2001), who provided an

expression for the bias of the estimator. The variance estimator bVNeyman is unbiased

for the true variance if and only if the individual causal e↵ects are constant (⌧i = ⌧)

or, equivalently, the conditions in Table 2.2 are satisfied. Neyman (1923)’s constant

causal e↵ect assumption is equivalent to using 0 as a lower bound for S2

⌧ , which is
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not sharp for binary outcomes. Consequently, Neyman’s “conservative” variance es-

timator can be improved for binary outcomes, even if the potential outcomes are not

strictly additive. The following result gives the sharp lower bound for S2

⌧/N in terms

of ⌧ .

Theorem 8. A lower bound for S2

⌧/N is

S2

⌧

N
� |⌧ |(1� |⌧ |)

N � 1
, (2.7)

and equality holds if and only if the potential outcomes satisfy the monotonicity

condition as stated in Definition 1.

Theorem 8 implies that the monotonicity assumptions are the most “conservative”

cases for variance estimation. As shown in the proof of Theorem 8, the lower bound

(2.7) for S2

⌧ is obtained via an optimization approach, which minimizes S2

⌧ under the

constraints of the marginal distributions p
1

and p
0

. Therefore, the lower bound in

(2.7) is “sharp”, in the sense that it cannot be uniformly improved without further

assumptions.

The lower bound for S2

⌧/N allows us to define the following estimator, which is

an improvement over Neyman’s variance estimator given by (2.6):

bV c
Neyman =

bp
1

(1� bp
1

)

N
1

� 1
+
bp
0

(1� bp
0

)

N
0

� 1
� |b⌧ |(1� |b⌧ |)

N � 1
. (2.8)

This estimator cannot be larger than bVNeyman, and is also an improvement of the

variance estimator given in Robins (1988). If ⌧ 2 {1,�1, 0}, i.e., if S2

⌧ = 0, we have

|⌧ |(1�|⌧ |) = 0, and with large sample size, the adjusting term |b⌧ |(1�|b⌧ |)/(N�1) is of
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higher order relative to the two leading terms of the variance estimator (2.8). There-

fore, if S2

⌧ = 0, then asymptotically, the adjusting term does not hurt, and bV c
Neyman

and bVNeyman are equivalent. However, for small samples, we may under-estimate the

true sampling variance due to the positive adjusting term |⌧ |(1�|⌧ |)/(N�1). We will

investigate this finite sample issue further in the simulation studies. If the true average

causal e↵ect is not�1, 0, or 1, i.e., S2

⌧ 6= 0 the correction term |b⌧ |(1�|b⌧ |)/(N�1) in the

variance estimator cannot be asymptotically neglected, and the “adjusted” variance

estimator will improve Neyman (1923)’s original variance estimator. For example, if

we observed a two by two table with cell counts (nobs

11

, nobs

10

, nobs

01

, nobs

00

) = (15, 5, 5, 15),

then we have bp
1

= 0.75, bp
0

= 0.25, bVNeyman = 0.020, and bV c
Neyman = 0.013, with the

latter variance estimator 32.48% smaller than the former one.

2.4 Bayesian Causal Inference for Binary Outcomes

In this section, we adopt the Bayesian causal inference framework advocated by

Rubin (1978). We assume that all the potential outcomes are drawn from a hypothet-

ical super-population, while we are still interested in making inference on the finite

population average causal e↵ect ⌧ . Similar to Neymanian randomization inference,

the association between the potential outcomes is also crucial for our Bayesian causal

inference. We first propose a Bayesian procedure based on a simple model with inde-

pendent potential outcomes, and discuss its frequentists’ repeated sampling property

Rubin (1984). We then propose a sensitivity analysis procedure to investigate the

impact of departures from the independence assumption on Bayesian inference.
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2.4.1 Independent Potential Outcomes

Assume that we have the following model with independent potential outcomes:

Yi(1) ⇠ Bern(⇡
1+

), Yi(0) ⇠ Bern(⇡
+1

), Yi(1) Yi(0), i = 1, · · · , N,

where “ ” denotes independence. The notation (⇡
1+

, ⇡
+1

) is chosen to be coherent

with the marginal probabilities in Table 2.4 to be discussed later. We will relax

the independence assumption in Section 2.4.3. We postulate the following priors

⇡
1+

⇠ Beta(↵
1

, �
1

), ⇡
+1

⇠ Beta(↵
0

, �
0

), and assume that they are independent a

priori.

Since the treatment assignment mechanism is ignorable (Rubin, 1978) in com-

pletely randomized experiments, the joint posterior distribution of ⇡
1+

and ⇡
+1

is

f(⇡
1+

, ⇡
+1

| W ,Y obs) / ⇡↵1�1

1+

(1� ⇡
1+

)�1�1⇡↵0�1

+1

(1� ⇡
+1

)�0�1

·⇡n11
1+

(1� ⇡
1+

)n10⇡n01
+1

(1� ⇡
+1

)n00 , (2.9)

or equivalently,

⇡
1+

|W ,Y obs ⇠ Beta(n
11

+ ↵
1

, n
10

+ �
1

), ⇡
+1

|W ,Y obs ⇠ Beta(n
01

+ ↵
0

, n
00

+ �
0

),

and they are independent a posteriori. After obtaining the posterior distribution

of (⇡
1+

, ⇡
+1

), we can impute all the missing potential outcomes, conditioning on

(⇡
1+

, ⇡
+1

). If Wi = 1, we impute Yi(0)|W ,Y obs, ⇡
+1

⇠ Bern(⇡
+1

); and if Wi = 0,

we impute Yi(1)|W ,Y obs, ⇡
1+

⇠ Bern(⇡
1+

). Therefore, the posterior distribution of
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⌧ conditioning on ⇡
1+

and ⇡
+1

is

⌧ |W ,Y obs, ⇡
1+

, ⇡
+1

⇠ n
11

+B
0

� n
01

� B
1

N
, (2.10)

where B
1

⇠ Binomial(N
1

, ⇡
+1

), B
0

⇠ Binomial(N
0

, ⇡
1+

), and they are independent.

The description above also illustrates a Monte Carlo strategy for simulating the pos-

terior distribution of ⌧. For theoretical comparison with Neymanian inference, we

can also obtain the posterior mean and variance of ⌧ as follows. We give the exact

formulae for posterior mean and variance in Appendix B, and here for simplicity we

give approximate formulae.

Theorem 9. Assume that the prior pseudo counts (↵
0

, �
0

,↵
1

, �
1

) are small compared

to nij’s. The posterior mean of ⌧ is

E(⌧ | W ,Y obs) ⇡ b⌧ ,

and the posterior variance of ⌧ is

var(⌧ | W ,Y obs) ⇡ N
0

N

bp
1

(1� bp
1

)

N
1

� 1
+

N
1

N

bp
0

(1� bp
0

)

N
0

� 1
. (2.11)

From Theorem 9, we can see that the posterior variance of ⌧ is smaller than Ney-

man’s variance estimator. These variances are di↵erent because Neyman (1923) as-

sumed perfect correlation between the potential outcomes, while the Bayesian model

assumes independence between the potential outcomes. As shown in (2.4), the as-

sumption that S2

⌧ = 0 is the worst case for the variance of var(b⌧), and Neyman (1923)
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adopted this as the most “conservative” estimator for the true variance.

2.4.2 Frequency Evaluation of the Bayesian Procedure Un-

der Independence

Going back to the finite population perspective, the sampling distribution of b⌧

depends on the finite population covariance between Yi(1) and Yi(0), as shown in

(2.4). Assuming independence between Yi(1) and Yi(0), we have S
10

= 0, and (2.4)

becomes

var(b⌧) =
N

0

N
1

N
S2

1

+
N

1

N
0

N
S2

0

.

The variance of b⌧ can be unbiasedly estimated by

bVind =
N

0

N
1

N
s2
1

+
N

1

N
0

N
s2
0

=
N

0

N

bp
1

(1� bp
1

)

N
1

� 1
+

N
1

N

bp
0

(1� bp
0

)

N
0

� 1
. (2.12)

The estimator of the sampling variance of b⌧ in (2.12) and the approximated posterior

variance of ⌧ in (2.11) under independence are the same.

Therefore, the Bayesian credible interval under independence will have a correct

asymptotic coverage property, if the finite population covariance of the potential

outcomes is zero. However, if the finite population covariance between Yi(1) and

Yi(0), S10

, is negative, we have

var(b⌧) <
N

0

N
1

N
S2

1

+
N

1

N
0

N
S2

0

according to (2.4), which implies that the Bayesian credible interval will over-cover
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the truth over repeated sampling. If the finite population covariance between Yi(1)

and Yi(0), S
10

, is positive, the Bayesian credible interval may not have a correct

frequentists’ coverage property.

2.4.3 Bayesian Sensitivity Analysis

The independence between potential outcomes may not be plausible even condi-

tionally on observed covariates. In particular, if the potential outcomes are positively

correlated, the Bayesian credible interval may not have a correct frequentists’ coverage

property. However, the observed data provide no information about the association

between the two potential outcomes, since they are never jointly observed. Therefore,

we propose a sensitivity analysis approach for the Bayesian model discussed above.

Table 2.4: Model of the Potential Outcomes
Y (0) = 1 Y (0) = 0 row sum

Y (1) = 1 ⇡
11

⇡
10

⇡
1+

Y (1) = 0 ⇡
01

⇡
00

1� ⇡
1+

column sum ⇡
+1

1� ⇡
+1

1

The joint distribution of (Yi(1), Yi(0)) follows a Multinomial distribution with

parameters (⇡
11

, ⇡
10

, ⇡
01

, ⇡
00

) as shown in Table 2.4, which can be equivalently char-

acterized by the marginal distributions (⇡
1+

, ⇡
+1

) and an association parameter. We

propose a new characterization of association between the potential outcomes in terms

of the sensitivity parameter:

� =
P{Y (1) = 1 | Y (0) = 1}
P{Y (1) = 1 | Y (0) = 0} =

⇡
11

⇡
10

1� ⇡
+1

⇡
+1

2 (0,1).

When the potential outcomes are independent, we have � = 1; when ⇡
11

! 0, we have

53



Chapter 2: A Potential Tale of Two by Two Tables from Completely Randomized
Experiments

� ! 0; when ⇡
10

! 0, we have � ! 1. In practice, we propose varying our sensitivity

parameter � over a wide range of values, and performing Bayesian inference at each

fixed value of �.

There is a one-to-one mapping between (⇡
11

, ⇡
10

, ⇡
01

, ⇡
00

) and (⇡
1+

, ⇡
+1

, �), and

thus the cell probabilities ⇡jk’s can be expressed as

⇡
11

=
�⇡

1+

⇡
+1

1� ⇡
+1

+ �⇡
+1

, ⇡
10

=
⇡
1+

(1� ⇡
+1

)

1� ⇡
+1

+ �⇡
+1

, (2.13)

⇡
01

= ⇡
+1

� �⇡
1+

⇡
+1

1� ⇡
+1

+ �⇡
+1

, ⇡
00

= 1� ⇡
+1

� ⇡
1+

+ ⇡
11

. (2.14)

Since all the cell probabilities are within the interval [0, 1], the equations in (2.13)

and (2.14) impose the following restrictions on (⇡
1+

, ⇡
+1

, �):

�(⇡
1+

� ⇡
+1

)  1� ⇡
+1

, �⇡
+1

> ⇡
1+

+ ⇡
+1

� 1. (2.15)

The posterior distributions of (⇡
1+

, ⇡
+1

) are the same as (2.9). However, the

imputations of the missing potential outcomes are di↵erent from Section 2.4.1. For

Wi = 1, we impute

Yi(0)|Yi(1) = 1 ⇠ Bern

✓

⇡
11

⇡
1+

=
�⇡

+1

1� ⇡
+1

+ �⇡
+1

◆

,

Yi(0)|Yi(1) = 0 ⇠ Bern

✓

⇡
01

1� ⇡
1+

=
⇡
+1

1� ⇡
1+

� �⇡
1+

⇡
+1

(1� ⇡
+1

+ �⇡
+1

)(1� ⇡
1+

)

◆

.
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For Wi = 0, we impute

Yi(1)|Yi(0) = 1 ⇠ Bern

✓

⇡
11

⇡
+1

=
�⇡

1+

1� ⇡
+1

+ �⇡
+1

◆

,

Yi(1)|Yi(0) = 0 ⇠ Bern

✓

⇡
10

1� ⇡
+1

=
⇡
1+

1� ⇡
+1

+ �⇡
+1

◆

.
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Figure 2.1: Imputation of the Missing Potential Outcomes

We illustrate the strategy for imputing missing potential outcomes in Figure 2.1,

in which we have

⌧ |W ,Y obs, ⇡
1+

, ⇡
+1

⇠ n
11

+B
01

+B
00

� B
11

� B
10

� n
01

N
,

where B
11

⇠ Binomial(n
11

, ⇡
11

/⇡
1+

), B
10

⇠ Binomial {n
10

, ⇡
01

/(1� ⇡
1+

)}, B
01

⇠

Binomial(n
01

, ⇡
11

/⇡
+1

), B
00

⇠ Binomial {n
00

, ⇡
10

/(1� ⇡
+1

)}, and {B
11

, B
10

, B
01

, B
00

}
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are independent. Note that although the posterior distribution of (⇡
1+

, ⇡
+1

) does not

depend on the association parameter �, the posterior distribution of ⌧ does. While

there is no explicit form of the posterior distribution of ⌧ , we can approximate it via

Monte Carlo. We will apply the proposed sensitivity analysis in Section 2.7.

2.5 General Causal Measures

Up to now, we have considered the most commonly used causal estimand, the

average causal e↵ect (or CRD). However, researchers and practitioners are also often

interested in the log of the causal risk ratio (relative risk)

log(CRR) = log(p
1

)� log(p
0

) = log

✓

N
11

+N
10

N
11

+N
01

◆

, (2.16)

and the log of the causal odds ratio

log(COR) = logit(p
1

)� logit(p
0

) = log

✓

N
11

+N
10

N
01

+N
00

◆

� log

✓

N
11

+N
01

N
10

+N
00

◆

, (2.17)

where logit(x) = log(x)� log(1�x). One attractive feature of CRD is that it is linear

in the individual causal e↵ects. On the contrary, log(CRR) and log(COR) are finite

population level causal estimands, which are not simple averages of individual causal

e↵ects. The linearity of the average causal e↵ect permitted Neyman (1923) to obtain

an unbiased estimator with exact variance. However, the elegant mathematics of

Neyman (1923)’s randomization inference for CRD is not directly applicable to non-

linear causal measures. We will fill in the gap by obtaining asymptotic randomization
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inference for log(CRR) and log(COR).

We can obtain estimators for the log of the causal risk ratio and odds ratio by

substituting estimators of p
1

and p
0

in (2.16) and (2.17), i.e., log(\CRR) = log(bp
1

)�

log(bp
0

) and log(\COR) = logit(bp
1

)� logit(bp
0

). As mentioned earlier, general nonlinear

causal measures have not been studied carefully from the Neymanian perspective,

because the absence of linearity makes exact variance calculations intractable for such

measures. Instead, we take an asymptotic perspective in this section. In the following

subsections, we will (i) propose asymptotic randomization inference for log(\CRR)

and log(\COR); (ii) compare them with the results under traditional independent

Binomial models; (iii) discuss Bayesian inference for the general causal measures.

2.5.1 Neymanian Asymptotic Randomization Inference

Unfortunately, the unbiasedness is not preserved by plugging bp
1

and bp
0

into the

nonlinear functions (2.16) and (2.17). Furthermore, the plug-in estimators do not have

finite means or variances, since bp
1

and bp
0

can equal to 0 or 1 with positive probabilities.

In spite of these limitations, when p
1

and p
0

are both bounded away from 0 and

1, the estimators log(\CRR) and log(\COR) have regular asymptotic distributions,

summarized in the following two theorems.

Theorem 10. If 0 < p
0

, p
1

< 1, as N ! 1, log(\CRR) is consistent for log(CRR)

and asymptotically Normal with asymptotic variance

N
1

p
1

+N
0

p
0

Np
1

p
0

✓

S2

1

N
1

p
1

+
S2

0

N
0

p
0

� S2

⌧

N
1

p
1

+N
0

p
0

◆

. (2.18)
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Assuming S2

⌧ = 0 as in Neyman (1923), we can estimate the asymptotic variance by

bVCRR =
n
10

n
11

N
1

(n
11

+ n
01

)N
0

n
01

N
+

n
00

n
01

N
0

(n
11

+ n
01

)N
1

n
11

N
. (2.19)

Theorem 11. If 0 < p
0

, p
1

< 1, as N ! 1, log(\COR) is consistent for log(COR)

and asymptotically Normal with asymptotic variance

N
1

p
1

(1� p
1

) +N
0

p
0

(1� p
0

)

Np
1

(1� p
1

)p
0

(1� p
0

)

⇢

S2

1

N
1

p
1

(1� p
1

)
+

S2

0

N
0

p
0

(1� p
0

)

� S2

⌧

N
1

p
1

(1� p
1

) +N
0

p
0

(1� p
0

)

�

. (2.20)

Assuming S2

⌧ = 0 as in Neyman (1923), we can estimate the asymptotic variance by

bVCOR =
1

n
11

+
1

n
10

+
1

n
01

+
1

n
00

. (2.21)

The variance formulae (2.18) and (2.20) for log(\CRR) and log(\COR) are similar

to the variance formula (2.4) for b⌧ , depending on the finite population variances of

the potential outcomes S2

1

and S2

0

, and the unidentifiable finite population variance

of the individual causal e↵ect S2

⌧ .

Furthermore, borrowing the idea of bias-correction for ratio estimators (Cochran,

1977), we can obtain bias-corrected estimators for log(CRR) and log(COR), which

have lower order asymptotic biases than the näıve moment estimators. Similar to

Neyman’s variance estimator for var(b⌧), the variance estimators in (2.19) and (2.21)

are conservative unless the constant causal e↵ects assumption holds. Analogous to

the result in (2.8) for CRD, using the lower bound for S2

⌧ in Theorem 8, we can
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improve the variance estimators (2.19) and (2.21) for the bias corrected estimators

for log(CRR) and log(COR). These bias-corrected point estimators and improved

variance estimators improve the moment-based Neymanian inference asymptotically,

and we call them improved Neymanian inference hereinafter. We provide technical

details about bias and variance reduction with proofs in Appendix B.

2.5.2 Independent Binomial Models Versus Neymanian In-

ference

In current clinical practice, the following independent Binomial models are widely

used:

n
11

⇠ Binomial(N
1

, p
1

), n
01

⇠ Binomial(N
0

, p
0

), n
11

n
01

. (2.22)

In the model above, n
11

and n
01

are assumed to be Binomial random variables. Such

an assumption cannot, however, be justified by randomization using the potential

outcomes model.

The maximum likelihood estimators for p
1

�p
0

, log(p
1

)�log(p
0

), logit(p
1

)�logit(p
0

)

are the same as b⌧ , log(\CRR), log(\COR), and their asymptotic variances (Woolf, 1955;

Rothman et al., 2008) can be estimated by

bV Bin

CRD =
bp
1

(1� bp
1

)

N
1

+
bp
0

(1� bp
0

)

N
0

, (2.23)

bV Bin

CRR =
1

n
11

� 1

N
1

+
1

n
01

� 1

N
0

=
n
10

n
11

N
1

+
n
00

n
01

N
0

, (2.24)

bV Bin

COR =
1

n
11

+
1

n
10

+
1

n
01

+
1

n
00

. (2.25)
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Here, the superscript “Bin” is for “Binomial” models. For CRD and log(COR),

the estimated variances under independent Binomial models are the same as Ney-

manian inference assuming constant causal e↵ects. However, this does not hold for

log(CRR). One su�cient condition for the equivalence of the variances from Ney-

manian inference and independent Binomial models is

N
1

N
0

=
n
11

n
01

, or equivalently, bp
1

= bp
0

,

which essentially assumes the null hypothesis of zero average causal e↵ect.

However, all the conclusions here are based on the constant causal e↵ects as-

sumption which may not be realistic in applications with binary outcomes. Without

assuming constant causal e↵ects and by using the new sharp bound for S2

⌧ in (2.7),

we obtain di↵erent results from independent Binomial models, as shown in Appendix

A. One surprising property of the log odds ratio is that the variance estimator un-

der independent Binomial models (2.25) is symmetric with respect to treatment and

outcome, which coincides with the randomization-based variance estimator (2.21)

assuming S2

⌧ = 0. However, the true variance of log(\COR) over all possible random-

izations, (2.20), and the improved variance estimator in Appendix A, (B.4), do not

have this symmetry.

2.5.3 Bayesian Inference for General Causal Measures

As shown above, Neymanian randomization inference for nonlinear measures of

causal e↵ects involves tedious algebra, and relies on asymptotics under regularity

conditions. In contrast, the Bayesian inference for log(CRR) and log(COR) is quite
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natural, once we impute all the missing potential outcomes based on their posterior

predictive distributions.

For example, under the independent potential outcomes model, we have

log(CRR)|W ,Y obs, ⇡
1+

, ⇡
+1

⇠ log

✓

n
11

+B
0

n
01

+B
1

◆

,

log(COR)|W ,Y obs, ⇡
1+

, ⇡
+1

⇠ log

✓

n
11

+B
0

N � n
11

� B
0

◆

� log

✓

n
01

+B
1

N � n
01

� B
1

◆

.

Also, we can apply the Bayesian sensitivity analysis technique, similar to Section

2.4.3, and obtain

log(CRR)|W ,Y obs, ⇡
1+

, ⇡
+1

⇠ log

✓

n
11

+B
01

+B
00

n
01

+B
11

+B
10

◆

,

log(COR)|W ,Y obs, ⇡
1+

, ⇡
+1

⇠ log

✓

n
11

+B
01

+B
00

N � n
11

� B
01

� B
00

◆

� log

✓

n
01

+B
11

� B
10

N � n
01

� B
11

� B
10

◆

.

The posterior distributions of these causal measures can then be approximated by

Monte Carlo.

2.6 Simulation Studies

In order to compare the finite sample properties of Neyman’s original method,

the modified Neyman’s method, and the Bayesian method assuming independent

potential outcomes, we conduct two sets of simulation studies with independent and

positively associated potential outcomes. The first set listed as Cases 1–5 in Table 2.5

represent independent potential outcomes, while those listed as Cases 6–12 represent
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positively associated potential outcomes. Table 2.5 also shows the marginal variances,

correlations of the potential outcomes, and causal measures for each set of potential

outcomes. To save space in the main text, we present only the results for CRD

and log(COR). The results for log(CRR) and the simulation studies for negatively

associated potential outcomes are discussed in Appendix B.

Table 2.5: “Science table” for the simulation studies

Case N
11

N
10

N
01

N
00

S2

1

S2

0

S
10

S2

⌧ ⌧ log(CRR) log(COR)
1 50 50 50 50 0.251 0.251 0.000 0.503 0.000 0.000 0.000
2 30 70 30 70 0.251 0.211 0.000 0.462 0.200 0.511 0.847
3 30 90 20 60 0.241 0.188 0.000 0.430 0.350 0.875 1.504
4 80 20 80 20 0.251 0.161 0.000 0.412 -0.300 -0.470 -1.386
5 60 20 90 30 0.241 0.188 0.000 0.430 -0.350 -0.629 -1.504
6 60 40 40 60 0.251 0.251 0.050 0.402 0.000 0.000 0.000
7 50 50 30 70 0.251 0.241 0.050 0.392 0.100 0.223 0.405
8 50 70 30 50 0.241 0.241 0.010 0.462 0.200 0.405 0.811
9 40 110 10 40 0.188 0.188 0.013 0.352 0.500 1.099 2.197
10 70 30 50 50 0.251 0.241 0.050 0.392 -0.100 -0.182 -0.405
11 50 30 70 50 0.241 0.241 0.010 0.462 -0.200 -0.405 -0.811
12 30 10 110 50 0.161 0.211 0.010 0.352 -0.500 -1.253 -2.234

For given potential outcomes, we draw, repeatedly and independently, the treat-

ment assignment vectors 5000 times, obtain the observed outcomes, and then apply

three methods: Neymanian inference assuming constant treatment e↵ects, improved

Neymanian inference, and Bayesian inference assuming independent potential out-

comes. The improved Neymanian inference means using the improved variance esti-

mator (2.8) for CRD, and bias-corrected estimators (B.1) and (B.3) and improved

variance estimators (B.2) and (B.4) for nonlinear causal measures log(CRR) and

log(COR). Comparison of these methods are summarized in Figure 2.2, with aver-

age biases, average lengths of the 95% confidence/credible intervals, and the coverage

probabilities.
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First, the bias-corrected estimators for nonlinear causal measure log(COR) do

have smaller biases than the original Neymanian estimators and Bayes estimators in

most cases. Second, the confidence intervals from the modified Neyman’s method

are narrower than Neyman’s original method, while still maintaining correct coverage

properties. They indeed improve Neyman’s original method. Third, the average

widths of the Bayesian credible intervals are much narrower than the original and

modified Neyman’s method. Moreover, when the potential outcomes are independent,

the Bayesian credible intervals have correct frequentists’ coverage property. When the

potential outcomes are positively associated and the average causal e↵ect is small, the

Bayesian credible intervals slightly under-cover the truth. The results in Appendix B

show that when the potential outcomes are negatively associated, even the narrowest

Bayesian credible intervals over-cover the true causal measures, and the Neymanian

intervals and their modification are too “conservative.”

It is also interesting to investigate the frequency coverage property of the improved

variance estimator (2.8) for CRD under the sharp null. Table 2.6 compares the

frequency properties of Neymanian variance estimator (2.6) and its improved version

(2.8), with moderate sample size N = 30 and di↵erent choices of N
11

and N
00

such

that N
1

= N
0

= 15. Except for the case with N
11

= N
00

= 15, the improved

variance estimators have shorter confidence intervals but preserve the same coverage

rates. Under the sharp null, with sample size N = 30, the sampling variance of b⌧ is

maximized at N
11

= N
00

= 15, and in this case the adjusting term |b⌧ |(1� |b⌧ |)/(N�1)

has the wildest behavior. Therefore, in practice, if we have small sample sizes and

observe that bp
1

⇡ bp
0

⇡ 0.5, the improved variance estimator may hurt our inference.
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In all other situations, we suggest using the improved variance estimator.

Table 2.6: Neymanian and its improved variance estimators for CRD, (2.6) and (2.8),
under the sharp null hypothesis with N = 30 and N

10

= N
01

= 0
N

11

N
00

Length Coverage Lengthc Coveragec

(Using Neyman’s estimator) (Using corrected estimator)
20 10 0.686 0.951 0.644 0.951
25 5 0.542 0.959 0.491 0.959
15 15 0.728 0.971 0.683 0.858
12 18 0.713 0.942 0.672 0.942
8 22 0.633 0.96 0.601 0.96

2.7 Application to a Randomized Controlled Trial

This example is taken from Bissler et al. (2013), where the authors compare the

rate of adverse events in the treatment group versus the control group. The adverse

event naspharyngitis occurred in 19 out of 79 subjects in the treatment group with

everolimus, and it occurred in 12 out of 39 subjects in the control group. Therefore,

the 2 ⇥ 2 table representing the observed data has cell counts (n
11

, n
10

, n
01

, n
00

) =

(19, 60, 12, 27). In Figure 2.3(a), we show the results for three causal measures using

Neymanian inference, modified Neymanian inference, and Bayesian posterior infer-

ence assuming independent potential outcomes. The results match with those in our

simulation studies in the sense that the bias-corrected estimators are slightly di↵er-

ent from the original estimators, and the Bayes posterior credible intervals are much

narrower than the confidence intervals from Neymanian inference. However, in this

particular example, all intervals cover zero.

Since the independence assumption between potential outcomes has a strong im-

pact on the Bayesian inference for the finite population causal measures, we conduct
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a sensitivity analysis as proposed in Section 2.4.3 by varying log(�) within [�2, 4],

and obtain Bayesian credible intervals for the causal measures at each log(�). Figure

2.3(b) shows the sensitivity analysis for CRD and log(COR), with similar patterns

log(CRR) as shown in the Supplementary Materials. Finally, the widths of the cred-

ible interval depend on log(�); however, in the example, even the widest credible

intervals are narrower than the “conservative” Neymanian confidence intervals.

2.8 Discussion

In this paper, we have discussed causal inference of completely randomized treatment-

control studies with binary outcomes under the potential outcomes model. We first

made a connection between the Fisher randomization test (Fisher, 1935a) and Fisher’s

exact test (Fisher, 1935b) for binary outcomes, and proposed a procedure which uni-

formly dominates Neyman (1923)’s method. Although widely used in clinical practice,

statistical inference for general nonlinear causal measures are based on the assump-

tion of independent Binomial models, which is not justified by randomization. Based

on randomization, our asymptotic analysis shows that the widely used variance es-

timators are either incorrect or ine�cient, unless the null hypothesis of zero average

causal e↵ect is true.

Ding (2014) shows that the Neyman’s test for zero average causal e↵ect tends to

be more powerful than Fisher’s test for zero individual causal e↵ect for many realistic

cases including balanced designs. Our variance estimator (2.8) further improves Ney-

man’s test. Our new result is not contradictory to the classical result that Fisher’s

exact test is the uniformly most powerful unbiased test for equal probability of two
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independent Binomials (Lehmann and Romano, 2006). Both the Fisherian and Ney-

manian approaches are derived under the potential outcomes model, but the classical

result for Fisher’s exact test is derived under the independent Binomial models.

Traditionally, the variance formulae in (2.21) and (2.25) for log(COR) have been

used in both experimental and observational studies (including both prospective and

retrospective observational studies). Due to the symmetry of the variance formulae in

(2.21) and (2.25) with respect to the treatment and outcome, researchers found that

statistical inference of the log odds ratio measure is invariant to the sampling scheme

(experimental study, prospective or retrospective observational studies), which was

regarded as a celebrated and also mysterious feature of the log of the odds ratio.

As a pioneer in epidemiology and biostatistics, Cornfield (1959) said that “there is

a distinction seems undeniable, but its exact nature is elusive,” when he was dis-

cussing experimental and observational studies. However, randomized experiments

are fundamentally di↵erent from observational studies, and especially di↵erent from

retrospective observational studies. Under the potential outcomes model with the

potential outcomes treated as fixed quantities, the randomness of the observed out-

comes comes only from the physical randomization in experiments. Therefore, the

treatment and the observed outcome are asymmetric unless the sharp null is true, and

the variance in (2.20) for log(COR) and its estimator in (B.4) reflect the asymmetric

nature explicitly. In a recent comment on Cornfield (1959), Rubin (2012) suggested

revealing the hidden nature of di↵erent studies using potential outcomes. Indeed, our

results verify Rubin (2012)’s conjecture.

In order to reveal the importance of the correlation between potential outcomes
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and the intrinsic lack of additivity for binary outcomes, we focus our discussion on two

by two tables from completely randomized experiments. The same idea can be also

applied to observational studies as long as the ignorability assumption holds. We can

either stratify on the observed covariates or propensity scores (Rosenbaum and Rubin,

1983), and then within each strata the data can be approximately viewed as generated

from randomized experiments (Rosenbaum, 2002). The findings of this paper can be

generalized in many ways. For instance, we can discuss Neymanian randomization

inference for full factorial or fractional factorial designs with binary outcomes, since

the current discussion Dasgupta et al. (2015) is restricted to continuous outcomes. It

will also be interesting to discuss causal inference under the potential outcomes model

for general outcomes (categorical data, counts, survival times, etc.). These topics are

our ongoing or future research projects.

67



Chapter 2: A Potential Tale of Two by Two Tables from Completely Randomized
Experiments

1 2 3 4 5

−0
.0
10

−0
.0
04

0.
00
0

0.
00
4

Bias

CR
D

● ● ● ●

●

● Neyman
Bayes

●

●

●
●

●

1 2 3 4 5

0.
10

0.
15

0.
20

0.
25

Length

● Neyman
Neymanc
Bayes

1 2 3 4 5

0.
85

0.
90

0.
95

1.
00

Coverage

● ● ● ● ●

● Neyman
Neymanc
Bayes

1 2 3 4 5

−0
.0
5

−0
.0
3

−0
.0
1

0.
01

lo
g(
CO

R)

●

●

●

●

●

● Neyman
Neymanc
Bayes

●

●

●

●

●

1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

1.
2

● Neyman
Neymanc
Bayes

1 2 3 4 5

0.
85

0.
90

0.
95

1.
00

●
● ● ● ●

● Neyman
Neymanc
Bayes

(a) Independent Potential Outcomes: Cases 1 to 5 with the x-axis denoting the case numbers
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Figure 2.2: Simulation Studies. Each subfigure is a 2⇥ 3 matrix summarizing results
for 2 parameters and 3 properties. Note that “Neyman” and “Bayes” are indistin-
guishable for biases of log(COR).

68



Chapter 2: A Potential Tale of Two by Two Tables from Completely Randomized
Experiments

CRD log(CRR) log(COR)

Neyman
Neyman^c
Bayes

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1

Neyman
Neyman^c
Bayes

−0.8 −0.6 −0.4 −0.2 0 0.2

Neyman
Neyman^c
Bayes

−1 −0.5 0 0.5

(a) Inference for the Causal Measures. We apply Neymanian, improved Neymanian (Neymanc above)
and Bayesian approaches with the segments representing the 95% confidence/credible intervals and
centers illustrating the point estimators.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−2 −1 0 1 2 3 4

−0
.2

5
−0

.1
5

−0
.0

5
0.

05

sensitivity analysis for CRD

log(γ)

po
in

t a
nd

 in
te

rv
al

 e
st

im
at

es

●

CRD
Lower(Neymanc)
Upper(Neymanc)
Mean(Bayes)
Lower(Bayes)
Upper(Bayes)independence widest

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−2 −1 0 1 2 3 4

−1
.0

−0
.5

0.
0

0.
5

sensitivity analysis for log(COR)

log(γ)

po
in

t a
nd

 in
te

rv
al

 e
st

im
at

es

●

log(COR)
Lower(Neymanc)
Upper(Neymanc)
Mean(Bayes)
Lower(Bayes)
Upper(Bayes)

independence widest

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−2 −1 0 1 2 3 4

−0
.8

−0
.4

0.
0

0.
2

0.
4

sensitivity analysis for log(CRR)

log(γ)

po
in

t a
nd

 in
te

rv
al

 e
st

im
at

es

●

log(CRR)
Lower(Neymanc)
Upper(Neymanc)
Mean(Bayes)
Lower(Bayes)
Upper(Bayes)

independence widest

(b) Bayesian Sensitivity Analysis for CRD and log(COR). The intervals named “independence” are
the 95% posterior credible intervals under independence of the potential outcomes, and the intervals
named “widest” are the widest 95% credible intervals over the ranges of the sensitivity parameters.

Figure 2.3: A Randomized Experiments with Observed Data (n
11

, n
10

, n
01

, n
00

) =
(19, 60, 12, 27).
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Chapter 3

Treatment E↵ect Heterogeneity in

Randomized Experiments

3.1 Introduction

Researchers and practitioners are increasingly interested in whether and how treat-

ment e↵ects vary in randomized experiments. For example, we might be interested

in assessing the e↵ect of scaling up a promising intervention evaluated on a limited

subpopulation (O’Muircheartaigh and Hedges, 2014). If we only use observed char-

acteristics to predict the program’s e↵ectiveness on the new population, we might

wonder if we are missing critical unexplained variation, which could undermine our

generalization. Similarly, we might want to determine whether di↵erent theoretical

models are su�ciently rich to explain observed behavior in a randomized experiment.

For instance, is a simple model of constant treatment e↵ects within subgroups su�-

cient to explain observed labor supply behavior in welfare reform experiments? Or is
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there meaningful unexplained variation, as predicted by labor supply theory (Bitler

et al., 2010)?

Unfortunately, assessing such variation is di�cult. In general, researchers investi-

gating specific types of idiosyncratic variation must therefore rely on strong modeling

assumptions to draw meaningful conclusions from the data (Cox, 1984; Heckman

et al., 1997). Instead, we propose a randomization-based inferential framework for

treatment e↵ect variation that does not strongly rely on the modeling assumptions.

The statistical procedures are justified by the physical randomization itself (Neyman,

1923; Fisher, 1935a; Rosenbaum, 2002).

Of course, all treatment e↵ects vary in practice, especially in the social sciences.

The key question is whether the unexplained variation is su�ciently large to be of

substantive importance. We first o↵er a randomization-based test for the presence

of idiosyncratic treatment e↵ect variation that cannot be explained by the observed

covariates, and then propose a measure of the fraction of the systematic treatment ef-

fect variation that can be explained by the observed covariates. Applying our method

to the Head Start Impact Study, a large-scale randomized evaluation of a Federal

preschool program, gives meaningful practical conclusions.

3.2 Treatment E↵ect Decomposition

Assume that we have n units in a completely randomized experiment with n
1

units receiving treatment and n
0

units receiving control. For unit i, let Ti denote

the treatment indicator with 1 for treatment and 0 for control. We use the potential

outcomes framework (Neyman, 1923) to define causal e↵ects. Under the Stable Unit
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Treatment Value Assumption (Rubin, 1980) that there is only one version of the

treatment and no interference among units, we define Yi(1) and Yi(0) as the potential

outcomes under treatment and control. The observed outcome, Y obs

i = TiYi(1)+ (1�

Ti)Yi(0), is a deterministic function of the treatment and potential outcomes. Finally,

let Xi 2 RK denote the vector of pretreatment covariates, with the constant one as its

first component. Under the potential outcomes framework, {Yi(1), Yi(0), Xi}ni=1

are

all fixed numbers; the randomness comes solely from Ti, the physical randomization

itself.

We define the individual treatment e↵ect as ⌧i = Yi(1) � Yi(0), which has the

following decomposition:

⌧i = Yi(1)� Yi(0) = X 0
i� + "i = �i + "i (i = 1, . . . , n). (3.1)

If we could observe ⌧i for each individual, � would be the usual linear regression

coe�cients of ⌧i on Xi. We can then define �i = X 0
i� as the systematic treatment

e↵ect variation explained by the observed covariates Xi, and "i as the idiosyncratic

treatment e↵ect variation unexplained by Xi (Djebbari and Smith, 2008).

Even though we cannot observe ⌧i, we can still leverage these regression concepts.

Define

Sxx =
n
X

i=1

XiX
0
i/n, Sx" =

n
X

i=1

Xi"i/n, Sx⌧ =
n
X

i=1

Xi⌧i/n.

First, we assume that det(Sxx) > 0, which is analogous to the usual full rank assump-

tion in any linear model. Second, we assume that Sx" = 0, i.e., that "i and Xi have

covariance zero. This assumption will hold automatically, if we re-define (�, "i) to
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be (� + S�1

xx Sx", "i � X 0
iS

�1

xx Sx"). Therefore, following the agnostic regression frame-

work (Lin, 2013), we view the systematic component, �i = X 0
i�, as a linear projection

of ⌧i onto the linear space spanned by Xi; the idiosyncratic treatment e↵ect "i is the

corresponding residual.

3.3 Statistical Inference of Treatment E↵ect Vari-

ation

3.3.1 Randomization Inference

We now derive the randomization inference-based estimator of �. Define

bSx1 =
n
X

i=1

TiXiY
obs

i /n
1

, bSx0 =
n
X

i=1

(1� Ti)XiY
obs

i /n
0

as the sample covariances between Xi and Y obs

i under treatment and control, and

let S(V ) =
Pn

i=1

(Vi � V̄ )(Vi � V̄ )0/(n � 1) be the covariance operator, where V̄ =

Pn
i=1

Vi/n. The physical randomization of Ti’s justifies the following theorem.

Theorem 12. Under model (3.1), an unbiased estimator for � is

b�RI = S�1

xx (bSx1 � bSx0),

with covariance over all possible randomizations as cov(b�RI) = S�1

xx cov(bSx1� bSx0)S�1

xx ,
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where

cov(bSx1 � bSx0) =
S{XY (1)}

n
1

+
S{XY (0)}

n
0

� S(X⌧)

n
. (3.2)

Therefore, b�RI is an unbiased estimator of the systematic treatment e↵ect variation

over Xi. Moreover, the covariance formula (3.2) generalizes Neyman (1923)’s classical

result for the average treatment e↵ect, reducing to Neyman’s formula if Xi = 1 for all

units. As with Neyman’s original formula, we can assume that "i = 0 for all units in

order to obtain a “conservative” estimate of cov(bSx1 � bSx0). Note that Sxx is known

for the population, rather than estimated.

Thus far, the role of covariates has been to model the treatment e↵ect alone; b�RI

is unbiased for � regardless of the marginal distributions of potential outcomes. In

general, we also want to use covariates to reduce sampling variability. Let Wi 2

RJ denote a vector of pretreatment covariates, with the constant vector as its first

component. Since Xi and Wi have di↵erent roles in estimation they may also contain

di↵erent sets of covariates, though, in practice, X is likely to be a subset of W .

Following the covariate adjustment approach in survey sampling (Cochran, 1977),

we can therefore obtain a model-assisted estimator for � that uses W to reduce

sampling variability. To see this, we need several definitions. Define W̄ and Sww as

the population mean and covariance of W , with det(Sww) > 0; define W̄
1

and W̄
0

as

the sample means under treatment and control; define bBt as the regression coe�cient

of Y obsX on W for treatment arm t; and define ei(t) be the residual of the regression

of Yi(t)Xi on Wi, with �i = ei(1) � ei(0). The model-assisted estimator for Stx is
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then

bSw
tx = bStx + bB0

t(W̄ � W̄t)

for treatment t. More generally, we have the following theorem.

Theorem 13. The model-assisted estimator

b�w
RI = S�1

xx (bS
w
1x � bSw

0x)

has asymptotic covariance matrix S�1

xx cov(bS
w
1x � bSw

0x)S
�1

xx , where

cov(bSw
1x � bSw

0x) =
S{e(1)}

n
1

+
S{e(0)}

n
0

� S(�)

n
.

The resulting estimator, b�w
RI, therefore uses covariates both to estimate treatment

e↵ect variation and to reduce sampling variability. Asymptotically, as long as W is

predictive of the marginal potential outcomes, then the model-assisted estimator will

improve precision over the unassisted estimator. Finally, when Xi and Wi are matri-

ces of dummy variables generated by the same categorical covariates, this estimator

reduces to the post-stratification estimator (Miratrix et al., 2013).

3.3.2 Regression with Treatment-Covariate Interactions

We now use the results from the randomization inference to better understand the

familiar case of linear regression with treatment-covariate interactions (Berrington de
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González and Cox, 2007; Crump et al., 2008):

Y obs

i = X 0
i� + TiX

0
i� + "i (i = 1, . . . , n), (3.3)

where "i is implicitly assumed to induce the randomness. Written in the usual matrix

form, it is di�cult to compare the regression-based estimator, b�OLS, to the random-

ization inference-based estimator, b�RI. We therefore re-write b�OLS using the following

theorem.

Theorem 14. The ordinary least squares estimator for � in equation (3.1) can be

written as:

b�OLS = bS�1

xx,1
bSx1 � bS�1

xx,0
bSx0,

where bSxx,t is the sample covariance matrix of Xi under treatment arm t. b�OLS is a

consistent estimator for �.

The di↵erences betwen b�OLS and b�w
RI are minor. First, while the point estimates

di↵er slightly—b�RI is unbiased while b�OLS is consistent—they are asymptotically

equivalent. Second, unlike the variance of b�w
RI, the variance of b�OLS has a complex

form in finite samples. The usual OLS standard errors are not appropriate in this

case, and we must instead use Huber–White standard errors (Lin, 2013). Even so,

the resulting variance estimates for b�w
RI and b�OLS are asymptotically equivalent.

Therefore, even though b�w
RI and b�OLS are not identical, the close connections

between the two suggest that, in practice, b�OLS is justified by the randomization, just

as Fisher (1935a) suggested nearly a century ago.
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3.4 Testing and Decomposing Treatment E↵ect Vari-

ation

3.4.1 Testing Systematic Treatment E↵ect Variation

Under the assumption of no idiosyncratic treatment e↵ect variation, i.e., "i = 0,

the covariance of b�RI reduces to cov(b�RI) = S�1

xx cov(bS
1x � bS

0x) S�1

xx , where

cov(bS
1x � bS

0x) =
S{Yi(1)Xi}

n
1

+
S{Yi(0)Xi}

n
0

� S{XiX 0
i�}

n
.

We can estimate S{Yi(t)Xi} by the sample covariance of {Y obs

i Xi : Ti = t}, and

S{XiX 0
i�} by the sample covariance of {XiX 0

i
b�RI : i = 1, . . . , n}. Therefore, we can

estimate the sampling covariance of b�RI, and then construct a confidence region for

�.

The null hypothesis of no treatment e↵ect variation explained by the observed

covariates can be characterized by the null hypothesis

H
0

(X) : �
1

= 0,

where �
1

contains all the components of � except the first one corresponding to the

intercept. We can use Wald-type test for the null hypothesis H
0

(X), because we

already have a point estimate and confidence region for �.
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3.4.2 Testing Idiosyncratic Treatment E↵ect Variation

In many practical problems, we are interested in whether there is any meaningful

idiosyncratic treatment e↵ect variation beyond that can be explained away by the

observed covariates X (Ding et al., 2015). Statistically, this yields the following

hypothesis test:

H
0

(S) : ⌧i = Yi(1)� Yi(0) = X 0
i� for some � (i = 1, . . . , n).

Intuitively, we can use the shifted Kolmogorov–Smirnov statistic

tSKS = sup
y

| bF
1

(y)� bF
0

(y)|

to capture the deviation from the null hypothesis H
0

(S), where bF
1

and bF
0

are em-

pirical cumulative distributions of {Y obs

i � X 0
i
b�RI : Ti = 1} and {Y obs

i : Ti = 0},

respectively, although many other test statistics are possible. Unfortunately, the

presence of the nuisance parameter � in H
0

(S) complicates calculations of the null

distribution of the test statistic. This nuisance parameter problem can be bypassed

by maximizing the Fisher randomization test p-values over a confidence region of �

with a small adjustment. To be more specific, with a known � we can impute all

missing potential outcomes based on the known individual treatment e↵ect ⌧i = X 0
i�,

and then obtain the p-value p(�) from the Fisher randomization test. We can then

calculate the p-value against the null hypothesis H
0

(S) by

p = sup
�2CR�

p(�) + �,
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where CR� is a confidence region for � with coverage rate (1� �), and � is typically

very small compared to ↵. The resulting p-value is valid in the sense of being stochas-

tically dominated by a uniform random variable (Berger and Boos, 1994). Ding et al.

(2015) give extensive discussion on this approach.

3.4.3 Variance on the Average Treatment E↵ect Estimate

Decomposing treatment e↵ect variation into systematic and idiosyncratic com-

ponents is important even when we are only interested in the Average Treatment

E↵ect

⌧̄ =
1

n

n
X

i=1

⌧i.

To see this, we begin with Neyman (1923), who proposed the di↵erence-in-means

statistic, b⌧ = Ȳ obs

1

� Ȳ obs

0

, which is an unbiased estimator ⌧̄ . Its sampling variance is

var(b⌧) =
S
11

n
1

+
S
00

n
0

� S⌧⌧

n
,

which depends on S
11

, S
00

, and S⌧⌧ , the finite population variances of Yi(1), Yi(0)

and ⌧i, respectively. While S
11

and S
00

are estimable quantities, S⌧⌧ depends on the

correlation of potential outcomes and is unidentified.

There are a range of variance estimators that circumvent this unidentifiability. In a

classic result, Neyman (1923) proposed a lower bound for var(b⌧) under the assumption

of a constant treatment e↵ect, S⌧⌧ = 0. More recently, Aronow et al. (2014) build on

an idea from Heckman et al. (1997), proposing to bound S⌧⌧ rather than to assume

S⌧⌧ = 0. The authors use Fréchet–Hoe↵ding bounds (Hoe↵ding, 1941; Fréchet, 1951),
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which bound a joint distribution via its marginal distributions, and show that these

bounds are sharp for S⌧⌧ and, therefore, for var(b⌧).

We now use the results from Section 3.3.1 to derive lower-variance bounds than

those in Aronow et al. (2014). First, define

S�� =
n
X

i=1

(�i � ⌧̄)2/n, S"" =
n
X

i=1

"2i /n,

with �i and "i as in equation (3.1). Then S⌧⌧ = S�� +S"". For t = 0 and 1, we further

define Yi(t)�X 0
i�t as the residual of linear projection of the potential outcomes Yi(t)

onto the linear space spanned by Xi, where �t is the regression coe�cient. Let eF
1

(y)

and eF
0

(y) be the empirical cumulative distribution functions of {Yi(1) � X 0
i�1 : i =

1, . . . , n} and {Yi(0)�X 0
i�0 : 1, . . . , n}, respectively.

We have the following theorem based on Fréchet–Hoe↵ding bounds (Hoe↵ding,

1941; Fréchet, 1951).

Theorem 15. S⌧⌧ has the following sharp bounds:

S�� + S""  S⌧⌧  S�� + S"",

where

S"" =

Z

1

0

{ eF�1

1

(u)� eF�1

0

(u)}2du, S"" =

Z

1

0

{ eF�1

1

(u)� eF�1

0

(1� u)}2du.

From the proof of Theorem 15, we can see that when {Yi(1)�X 0
i�1 : i = 1, . . . , n}

and {Yi(0)�X 0
i�0 : 1, . . . , n} have the same ranks as in Figure 3.1(a), S"" attains its
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lower bound; when they have opposite ranks as in Figure 3.1(b), S"" attains its upper

bound.
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(a) lower bound
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(b) upper bound

Figure 3.1: Frechét–Hoe↵ding Bounds.

We can obtain consistent estimators for each quantity; S�� can be estimated by

the sample variance of X 0
i
b�, and eFe1(y) and eFe0(y) can be estimated by bF

1

and

bF
0

, the empirical cumulative distribution functions of {Y obs

i � X 0
ib�1 : Ti = 1} and

{Y obs

i �X 0
ib�0 : Ti = 0} based on the residuals from least squares, respectively. Overall,

so long as S�� > 0, this yields strictly tighter bounds on var(b⌧) than the corresponding

bounds that do not incorporate covariate information.
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3.4.4 Bounding the Fraction of Treatment E↵ect Variation

Explained by Covariates

A natural question in practice is the relative size of S�� and S"". Continuing the

regression analogy, we desire an R2-like measure for the proportion of total treatment

e↵ect variation explained by the systematic component:

R2

⌧ =
S��

S⌧⌧
=

S��

S�� + S""
,

which is the ratio between the variances of �i and ⌧i. As above, this measure is

not identifiable since "i depends on the joint distribution of the potential outcomes.

However, applying Theorem 15, we obtain the following bounds on R2

⌧ :

S��

S�� + S""

 R2

⌧  S��

S�� + S""

.

3.5 The Head Start Impact Study

Head Start is the largest Federal preschool program today, serving around 900, 000

children each year at a cost of roughly $8 billion. The Head Start Impact Study (HSIS)

is the first major randomized evaluation of the program. The published report found

that, on average, providing children and their families with the opportunity to enroll

in Head Start improved childrens key cognitive and social-emotional outcomes. The

report also included average treatment e↵ect estimates for a variety of subgroups

of interest, though there is only significant impact variation across a small number

of the reported, pre-treatment covariates. After these findings were released, many
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researchers argued that the reported topline results masked critical variation in pro-

gram impacts. All of these approaches, however, estimate treatment e↵ect variation

by relying on a specific set of models, such as quantile or hierarchical regression.

We investigate this question by focusing on the Peabody Picture Vocabulary Test

(PPVT), a widely used measure of cognitive ability in early childhood. We also uti-

lize a rich set of pre-treatment covariates, including pre-test score, child’s age, child’s

race, mother’s education level, and mother’s marital status. For the sake of expo-

sition, we restrict our analysis to a complete-case subset of HSIS, with N
1

= 2, 238

in the treatment group and N
0

= 1, 348 in the control group. Ding et al. (2015)

perform randomization tests to detect treatment e↵ect variation that cannot be ex-

plained away by the observed covariates. Here we focus on measuring the fraction of

the systematic treatment e↵ect variation.

As shown in Table 3.1, we find that among the top three covariates that are

most predictive of treatment e↵ect variation, Dual Language Learner status has the

largest upper bound of the R2 measure. By itself, Dual Language Learner status

alone can explain away up to 32.4% of the overall treatment e↵ect variation, and the

top three covariates in total can explain away up to 45.3% of the overall treatment

e↵ect variation.

Table 3.1: R2 for important covariates.
covariates Lower R2

⌧ Upper R2

⌧

dual language learner 0.001 0.324
academic skills 0.000 0.096

age 0.000 0.017
all above 0.002 0.453

Intuitively, Dual Language Learner status is very predictive to the control po-
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tential outcome. Therefore, we have a conjecture that the treatment e↵ect varies

by the control potential outcome itself. Fortunately, this conjecture can be empir-

ically tested. In particular, in HSIS we have the following inequality about sample

variances:

cvar{Y obs

i �X 0
i
b�RI : Zi = 1}  cvar{Y obs

i : Zi = 0}.

Transforming this back to the potential outcomes, we have

var{Yi(1)�X 0
i�}  var{Yi(0)}.

Simple algebra reduces the above inequality to

cov{Yi(0), "i}  0.

Therefore, the individual treatment e↵ects are negatively associated with the control

potential outcomes, implying that the treatment e↵ects are larger for smaller values

of Yi(0) even after controlling for covariates. As a result, we find that the treatment

e↵ect not only varies by important covariates, e.g., Dual Language Learner status,

but also varies by the control potential outcome itself.
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3.6 Generalization to Accommodate Nonlinear Treat-

ment E↵ect

In our previous discussion, we model the systematic treatment e↵ect variation as a

linear combination of the observed covariates, which may reasonably approximate the

true e↵ect variation surface by incorporating polynomials of the covariates. However,

the potential outcomes framework does not restrict us to the linear model. Assume

that we have

⌧i = Yi(1)� Yi(0) = f(Xi; �) + "i, (i = 1, . . . , n), (3.4)

where f(Xi; �) ⌘ fi is a smooth nonlinear function with first derivative rf(Xi; �) ⌘

rfi with respect to the unknown parameter �, and "i is the idiosyncratic treatment

e↵ect variation satisfying the condition
Pn

i=1

"irfi/n = 0. Define

m(Ti, Y
obs

i ; �) =
Ti

n
1

/n
Y obs

i rfi �
1� Ti

n
0

/n
Y obs

i rfi � firfi.

Because E{m(Ti, Y obs

i ; �)} = 0 is an unbiased estimating equation for � for all i, we

can solve b� from

n�1

n
X

i=1

m(Ti, Y
obs

i ; b�) = 0.

Analogous to Theorem 12, we have the following theorem.

Theorem 16. Under model (3.4), b� is consistent for � and asymptotically normal
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with variance

Srfrf



S{Y (1)rf}
n
1

+
S{Y (0)rf}

n
0

� S(⌧rf)

n

�

Srfrf ,

where Srfrf = n�1

Pn
i=1

rfi(rfi)0.

As a sanity check, when f(Xi; �) = X 0
i�, we have rfi = Xi and Theorem 16

reduces to Theorem 12.

Similarly to the discussions in Sections 3.4.1 and 3.4.2, we can test the presence of

systematic and idiosyncratic treatment e↵ect variations based on the above theorem.
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Technical Details for Chapter 1

A.1 Lemmas

Lemma 1. The completely randomized treatment assignment T = (T
1

, . . . , TN)0

satisfies

E(Ti) =
N

1

N
, var(Ti) =

N
1

N
0

N2

, cov(Ti, Tj) = � N
1

N
0

N2(N � 1)
.

If c
1

, . . . , cN are constants and c̄ =
PN

i=1

ci/N , we have

E

 

N
X

i=1

Tici

!

= N
1

c̄, var

 

N
X

i=1

Tici

!

=
N

1

N
0

N(N � 1)

N
X

i=1

(ci � c̄)2.

Proof of Lemma 1. The treatment vector T can be viewed as the inclusion indicator

vector of a simple random sample of size N
1

from a finite population of size N . The

conclusion follows from Cochran (1977).

Lemma 2 (Finite Population Central Limit Theorem; Hájek, 1960; Lehmann, 1998).
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Suppose we have a finite population {x
1

, . . . , xN} with sizeN and mean x̄ =
PN

i=1

xi/N ,

and a simple random sample of size n with inclusion indicators {Ii : i = 1, . . . , N}.

Let X̄n =
PN

i=1

Iixi/n be the sample mean. As N ! 1, if

max
1iN(xi � x̄)2

PN
i=1

(xi � x̄)2/N
is bounded and

n

N
! c 2 (0, 1), (A.1)

we have that

X̄n � x̄
p

var(X̄n)

d�! N(0, 1).

Lemma 3. If {Wi(z) : i = 1, . . . , N ; z 2 FK} is the collection of treatment indicators

from a 2K factorial experiment, then we have the following correlation structure: for

i 6= i0 and z 6= z0,

cov{Wi(z),Wi(z)} =
r(N � r)

N2

, cov{Wi(z),Wi0(z)} = � r(N � r)

N2(N � 1)
,

cov{Wi(z),Wi(z
0)} = � r2

N2

, cov{Wi(z),Wi0(z
0)} =

r2

N2(N � 1)
.

Proof of Lemma 3. Dasgupta et al. (2015) show the above results in their Lemmas 4

and 5.

88



Appendix A: Technical Details for Chapter 1

A.2 Proofs of the Theorems

Proof of Theorem 1. First, b⌧ has the following representation

b⌧ =
1

N
1

N
X

i=1

TiY
obs
i � 1

N
0

N
X

i=1

(1� Ti)Y
obs
i

=
1

N
1

N
X

i=1

TiYi(1)�
1

N
0

N
X

i=1

(1� Ti)Yi(0)

=
N
X

i=1

Ti

⇢

Yi(1)

N
1

+
Yi(0)

N
0

�

� 1

N
0

N
X

i=1

Yi(0). (A.2)

Since all the potential outcomes are fixed, we use Lemma 1 to obtain that the mean

is

E(b⌧) =
N

1

N

N
X

i=1

⇢

Yi(1)

N
1

+
Yi(0)

N
0

�

� 1

N
0

N
X

i=1

Yi(0) =
1

N

N
X

i=1

Yi(1)�
1

N

N
X

i=1

Yi(0) = ⌧,

and the variance is

var(b⌧) =
N

1

N
0

N(N � 1)

N
X

i=1

⇢

Yi(1)

N
1

+
Yi(0)

N
0

� Ȳ
1

N
1

� Ȳ
0

N
0

�

2

=
N

1

N
0

N(N � 1)

"

1

N2

1

N
X

i=1

{Yi(1)� Ȳ
1

}2 + 1

N2

0

N
X

i=1

{Yi(0)� Ȳ
0

}2

+
2

N
1

N
0

N
X

i=1

{Yi(1)� Ȳ
1

}{Yi(0)� Ȳ
0

}
#

.

Because of the following decomposition based on 2ab = a2 + b2 � (a� b)2:

2{Yi(1)� Ȳ
1

}{Yi(0)� Ȳ
0

} = {Yi(1)� Ȳ
1

}2+{Yi(0)� Ȳ
0

}2�{Yi(1)�Yi(0)� Ȳ
1

+ Ȳ
0

}2,
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we have 2S
10

= S2

1

+ S2

0

� S2

⌧ , and therefore

var(b⌧) =
S2

1

N
1

+
S2

0

N
0

� S2

⌧

N
.

Furthermore,
PN

i=1

Ti {Yi(1)/N1

+ Yi(0)/N0

} /N
1

is the mean of a simple random sam-

ple from {xi = Yi(1)/N1

+ Yi(0)/N0

: i = 1, . . . , N}, and the asymptotic Normality of

b⌧ follows from (A.2) and Lemma 2 if xi = Yi(1)/N1

+ Yi(0)/N0

satisfies the condition

in (A.1).

Proof of Theorem 2. Under Fisher’s sharp null, all the potential outcomes are fixed

constants with Yi(1) = Yi(0) = Y obs
i . The randomization statistic can be represented

as

b⌧(T ,Y obs) =
1

N
1

N
X

i=1

TiY
obs
i � 1

N
0

N
X

i=1

(1� Ti)Y
obs
i

=
N

N
1

N
0

N
X

i=1

TiY
obs
i � 1

N
0

N
X

i=1

Y obs
i . (A.3)

Using Lemma 1, we have

E
�

b⌧(T ,Y obs) | H
0

(Fisher)
 

=
N

N
1

N
0

N
1

N

N
X

i=1

Y obs
i � 1

N
0

N
X

i=1

Y obs
i = 0,

and

var
�

b⌧(T ,Y obs) | H
0

(Fisher)
 

=
N

N
1

N
0

(N � 1)

N
X

i=1

(Y obs
i � Ȳ obs)2.

Since
PN

i=1

TiY obs
i /N

1

is the mean of a simple random sample from
�

xi = Y obs
i : 1, . . . , N

 

,

the randomization statistic b⌧(T ,Y obs) follows a Normal distribution asymptotically
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by (A.3) and Lemma 2 if xi = Y obs
i satisfies the condition in (A.1).

Proof of Theorem 3. We have the following variance decomposition for Y obs:

N
X

i=1

(Y obs
i � Ȳ obs)2

=
X

{i:Ti=1}

(Y obs
i � Ȳ obs

1

+ Ȳ obs
1

� Ȳ obs)2 +
X

{i:Ti=0}

(Y obs
i � Ȳ obs

0

+ Ȳ obs
0

� Ȳ obs)2

=
X

{i:Ti=1}

(Y obs
i � Ȳ obs

1

)2 +N
1

(Ȳ obs
1

� Ȳ obs)2 +
X

{i:Ti=0}

(Y obs
i � Ȳ obs

0

)2 +N
0

(Ȳ obs
0

� Ȳ obs)2.

Ignoring the di↵erence between N and N �1 contributes only a higher order term

op(N�1) in the asymptotic analysis. Therefore, we obtain that

bV (Fisher)� bV (Neyman)

= N�1

0

s2
1

+N�1

1

s2
0

+N�1

0

(Ȳ obs
1

� Ȳ obs)2 +N�1

1

(Ȳ obs
0

� Ȳ obs)2 �N�1

1

s2
1

�N�1

0

s2
0

+ op(N
�1)

= (N�1

0

�N�1

1

)(s2
1

� s2
0

) +N�1

0

(Ȳ obs
1

� Ȳ obs)2 +N�1

1

(Ȳ obs
0

� Ȳ obs)2 + op(N
�1).

Since Ȳ obs = (N
1

Ȳ obs
1

+N
0

Ȳ obs
0

)/N , we have

(Ȳ obs
1

�Ȳ obs)2/N
0

= N
0

(Ȳ obs
1

�Ȳ obs
0

)2/N2, (Ȳ obs
0

�Ȳ obs)2/N
1

= N
1

(Ȳ obs
1

�Ȳ obs
0

)2/N2.

It follows that

bV (Fisher)� bV (Neyman) = (N�1

0

�N�1

1

)(s2
1

� s2
0

) +N�1(Ȳ obs
1

� Ȳ obs
0

)2 + op(N
�1).

Replacing the sample quantities (s2
1

, s2
0

, Ȳ obs
1

, Ȳ obs
0

) by the population quantities (S2

1

, S2

0

, Ȳ
1

, Ȳ
0

)
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adds only higher order terms op(N�1), and we eventually have

bV (Fisher)� bV (Neyman) = (N�1

0

�N�1

1

)(S2

1

� S2

0

) +N�1(Ȳ
1

� Ȳ
0

)2 + op(N
�1).

Proof of Corollary 1. For binary outcomes, the conclusions follow from

s2t =
1

Nt � 1

X

{i:Ti=t}

(Y obs
i � Ȳ obs

t )2 =
Nt

Nt � 1
bpt(1� bpt),

s2 =
1

N � 1

N
X

i=1

(Y obs
i � Ȳ obs)2 =

N

N � 1
bp(1� bp).

Proof of Theorem 4. Under the sharp null hypothesis, {|b⌧i| = |Y obs
i1 � Y obs

i2 | : i =

1, . . . , N} are all fixed numbers, and b⌧(T ,Y obs) has the same distribution as

b⌧(T ,Y obs) ⇠ 1

N

N
X

i=1

(1� 2Ti)|b⌧i| ⇠
1

N

N
X

i=1

�i|b⌧i|,

where �i’s are iid random signs with mean zero and variance one. Therefore, the

randomization distribution of b⌧(T ,Y obs) has mean zero by symmetry, and variance

bV (Fisher) = var{b⌧(T ,Y obs) | H
0

(Fisher)} =
1

N2

N
X

i=1

var(�i)|b⌧i|2 =
1

N2

N
X

i=1

b⌧ 2i .

The classical Lindberg–Feller Central Limit Theorem (Lehmann, 1998) guarantees its

asymptotic normality.
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The di↵erence between the Neymanian and Fisherian variances is

bV (Fisher)� bV (Neyman) =
1

N2

N
X

i=1

b⌧ 2i � 1

N(N � 1)

N
X

i=1

(b⌧i � b⌧)2

=
1

N2

N
X

i=1

b⌧ 2i � 1

N2

 

N
X

i=1

b⌧ 2i �Nb⌧ 2
!

+ op(N
�1)

=
⌧ 2

N
+ op(N

�1),

where the op(N�1) appears due to the di↵erence between N and N � 1, and b⌧ � ⌧ =

op(1).

Proof of Corollary 2. For matched-pair experiments with binary outcomes, we have

b⌧ =
1

N

N
X

i=1

b⌧i =
mobs

10

�mobs
01

N
,

since only the pairs with discordant outcomes contribute to the b⌧i terms. The Fishe-

rian variance is

bV (Fisher) =
1

N2

N
X

i=1

b⌧ 2i =
mobs

10

+mobs
01

N2

,

and the Neymanian variance is

bV (Neyman) =
1

N(N � 1)

 

N
X

i=1

b⌧ 2i �Nb⌧ 2
!

=
1

N(N � 1)

⇢

mobs
10

+mobs
01

� (mobs
10

�mobs
01

)2

N

�

.

Therefore, the Fisherian test is asymptotically equivalent to

b⌧
q

bV (Fisher)
=

mobs
10

�mobs
01

p

mobs
10

+mobs
01

d�! N (0, 1)
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under H
0

(Fisher), and the Neymanian test is asymptotically equivalent to

b⌧
q

bV (Neyman)
=

mobs
10

�mobs
01

p

mobs
10

+mobs
01

� (mobs
10

�mobs
01

)2/N

d�! N (0, 1)

under H
0

(Neyman).

Proof of Theorem 5. It is direct to obtain E{b⌧
1

(W ,Y obs) | H
0

(Fisher)} = 0 by sym-

metry. Under H
0

(Fisher), Y obs = {Y obs
i : i = 1, . . . , N} is a fixed vector. Lemma 3

implies that Ȳ obs(z) is the sample mean of a simple random sample of size r from the

population Y obs of size N . Therefore, we have

var{Ȳ obs(z) | H
0

(Fisher)} =

✓

1

r
� 1

N

◆

s2. (A.4)

Based on the correlation structure in Lemma 3, we obtain that

cov{Ȳ obs(z
1

), Ȳ obs(z
2

) | H
0

(Fisher)}

=
1

r2
cov

(

N
X

i=1

Wi(z1

)Y obs
i ,

N
X

i=1

Wi(z2

)Y obs
i | H

0

(Fisher)

)

=
1

r2

"

N
X

i=1

cov{Wi(z1

),Wi(z2

)}(Yi � Ȳ obs)2

+
N
X

i=1

X

i0 6=i

cov{Wi(z1

),Wi(z2

)}(Yi � Ȳ obs)(Yi0 � Ȳ obs)

#

= � 1

N2

N
X

i=1

(Yi � Ȳ obs)2 +
1

N2(N � 1)

N
X

i=1

X

i0 6=i

(Yi � Ȳ obs)(Yi0 � Ȳ obs)

= � 1

N2

N
X

i=1

(Yi � Ȳ obs)2 � 1

N2(N � 1)

N
X

i=1

(Yi � Ȳ obs)2

= � 1

N
s2. (A.5)

94



Appendix A: Technical Details for Chapter 1

Therefore, the variance of the test statistic is

var{b⌧
1

(W ,Y obs) | H
0

(Fisher)}

= 2�2(K�1)g0
1

cov(Ȳ obs)g
1

= 2�2(K�1)

"

J
X

j=1

g2
1jvar{Ȳ obs(zj) | H0

(Fisher)}

+
J
X

j=1

J
X

j0 6=j

g
1jg1j0cov{Ȳ obs(zj), Ȳ

obs(zj0) | H0

(Fisher)}
#

= 2�2(K�1)s2
(

J
X

j=1

g2
1j

✓

1

r
� 1

N

◆

�
J
X

j=1

J
X

j0 6=j

g
1jg1j0

1

N

)

,

where the last equation is due to (A.4) and (A.5). Since

0 =

 

J
X

j=1

g
1j

!

2

=
J
X

j=1

g2
1j +

J
X

j=1

J
X

j0 6=j

g
1jg1j0 ,

we have

�
J
X

j=1

J
X

j0 6=j

g
1jg1j0 =

J
X

j=1

g2
1j = J.

Therefore, we can simplify the variance as

var{b⌧
1

(W ,Y obs) | H
0

(Fisher)} = 2�2(K�1)s2J/r.
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Proof of Theorem 6. We first observe the following variance decomposition:

N
X

i=1

(Y obs
i � Ȳ obs)2

=
X

z2FK

X

{i:Wi(z)=1}

{Y obs
i � Ȳ obs(z) + Ȳ obs(z)� Ȳ obs}2

=
X

z2FK

X

{i:Wi(z)=1}

{Y obs
i � Ȳ obs(z)}2 + r

X

z2FK

{Ȳ obs(z)� Ȳ obs}2.

Therefore, we have

s2 =
1

N � 1

X

z2FK

X

{i:Wi(z)=1}

{Y obs
i � Ȳ obs(z)}2 + r

N � 1

X

z2FK

{Ȳ obs(z)� Ȳ obs}2

=
r � 1

N � 1

X

z2FK

s2(z) +
r

N � 1

X

z2FK

{Ȳ obs(z)� Ȳ obs}2

=
1

J

X

z2FK

s2(z) +
1

J

X

z2FK

{Ȳ obs(z)� Ȳ obs}2 + op(r
�1),

where ignoring the di↵erence between N and N � 1 and between r and r � 1 in the

last equation contributes the higher order term. Therefore, we have

22(K�1)r
n

bV
1

(Fisher)� bV
1

(Neyman)
o

= Js2 �
X

z2FK

s2(z) =
X

z2FK

{Ȳ obs(z)� Ȳ obs}2 + op(r
�1).

Since Ȳ obs =
P

z2FK
Ȳ obs(z)/2K , the formula

Pn
i=1

(xi � x̄)2 =
Pn

i=1

Pn
j=1

(xi �

xj)2/(2n) gives us

X

z2FK

{Ȳ obs(z)� Ȳ obs}2 =
X

z2FK

X

z02FK

{Ȳ obs(z)� Ȳ obs(z0)}2/2K+1.
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Consequently, we have

bV
1

(Fisher)� bV
1

(Neyman) =
1

23K�1r

X

z2FK

X

z02FK

{Ȳ obs(z)� Ȳ obs(z0)}2 + op(r
�1),

which leads to the final conclusion since replacing Ȳ obs(z) by Ȳ (z) contributes only

op(r�1).

Proof of Theorem 7. In the following, we will prove the results for completely random-

ized experiments, matched-pair experiments, and factorial experiments, respectively.

For completely randomized experiments with binary outcomes, we can summarize

the observed data by a two by two table with cell counts nobs
ty = #{i : Ti = t, Y obs

i =

y}, where t, y = 0, 1. The row sums N
1

= nobs
11

+nobs
10

and N
0

= nobs
01

+nobs
00

are fixed by

the design of experiments, and the column sums nobs
11

+nobs
01

and nobs
10

+nobs
00

are also fixed

under the sharp null hypothesis. Therefore, nobs
11

is the only random component in the

two by two table, because other cell counts are deterministic functions of it. According

to the treatment assignment mechanism, we know that nobs
11

follows the hypergeometric

distribution the same as the one in Fisher’s exact test. All test statistics are functions

of the two by two table, and thus functions of nobs
11

. Consequently, all test statistics

are equivalent to the di↵erence-in-means statistic under the sharp null.

For matched-pair experiments with binary outcomes, we can summarize the ob-

served data by the two by two table with cell counts mobs
y1y0 defined in the main

text. Under the sharp null hypothesis, mobs
11

, mobs
00

, and mobs
dis = mobs

10

+ mobs
01

are

all fixed numbers, implying that the only random component in the two by two

table is mobs
10

. According to the treatment assignment mechanism, we know mobs
10

⇠

97



Appendix A: Technical Details for Chapter 1

Binomial(mobs
dis , 1/2). All test statistics are functions of the two by two table, and thus

functions of mobs
10

. Consequently, all test statistics are equivalent to the di↵erence-in-

means statistic under the sharp null.

For 2K factorial experiments, by symmetry we only need to show the result for

factorial e↵ect 1. It has the same structure as completely randomized experiments,

and therefore, the conclusion follows.

A.3 Connections with Regression-Based Inference

Assume the following linear model for the observed outcomes:

Y obs
i = ↵ + �Ti + "i, (A.6)

where "i, . . . , "N are independently and identically distributed (iid) as N (0, �2). The

hypothesis of zero treatment e↵ect is thus characterized by H
0

(LM) : � = 0.

Hinkelmann and Kempthorne (2007) called

Y obs
i = TiYi(1) + (1� Ti)Yi(0) = Yi(0) + {Yi(1)� Yi(0)}Ti = ↵ + �Ti + "i

the “derived linear model”, assuming that Yi(1) � Yi(0) = � is a constant and

Yi(0) = ↵ + "i for all i = 1, . . . , N. But the linear model for observed outcomes

ignores the design of the randomized experiment, and the “iid” assumption contra-

dicts cov(Ti, Tj) 6= 0 and cov(Y obs
i , Y obs

j ) 6= 0 for i 6= j. Although linear regression has

been criticized for analyzing experimental data (Freedman, 2008), the least square

98



Appendix A: Technical Details for Chapter 1

estimator b�OLS = b⌧ is unbiased for the average causal e↵ect ⌧ . However, the correct

variance of b�OLS requires careful discussion.

A.3.1 Wald Test and Neymanian Inference

The residual is defined as b"i = Y obs
i � Ȳ

1

if Ti = 1 and b"i = Y obs
i � Ȳ

0

if Ti = 0.

Since the variance �2 in the linear model can be estimated by

b�2 =
1

N � 2

N
X

i=1

b"2i =
N

1

� 1

N � 2
s2
1

+
N

0

� 1

N � 2
s2
0

,

the variance of b�OLS, var(b�OLS) = N�2/(N
1

N
0

), can be estimated by

bVOLS =
N(N

1

� 1)

(N � 2)N
1

N
0

s2
1

+
N(N

0

� 1)

(N � 2)N
1

N
0

s2
0

⇡ s2
1

N
0

+
s2
0

N
1

.

It is di↵erent from Neyman’s variance estimator unless N
1

= N
0

. Fortunately, we can

avoid this problem by using Huber–White heteroskedasticity-robust variance estima-

tor:

bVHW =

PN
i=1

b"2i (Ti � T̄ )2
n

PN
i=1

(Ti � T̄ )2
o

2

=
s2
1

N
1

N
1

� 1

N
1

+
s2
0

N
0

N
0

� 1

N
0

⇡ s2
1

N
1

+
s2
0

N
0

,

which is asymptotically equivalent to the Neymanian variance estimator. Therefore,

the Wald statistic using bVHW for testing H
0

(LM) is asymptotically the same as the

Neymanian test.
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A.3.2 Rao’s Score Test and the FRT

While the connection between the behavior of the Wald test for H
0

(LM) and

Neyman’s test has been established in previous studies, we make a similar connection

between Rao’s score test for H
0

(LM) and the FRT in the following theorem.

Theorem 17. Rao’s score test for H
0

(LM) under model (A.6) is equivalent to

b⌧
q

bVS

d�! N (0, 1),

where bVS = (N � 1)s2/(N
1

N
0

).

Ignoring the di↵erence between (N � 1) and N when N is large, the di↵erence

between bVS and bV (Fisher) is of higher order, and Rao’s score test is asymptotically

equivalent to the FRT. The sharp null hypothesis imposes the equal variance assump-

tion on potential outcomes under treatment and control, leading to the equivalence

of Rao’s score test under the homoskedastic model and the FRT.

Proof of Theorem 17. The log likelihood function for the linear model in is

l(↵, �, �2) = �N

2
log(2⇡�2)�

PN
i=1

(Y obs
i � ↵� �Ti)2

2�2

.
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Therefore, the score functions are

@l/@↵ =
N
X

i=1

(Yi � ↵� �Ti)/�
2,

@l/@� =
N
X

i=1

(Yi � ↵� �Ti)Ti/�
2,

@l/@�2 = �N/(2�2) +
N
X

i=1

(Yi � ↵� �Ti)
2/{2(�2)2}.

Plugging the MLEs under the null hypothesis with � = 0, e↵ = Ȳ obs and e�2 =

PN
i=1

(Y obs
i � Ȳ obs)2/N into the score functions, we obtain that only the second com-

ponent of the score functions is non-zero:
PN

i=1

(Yi � Ȳ )Ti/e�2 = N
1

N
0

b⌧/(Ne�2).

The second order derivatives of the log likelihood function are

@2l/@↵2 = �N/�2,

@2l/@�2 =
N
X

i=1

T 2

i /�
2 = �N

1

/�2,

@2l/@(�2)2 = N/(2�4)�
N
X

i=1

(Yi � ↵� �Ti)
2/�6,

@2l/@↵@� = �N
1

/�2,

@2l/@↵@�2 = �
N
X

i=1

(Yi � ↵� �Ti)/�
4,

@2l/@�@�2 = �
N
X

i=1

(Yi � ↵� �Ti)Ti/�
4.
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Therefore, the expected Fisher information matrix is

IN =

0

B

B

B

B

B

@

N/�2 N
1

/�2 0

N
1

/�2 N
1

/�2 0

0 0 N/(2�4)

1

C

C

C

C

C

A

,

with the (2, 2)-th element of I�1

N being N�2/(N
1

N
0

). Thus, Rao’s score test for

H
0

(LM) is
✓

N
1

N
0

b⌧

Ne�2

◆

2 Ne�2

N
1

N
0

d�! �2(1),

or equivalently,

b⌧
.

s

Ne�2

N
1

N
0

= b⌧
.

s

(N � 1)s2

N
1

N
0

=
b⌧
q

bVS

d�! N (0, 1).

A.4 More Details About Figures 1.3 and 1.4

A.4.1 Figure 1.3

Asymptotically, the FRT is invalid under Neyman’s null if and only if bV (Fisher)

is asymptotically smaller than the true sampling variance of b⌧ , V (Neyman), i.e.,

(N�1

0

�N�1

1

)(S2

1

� S2

0

) +N�1S2

⌧ < 0.
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When Yi(1) = aYi(0) + (1 � a)Ȳ (0), we have S2

1

= a2S2

0

and S2

⌧ = (a � 1)2S2

0

. The

above inequality reduces to

✓

1

1� r
� 1

r

◆

(a2 � 1) + (a� 1)2 < 0.

If a > 1, the inequality further reduces to

✓

1

1� r
� 1

r

◆

(a+ 1) + (a� 1) < 0 () 2

1 + a
> �r2 � 3r + 1

(1� r)r
.

We only consider the case with r < 1/2. It is straightforward to see that when

0 < r < (3 �
p
5)/2, we have r2 � 3r + 1 > 0 and the above inequality holds

automatically. When r > (3�
p
5)/2, then the above inequality reduces to

a <
r2 + r � 1

r2 � 3r + 1
.

The above discussion allows us to determine the region that the FRT rejects more

often than the nominal level under Neyman’s null.

A.4.2 Figure 1.4

According to Corollary 1 in the main text, the Neymanian test has larger asymp-

totic power than the Fisherian test if and only if

✓

1

1� r
� 1

r

◆

{p
1

(1� p
1

)� p
0

(1� p
0

)}+ (p
1

� p
0

)2 > 0.
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After some simple algebra, we can simplify the above inequality as

(p
1

� p
0

)(ap
1

+ bp
0

+ c) > 0,

where

a =
1� r � r2

(1� r)r
, b =

1� 3r + r2

(1� r)r
, c =

2r � 1

(1� r)r
.

The shape of the region depends on the signs of a and b, because the line ap
1

+bp
0

+c =

0 intersects with the line p
1

� p
0

= 0 at the point (p
1

, p
0

) = (1/2, 1/2). It is easy to

show that a > 0 if and only if 0  r  �, and b > 0 if and only if 0  r  1 � �,

where � = (�1+
p
5)/2 ⇡ 0.618 is the reciprocal of the golden ratio. Therefore, when

r > 1/2, the region may have two shapes according the value of r compared to �, as

shown in Figure 1.4 of the main text. By symmetry, we can also plot the region when

r < 1/2.

A.5 Other Test Statistics

Consider a finite population of size N = 200, and balanced completely random-

ized experiments. Under the sharp null hypothesis, we generate potential outcomes

Yi(1) = Yi(0) from N (0, 1); under the average null hypothesis, we generate Yi(1) from

N (0, 1), and generate Yi(0) as the order statistics of Yi(1). Clearly, the marginal

distributions are the same but the correlation of the potential outcomes are di↵erent

under di↵erent null hypothesis.

The grey histogram in Figure A.1(a) is the randomization distribution of the

Kolmogorov–Smirnov statistic under the sharp null hypothesis, and the white his-
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togram with border is the randomization distribution under the average null hypoth-

esis. The former is more disperse than the latter, indicating that the FRT using

the Kolmogorov–Smirnov statistic tends to be conservative under the average null

hypothesis.

The results for the Wilcoxon–Mann–Whitney rank sum statistic in Figure A.1(b)

are the same as above.

Distributions over randomizations

KS statistic

de
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(a) Kolmogorov–Smirnov Statistic

Distributions over randomizations

Wilcoxon statistic
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ity
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(b) Wilcoxon–Mann–Whitney Rank Sum
Statistic

Figure A.1: Randomization Distributions of Di↵erent Test Statistics Under the Sharp
Null (grey histograms) and Average Null (white histograms with borders).
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Technical Details for Chapter 2

B.1 Bias and Variance Reduction for Nonlinear

Causal Measures

Result for log(CRR). A bias-corrected estimator for log(CRR) is

log(\CRR)c = log(\CRR) +
N

0

2bp2
1

N
1

N
s2
1

� N
1

2bp2
0

N
0

N
s2
0

, (B.1)

with improved variance estimator

bV c
CRR = bVCRR � |b⌧ |(1� |b⌧ |)

bp
1

bp
0

(N � 1)
, (B.2)

where bVCRR is defined in (2.19).

106



Appendix B: Technical Details for Chapter 2

Result for log(COR). A bias-corrected estimator for log(COR) is

log(\COR)c = log(\COR) +
1� 2bp

1

2bp2
1

(1� bp
1

)2
N

0

N
1

N
s2
1

� 1� 2bp
0

2bp2
0

(1� bp
0

)2
N

1

N
0

N
s2
0

, (B.3)

with improved variance estimator

bV c
COR = bVCOR � |b⌧ |(1� |b⌧ |)

bp
1

(1� bp
1

)bp
0

(1� bp
0

)(N � 1)
, (B.4)

where bVCOR is defined in (2.21).

B.2 Lemmas and Their Proofs

Lemma 4. The completely randomized treatment assignment W satisfies E(Wi) =

N
1

/N , var(Wi) = N
1

N
0

/N2, and cov(Wi,Wj) = �N
1

N
0

/{N2(N�1)}. If (c
1

, · · · , cN)

and (d
1

, · · · , dN) are constants with c =
PN

i=1

ci/N and d =
PN

i=1

di/N , we have

E

 

N
X

i=1

Wici

!

= N
1

c, cov

 

N
X

i=1

Wici,
N
X

i=1

Widi

!

=
N

1

N
0

N(N � 1)

N
X

i=1

(ci � c)(di � d).

Proof of Lemma 4. The observed outcomes in the treatment and control can be viewed

as two sets of simple random samples from the finite population of {Yi(1) : i =

1, · · · , N} and {Yi(0) : i = 1, · · · , N}, respectively. Therefore, the conclusion follows

from classic survey sampling textbooks such as Cochran (1977).

Lemma 5. The estimators, bp
1

and bp
0

, are unbiased for p
1

and p
0

, with variances and
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covariance:

var(bp
1

) =
N

0

N
1

N
S2

1

, var(bp
0

) =
N

1

N
0

N
S2

0

, cov(bp
1

, bp
0

) = � 1

N
S
10

= � 1

2N
(S2

1

+ S2

0

� S2

⌧ ).

Proof of Lemma 5. The unbiasedness and variances of bp
1

and bp
0

follow directly from

Lemma 4. The covariance between bp
1

and bp
0

is

cov(bp
1

, bp
0

) = � 1

N
1

N
0

N
1

N
0

N
S
10

= � 1

N
S
10

.

Summing from i = 1 to N over the following decomposition

2{Yi(1)� p
1

}{Yi(0)� p
0

} = {Yi(1)� p
1

}2 + {Yi(0)� p
0

}2 � (⌧i � ⌧)2,

we have 2S
10

= S2

1

+ S2

0

� S2

⌧ , and therefore the covariance can also be expressed as

cov(bp
1

, bp
0

) = � 1

2N
(S2

1

+ S2

0

� S2

⌧ ).
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B.3 Proofs of the Theorems

Proof of Theorem 8. Define the proportions pjk = Njk/N . We first rewrite S2

⌧/N as

S2

⌧

N
=

1

N(N � 1)

N
X

i=1

(⌧i � ⌧)2

=
1

N(N � 1)

⇢

(N
10

+N
01

)� (N
10

�N
01

)2

N

�

=
1

N � 1
(⌧ + 2p

01

� ⌧ 2).

In order to find the lower bound of S2

⌧/N , we only need to find the lower bound for

p
01

. This reduces to the following linear programming problem:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

min
p11,p10,p01,p00

p
01

s.t. p
11

+ p
10

= p
1

,

p
11

+ p
01

= p
0

,

p
11

+ p
10

+ p
01

+ p
00

= 1,

pij � 0, i, j = 0, 1.

Since p
01

= p
0

� p
1

+ p
10

� �⌧ and p
01

� 0, the lower bound of p
01

is

p
01

� max(�⌧, 0),

and therefore, the lower bound of S2

⌧/N is

S2

⌧

N
� 1

N � 1
{⌧ + 2max(�⌧, 0)� ⌧ 2} =

1

N � 1
{max(�⌧, ⌧)� ⌧ 2} =

|⌧ |(1� |⌧ |)
N � 1

.
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From the derivation above, the bound is sharp, and is attained if and only if p
10

= 0 or

p
01

= 0. Or, equivalently, S2

⌧ attains its minimum at either of the two vertices within

the feasible region of the linear programming problem above: (p
11

, p
10

, p
01

, p
00

) =

(p
1

, 0,�⌧, 1� p
0

) if ⌧  0, and (p
11

, p
10

, p
01

, p
00

) = (p
0

, ⌧, 0, 1� p
1

) if ⌧ � 0.

Proof of Theorem 9. Define N 0
w = Nw + ↵w + �w and bp0w = (nw1

+ ↵w)/N 0
w as the

sample sizes and proportions adjusted by the pseudo counts of the prior distributions.

The posterior means of ⇡
1+

and ⇡
+1

are

E(⇡
1+

| W ,Y obs) = bp0
1

, and E(⇡
+1

| W ,Y obs) = bp0
0

.

The posterior variances of ⇡
1+

and ⇡
+1

are

var(⇡
1+

| W ,Y obs) =
bp0
1

(1� bp0
1

)

N 0
1

+ 1
, and var(⇡

+1

| W ,Y obs) =
bp0
0

(1� bp0
0

)

N 0
0

+ 1
.

Immediately, we have

E{⇡
1+

(1� ⇡
1+

) | W ,Y obs} = bp0
1

(1� bp0
1

)� bp0
1

(1� bp0
1

)

N 0
1

+ 1
=

N 0
1

N 0
1

+ 1
bp0
1

(1� bp0
1

),

E{⇡
+1

(1� ⇡
+1

) | W ,Y obs} = bp0
0

(1� bp0
0

)� bp0
0

(1� bp0
0

)

N 0
0

+ 1
=

N 0
0

N 0
0

+ 1
bp0
0

(1� bp0
0

).

Applying the laws of conditional expectation and variance to (2.10) in the main text,
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we obtain the posterior mean

E(⌧ | W ,Y obs)

= E
�

E(⌧ | W ,Y obs, ⇡
1+

, ⇡
+1

)
 

= E

✓

n
11

+N
0

⇡
1+

� n
01

�N
1

⇡
+1

N
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◆

=
n
11

+N
0
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� n
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�N
1
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0
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=
N 0
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+N
0

N
bp0
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� N 0
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N
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� ↵
1

� ↵
0

N
,

and posterior variance

var(⌧ | W ,Y obs)

= E
�

var(⌧ | W ,Y obs, ⇡
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, ⇡
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+ var
�

E(⌧ | W ,Y obs, ⇡
1+

, ⇡
+1

)
 

= E

⇢

N
0

N2

⇡
1+

(1� ⇡
1+

) +
N

1

N2

⇡
+1

(1� ⇡
+1

) | W ,Y obs

�

+var

⇢

N
0

N
⇡
1+

� N
1

N
⇡
+1

| W ,Y obs

�

=
N

0

N 0
1
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(1� bp0
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) +
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N 0
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N2(N 0
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bp0
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(1� bp0
1

) +
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=
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+ 1
+

N
1

(N
1

+N 0
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)

N2

bp0
0

(1� bp0
0

)

N 0
0

+ 1
.

When we have large sample size, the prior pseudo counts are overwhelmed by the

observed counts njk’s, and the posterior mean and variance of ⌧ can be approximately
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by

E(⌧ | W ,Y obs) ⇡ b⌧ ,

var(⌧ | W ,Y obs) ⇡ N
0

N

bp
1

(1� bp
1

)

N
1

� 1
+

N
1
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)
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� 1
.

Proof of Theorem 10. Applying Taylor expansion, we have

log(\CRR)� log(CRR) =
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According to Lemma 5, the asymptotic variance of log(\CRR) is
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Assume S2

⌧ = 0, and we can estimate the asymptotic variance by

bVCRR =
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. (B.5)
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Ignoring the di↵erence between Nw and (Nw � 1) (w = 0, 1) in asymptotic analysis,

we obtain the formula in Theorem 3.

Proof of Theorem 11. Applying Taylor expansion, we have

log(\COR)� log(COR) =
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According to Lemma 5, the asymptotic variance of log(\COR) is
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The Neyman-type “conservative” variance estimator for the asymptotic variance is
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, (B.6)
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where the approximation is due to the di↵erence between Nw � 1 and Nw for w =

0, 1.

B.4 Proofs for the Results in Appendix B.1 about

Bias and Variance Reduction for Nonlinear

Causal Measures

Proof of the Result for log(CRR). Applying Taylor expansion, we have

log(\CRR)� log(CRR) =
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Therefore, the asymptotic bias of log(\CRR) is
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,

and the bias-corrected estimator for log(CRR) in Appendix B.1 can be obtained by

subtracting the estimated asymptotic bias from log(\CRR).
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Proof of the Result for log(COR). Applying Taylor expansion, we have
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Therefore, the asymptotic bias of log(\COR) is
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and the bias-corrected estimator for log(COR) in Appendix B.1 can be obtained by

subtracting the estimated asymptotic bias from log(\COR).

B.5 More Simulation Studies

In order to compare the finite sample properties of Neyman’s original method, the

modified Neyman’s method, and the Bayesian method, we conduct the following set

of simulation studies. In the main text, we choose the following two sets of potential

outcomes: the first set of potential outcomes (N
11

, N
10

, N
01

, N
00

) are independent:

(50, 50, 50, 50), (30, 70, 30, 70), (30, 90, 20, 60), (80, 20, 80, 20), (60, 20, 90, 30); the sec-

ond set of potential outcomes are positively associated: (60, 40, 40, 60), (50, 50, 30, 70),

(50, 70, 30, 50), (40, 110, 10, 40), (70, 30, 50, 50), (50, 30, 70, 50), (30, 10, 110, 50). In

addition, in this Supplementary Materials, we also choose negatively associated poten-
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tial outcomes: (40, 60, 60, 40), (30, 70, 50, 50), (40, 80, 40, 40), (30, 120, 20, 30), (50, 50, 70, 30),

(40, 40, 80, 40), (20, 20, 120, 40). We summarize the “Science” in Table B.1, where

Cases 1–5 represent independent potential outcomes, Cases 6–12 represent positively

associated potential outcomes, and Cases 13–19 represent negatively associated po-

tential outcomes.

Table B.1: “Science table” for the simulation studies

Case N
11

N
10

N
01

N
00

S2

1

S2

0

S
10

S2

⌧ ⌧ log(CRR) log(COR)
1 50 50 50 50 0.251 0.251 0.000 0.503 0.000 0.000 0.000
2 30 70 30 70 0.251 0.211 0.000 0.462 0.200 0.511 0.847
3 30 90 20 60 0.241 0.188 0.000 0.430 0.350 0.875 1.504
4 80 20 80 20 0.251 0.161 0.000 0.412 -0.300 -0.470 -1.386
5 60 20 90 30 0.241 0.188 0.000 0.430 -0.350 -0.629 -1.504
6 60 40 40 60 0.251 0.251 0.050 0.402 0.000 0.000 0.000
7 50 50 30 70 0.251 0.241 0.050 0.392 0.100 0.223 0.405
8 50 70 30 50 0.241 0.241 0.010 0.462 0.200 0.405 0.811
9 40 110 10 40 0.188 0.188 0.013 0.352 0.500 1.099 2.197
10 70 30 50 50 0.251 0.241 0.050 0.392 -0.100 -0.182 -0.405
11 50 30 70 50 0.241 0.241 0.010 0.462 -0.200 -0.405 -0.811
12 30 10 110 50 0.161 0.211 0.010 0.352 -0.500 -1.253 -2.234
13 40 60 60 40 0.251 0.251 -0.050 0.603 0.000 0.000 0.000
14 30 70 50 50 0.251 0.241 -0.050 0.593 0.100 0.223 0.405
15 40 80 40 40 0.241 0.241 -0.040 0.563 0.200 0.405 0.811
16 30 120 20 30 0.188 0.188 -0.038 0.452 0.500 1.099 2.197
17 50 50 70 30 0.251 0.241 -0.050 0.593 -0.100 -0.182 -0.405
18 40 40 80 40 0.241 0.241 -0.040 0.563 -0.200 -0.405 -0.811
19 20 20 120 40 0.161 0.211 -0.040 0.452 -0.500 -1.253 -2.234

For given potential outcomes, we draw, repeatedly and independently, the treat-

ment assignment vectors 5000 times, and apply the three methods after obtaining

the observed outcomes. We compare three methods: Neymanian inference assuming

constant treatment e↵ects, improved Neymanian inference, and Bayesian inference

assuming independent potential outcomes.

The results are summarized in Figures B.1, B.2 and B.3, with average biases,
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average lengths of the 95% confidence/credible intervals, and the coverage probabili-

ties. The main text only reports the results for CRD and log(COR), here we report

the results for all causal measures. When the potential outcomes are independent or

positively associated, the results for log(CRR) are similar to those for log(COR) as

discussed in the main text. When the potential outcomes are negatively associated,

all the interval estimates over cover the true causal measures, while the Bayesian

credible intervals are the narrowest.

B.6 More Details about the Application

As in the main text, the example is taken from Bissler et al. (2013), and they

compare the rate of adverse events in the treatment group versus the control group.

The adverse event naspharyngitis occurred in 19 among 79 subjects in the treat-

ment group with everolimus, and it occurred in 12 among 39 subjects in the control

group. Therefore, the 2 ⇥ 2 table representing the observed data has cell counts

(n
11

, n
10

, n
01

, n
00

) = (19, 60, 12, 27). Figure B.4 shows the sensitivity analysis for

CRD, log(CRR) and log(COR), with similar patterns for all of them.
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Figure B.1: Simulation Results for Independent Potential Outcomes. Each subfigure
is a 2⇥ 3 matrix summarizing 3 repeated sampling properties (average bias, average
length, and coverage of interval estimates) for 2 causal measures. Note that “Neyman”
and “Bayes” are indistinguishable for biases of log(CRR) and log(COR).
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Figure B.2: Simulation Results for Positively Associated Potential Outcomes. Each
subfigure is a 2⇥3 matrix summarizing 3 repeated sampling properties (average bias,
average length, and coverage of interval estimates) for 2 causal measures. Note that
“Neyman” and “Bayes” are indistinguishable for biases of log(CRR) and log(COR).
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Figure B.3: Simulation Results for Negatively Associated Potential Outcomes. Each
subfigure is a 2⇥3 matrix summarizing 3 repeated sampling properties (average bias,
average length, and coverage of interval estimates) for 2 causal measures. Note that
“Neyman” and “Bayes” are indistinguishable for biases of log(CRR) and log(COR).
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Figure B.4: Bayesian Sensitivity Analysis of the Trial with (n
11

, n
10

, n
01

, n
00

) =
(19, 60, 12, 27). Three panels are for CRD, log(CRR), and log(COR), respectively.
The intervals named “independence” are the 95% posterior credible intervals under
independence of the potential outcomes, and the intervals named “widest” are the
widest 95% credible intervals over the ranges of the sensitivity parameters.
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C.1 Lemmas

In order to prove the theorems, we need the following Lemmas 6 to 8, which

are also of independent interest in other contexts. Let 1n = (1, . . . , 1)0 and 0n =

(0, . . . , 0)0 be column vectors of length n, and In be the n⇥ n identity matrix. Then

Sn = In � n�11n10n is the projection matrix orthogonal to 1n with Sn1n = 0n.

Lemma 6. [Covariance of the treatment assignment vector] The completely random-

ized treatment assignment T = (T
1

, . . . , Tn)0 has mean and covariance matrix:

E(T ) =
n
1

n
1n, cov(T ) =

n
1

n
0

n(n� 1)
Sn.

Proof of Lemma 6. The conclusions follow from the facts that E(Ti) = n
1

/n, var(Ti) =

n
1

n
0

/n2, and cov(Ti, Tj) = �n
1

n
0

/{n2(n� 1)} for i 6= j.

Lemma 7. [Sn as a covariance operator] If Ui and Vi are column vectors of length
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p, define U = [U
1

, U
2

, . . . , Un] and V = [V
1

, V
2

, . . . , Vn] as two matrices of dimension

p⇥ n, and we have

USnV 0 =
n
X

i=1

(Ui � Ū)(Vi � V̄ )0,

where Ū =
Pn

i=1

Ui/n and V̄ =
Pn

i=1

Vi/n. In particular, when Ui = Vi, the project

matrix Sn reduces to our covariance operator defined in the main text, since

VSnV 0 = (n� 1)S(V ).

Proof of Lemma 7. The left hand side is equal to

USnV 0 = UV 0 � n�1 (U1n) (V1n)0 =
n
X

i=1

UiV
0
i � n�1(nŪ)(nV̄ ) =

n
X

i=1

UiV
0
i � nŪV̄ ,

which is the same as the right hand side.

Lemma 8. [Neymanian randomization inference for vector outcomes] In completely

randomized experiments with a vector outcome Z, the Neymanian unbiased estimator

for the finite population average treatment e↵ect on Z,

⌧Z = n�1

n
X

i=1

{Zi(1)� Zi(0)} ,

is

b⌧Z = Z̄obs

1

� Z̄obs

0

,

where Z̄obs

t =
P

Ti=t Zi/nt is the sample mean of the observed outcomes under treat-

123



Appendix C: Technical Details for Chapter 3

ment arm t. The covariance of b⌧Z is

cov(b⌧Z) =
S{Z(1)}

n
1

+
S{Z(0)}

n
0

� S{Z(1)� Z(0)}
n

.

Proof of Lemma 8. The Neymanian unbiased estimator has the following representa-

tion:

b⌧Z = Z̄obs

1

� Z̄obs

0

=
1

n
1

n
X

i=1

TiZi(1)�
1

n
0

n
X

i=1

(1� Ti)Zi(0)

=
n
X

i=1

Ti

⇢

Zi(1)

n
1

+
Zi(0)

n
0

�

� 1

n
0

n
X

i=1

Zi(0).

The unbiasedness of b⌧Z follows from the linearity of the expectation and Lemma 6.

Define Z
1

= [Z
1

(1), . . . , Zn(1)] and Z
0

= [Z
1

(0), . . . , Zn(0)] as the matrices of the

potential outcomes. The estimator b⌧Z can be represented as

b⌧Z =

✓

Z
1

n
1

+
Z

0

n
0

◆

T � 1

n
0

n
X

i=1

Zi(0).
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Applying Lemmas 6 and 7, we can obtain the covariance matrix of b⌧Z as:

cov(b⌧Z)

=

✓

Z
1

n
1

+
Z

0

n
0

◆

cov(T )

✓

Z
1

n
1

+
Z

0

n
0

◆0

=
n
1

n
0

n(n� 1)

✓

Z
1

n
1

+
Z

0

n
0

◆

Sn

✓

Z
1

n
1

+
Z

0

n
0

◆0

=
n
1

n
0

n(n� 1)

✓

1

n2

1

Z
1

SnZ 0
1

+
1

n2

0

Z
0

SnZ 0
0

+
1

n
1

n
0

Z
0

SnZ 0
1

+
1

n
1

n
0

Z
1

SnZ 0
0

◆

=
n
0

nn
1

S{Z(1)}+ n
1

nn
0

S{Z(0)}+ 1

n(n� 1)
(Z

0

SnZ 0
1

+ Z
1

SnZ 0
0

).

Using the fact ab0 + ba0 = aa0 + bb0 � (a� b)(a� b)0 for two column vectors a and b,

we have

{Zi(1)� Z̄(1)}{Zi(0)� Z̄(0)}0 + {Zi(0)� Z̄(0)}{Zi(1)� Z̄(1)}0

= {Zi(1)� Z̄(1)}{Zi(1)� Z̄(1)}0 + {Zi(1)� Z̄(1)}{Zi(1)� Z̄(1)}0

�{Zi(1)� Zi(0)� Z̄(1) + Z̄(0)}{Zi(1)� Zi(0)� Z̄(1) + Z̄(0)}0.

Summing over i = 1, . . . , n and applying Lemma 7, we have

Z
0

SnZ 0
1

n� 1
+

Z
1

SnZ 0
0

n� 1
= S{Z(1)}+ S{Z(0)}� S{Z(1)� Z(0)}.
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Therefore, the covariance of b⌧Z can be simplified as:

cov(b⌧Z)

=
n
0

nn
1

S{Z(1)}+ n
1

nn
0

S{Z(0)}+ 1

n
[S{Z(1)}+ S{Z(0)}� S{Z(1)� Z(0)}]

=
S{Z(1)}

n
1

+
S{Z(0)}

n
0

� S{Z(1)� Z(0)}
n

.

C.2 Proof of the Theorems

Proof of Theorem 12. Multiplying both sides of ⌧i = X 0
i� by Xi, we obtain:

Xi⌧i = XiX
0
i�.

Summing over i = 1, . . . , n, we have

n
X

i=1

Xi⌧i =
n
X

i=1

XiX
0
i�,

or equivalently,

n�1

n
X

i=1

XiYi(1)� n�1

n
X

i=1

XiYi(0) = n�1

n
X

i=1

XiX
0
i�.

And therefore, Sx1 � Sx0 = Sxx�, implying that

� = S�1

xx (Sx1 � Sx0).
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The above equations are deterministic under model (3.1), with Sxx known directly

from the observed data. Since the sample means for {XiY obs

i : Ti = t} = {XiYi(t) :

Ti = t}, bSxt, is unbiased for the population mean Sxt, the estimator b�RI is also

unbiased for �. Its sampling covariance over all possible randomizations is

cov(b�RI) = S�1

xx cov(bSx1 � bSx0)S
�1

xx .

Therefore, we only need to determine the covariance of bSx1 � bSx0. We can view

bSx1 � bSx0 =
1

n
1

n
X

i=1

TiXiY
obs

i � 1

n
0

n
X

i=1

(1� Ti)XiY
obs

i

as the di↵erence between the sample means of {XiYi(1) : i = 1, . . . , n} and {XiYi(0) : i = 1, . . . , N}

under treatment and control. Viewing XiY obs

i as a vector outcome of the completely

randomized experiment, we can apply Lemma 8 to obtain the following result:

cov(bSx1 � bSx0) =
S{XY (1)}

n
1

+
S{XY (0)}

n
0

� S(X⌧)

n
,

which completes the proof.

Proof of Theorem 13. First, we have the population-level ordinary least squares re-

gression matrix of Y (t)X onto W :

Bt = S�1

ww

(

n�1

n
X

i=1

Yi(t)WiX
0
i

)

,

which is a J ⇥K matrix and minimizes
Pn

i=1

||Yi(t)Xi�B0
tWi||2

2

with || · ||2
2

being the
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L
2

-norm. Define eStx = bStx +B0
t(W̄ � W̄t) and e�w

RI = S�1

xx (eS1x � eS0x). We first observe

that

b�w
RI � e�w

RI = S�1

xx

n

( bB
1

� B
1

)0(W̄ � W̄
1

) + ( bB
0

� B
0

)0(W̄ � W̄
0

)
o

= S�1

xx

�

OP (n
�1/2)OP (n

�1/2) +OP (n
�1/2)OP (n

�1/2)
 

= OP (n
�1),

based on the same rationale of regression estimator in surveys (Cochran, 1977). There-

fore, b�RI and e�w
RI have the same asymptotic covariance, and in the following we only

need to discuss the covariance of e�w
RI. Since

eS
1x � eS

0x = n�1

1

n
X

i=1

Ti

�

Yi(1)Xi +B0
1

(W̄ �Wi)
 

�n�1

0

n
X

i=1

(1� Ti)
�

Yi(0)Xi +B0
0

(W̄ �Wi)
 

can be represented as the di↵erence between the sample means of ei(1) and ei(0),

applying Lemma 8 we can obtain its variance:

cov
⇣

eS
1x � eS

0x

⌘

=
S{e(1)}

n
1

+
S{e(0)}

n
0

� S{�}
n

,

which completes the proof.

Proof of Theorem 14. Denote p
1

= n
1

/n, p
0

= n
0

/n, and

bSxx,1 = n�1

1

n
X

i=1

TiXiX
0
i, bSxx,0 = n�1

0

n
X

i=1

(1� Ti)XiX
0
i, Sxy = n�1

n
X

i=1

XiY
obs

i .
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Therefore, we have Sxx = p
1

bSxx,1+ p
0

bSxx,0 and Sxy = p
1

bSx1+ p
0

bSx0. The least square

estimators of the regression coe�cients are

0

B

@

b�OLS

b�OLS

1

C

A

=

8

>

<

>

:

n�1

n
X

i=1

0

B

@

Xi

TiXi

1

C

A

(X 0
i, TiX

0
i)

9

>

=

>

;

�1

8

>

<

>

:

n�1

n
X

i=1

0

B

@

Xi

TiXi

1

C

A

Y obs

i

9

>

=

>

;

=

0

B

@

n�1

Pn
i=1

XiX 0
i n�1

Pn
i=1

TiXiX 0
i

n�1

Pn
i=1

TiXiX 0
i n�1

Pn
i=1

TiXiX 0
i

1

C

A

�1

0

B

@

n�1

Pn
i=1

XiY obs

i

n�1

Pn
i=1

XiY obs

i Ti

1

C

A

=

0

B

@

p
1

bSxx,1 + p
0

bSxx,0 p
1

bSxx,1

p
1

bSxx,1 p
1

bSxx,1

1

C

A

�1

0

B

@

p
1

bSx1 + p
0

bSx0

p
1

bSx1

1

C

A

.

We will use the following formula for the inverse of a block matrix

0

B

@

A B

B B

1

C

A

�1

=

0

B

@

(A� B)�1 �A�1B(B � BA�1B)�1

�(A� B)�1 (B � BA�1B)�1

1

C

A

.

Take A = p
1

bSxx,1 + p
0

bSxx,0 and B = p
1

bSxx,1, and we can simplify each of the compo-

nents above as (A � B)�1 = p�1

0

bS�1

xx,0, (B � BA�1B)�1 = (p
0

bSxx,0)�1 + (p
1

bSxx,1)�1,

�A�1B(B�BA�1B)�1 = �(p
0

bSxx,0)�1. Therefore, the least square estimator can be

rewritten as

0

B

@

b�OLS

b�OLS

1

C

A

=

0

B

@

(p
0

bSxx,0)�1 �(p
0

bSxx,0)�1

�(p
0

bSxx,0)�1 (p
0

bSxx,0)�1 + (p
1

bSxx,1)�1

1
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A

0
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@
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1
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0

bSx0

p
1

bSx1

1
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@

bS�1

xx,0
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bS�1

xx,1
bSx1 � bS�1

xx,0
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1

C
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,
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from which we can see that b�OLS can be obtained by running regression of Y obs onto X

using the control group data, and b�OLS+ b�OLS can be obtained by running regression

of Y obs onto X using the treatment group data.

In order to prove Theorem 15, we need to invoke the following Fréchet–Hoe↵ding

inequality (Hoe↵ding, 1941; Fréchet, 1951; Heckman et al., 1997; Aronow et al., 2014).

Lemma 9. If we only know the marginal distributions X ⇠ FX(x) and Y ⇠ FY (y),

then E(XY ) can be sharply bounded by

Z

1

0

F�1

X (u)F�1

Y (1� u)du  E(XY ) 
Z

1

0

F�1

X (u)F�1

Y (u)du.

Lemma 9 immediately implies the following bound for var(X�Y ) if E(X�Y ) = 0.

Lemma 10. If we know the marginal distributions X ⇠ FX(x), Y ⇠ FY (y) and

E(X � Y ) = 0, then var(X � Y ) can be sharply bounded by

Z

1

0

{F�1

X (u)� F�1

Y (u)}2du  var(X � Y ) 
Z

1

0

{F�1

X (u)� F�1

Y (1� u)}2du

Proof of Lemma 10. The variance var(X � Y ) can be decomposed as var(X � Y ) =

E(X � Y )2 = E(X2) + E(Y 2)� 2E(XY ), depending on the following three terms:

E(X2) =
R

xdFX(x) =

Z

1

0

F�1

X (u)du,

E(Y 2) =
R

1

0

F�1

Y (u)du =

Z

1

0

F�1

Y (1� u)du,

Z

1

0

F�1

X (u)F�1

Y (1� u)du  E(XY ) 
Z

1

0

F�1

X (u)F�1

Y (u)du.
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Plugging the above expressions into the variance of X�Y , we can obtain the desired

bounds.

Applying Lemma 10, we can easily prove Theorem 15.

Proof of Theorem 15. Since S⌧⌧ = S�� +S"", we only need to bound S"", which is the

variance of

"i = {Yi(1)�X 0
i�1}� {Yi(0)�X 0

i�0}

for the finite population i = 1, . . . , n. We can identify the marginal distributions of

{Yi(1)�X 0
i�1 : i = 1, . . . , n} and {Yi(0)�X 0

i�0 : i = 1, . . . , n}, and n�1

Pn
i=1

"i = 0.

Therefore, the bounds in Lemma 10 imply the bounds in Theorem 15.

Proof of Theorem 16. Assume that we have

⌧i = Yi(1)� Yi(0) = f(Xi; �) + "i, (i = 1, . . . , n),

where f(Xi; �) ⌘ fi is a smooth nonlinear function with gradient rf(Xi; �) ⌘ rfi

and Hessian matrix r2f(Xi; �) ⌘ r2fi with respect to the unknown parameter �.

We can obtain b� by solving

0 = n�1

n
X

i=1

m(Ti, Y
obs

i ; b�)

= n�1

1

n
X

i=1

TiY
obs

i r bfi � n�1

0

n
X

i=1

(1� Ti)Y
obs

i r bfi � n�1

n
X

i=1

bfir bfi,

where bfi = f(Xi; b�) and similar definitions applied to its derivatives. Applying Taylor
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expansion, we have

b� � �

⇡
(

n�1

1

n
X

i=1

TiY
obs

i r2fi � n�1

0

n
X

i=1

(1� Ti)Y
obs

i r2fi

�n�1

n
X

i=1

rfi(rfi)
0 � n�1

n
X

i=1

fir2fi

)

·
(

n�1

1

n
X

i=1

TiY
obs

i rfi � n�1

0

n
X

i=1

(1� Ti)Y
obs

i rfi � n�1

n
X

i=1

firfi

)

⇡ N(0, CDC),

in distribution. In the above, the term

n�1

1

n
X

i=1

TiY
obs

i r2fi � n�1

0

n
X

i=1

(1� Ti)Y
obs

i r2fi � n�1

n
X

i=1

rfi(rfi)
0 � n�1

n
X

i=1

fir2fi

has expectation

C = n�1

n
X

i=1

�

Yi(1)r2fi � Yi(0)r2fi �rfi(rfi)
0 � fir2fi

 

= n�1

n
X

i=1

rfi(rfi)
0 ⌘ �Srfrf ,

which is the second order moment matrix of rf up to an ignorable negative sign.

The term

n�1

1

n
X

i=1

TiY
obs

i rfi � n�1

0

n
X

i=1

(1� Ti)Y
obs

i rfi � n�1

n
X

i=1

firfi
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has sampling variance over all possible randomization:

D =
S{Y (1)rf}

n
1

+
S{Y (0)rf}

n
0

� S(⌧rf)

n
,

which is the sampling variance of the treatment on the vector outcome Yrf according

to Lemma 8.
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