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Abstract

Engineered biological systems are increasingly used to produce fuels,
pharmaceuticals and industrial chemicals. While transforming cells into renewable
chemical factories presents an enormous opportunity, development timelines are long,
costly and often uncertain. Engineering microbes for chemical production is accomplished
through the biological design-build-test cycle: many designs are formulated, the
corresponding organisms are constructed, and their ability to produce the desired chemical
is evaluated. Designs that perform well become the starting point for the next round of the
cycle. Faster design cycles result in shorter and less costly product development timelines.

Advances in DNA sequencing, synthesis and genome engineering technologies have
sped up the design and build steps of the design cycle by enabling billions of organism
variants to be designed and constructed simultaneously. However, evaluation of the
resulting designs continues to rely on low-throughput technologies with evaluation rates
on the order of thousands per day. Because the engineering process is a cycle, it can only
proceed at the rate of the slowest step. A high-throughput method for design evaluation

would increase the throughput of the design cycle by up to a million-fold.
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This thesis describes an engineering framework that makes high-throughput design
evaluation a reality. By programming cells to keep track of their own success in making a
desired product, I enable screens and selections to be used for the optimization of
metabolic pathways. [ develop biosensors that maintain gene expression at a rate
proportional to the concentration of several different chemical products and show that
higher product concentration results in a higher fluorescent output. I then construct
metabolic pathways for the production of the renewable plastic precursors 3-
hydroxypropionate, acrylate, glucarate and muconate. I combine each pathway with the
appropriate biosensor and use fluorescence to observe product formation in real-time.
Next, I replace the fluorescent protein with an antibiotic resistance gene and link the level
of product formation to the cell’s ability to survive an antibiotic challenge. I deploy the
selection to optimize production of both glucarate and naringenin from glucose.

[ further develop the characterization of these new biosensors to promote their use
as genetic switches for synthetic biological circuits. Finally, [ develop a device called the
fluorimostat that makes long-term closed-loop programmable control of gene expression a

reality.
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Chapter 1: Introduction

Biosensing for Multiplexed Genome Engineering

Imagine a future where chemicals and materials are produced from CO2 and
sunlight rather than oil dug from the earth - where microbes are harnessed to create
products unconstrained by what can be produced from petrochemical building blocks.
Advances in biotechnology bring this future closer every day. Even in its nascent state, the
bioeconomy is a large and growing segment of the global economy'. Annual U.S. revenues
derived from genetically modified systems are more than $350 billion, equivalent in size to
the entire U.S. semiconductor industry2. Industrial biotechnology accounts for $125 billion
of the bioeconomy and is composed of revenue from the sale of fuels, materials, chemicals
and enzymes. Biologically derived chemicals account for $66 billion of the total, while
biofuels make up $30 billion3. Demand for bio-based products is driven not only by their
renewable nature, but by potentially lower production costs, independence from foreign
oil, and novel product chemistries*. While the promise of industrial biotechnology is huge,
development timelines are long, costly and often uncertain.

It is no surprise that engineering biological systems is a challenging process.
Product development requires the creation of a life form that behaves in a predictable and
reproducible way, a process in which traditional engineering paradigms tend to be
inadequate. Each component of a biological system interacts with thousands of other
components within the cell. This is in stark contrast to electrical or mechanical engineering,

where a given component interacts with just a handful of adjacent components. The



astounding complexity that results from the high connectivity of biological systems is
further exacerbated by poor characterization of components at the individual level.
Consequently, finding a solution that maintains cellular viability, while meeting desired
design goals, requires many iterations of the engineering process. Each iteration can be
broken into three steps: biological design, genetic construction, and phenotype evaluation.
This is the biological design-build-test cycle, and the primary technological driver for an
advanced bioeconomy.

The rates of biotechnological innovation and product development increase with
higher design cycle throughput. Because design-build-test throughput is the product of
cycle speed and bandwidth, the throughput of a given step increases with greater step
speed or wider step bandwidth. The speed of the build and test steps are limited by the rate
at which cells are grown and manipulated. In contrast to speed, the physical limits on
bandwidth are vast. Billions of cells or trillions of DNA molecules fit in a single droplet. If
each cell or molecule contains a unique design, the designs are multiplexed in space. In
contrast to multiplexing, parallel experimentation requires spatial separation of designs.
This places a physical limit on the number of designs that can be processed due to

constraints of space and the logistics of design manipulation.
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Figure 1.1: The evolution of the biological engineering design-build-test cycle.

Using the evaluation step to learn about the design space and inform subsequent
design steps enables product development rates to scale non-linearly with the throughput
of the design cycle. The simplest feedback between the evaluation and design steps occurs
as it does in nature - the most successful designs survive to become the templates for the
next iteration of the cycle and the design space converges to a local maximum. More
advanced feedback from the test step to the design step provides an explicit understanding
of which designs function best. This enables the formulation of design rules that more
quickly define the design space and inform subsequent engineering endeavors. This is a
form of directed evolution in which an engineer monitors the flow of designs and
intervenes as necessary. However, such a process requires the technological capability to
quickly rank and identify the best designs, and to build new designs with enough speed and

precision to actuate the knowledge gained.



Because total cycle throughput is limited by the throughput of the slowest step,
every step of the cycle must be multiplexed to achieve a fully multiplexed design cycle.
While innovation in a single step results in higher step throughput, it also changes how
adjacent steps are approached. Widely available gene synthesis is an example of how an
innovation in the build-step freed design-step engineers from the constraints of using
existing DNA sequences. A more dramatic leap in how engineers approach biological design
will occur once the cycle is multiplexed from start to finish.

A perfect design step would obviate the other steps in the design cycle. Some
engineering disciplines have approached this scenario - it is rare to see a bridge
constructed repeatedly until it works as desired. However, it seems safe to assume our
knowledge of biological design principles will lag behind those of structural and civil
engineering for the foreseeable future, necessitating continued innovation in biological
design.

The effectiveness of the design step has risen meteorically with DNA sequencing
technology. In the burgeoning era of biotechnology, locating or amplifying a gene was
hindered by a lack of sequence knowledge. This made even simple design endeavors, such
as recombinant protein expression, an arduous task. Even once a gene’s sequence was
known, exploration of novel biological designs was constrained to random walks in
adjacent sequence space because hypotheses about functional regions had yet to be
formulated. Later, as the amount of sequenced DNA exploded, so did the potential for
designing novel biological systems. The vast repertoire of sequenced genomes has enabled

the formulation of design rules; in turn enabling engineers to hone in on the active sites of



enzymes, borrow homologous sequences from distant species and to locate regulatory
elements for transcription and translation.

Modern-day design tools expand on these design principles and enable forward
engineering of biological systems. Precise prediction of ribosomal binding site strength and
promoter activity is now possible>7. New proteins can be constructed in silico before being
implemented in vivo8. The metabolism of entire organisms can be modeled mathematically,
revealing which genes should be turned up or down to accomplish a given metabolic
goal?10. But even these sophisticated design tools exist within the ambiguity of biology -
they provide guides for design spaces that we would otherwise have no hope of
constraining. For example, a small enzyme consisting of 300 amino acids exists in a design
space of 1x10390 possible protein sequences. If our design tools allow us to identify an
active site of seven amino acids, that active site exists in a design space of one billion
potential active sites. If we know that those amino acids should be positively charged, then
our design space converges to two thousand possible proteins. How do we construct so
many designs?

The build step of the design cycle is the process in which potential designs are
constructed in DNA and integrated into a cell. The cost of gene synthesis has fallen to the
point where ordering several genes is trivial for most laboratories 1112, Combined with
technologies enabling seamless plasmid construction!314 and simple methods for
modifying the genome!516, parallel construction is a robust process. However, achieving a
meaningful increase in build bandwidth by multiplexing with synthesized genes will
remain cost prohibitive as long as the construction of those genes is a parallel process
itself. As such, engineers are left with either random or site directed mutagenesis to
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achieve multiplexed construction of genetic elements. This has been a serious constraint on
what designs can actually be constructed in a multiplexed way. Recently, chip-based
oligonucleotide synthesis has enabled multiplexed construction of precisely designed
sequences of up to 200 base pairs, allowing for the evaluation of hundreds of thousands of
complex hypotheses at a time®17.18, The capability to multiplex the build step is
transforming how engineers approach the design cycle: experiments that were previously
infeasible and now within reach.

Simultaneous advances in genome engineering have made the construction of
billions of genome variants a routine process!®19-22. Multiplexed genome engineering
allows specified or degenerate mutations to be targeted anywhere in the genome. Such
facile genome engineering enables new classes of experiments. As an example, the entire
set of metabolic modifications outlined by flux balance analysis (FBA) can now be explored
simultaneously. When optimizing the production of a target compound, FBA identifies
genes that are important to modulate but does not accurately specify what their level of
expression should be®. Multiplexed genome engineering enables the combinatorial
exploration of gene expression levels for each of the genes of interest1619. If 10 genes are
targeted with mutations corresponding to 10 levels of expression, the resulting design
space is composed of 10 billion genomes.

Despite the success in multiplexing the design and build steps, evaluating 10 billion
designs with current technology would take decades because the test step of the
engineering cycle remains a parallel process. Evaluation of the multiplexed designs
requires demultiplexing, which negates the value of multiplexing at the outset. One reason
phenotype evaluation lacks an adequate multiplexed solution is that analytical methods are
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dramatically different for different phenotypes. When cells are engineered to produce fuels
or chemicals, design success is often determined by the amount of compound produced.
This requires cells to be separated into individual designs (the demultiplexing step) and
cultured independently in small volumes, such as in 96-well plates. Next, either the
supernatant or cell lysates are prepared such that the concentration of the molecule of
interest can be determined using chromatography or mass spectrometry?3. Cells that
produce high concentrations of the metabolite are retained and used as the starting point
for the next round of design. Alternatively, promising designs are sequenced to reveal what
aspects of the design worked well, informing subsequent rounds of the cycle. In typical
labs, throughput is limited to hundreds of design evaluations per day, while specialized
labs are able to evaluate thousands of designs per day?3.

Enabling cells to report their own progress in making a specific chemical provides a
multiplexed solution to the test step. Rather than assaying individual designs, engineers
should be able to define a design goal and immediately separate cells that meet the
specified level of performance from cells that do not. If cells keep track of their own
progress, then the time required for separation of productive cells from unproductive cells
no longer scales with the number of cells evaluated. Selections are an example of such a
multiplexed evaluation method. In a selection, only cells that have a certain phenotype
survive. This decouples the time required for evaluation from the number of cells
evaluated. However, selections are typically based upon an ad-hoc link between a
phenotype of interest and a necessary cell function. For example, selecting for increased
utilization of a new sugar is possible if all other energy sources are withheld. But selecting
for the increased production of a novel chemical is not so simple. A general method for
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multiplexed phenotype evaluation is the last step required for a fully multiplexed design-
build-test cycle.

One such method is based upon genetically encoded biosensors. Biosensors provide
a general framework for linking intracellular chemical concentration to transcription and
provide a generalizable method for multiplexing design evaluation in cases of metabolic
engineering. Genetically encoded biosensors are based upon allosteric transcription factors
that allow expression of a target gene when bound by a specific small molecule.
Transcription factors cluster into more than 20 major families?4. Currently, the lacl family
contains 29 thousand sequenced members, while the gntR family contains 49 thousand
members?. There are over 200 thousand sequences available for members of the tetR
family of transcriptional repressors?+. These naturally occurring transcription factors bind
to an incredible range of compounds. If a microbe has an incentive to consume or avoid a
compound, there is likely a transcription factor that has evolved to bind it. Recent advances
in protein engineering and directed evolution have produced designer transcription factors
that bind compounds for which natural transcription factors have yet to be discovered?6.27.

Biosensors enable screens and selections for a vast repertoire of compounds by
providing a transcriptional readout to intracellular metabolite concentration. When the
transcriptional output of the biosensor is an antibiotic resistance gene, biosensor activation
confers antibiotic resistance. Treating a population of cells with the appropriate antibiotic
allows cells to survive only if they produce the required amount of product. Alternatively, if
the transcriptional readout of the biosensor is a fluorescent protein, cells with more

effective designs will fluoresce more brightly. Fluorescent biosensors enable millions of



cells to be screened per minute with high-throughput methods such as fluorescent
activated cell sorting (FACS).

Combining multiplexed phenotype evaluation with next-generation sequencing
enables a deep understanding of the design space being explored. Sorting cells into bins
based upon their fluorescence is a multiplexed method for assigning each cell a rank based
upon the quality of the design it contains. Deep sequencing of the bin contents provides a
list of designs for each bin. Ranks are assigned to each design based on which bin they were
found in. Each iteration of the design cycle provides millions of design-rank pairs. This
wealth of information allows design rules to be developed much more rapidly than would

otherwise be possible.



Biological Design-Build-Test Cycle

Design

Rosetta
Flux balance analysis
101010110 ——> ATTGACATA

Build

Multiplexed DNA Synthesis

¥

Plasmid Genome
libraries engineering
o € SXe) ? loo
o >1x107 (o) >1x10° 0o
o) variants (%0 variants |Q
Test \ 4
0000 Flow
e OOOO N cytometry
—— ¥ LC/MS Biosensor |o oolloollos
addition | $o So [ Lo |Se
[ 09 0909 09
| 1

Good designs
are fluorescent

Thousands evaluated / cycle Billions evaluated / cycle

Figure 1.2: Biological design-build-test cycle for metabolic engineering. A reliable link
between product titer and cellular fluorescence is the last piece of the puzzle to enable a
fully multiplexed design cycle (right side of the triangle). Traditional metabolite analysis
(left side of the triangle) requires separation of designs into individual cultures before
analysis by liquid chromatography and/or mass spectrometry (LC/MS). Plasmid libraries,
genome engineering and other building techniques can be used with either test
methodology.

Simple design rules and extensive characterization of metabolite-responsive
biosensors are necessary for multiplexed phenotype evaluation to be broadly adopted.
Using biosensors to optimize several different metabolic pathways allows for the
formulation of design rules that transform screens and selections from ad-hoc solutions to

well-characterized tools. In the case of selections, three main areas of characterization are

needed. First, the dynamic range of the sensor must be evaluated. This is the range of
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chemical concentrations over which an increase in the production of the target compound
results in an increase in fitness. Second, the failure rate of the sensor must be defined. The
failure rate is the likelihood that a cell erroneously survives the selection without
producing the required amount of product. The inverse of the failure rate is the maximum
bandwidth for the selection. Third, there must be a set of methods for modulating the
dynamic range and failure rate, such that the selection is appropriate for the evaluation
task at hand.

An analogous set of characterizations are necessary for screens built upon
fluorescent biosensors. The transfer function between product concentration and
fluorescence response should be evaluated. The transfer function provides the dynamic
range of the system and allows product concentration to be mapped onto the observed
fluorescence. Determining the kinetics of biosensor activation over a range of product
concentrations reveals the optimal timing for fluorescent sorting. Highly productive cells
may be missed if sorting is done too soon, while poorly producing cells may be retained if
sorting is carried out too late.

In this thesis | use biosensors to transduce small-molecule concentration into a
transcriptional readout and develop a framework for multiplexed phenotype evaluation. I
apply biosensors to monitor the production of glucarate, muconate, acrylate and 3-
hydroxypropionate in real time and ultimately optimize the production of naringenin and
glucarate. Glucarate, muconate and acrylate are plastic precursors. Enabling the renewable
production of these compounds has the potential to lower costs and decouple pricing from
oil. Glucarate polymers are entering the market as next-generation time-release fertilizers
and ultra-absorbent fibers. Both Rivertop Renewables and Kalion have been actively

11



developing the glucarate market. Muconate is a precursor to nylon with a global market of
$20B28, Muconate is also used to produce polyethylene terephthalate with a global market
of $31B2%. Amyris is pioneering the commercialization of these and other muconate
products. The global acrylate market is $14 billion3?, with BASF, Cargill and Dow each
pursuing bio-based drop-in replacements. 3-hydroxypropionate (3HP) is used to produce
1,3-propandiol, malonate and is a precursor for renewable acrylate. Genomatica, Metabolix,
Myriant, Novozymes and OPX are all competing to achieve commercial scale fermentation
of 3HP from sugar and other types of biomass. Naringenin is a flavonoid isolated from
grapefruit with several emerging health applications.

Altogether, I have applied biosensor technology towards the optimization of five
pathways, developing ten sensors for sixteen compounds selected from diverse chemical
classes such as macrolide antibiotics, alkanes, vitamins, flavonoids, diacids, and phenol.

The field of synthetic biology aims to make the process of engineering biology more
akin to electrical engineering. However, the complexity of synthetic circuits is limited by
the number of orthogonal input channels available to control gene expression in real-
time31-33, Biosensors can be used as novel communication channels into (and out of)
engineered cells, providing a way to increase the complexity of human-cell interaction. To
this end, I characterized biosensors as genetic rheostats such that they are tunable input
channels for synthetic circuits. Building further on the principle of programmable biology, I
have constructed a device, termed the fluorimostat, that is able to autonomously
characterize the properties of inducible systems. The fluorimostat is controlled through a
Python module known as cellscript, enabling biological engineers a direct programming
interface for closed- and open-loop control of gene expression.
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Throughout this thesis [ have aimed to maximize my impact on the biological design
cycle by producing tools that are effective, yet simple to implement. My hope is that by
enabling a fully multiplexed design-built-test cycle for bio-based chemical production, I can
help accelerate the rate of product development in industrial biotechnology. Previous
efforts to multiplex the evaluation of experimental results have become foundations of
modern biology. These technologies include immune sequencing34, RNA-Seq3>, CHIP-Seq3¢
and Flow-Seq®18. The common element between all of these transformative technologies is
the transduction of a signal to a nucleotide sequence. Multiplexed phenotype evaluation for
metabolic engineering follows in the same tradition by linking intracellular small-molecule
concentration to a transcriptional readout. Screens and selections are convenient methods
to monitor the presence of these transcripts. Direct sequencing of the transcriptional
output will enable even greater multiplexing, since dependence on translation and protein

function would no be longer necessary.
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Chapter 2: Synthetic biosensors for precise gene control and
real-time monitoring of metabolites

Abstract

Characterization and standardization of inducible transcriptional regulators has
transformed how scientists approach biology by allowing precise and tunable control of
gene expression. Despite their utility, only a handful of well-characterized regulators exist,
limiting the complexity of engineered biological systems. We apply a characterization
pipeline to four genetically encoded sensors that respond to acrylate, glucarate,
erythromycin and naringenin. We evaluate how the concentration of the inducing chemical
relates to protein expression, how the extent of induction affects protein expression
kinetics, and how the activation behavior of single cells relates to ensemble measurements.
We show that activation of each sensor is orthogonal to the other sensors, and to other
common inducible systems. We demonstrate independent control of three fluorescent
proteins in a single cell, chemically defining eight unique transcriptional states. To
demonstrate biosensor utility in metabolic engineering, we apply the glucarate biosensor
to monitor product formation in a heterologous glucarate biosynthesis pathway and
identify superior enzyme variants. Doubling the number of well-characterized inducible
systems makes more complex synthetic biological circuits accessible. Characterizing
sensors that transduce the intracellular concentration of valuable metabolites into
fluorescent readouts enables high-throughput screening of biological catalysts and

alleviates the primary bottleneck of the metabolic engineering design-build-test cycle.
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Introduction

In-depth biological part characterization forms the foundation for abstraction and
complexity in engineered biological systems. Sensors are one of the most important
components to characterize as they provide the channels of communication into and out of
the cell. Biosensors that respond to external agents such as chemicals or light allow real-
time control of gene expression. Furthermore, sensors enable online monitoring of
metabolic phenotypes by transducing intracellular chemical concentration into gene
expression. Because phenotype evaluation is a major rate-limiting step in metabolic
engineering, coupling sensors to reporter gene expression enables rapid and multiplexed
phenotype evaluation, facilitating faster design-build-test cycles.

Small molecule inducible systems are genetically encoded biosensors that modulate
gene expression in response to the presence of a small molecule inducer. One of the most
widely used biosensors is the allosteric DNA binding protein Lacl, which natively regulates
the lactose catabolism operon in E. coli by binding near the transcriptional start site and
repressing transcription initiation (1). When an inducing molecule such as isopropyl 3-D-1-
thiogalactopyranoside (IPTG) is present in the cell, it binds to the Lacl protein and the Lacl-
IPTG complex disassociates from DNA, allowing transcription to proceed. Construction and
characterization of engineered Lacl-inducible systems (2,3) has resulted in widespread use
in applications ranging from protein over-expression (4), to signal processing (5,6), and
even chromosomal visualization (7).

Because of their general applicability and extensive characterization, a small set of
canonical inducible regulators (Lacl, TetR (2), AraC (8), LuxR (9)) are repeatedly used for a

diverse range of applications. Other well-characterized inducible systems are available
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(PrpR (10), RhaRS (11), CymR (12), XylIS (13)), but with the exception of CymR, these suffer
from catabolite repression and/or weak induction. Other expression control paradigms
include riboswitches (14), which provide ligand-mediated control of translation, and light-
regulated optogenetic systems (15), which are a promising complement to chemical
induction. However, there is a pressing need for additional inducible systems, as genetically
encoded biosensors allow facile control of transcription by merely supplying the inducer in
the growth medium.

Robust inducible systems are valuable tools facilitating adjustable and on-the-fly
control of specific genes. Tunable expression of one or more genes over the course of an
organism’s growth provides unique insights into gene function (16) and developmental
programs (17). Dynamic regulation is therefore distinct from static methods that disrupt
genes altogether (18-20) or that change expression through modification of cis-regulatory
elements such as promoters (21) and ribosomal binding sites (RBS) (22). Because
extensive characterization is often lacking, inducible systems are typically operated as all-
or-nothing switches without regard for the speed or extent of induction. This mode of
operation is adequate for conditional overexpression of potentially toxic genes, but yields
less information than careful titration of gene dosage when probing cellular behavior (23).

When metabolite-responsive biosensors regulate fluorescent reporters, they facilitate
real-time observation of internal cell states. Measurement of intracellular metabolites is
often desirable, but is typically a slow and destructive process. Standard methods require
macroscopic cultures or prepared lysates, which are assayed by chromatography and mass
spectrometry, or by absorbance in special cases (24). When intracellular metabolite
concentration is transduced to fluorescence, high-throughput single cell measurements
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become possible (24). Fluorescent monitoring approaches can leverage allosteric
transcriptional regulators that are already known for many common intermediates of
metabolism, such as pyruvate (25), phosphoenol pyruvate (26), citrate (27), lactate (28),
unsaturated fatty acids (29) and NADH (30).

Genetically encoded biosensors are valuable in metabolic engineering applications
as they enable cells to report on their individual progress in producing a target compound
from glucose or other low cost starting materials. Each cell expresses a fluorescent protein
or antibiotic resistance gene at a rate proportional to its ability to produce the target
compound. This link between internal metabolite concentration and reporter expression
allows engineers to screen (by fluorescence) or select (with an antibiotic) for the most
desirable cells (31). Coupling selections or screens to small molecule sensors have yielded
new enzymes (32-35) and genomes enhanced for target metabolite production (36).

In addition to online observation of key metabolites, metabolic engineers benefit
from advances in real-time control of biosynthetic gene expression. Independent control of
each enzyme in a metabolic pathway facilitates the careful balancing of expression that is
often necessary for optimal product production (37). In other cases, carefully timed
expression of pathway enzymes has been shown to increase product titer (38). Keasling
and coworkers used a genetically encoded biosensor to increase biodiesel titers by tying
enzyme expression to the concentration of a pathway intermediate (39). Monitoring
unwanted side-products, such as lactate, or desired products, such as fatty acids, with
fluorescent reporters allows screening of millions of cells by flow-cytometry (32). If the
reporter is an antibiotic resistance marker, selection can then be used in directed evolution
applications (40).
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Thorough characterization of an inducible system should provide enough
information for applications ranging from environmental sensing and signal processing to
metabolic engineering. Many characterization approaches provide this information and
new methodologies are being developed. The BioFab has created analysis pipelines
resulting in the characterization of transcriptional initiators (41) and terminators (42).
Furthermore, they have developed methods to indicate how robust these characterized
parts are to changing environments (43). While these characterization projects rely
primarily on end-point measurements in 96-well plates, other approaches have exclusively
used flow-cytometry data to fit parameters to complex models of induction (44).

Biosensor parameters dictate how useful a given biosensor will be for the
application at hand. Characterizing these properties requires measuring: (1) the
relationship between stimulus strength and circuit activation; (2) the response time of the
biosensor to a stimulus; (3) the heterogeneity of biosensor activation between cells in an
isogenic population and (4) the cross-reactivity with stimuli of other biosensors.
Pioneering work from the Endy lab has introduced the idea of biological part ‘datasheets’
that capture the information subsequent engineers might need in order to use a new
part(9). This engineering approach to biology has subsequently been used to characterize
the commonly used inducible systems XylS, Lacl and AraC (45). In this study, we
characterize four additional allosteric transcription factors that modulate transcription in
response to small molecule concentration. We include two commonly used biosensors in
our analysis in order to ground our results in a context that many bioengineers are familiar

with.
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Results

We chose to characterize biosensors based upon two criteria: (1) published
experimental validation of the DNA binding protein, its cognate promoter/operator and the
inducer chemical; and (2) potential for the inducing chemical to be produced enzymatically
through metabolic engineering. AcuR binds acrylate in order to regulate
dimethylsulfoniopropionate (DMSP) catabolism in Rhodobacter sphaeroides (51). CdaR is a
transcriptional activator from E. coli that has been shown to regulate transcription in
response to several diacids: glucarate, galactarate and glycerate (52). MphR mediates
transcription in the presence of erythromycin and other macrolide antibiotics such as
josamycin and azithromycin (53). MphR was first identified in a macrolide resistant strain
of E. coli (53) and has subsequently been used in both mammalian(54,55) and microbial
(56) transgene activation. In Pseudomonas putida, TtgR regulates expression of a multi-
drug efflux pump in response to flavonoids such as naringenin, phloretin and genistein
(57), and has also been used for mammalian transgene activation (58). AcuR, MphR and
TtgR are members of the TetR transcriptional repressor family. We also included the well-

characterized regulators TetR and AraC for comparison.

Sensor Characterization

Biosensors were constructed as a single plasmid encoding both the allosteric
transcriptional regulator and a fluorescent reporter. The reporter mRNA is transcribed
from a promoter/operator sequence controlled by the allosteric transcriptional regulator.
For transcriptional repressors, a medium-strength constitutive promoter (50) was used to

drive regulator transcription. For the transcriptional activators, the native promoter
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sequence of the activator was used in order to preserve the auto-regulating behavior of the
AraC and CdaR regulators (52,59). We constructed the biosensors in commonly used high
and low copy plasmids to evaluate their behavior in different contexts. High copy plasmids
employed a pUC origin of replication (~100-500 copies), while the low copy plasmids
encoded the SC101 replication origin (2-5 copies). All plasmids expressed beta-lactamase,
enabling the use of carbenicillin for plasmid maintenance. In the case of the MphR
biosensor, an erythromycin resistance gene was also included to protect the cells from the
high macrolide concentrations required for induction.

The relationship between inducer concentration and expression of the fluorescent
reporter was evaluated for six inducible systems (Fig. 2.1). The resulting biosensor transfer
functions encompass the complete range of sensor outputs, allowing determination of each
biosensor’s dynamic range. Evaluation of the transfer function also reveals the minimum
and maximum expression level obtainable in each biosensor implementation. The
calculated fold-induction (maximum fluorescence divided by uninduced fluorescence) of
high-copy biosensors ranged from 63 to 210 (Table 1). The fold-induction values indicated
as being above a certain number are the result of the mean uninduced fluorescence
residing within, or very near, the intensity of the cellular auto-fluorescence. A true number
for fold-induction is undefined in this scenario, so a minimum fold-induction was
determined using the bounds of the 95% confidence intervals. The greatest magnitude of
induction among the high-copy biosensors was achieved with AraC, followed by CdaR and
MphR (Fig. 2.1a). For the low-copy biosensors, fold induction ranged from 3 to 78. The
AcuR biosensor demonstrated the lowest uninduced accumulation of GFP, with no
fluorescence above background in the absence of acrylate for both the high and low copy
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systems. This is in contrast to the TtgR biosensor, which showed higher uninduced
accumulation of GFP in the low-copy configuration. The opposite effect was observed for
the TetR biosensor, which demonstrated a lower uninduced accumulation of GFP, such that

fluorescence was within that of the background in the low-copy configuration (Fig. 2.1b).
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Figure 2.1: Induction dynamics for each of the inducible systems are reported. The
relationship between fluorescent response and inducer concentration is represented as a
95% confidence band (n=3) for both the high-copy (a) and low-copy (b) implementations
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of the inducible systems. The plots are log scale to capture the wide range of inducer
concentrations and biosensor responses. Inducer concentrations are the same for both high
and low-copy implementations. Each curve is matched to a color-coded table of inducer
concentration ranges. Acrylate and anhydrotetracycline (aTC) increase in 2-fold
increments while arabinose, glucarate, erythromycin and naringenin increase in 3-fold
increments. The inducing chemical and biosensor name are indicated to the left and right of
the table, respectively. The gray band is the fluorescent response of a control strain
containing no fluorescent reporter. Fluorescence measurements are performed 15 hours
after addition of the inducing chemicals.

The time required for induction was evaluated for each biosensor (Figs. 2.2, A.1,
A.2). Reporter expression was monitored for eight hours with a wide range of inducer
concentrations. All high-copy biosensors began producing fluorescence above background
within 30 minutes, and achieved maximum levels of fluorescence within five hours under
the highest induction conditions. Low-copy biosensors began producing measurable
fluorescence within 50 minutes, but could require more than eight hours to achieve
maximum fluorescence at the highest levels of induction. While the onset of expression
began rapidly and without much variability between biosensors, the maximum
fluorescence was sensor-dependent. For example, the CdaR biosensor achieved maximum
fluorescence from moderate induction in nearly one hour, while the highest glucarate
induction condition required six hours to reach maximal fluorescence. This is in contrast to
the high-copy MphR biosensor, which approached maximal fluorescence around three
hours regardless of the intensity of induction. The low copy variant of the MphR biosensor
showed a similar trend, but required additional time to achieve maximum fluorescence
(Fig. A.1). Variability in the kinetics of induction may be related to the intrinsic strength of
the regulated promoter, sensor-DNA equilibrium, or the relationship between biosensor

activity and growth-phase. Each repressor besides AcuR ceased to accumulate additional

fluorescence at the onset of stationary phase. This is in contrast to the activators, which
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achieved maximal fluorescence well before stationary phase. Contrary to the behavior of
the other repressors, strong induction of AcuR by acrylate is enabled by entry into

stationary phase.
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Figure 2.2: Induction and growth kinetics for the low-copy glucarate (CdaR), erythromycin
(MphR), acrylate (AcuR) and naringenin (TtgR) biosensors. Chemical inducers are added at
time zero and fluorescence is observed for eight hours. Lower panels show the optical
density of the induced cultures over time. Induction levels are indicated by shade, with
darker colors indicating higher inducer concentrations. Glucarate induction levels are
40mM, 13mM, 4.4mM, 1.5mM, 0.49mM and no inducer addition. Erythromycin induction
levels are 1400uM, 450upM, 150pM, 51pM, 17uM and no inducer addition. Acrylate
induction levels are 5mM, 2.5mM, 1.3mM, 0.63mM, 0.31mM and no inducer addition.
Naringenin induction levels are 9mM, 3mM, 0.33mM, 0.11mM, 0.037mM and no inducer
addition. Fluorescence and optical density are normalized as described in the Methods. The
standard error of the mean is represented with a 95% confidence interval (n=3).

Complex synthetic circuits can be mathematically modeled to aid in component
selection and system design. In order to make our biosensors compatible with such
forward engineering efforts, we applied a simple model of gene activation to relate
promoter activity to inducer concentration. We defined promoter activity as the time
derivative of fluorescence corrected for cell growth. The time required for fluorophore

maturation was considered and found to be less than two minutes (49). Likewise,

degradation of GFP was ignored because the half-life in E. coli is greater than 24 hours (60).
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We fit gene expression rates to a Hill function adapted to account for both the maximum
velocity of gene expression and the basal expression of the uninduced cells. We found that
both activators, AraC and CdaR, had Hill coefficients indicating low cooperatively. The
repressors TetR, AcuR and TtgR all exhibited high cooperatively. The exception is the
repressor MphR, which has a lower Hill coefficient (Table 1). Examination of the activity-
induction curves of the high-copy sensors reveals that the induction behavior of MphR is
indeed more similar to that of the activators AraC and CdaR, rather than the other
repressors TetR, AcuR and TtgR (Fig. 2.3). The same trend holds for the activity-induction
curves of the low-copy sensors except that AcuR demonstrates less cooperatively in this
implementation, potentially due to its dependence on growth phase for activation (Fig.
A.3). Due to the toxicity of acrylate at 10mM, we omitted this induction condition from the
data used for modeling. Likewise, the highest concentrations of erythromycin were omitted
from the low-copy MphR biosensor model as they showed substantial toxicity, likely due to
lower expression of the erythromycin resistance gene. The maximum velocity of the high-
copy sensors was always greater than the low-copy versions, however the magnitude of the
change was greater in the repressors than the activators. The activator-based sensors
control their own expression and this feedback may provide some expression stability in
the face of copy number variation. Basal promoter activity was less than 3% of the
maximum promoter activity for each high-copy biosensor. Low-copy biosensors had higher
and more variable basal promoter activity due to lower maximum activities, and in some

cases, less effective transcriptional repression.
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Figure 2.3: High-copy promoter activity was fit to a model of inducible gene expression.
The maximum expression velocity of each inducible promoter was determined at various
levels of induction (points). The data was fit to a Hill function modified to account for basal
and maximal promoter activity (green lines). The anhydrotetracycline (TetR), acrylate
(AcuR) and naringenin (TtgR) biosensors all show high induction cooperativity. The
arabinose (AraC), glucarate (CdaR) and erythromycin (MphR) biosensors show low or
moderate levels of cooperativity. The 10mM acrylate induction condition was omitted from
the modeling data due to high toxicity (red point). Error bars reflect the 95% confidence
interval for the measured expression velocity.
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Table 2.1: Induction characteristics of the small-molecule inducible systems.

Max Basal
Copy Fold Hill Half Maximal Expression Expression
Number Induction Coefficient Parameter Velocity (s'1) Velocity (s'1)
AcuR High >90 32403 26201 mM 910+40 5+7
Low >50 1.3+0.1 1.0+0.1 mM 150+10 152
AraC High 210+9 13+0.1 59+3 puM 315060 20£50
Low 29+3 13+0.2 250+30uM 126050 40 + 30
CdaR High 168+x6 1+0.1 490+60 uM 2600+ 100 0+60
Low 78+ 8 1+0.2 8+2 mM 1000+100 3020
MphR High 108+9 1.6%0 97+2 uM 2070+ 20 9+7
Low 8+1 1.6+0.1 221 uM 66 +1 5+04
TetR High 63+3 42+01 81+x1 nM 176010 86
Low >50 31+03 54+2 nM 116 £ 2 2+1
TtgR High 70+20 3.8+0.6 550+50 uM 180+ 6 4+3
Low 30 23+£04 190+ 20 uM 25+1 6+1

Individual cells were evaluated by flow cytometry to determine whether the
ensemble induction dynamics were indicative of single cell behavior, or were instead an
averaged result of stochastic, all-or-nothing responses in individual cells (Fig. 2.4, Fig. A.4).
This type of characterization is important, as some inducible systems have been observed
to produce bimodal or otherwise heterogeneous induction patterns due to positive
feedback or inducer transport properties (61,62). Basal, low and high induction levels were
measured after overnight induction. For each biosensor, it was shown that the majority of
individual cells adjust their fluorescence in response to inducer concentration. In cases
where a small group of cells do not fluoresce, the population represents less than 2% of the
total cell population and may consist of dead cells, or cells containing dysfunctional
plasmids. Nonetheless, the individual cell responses reflect the population-averaged
behavior observed in ensemble measurements. High-copy AraC and CdaR biosensors both

have high basal levels of reporter expression when evaluated in bulk (Fig. 2.1a).
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Unsurprisingly, these sensors demonstrated the widest uninduced fluorescence
distributions when evaluated at the single cell level (Fig. 2.4). The TetR biosensor has a
broad fluorescence distribution when partially induced, possibly precluding its use in
sensitive induction applications. When partially induced, both low copy MphR and high
copy TtgR fluorescence distributions are compressed against the limit of detection (Fig.
A.4). This could indicate that the left tail of the distribution is below the limit of detection,
or that some cells are not activating in response to the inducer. As observed in the
ensemble measurements, TtgR induction is weak. In the case of the low copy TtgR plasmid,
the induced and uninduced populations almost entirely overlap when observed by flow

cytometry (Fig. A.4).
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Figure 2.4: The behavior of single cells in response to chemical induction was evaluated by
flow cytometry. 100,000 cells from uninduced (grey), partially induced (green) and fully
induced (blue) populations were observed for each high copy biosensor. The specific
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concentration of inducer is indicated in the plot. Histograms are plotted with a
biexponential scale to render the wide range of biosensor activation. The absence of large,
well-separated bimodal distributions indicates that bulk fluorescent measurements do
indeed reflect the induction behavior of individual cells.

Toxicity of the inducer chemicals was measured to help guide the choice of inducer
concentration for future biosensor applications (Fig. 2.5). In applications where maximum
protein production is the goal, toxicity will be less of a consideration. In contrast, sub-toxic
induction is important for complex circuits that require the cell to maintain a healthy cell
state. As expected, erythromycin was toxic to E. coli at concentrations as low as 50 pM.
However, with expression of the erythromycin resistance gene (eryR), only slight toxicity
was observed at erythromycin concentrations up to 1.4 mM. A similar growth defect was
observed with 430 nM anhydrotetracycline (aTC). Both growth defects are likely due to the
solvent, in this case ethanol. Naringenin showed significant toxicity at concentrations of
330 uM and above. This toxicity is likely due to the flavonoid itself, rather than the solvent
dimethylsulfoxide (DMSO). Acrylate showed substantial toxicity at 5 mM and 10 mM,
corroborating previous observations (63). High concentrations of arabinose resulted in
higher growth rates due to E. coli’s ability to use the sugar as a carbon source. Similar but

more modest growth benefits were observed at the highest concentration of glucarate and

at low levels of ethanol supplementation.
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Figure 2.5: The toxicity of each inducer chemical was evaluated over a wide range of
concentrations. Growth rate was measured for each combination of chemical and
concentration during the exponential phase of growth. Rates were normalized to the
growth rate of cells without any added chemical and plotted as bar height. Concentration of
each inducer is indicated in the table, corresponding to the bar chart by order and color.
Ethanol and DMSO were included as they are the solvents for aTC and naringenin,
respectively. Erythromycin was evaluated twice: with and without the erythromycin
resistance gene, eryR. Inducer concentrations mirror the concentrations used in the
induction experiments.

Sensor Orthogonality

The cross-reactivity of each biosensor was evaluated with a panel of inducing
compounds: acrylate, arabinose, glucarate, erythromycin, aTC, naringenin, IPTG, rhamnose,
cumate and the solvents, DMSO and ethanol. The inducing compounds not otherwise

evaluated in this work were included to provide forward compatibility for future biosensor
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implementations. No sensor was observed to respond to any of the evaluated compounds
except for its cognate inducer (Fig. 2.6). Cumate, glucarate and acrylate all feature a
carboxylate, yet are discriminated by their respective sensors. TtgR is known to be
promiscuous (57,64), and it is surprising that it is not activated by cumate since it binds
many similar molecules, one of which is chloramphenicol (57). TtgR activation by
chloramphenicol precludes engineered systems containing TtgR alongside a plasmid

maintained by chloramphenicol acetyl transferase.

fluorescence
(AFU / OD)

Figure 2.6: The potential for the chemical inducers to activate non-target sensors was
evaluated. The cross-reactivity of the new inducers, along with a selection of other
commonly used inducers and inducer solvents, was evaluated against each of our six
inducible systems. The growth-normalized fluorescent response of each biosensor-inducer
pair is plotted as height (n=3). No cross-reactivity was observed.

While the cross-reactivities of the biosensors were evaluated with a single sensor

per cell, the real utility of orthogonal sensors comes from controlling a single cell with
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multiple sensors. To this end, we redeployed several sensors to allow stable maintenance
and non-overlapping fluorescent readouts in the same cell. The MphR biosensor was
reconstructed such that erythromycin controlled the expression of mCherry in a vector
backbone encoding the p15a replication origin and spectinomycin resistance. Similarly, the
AcuR biosensor was reconstructed in a vector backbone encoding the colA origin and
kanamycin resistance to facilitate acrylate-mediated expression of CFP. These plasmids
were co-transformed with the pJKR-H-CdaR plasmid (encoding GFP) and stably maintained
in DH5a cells. Overnight induction of this strain with every combination of glucarate,
erythromycin and acrylate induction resulted in eight distinct cell states as measured by
fluorescence in the three channels (Fig. 2.7). High, but non-toxic, levels of inducer were

chosen for each orthogonal induction channel.
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Figure 2.7: Compatible CdaR-GFP, AcuR-CFP and MphR-mCherry biosensors were
transformed into the same cell. The potential for these biosensors to be controlled
independently was evaluated by flow cytometry. The isogenic cell population was exposed
to no inducer (orange), glucarate (light blue), acrylate (dark green), erythromycin (dark
blue), glucarate and acrylate (red), glucarate and erythromycin (tan), erythromycin and
acrylate (pink) or glucarate, acrylate and erythromycin (light green). The eight
combinations of binary induction resulted in eight distinct cell populations when
characterized in the three fluorescent channels. The point clouds, each point representing 1
of 10,000 cells, are projected onto the faces of the cube in order to aid in visualization of the
3D space. All axes are log scale to capture the wide range of fluorescent responses.
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Flow cytometry was used to evaluate individual cell behavior. Without induction,
there is low fluorescence in all channels, as represented by the orange population in Figure
2.7. Induction with only glucarate results in individual cells changing their cell state by
producing GFP with no CFP or RFP expression (light blue population in Figure 2.7). The
trend continues with induction by erythromycin producing the dark blue cell population
exhibiting high fluorescence in the red channel, but low fluorescence in the blue and green
channels. Similarly, the dark green points represent acrylate-induced cells with high
fluorescence in the blue channel. Induction by all three ligands results in the light green cell
population demonstrating high fluorescence in all three channels.

In principle, 16 distinct cell states can be defined with four orthogonal inducible
systems, and 32 distinct cell states can be defined with five inducible systems. In these
cases, output channels become limiting, as there are limited distinct fluorescent proteins. If
three levels of induction are considered (none, intermediate and high), rather than the
binary case examined here, the number of cell states increases from 8 to 27 for the system
of three orthogonal biosensors, and from 16 to 81 for the theoretical system of four

orthogonal biosensors.

Sensors for Metabolic Flux Monitoring

The CdaR biosensor was used to monitor production of glucarate from myo-inositol.
Glucarate can be produced from biomass as a renewable replacement for nylon and other
plastics (65), however high titers are currently limited by the activity of myo-inositol
oxygenase (MIOX) (66), which converts myo-inositol into glucuronate. Glucuronate is in

turn oxidized to glucarate by the fast-acting enzyme glucuronate dehydrogenase (Udh). By
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co-transforming plasmids containing the CdaR biosensor, a constitutively expressed Udh
gene and a library of four constitutively expressed MIOX orthologs, we were able to rapidly
identify enzymes producing higher glucarate titers in E. coli. The four MIOX variants
produced a 20-fold range in fluorescence after 16 hours (Fig. 2.8). Mass spectrometry was
used to determine actual glucarate titers in order to determine if biosensor readout was
predictive of an enzyme’s potential for glucarate production. Glucarate titers were well
correlated with fluorescence (Fig. 2.8), encouraging future work in which biosensors
enable high throughput discovery and optimization of enzymatic activity. The previously
characterized Mus musculus MIOX ortholog (66,67) produced the highest fluorescence and
titer. Interestingly, a very similar glucarate titer and biosensor response was obtained from
the Flavobacterium johnsoniae MIOX ortholog that shares only 45% identity with the Mus

musculus variant.
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Figure 2.8: Activation of the CdaR biosensor is well correlated with glucarate titers.
Glucarate can be produced from myo-inositol by the enzymes MIOX and Udh. MIOX
orthologs were transformed into cells containing Udh and the CdaR biosensor.
Fluorescence was observed 48 hours after addition of myo-inositol. Glucarate titers were
measured after the same period of time in identical strains without the glucarate biosensor.
All coefficients of variation are less than 10% (n=3).

Phenol is an important commodity chemical for which novel production routes
would provide economic and environmental benefits. Some success has been shown in
enzymatic conversion of benzene to phenol (68,69), however these enzymes function with
low kcat, and in some cases continue oxidizing phenol to catechol, an undesirable side
product (69). We hypothesized that TtgR would be able to respond to phenol as it responds
to many other compounds with an activated benzene. Separate populations of the TtgR
biosensor strain were incubated with 0.1% phenol, 0.1% catechol and up to 0.4% benzene.

Surprisingly, only phenol activated the sensor (Fig. 2.9). The selective response of TtgR to

phenol, but not byproducts of phenol production, may enable the directed evolution of
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phenol-producing enzymes by coupling phenol production to expression of fluorescent

proteins or antibiotic selection markers in individual cells.
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Figure 2.9: The TtgR biosensor was evaluated for its ability to aid in the directed evolution
of enzymatic phenol production. A fluorescent response was observed in the presence of
0.1% phenol, while background levels of fluorescence were observed when the sensor was
induced with the precursor molecule benzene. Catechol is a side-product of phenol
production and did not activate the sensor. All experiments were carried out in triplicate.

Discussion

Enabling the simultaneous control of multiple reporter-coupled genes expands our
ability to rapidly probe cellular behavior. Characterization of new and interoperable
genetically encoded sensors provides additional input and output nodes for engineered
biological systems. Demonstrating the utility of these sensors in metabolic engineering
applications provides a basis for future work in directed evolution and enzyme discovery

applications.
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A balance in the basal strength of the regulated promoter, the copy number of that
promoter, and the expression level of the regulator protein is key in achieving tight
repression with high dynamic range upon induction. Such behavior has been exploited in
previously well-characterized inducible systems to achieve tuned responses to induction
(70-72). The TtgR biosensor is an example of a promoter/repressor system that would
benefit from further tuning of these parameters. The low dynamic range of the TtgR
biosensor and the observation that shifting from a high- to low-copy sensor
implementation results in elevated basal reporter expression may be characteristics of a
poorly tuned system. Future work will involve multiplexed evaluation of these design
specifications in order to understand how system characteristics such as wide dynamic
range, low off-state expression and ultra-high expression can be achieved.

By applying a modeling framework to our biosensors, we are able to capture their
behavior with a small number of key parameters. Basal and maximal promoter activities
have clear biological meaning while the Hill coefficient and lumped half-maximal
parameter are more complicated. For inducible systems regulated by a transcription factor,
the lumped half-maximal parameter of the Hill equation represents K - K; - K,, - T, where K
is an equilibrium constant reflecting the binding event(s) between the transcription factor
and the promoter, Ky is the disassociation constant for inducer bound to transcription
factor, K, is the partition coefficient for intracellular to extracellular inducer, and T is the
concentration of transcription factor in the cell (73). The Ky is known for several of the
transcription factors evaluated here, however the partitioning coefficient and equilibrium
of the DNA-protein binding events are not. We did not determine the absolute

concentration of transcription factor in the cells, however we note that the lumped
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parameter is almost always smaller in the low-copy biosensor variants, reflecting the lower
relative concentration of transcription factor. We fit the half-maximal parameter as a
lumped value, as we are unable to deconvolute the individual parameters that make it up.

The magnitude of the Hill coefficient reflects the cooperatively of the system, with
higher values resulting in more sigmoidal induction curves. The Hill coefficient determined
for both low- and high-copy AraC is 1.3, which is in close agreement with previously
measured values that range between 1 and 2 (74). The Hill coefficients for low- and high-
copy TetR are 3.1 and 4.2, which are similar to previously reported values (75,76). The
TtgR biosensor has low- and high-copy Hill coefficients of 2.3 and 3.8, respectively. The
CdaR biosensors demonstrated no cooperatively with a Hill coefficient of 1. The lack of
cooperatively may be the result of CdaR acting as a monomer, or because there is feedback
between biosensor activation and CdaR expression. The moderate Hill coefficient of 1.6
observed for the MphR biosensors reflects a cooperativity substantially lower than the
other high-copy repressors. As noted above, the AcuR biosensor shows substantially
different induction responses in the high- and low-copy implementations, possibly due to
its dependence on growth-phase for induction.

Demonstration of biosensor interoperability is critical for complicated synthetic
biological applications in which multiple genes need to be controlled simultaneously (77).
We approached interoperability characterization in two ways: by demonstrating that only
cognate inducer compounds activated a given sensor (Fig. 2.6) and by combining three
biosensors, each controlling an orthogonal output, in a single cell (Fig. 2.7). Ideally, we
would have constructed a cell containing every biosensor; however, spectral overlap
between fluorescent reporter proteins constrained the system. Reporter protein
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expression was similar in strength for singly, doubly and triply induced populations for
each of the three biosensors evaluated: AcuR, MphR and CdaR. This result confirms our
expectation that cellular behavior prototyped with a single sensor should maintain a
similar behavior when operated alongside at least two other inducible systems. While the
cell states defined in Figure 2.7 are discussed as a digital system, in reality, induction level
is a continuous variable and analog descriptions of system dynamics are more precise (78).

Finally, we demonstrated the use of CdaR and TtgR as biosensors in the observation
of intracellular metabolite concentrations. In the case of CdaR, we were able to
demonstrate that more effective variants of the MIOX enzyme provided a higher
fluorescent signature when the production phenotype was observed through biosensor
response. Using fluorescence as a proxy for metabolite production will enable screening
millions of enzyme variants per day, rather than the thousands of metabolites that can be
screened by relying solely on HPLC or mass spectrometry (24). The TtgR biosensor was
found to respond to phenol, a valuable compound that was not previously known to bind
and activate the TtgR transcriptional repressor. Crucial for the directed evolution of phenol
producing enzymes is the observation that TtgR does not respond to the precursor
molecule, benzene, or the unwanted byproduct, catechol.

Innovation in the characterization of biological parts is enabling new options for
biological design. Fluorescent activated cell sorting (FACS) combined with multiplexed
DNA synthesis and sequencing has been used to characterize biological parts at a
throughput of more than 10,000 parts per experiment (79). While these parts were
constitutive promoter and RBS variants, advances in microfluidics have enabled new
strategies for the characterization of inducible systems. These strategies allow culture
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conditions to be changed over time while maintaining cells in specific growth phases (80).
Combined with automated microscopy and image processing, these microfluidic platforms
open the door for more comprehensive characterization pipelines (81).

Thorough characterization of biological parts is the bedrock for abstraction and
complexity in engineered biological systems. Of primary importance are sensors, as they
provide channels of communication into and out of the cell. A priori design of complex
biological systems is challenging, and greater success may be achieved by first engineering
a simple reporter that monitors the desired phenotype (e.g. metabolite production). Once
the desired phenotype produces an output such as fluorescence, millions if not billions of
designs can be evaluated rapidly, allowing biological engineering to more closely mimic the

process of evolution for which the biological medium was optimized.

Materials and Methods

Chemicals and Reagents

All reagents were obtained from Sigma (St. Louis, MO) unless otherwise noted.
Antibiotics and IPTG were obtained from Gold Biotechnology (St. Louis, MO).
Anhydrotetracycline (aTC) was obtained from Clontech (Mountain View, CA). Polymerase
chain reaction (PCR) mix was purchased from Kapa Biosystems (Wilmington, MA).
Erythromycin and aTC were dissolved in ethanol while naringenin was dissolved in

dimethyl sulfoxide. All other inducers were dissolved in deionized water.
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Plasmid Construction

Plasmids were constructed using Gibson isothermal assembly methods (46) and
transformed into DH5a electrocompetent cells (New England Biolabs, Ipswich MA). All
standard induction plasmids contained the rrnB strong terminator (47) followed by the
inducible promoter and the strong g10 RBS (48) ‘tttaactttaagaaggagatatacat,’ driving the
expression of sfGFP (49) (except in the case of CdaR which used the native RBS). GFP was
followed by a transcriptional terminator prefixing the proB promoter (50) and strong RBS
‘gaaataaggaggtaatacaa,’ which facilitated expression of the transcriptional regulator. Each
inducible system was implemented on high and low copy plasmids. High copy pJKR-H
plasmids were constructed with the pUC origin and beta lactamase antibiotic resistance
marker derived from pUC19 (New England Biolabs, Ipswich MA). Low copy pJKR-L
plasmids were constructed in the same way, except that the pUC origin was replaced by the
SC101 origin (including repA) from pSC101 obtained from American Type Culture
Collection (ATCC #37032). In the case of the MphR inducible system, the eryR
erythromycin resistance cassette was included as well. The sequences of the
transcriptional regulators and their cognate promoters are supplied in Table S1. The
plasmids MphR-p15a-SPEC-mCherry and AcuR-colA-KAN-CFP were designed for
compatible maintenance with pJKR-H-CdaR. In both these plasmids the antibiotic
resistance gene and origin of replication were replaced with p15a-aadA and colA-kanR.
Sequence and organism names for each of the MIOX enzymes can be found in Table S2.
Each enzymes was cloned downstream of the constitutive promoter P2(41) and g10 RBS to

create pJKR-MIOX variants. These expression plasmids used the colA origin of replication
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and a kanamycin resistance gene for maintenance. The Udh enzyme was expressed
constitutively on a p15a origin of replication providing spectinomycin resistance.

Sequences and plasmids are available on Addgene (plasmid numbers 62557-62570).

Induction and Toxicity

DH5a cells transformed with pJKR plasmids and maintained with carbenicillin were
used in the induction assays. For each induction evaluation experiment, the cells were
grown overnight to saturation before being diluted 1:100 into fresh LB media and
incubated at 200RPM and 37°C. After four hours, 150pl of the log-phase cells were
transferred to 96-well plates and stock inducer was added to achieve the desired range of
induction concentrations. Three separate wells were inoculated and independently
supplemented with the appropriate amount of inducing chemical for each level of
induction. Measurements were made on the same Biotek (Winooksi, VT) HT plate reader
using the same settings: excitation 485/20, emission 528/20, 37°C and fast shaking.
Fluorescence and absorbance were measured every 10 minutes for 15 hours. Fluorescence
was measured in arbitrary units (AFU) while optical density was determined by
absorbance (OD). Normalized fluorescence was determined by dividing fluorescence by
optical density for a given measurement. Five independent wells containing control strains,
transformed with pUC19, were included to provide a measurement of background
autofluorescence. The same protocol modified to observe fluorescence after 90 minutes

was used to evaluate induction of the TtgR biosensor with phenol and related compounds.
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The ratio of fluorescence to absorbance at 600nm was used in order to compensate
for changes in cell density over time and between experiments (AFU / OD). Normalized
fluorescence at the 15™ hour was used to determine the relationship between inducer
concentration and fluorescent response. This transfer function is plotted on a log-log scale
in Figure 2.1 to capture the wide range of inducer concentrations and resulting
fluorescence values. The Mathematica Hypothesis Testing Package function MeanCI was
used to calculate the 95% confidence interval of the estimated mean based upon a
Student’s t-distribution derived from the three induction replicates. Time-courses of cell
growth and biosensor activation were normalized and plotted with the Python module
Seaborn using bootstrapping to produce 95% confidence intervals for the standard error of
the sample mean (assuming a normal error distribution) for the three independently
induced replicates (Figs. 2.2, A.1, A.2). For visualization purposes, normalization was
performed on the fluorescence time-course data by dividing all data in a graph by 110% of
the highest value such that the trends in each graph can be observed on a common axis. For
visualization purposes, growth time-course data was normalized such that each growth
curve was divided by its mid-point value and offset to zero at time zero. The raw data
produced by all kinetic induction experiments is provided in Supplementary Material.

Induction ratios were determined after 15 hours of induction. Standard error of the
derived fold-induction value was determined from the standard error of the mean
(assuming a normal error distribution) for the induced, uninduced and control sample

means such that the standard error of fold-induction is:

ot + 0% o2+0?
I c, 7T c




F is the mean magnitude of the fold induction, o}, o and o are the SEM for the
fluorescence of induced, uninduced and control cells, while I3 and Uy are the mean
fluorescence of the induced and uninduced cells with mean background fluorescence
subtracted. For cases where the mean fluorescence of the uninduced cells was within the
background fluorescence of the strain, a lower bound on the fold-induction was
determined by dividing the 95% confidence interval lower bound of I by the 95%
confidence interval upper bound of Ug. The range of the 95% confidence interval was
approximated by doubling the standard error of the background-subtracted fluorescence.

Toxicity of the inducer chemicals and their solvents were determined at each of the
concentrations evaluated for induction response. In these experiments, DH5a cells were
diluted 1:100 from overnight growth into fresh selective LB and grown for 2 hours at
200RPM and 37°C. pUC19 was used as a control plasmid in each case except for the
erythromycin evaluation in which pJKR-H-MphR was used to provide eryR expression.
150ul of cells were transferred into 96-well plates and the assayed chemical was
immediately added in triplicate before further incubation at 600RPM and 37°C. After 15
hours the absorbance at 600nm was measured and normalized to the absorbance observed
in the control wells in which no chemical was added the cells.

The cross-reactivity matrix was determined by inducing cells that contained target
and off-target biosensors. The cells were prepared and evaluated in the same way as
described in the induction evaluation experiments. The following inducer concentrations
were used: acrylate (5mM), arabinose (165uM), glucarate (4.4mM), erythromycin (51uM),
naringenin (9mM), IPTG (1mM), rhamnose (10mM), cumate (20uM), DMSO (1%), ethanol
(1%).
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Mathematical Modeling
The GFP expression rate was calculated at each time-point with the formula
AGFP/0D. Scipy was used to perform a non-linear least-squares fit of the maximum GFP

expression rate to the corresponding inducer concentration using the Hill function

<AGFP> _v " Ly
At T — Ymax Ih+Kl{1 min

Vmax is the maximum rate of GFP expression, Vi, is basal rate of GFP expression, I is
the concentration of inducer, h is the hill coefficient and K, is the lumped half-maximal
parameter described in Results. The variance of each parameter was determined from the
least-squares covariance matrix. The square of the variance is the parameter error
reported in Table 1. Points in Figures 2.3 and A.3 reflect the mean of three independently
induced replicates with error bars corresponding to the 95% confidence interval
determined for the standard error of the mean by bootstrapping. Lines reflect the model

fitted to the data.

Flow Cytometry

D5Ha cells containing the plasmid to be evaluated were grown to saturation
overnight and diluted 1:100 in 1mL of selective LB media and incubated in 96-well deep
well blocks at 900RPM and 37°C. After 4 hours, inducers were added to the desired final
concentration and incubation was resumed for 15 hours. Induced cultures were diluted
1:100 in cold phosphate buffered saline (PBS) and kept on ice until evaluated on the

LSRFortessa flow cytometer (BD Biosciences, San Jose, CA). At least 100,000 events were
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captured for each sample. Gating was performed on forward and side scatter to avoid
debris and clumped cells. Data was exported to FloJo for visualization and Mathematica for
subsequent analysis.

Cells that were transformed with pJKR-H-CdaR, MphR-p15a-SPEC-mCherry
(designated pJKR-O-MphR) and AcuR-colA-KAN-CFP (designated pJKR-O-AcuR) were
maintained in LB with all three antibiotics. The cells were induced in the same manner as
above with induction concentrations of 5mM acrylate, 40mM glucarate and 37ug/mL
erythromycin. Collection and gating was performed as above. 10,000 events were plotted

in Figure 2.7 for clarity.

Glucarate Production

For observation of glucarate production via fluorescence, BL21 DE3 (New England
Biolabs, Ipswich MA) cells that were triply transformed with pJKR-H-CdaR, pJKR-UDH and
pJKR-MIOX were diluted 1:100 from saturated culture into carbenicillin, spectinomycin and
kanamycin selective LB. After 4 hours the cells were transferred to 96-well plates in
triplicate and 50mM myo-inositol was added to the media. Fluorescence and absorbance
(600nm) were measured with a Biotek HT plate reader in 15-minute intervals for 48 hours
with fast shaking at 37°C.

In order to directly measure glucarate titers, BL21 DE3 cells transformed with pJKR-
MIOX variants were prepared as above, except for production took place in 1mL cultures
within 96-well deep well blocks incubating at 900RPM and 37°C for 48 hours. Supernatants
were collected via centrifugation and filtration and glucarate was determined by mass

spectrometry.
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Chapter 3: Genetically encoded sensors enable real-time
observation of metabolite production

Abstract

Engineering cells to produce valuable metabolic products is hindered by the low-
throughput methods available for evaluating candidate designs. Even as our capacity to
design and build genetic variants surpasses billions of cells per day, the throughput of
direct metabolite measurement remains limited to hundreds of samples per
day. Consequently, the vast majority of designs go unevaluated. In this paper we develop a
framework for observing product formation in real-time without the need for sample
preparation or laborious analytical methods, in turn laying the foundation for evaluation
rates of up to a billion cells per day. We use genetically encoded biosensors to provide a
fluorescent readout that is proportional to the intracellular concentration of a target
metabolite. Combining an appropriate biosensor with cells designed to produce a
metabolic product allows us to track product formation by observing fluorescence. With
individual cells exhibiting fluorescent intensities proportional to the amount of metabolite
they produce, high-throughput methods such as flow-cytometry can be used to rank the
quality of billions of genetic variants per day. We observe production of several renewable
plastic precursors with fluorescent readouts and demonstrate that higher fluorescence is
indeed an indicator of higher product titer. Using fluorescence as a guide, we identify
culture conditions that produce 3-hydroxypropionate at 4.2 g/L, 23-fold higher than
previously reported. We also report the first direct biological production of acrylate, a

plastic precursor with global sales of $14 billion. Finally, we monitor the production of
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glucarate, a replacement for environmentally damaging detergents, and muconate, a
renewable precursor to PET and nylon with combined markets of $51 billion, in real-time,
demonstrating that our method is applicable to a wide range of molecules. Fluorescent
monitoring of product formation enables high-throughput phenotype evaluation and

alleviates the final bottleneck in the metabolic engineering design cycle.

Introduction

Biological production of valuable products such as pharmaceuticals or renewable
chemicals holds the potential to transform the global economy. However, the rate at which
bioengineers are able to engineer new living catalysts is hampered by an exceedingly slow
design-build-test cycle. We describe a method to accelerate the design-build-test cycle for
metabolic engineering by several orders of magnitude, enabling rapid gains for the
bioeconomy.

Biological production of a desired product is accomplished by guiding a low-cost
starting material such as glucose through a series of intracellular enzymatic reactions,
ultimately yielding a molecule of economic interest. The choice of the catalytic strategy, the
creation of enzyme variants, and the tuning of endogenous cellular metabolism create a
vast universe of potential designs. Because of the complexity of biology, appropriate
designs are not known a priori. Even sophisticated modeling paradigms can result in design
spaces that are on the orders of millions and billions (1,2). Until recently, generation of this
kind of targeted genetic diversity was impossible, but with the cost of DNA synthesis
rapidly dropping and the advent of multiplexed genome editing (2), the creation of massive

libraries of defined mutations is now possible. Evaluating each cellular design for the
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desired phenotype is therefore the last major bottleneck in the bioengineering design-
build-test cycle.

Current methods for evaluating biological production of chemicals rely on slow and
laborious techniques such as high-pressure liquid chromatography (HPLC) and mass
spectrometry (3). Each potential design must be separated from the other cellular designs
and cultured independently before the compound of interest is isolated and run through
the desired analytical system. Generous estimates of the throughput of these methods are
around thousands of samples per day in highly specialized labs (3). These rates of
evaluation are exceedingly small compared to typical enzyme library sizes, or the 1x10°
unique genomes that can be built in a day using multiplexed genome engineering (2).

Engineers have begun developing strategies for multiplexed evaluation of
metabolite production phenotypes in order to enable a fully multiplexed design-build-test
cycle (1,4-7). Such a design cycle would more closely resemble biological evolution, rather
than the design approaches inspired by electrical engineering that currently dominate the
fields of synthetic biology and metabolic engineering. Strategies for multiplexed design
evaluation include selections and screens. Selections, which only allow cells exhibiting a
desired phenotype to live, have the potential to evaluate billions of designs simultaneously
(3). Sensor-selectors are standardized selections aimed at enhancing metabolite
production for a wide range of compounds (1). Selections are limited by their false-positive
rate and can be challenging to troubleshoot, especially if high production of the metabolite
of interest provides a negative growth phenotype. Genetically encoded biosensors link
intracellular metabolite levels to fluorescent protein expression and enable fluorescence-
based screens. Combined with fluorescent activated cell sorting (FACS), biosensor-based
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screens provide evaluation rates of up to 1x10° designs per day (3). Despite the power of
FACS for design evaluation, few attempts have been made at optimizing metabolic
pathways due to a lack of biosynthesis pathways coupled to appropriately characterized

biosensors (8).

Fluorescent monitoring of product formation

( Enzyme A ][ Enzyme B )( Enzyme C }
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Figure 3.1: Biosensors enable real-time monitoring of biological chemical production. A
metabolic pathway converts a low-cost starting material such as glucose (green triangle) to
a desired product (green square) through a series of enzymatic reactions. A biosensor (blue
ellipse) regulates the production of a fluorescent reporter by preventing transcription in
the absence of the correct inducing molecule. The fluorescent response of the biosensor is
proportional to the amount of product produced by the cell because the starting material
and intermediates do not activate the biosensor. Each cell reports its rate of chemical
production through its fluorescence intensity. Cells with high intensity, and consequently
highly productive metabolic pathways, are easily identified.
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Genetically encoded biosensors are the most versatile method for coupling cellular
fluorescence to the quality of a metabolic engineering design. Genetically encoded
biosensors link the expression of a fluorescent protein to the intracellular concentration of
a target metabolite through the use of an allosteric transcription factor. In addition to the
classic small-molecule inducible systems such as lacI-IPTG and tetR-aTC (9), many new
biosensors have been characterized that respond to valuable products as diverse as
macrolide antibiotics, flavonoids and plastic precursors. A biosensor designed to respond
to a product, while ignoring intermediates, allows the fluorescent readout to act as a real-
time proxy for product formation from glucose or other precursors (Fig. 3.1). This allows
simple observation of performance characteristics such as the rate of product formation or
the titer, all without the need for low-throughput analytical pipelines.

In this work we develop the first strategy for real-time monitoring of metabolic
product formation and demonstrate its utility in observing the production of 3-
hydroxypropionate (a renewable plastic precursor) (10), acrylate (the monomer for
several common plastics), glucarate (a renewable building block for superabsorbent
polymers and a replacement for phosphates in detergents) (11) and muconate (a building
block for renewable nylon) (12). We develop two unique biosensors for 3-
hydroxypropionate (3HP) and compare their ability to observe 3HP production. We use the
real-time observation of 3HP formation to select culture conditions that result in a 23-fold
increase in 3HP production over previously reported titers. We achieve the first direct
biological route to acrylate by converting 3HP to acrylate in vivo. We go on to demonstrate
the generalizable nature of real-time metabolite observation by deploying glucarate and
muconate biosensors with their respective heterologous metabolic pathways.
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We aim to alleviate the primary bottleneck in the bioengineering design-build-test
cycle and enable next-generation metabolic engineering by creating a phenotype

evaluation framework that can be applied to a wide range of products and pathways.

Results and Discussion

The framework for real-time observation of metabolite production consists of two
components: the biosensor and the pathway (Fig. 3.1). The biosensor is a small-molecule
inducible system that produces a fluorescent readout proportional to the amount of
product inside of the cell. The pathway consists of all the genes necessary to produce the
product molecule from a desired starting point, typically a low-cost feedstock such as
glucose or biomass. Rates of product formation vary depending on the amount of
intermediate supplied, the number of reactions leading from that intermediate to the final
product and how fast those reactions take place. Final titers depend on these factors as well
as the amount of starting material that is shunted into side reactions or used for energy by
the cell. We selected pathways for 3HP, glucarate and muconate production from the
literature. The acrylate biosynthesis pathway was developed in this study and represents
the first direct biological rate to acrylate. Previously characterized muconate and glucarate
biosensors were combined with their respective production pathways in order to monitor
product formation. Because there are no existing biosensors for 3HP, novel sensors were
developed and evaluated for their ability to sense 3HP production in real-time.

The first 3HP biosensor was developed from the Escherichia coli 2-methylcitrate
responsive transcriptional regulator prpR (13). Since no 3HP-responsive allosteric

transcriptional regulator is known, it was necessary to use a transcriptional regulator that
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binds to a molecule that 3HP can be converted to intracellularly. The principle of relying on
a downstream molecule to affect a response from a non-binding target compound was
pioneered in the Keasling lab when prpR and two endogenous enzymes were used to
construct a propionate biosensor (14). Here, we use the endogenous enzyme, 2-
methylcitrate synthase (prpC), and the heterologous multifunctional enzyme propionyl-
CoA synthase (pcs) from the carbon fixation pathway of Chloroflexus aurantiacus (15) to
produce 2-methylcitrate from 3HP. Together the system of three genes (pcs, prpC, prpR)
comprises the prpR-based 3HP biosensor (Fig. 3.2A). We evaluated the fluorescent
response of the prpR-based biosensor to concentrations of 3HP up to 25mM with, and
without, the presence of pcs (Fig. 3.2B). Indeed, pcs is necessary for a fluorescent response
to 3HP. The response increases with increasing concentrations of 3HP, indicating that we
have successfully linked the intracellular concentrations of 3HP and 2-methylcitrate. As a
result of this linkage, 3HP concentration controls expression of green fluorescent protein
(GFP). When induced with 12mM 3HP, the prpR-based 3HP biosensor produces a
fluorescent response 2.4-fold greater than uninduced fluorescence levels. For comparison,
the prpR-based propionate biosensor developed in the Keasling lab shows 4.5-fold
induction under similar conditions (14). The fluorescent response of the prpR-based
biosensor to 3HP induction is half-maximal at 5 hours and requires approximately 8 hours

to reach 90% induction (Fig. 3.2C).
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Figure 3.2: Development of the prpR-based 3-hydroxypropionate (3HP) biosensor. (A)
Two helper enzymes, pcs from Chloroflexus aurantiacus and the endogenous prpC, convert
3HP into the prpR-binding compound 2-methylcitrate. (B) Exogenously supplied 3HP
triggers a fluorescent response in cells containing the biosensor (green bars). Increasing
the concentration of 3HP results in a higher fluorescent output. No biosensor activation is
observed without the helper enzyme pcs (grey bars). (C) The fluorescent response of the
biosensor begins after one hour and achieves 90% saturation after ten hours (green line).
Basal induction increases over time but remains low (grey line). Error bars and confidence
bands represent the 95% confidence interval (n=3).

The second 3HP biosensor was developed from acuR, an acrylate responsive
transcriptional regulator found in the aquatic bacterium Rhodobacter sphaeroides(16). A
novel pathway was constructed that converts 3HP to acrylate (Fig. 3.3A), allowing the
acrylate biosensor to report intracellular 3HP concentration. In this case, a truncated
version of the multifunctional enzyme pcs is used to convert 3HP into acrylyl-CoA, which is
subsequently hydrolyzed to acrylate by the acrylyl-CoA hydrolase (ach) from Acinetobacter
baylyi (17). In Chloroflexus aurantiacus, pcs catalyzes three subsequent reactions: 3HP to
3HP-CoA to acrylyl-CoA to propionyl-CoA (15). We made use of all three reactions in the
prpR-based biosensor, but for the acuR-based biosensor accumulation of acrylyl-CoA rather
than propionyl-CoA is necessary. Separation of pcs into its functional domains has been

shown to increase the rates of the individual reactions (18). Because of this, we reasoned

that we could remove the domain responsible for conversion of acrylyl-CoA to propionyl-
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CoA while preserving the activity of the other two domains. We refer to the truncated
enzyme as pcs?3, and its co-expression with ach and acuR constitute the acuR-based 3HP
biosensor (Fig. 3.3A). Increasing concentrations of 3HP in the media resulted in increasing
levels of fluorescence when pcs®3 and ach were present, but resulted in no biosensor
activation in their absence (Fig. 3.3B). A 90-fold increase in fluorescence was obtained
when the acuR-based biosensor was induced with 10mM 3HP. This is a much more
dramatic activation than that achieved with the prpR-based biosensor. The induction
kinetics of 3HP and the authentic activator acrylate were compared by monitoring
biosensor activation in real-time. 3HP-mediated induction only slightly lagged the time-
course of acrylate induction (Fig. 3.3C). Fluorescence remained at background levels for

greater than 16 hours in the absence of pcs®3 and ach (Fig. B.1).

A 3-hydroxypropionate B 3HP acuR biosensor C time-course of acuR
sensing by acuR response induction by 3HP
target

3HP = sensor _
molecule £ 90 [ sensor + pcs® + ach 5240 sensor + pcs?® + ach
= o
helper 3HP-COA ] o
enzynr?es pos® ¥ § 60 § 160
acrylyl-CoA £ ®
ach k) o 80 — acrylate
molecule g 30 S — 3HP .
sensed . = 0 no addition
by acuR
/ omM imM  5mM 10mM 0 2 4 6 8 10 12 14 16
3-hydroxypropionate concentration time (hours)

Figure 3.3: Development of the acuR-based 3-hydroxypropionate (3HP) biosensor. (A)
Two heterologous helper enzymes, a truncated form of pcs (pcs23) and the acrylyl-CoA
hydrolase ach, convert 3HP into the acuR-binding compound acrylate. (B) Exogenously
supplied 3HP triggers a fluorescent response in cells containing the biosensor (blue bars).
Higher concentrations of 3HP result in higher fluorescent outputs. No biosensor activation
is observed without the helper enzymes pcs23 and ach (grey bars). (C) The fluorescent
response of the biosensor to 3HP begins immediately and achieves 90% saturation after
eight hours (blue line). Induction by acrylate is initially more rapid but achieves the same
final fluorescence (green line). Basal induction is low over the duration of the experiment
(grey line). Error bars and confidence bands represent the 95% confidence interval (n=3).
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We co-expressed the 3HP biosensors with the 3HP production pathway in order to
monitor 3HP production in real-time (Fig. 3.4A). The production pathway consists of the
endogenous biosynthesis of malonyl-CoA and the bi-functional enzyme malonyl-CoA
reductase (mcr) from the carbon fixation pathway of Chloroflexus aurantiacus (15). Mcr
shunts malonyl-CoA away from fatty acid biosynthesis by catalyzing the conversion of
malonyl-CoA, first into malonate semialdehyde, and then into 3HP at the expense of two
NADPH+. This route from glucose to 3HP has been published previously, achieving titers of
60 mg/L with expression of mcr alone (19). Titers were increased to 180 mg/L with
overexpression of the ACC complex and pntAB, increasing availability of malonyl-CoA and
NADPH+, respectively. For our study, we chose to increase the amount of malonyl-CoA
available for 3HP production by use of the fatty acid inhibitor cerulenin, rather than
through genetic manipulations. Fatty acid biosynthesis is the primary sink for malonyl-CoA
and operates at a much higher velocity than heterologously expressed mcr (19). Since
cerulenin inhibits the activities of fabB and fabF, increasing its concentration results in
lower fatty acid biosynthesis rates and a higher concentration of available malonyl-CoA
(20). In each of the 3HP implementations, the biosensor helper enzymes, pcs and pcs?3 /
ach, were constitutively expressed while mcr was expressed conditionally with the addition
of IPTG.

Co-expression of mcr and the prpR-based 3HP biosensor facilitates observation of
3HP production without the need for HPLC or mass spectrometry (Fig. 3.4B). Cells
containing both the biosensor and mcr resulted in higher fluorescence over time than cells
containing just the biosensor. When mcr activity was increased by induction with IPTG, the
mcr containing cells showed a higher rate of GFP accumulation, ultimately achieving higher
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levels of fluorescence. The cells without mcr were unaffected by IPTG induction. When the
prpR-based biosensor was used for 3HP observation, it was necessary to produce 3HP
using rich LB media as the carbon source. Sensitivity of prpR to catabolite repression
precluded the use of glucose as the starting material for 3HP production. Even low levels of
glucose result in the prpR transcriptional regulator becoming non-responsive to 2-
methylcitrate (21). The uninduced expression of GFP from the prpR biosensor is significant,
likely due to basal levels of 2-methylcitrate in the cell. Nonetheless, end point fluorescence
measurements revealed that cells with the capacity to produce 3HP (mcr+) are 20% more
fluorescent than cells without mcr (Fig. 3.4C). When induced, the mcr+ cells are 50% more

fluorescent, approaching induction levels observed with 1.5mM exogenous 3HP.
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Figure 3.4: Formation of 3-hydroxypropionate is observed in real-time. (A) 3HP is
produced from glucose by converting malonyl-CoA into malonate semialdehyde and then
on to 3HP. Malonyl-CoA reductase (mcr) performs both of these reactions but competes
with fatty acid biosynthesis for malonyl-CoA. (B) The prpR-based 3HP biosensor reports
3HP production progress in real-time. Addition of cerulenin increases the malonyl-CoA
pool, providing a boost in 3HP production (purple line). Addition of IPTG increases mcr
activity and further increases 3HP production (blue line). Cerulenin and IPTG have no
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impact on the fluorescent response of cells without mcr (grey and black lines). (C)
Fluorescence of the prpR-based biosensor after 12 hours. (D) The acuR-based 3HP
biosensor reports the progress of 3HP production in real-time. The addition of 50mM
glucose (purple line) results in a small increase in fluorescence over background (grey
line). Addition of IPTG increases the production of mcr and the activation of the biosensor
(blue line). Providing glucose, IPTG and cerulenin together results in the highest rate of
biosensor activation (green line). (E) Fluorescence of the acuR-based biosensor after 12
hours reveals an approximately 5-fold increase in fluorescence under optimized culture
conditions (glucose, IPTG, cerulenin) when compared to 3HP production with glucose
alone. In the absence of mcr, culture conditions have no effect on biosensor activation (grey
bars). Fluorescence measurements are in arbitrary units and different panels should not be
quantitatively compared. Error bars and confidence bands represent the 95% confidence
interval (n=3).

The acuR-based 3HP biosensor enables real-time observation of 3HP production
under culture conditions more representative of what would be experienced at scale (Fig.
3.4D). The acuR biosensor is not affected by catabolite repression and can be used to
observe 3HP production from glucose. Mcr was co-expressed with the acuR-based
biosensor and fluorescence was observed for twelve hours. Cells that were incubated with
50mM glucose, but without IPTG or cerulenin, produced fluorescence indistinguishable
from background levels. Cells incubated with glucose and IPTG showed a significant
increase in fluorescence. The most dramatic increase in fluorescence was observed when
both IPTG and cerulenin were used. Production of 3HP with glucose, IPTG and cerulenin
resulted in higher rates of GFP expression and end-point fluorescence values than either of
the other two culture conditions. End-point measurements reveal an eight-fold increase in
fluorescence for mcr+ cells versus mcr- cells when incubated with glucose, IPTG and
cerulenin (Fig. 3.4E). Incubation with glucose and IPTG results in a two-fold increase.

Incubation with glucose alone results in only a 20% increase in fluorescence compared to

cells lacking mcr.
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The culture conditions optimized by use of the 3HP biosensors resulted in a 3HP
titer of 4.2 g/L (Fig. 3.5A). To our knowledge, this is the highest titer reported in the
literature for 3HP production from glucose in E. coli. These titers were obtained with rich
media in 96-well plates supplemented once with 50mM glucose at the beginning of
fermentation. Production was carried out in BL21 transformed with the mcr plasmid under
the same culture conditions used for the biosensor experiments. Glucose alone produced
no detectable 3HP, while the addition of 1mM IPTG resulted in 1.5 * 0.2 mg/L. The addition
of cerulenin resulted in 7.1 + 2.5 mg/L while addition of both cerulenin and IPTG to the
media resulted in 4.2 + 1.2 g/L. The trend in 3HP titer among the various culture conditions
is reflected in the fluorescent output of the two 3HP biosensors. We were able to produce
23-fold more 3HP than previously reported for the malonyl-CoA route to 3HP. More
importantly, the titers achieved here are high enough to warrant further commercial
exploration. A major caveat is that these levels of 3HP production rely on the addition of
cerulenin, which is not feasible for scale-up due to cost. Our group has previously shown
that multiplexed genome engineering combined with static biosensors can obviate the need
for cerulenin by finding mutants with increased malonyl-CoA availability (1). Future work
will aim to find a similar mutant for 3HP production using the fluorescent biosensors

developed here.
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Figure 3.5: Production titers for 3-hydroxypropionate (3HP) and acrylate. (A) The culture
conditions evaluated for biosensor activation were also evaluated for 3HP production.
Titers were measured by LC/MS and found to correspond to biosensor activation. A record
4.2 g/L. 3HP was achieved with glucose, IPTG and cerulenin. (B) Acrylate production from
3HP and glucose was determined by LC/MS. Error bars represent the 95% confidence
interval derived from the standard error of the mean (n=3).

Co-expression of pcs23 and ach enables in vivo production of acrylate (Fig. 3.5B, Fig.
B.2). While biologically-derived 3HP is used to produce several materials, it is most
importantly a precursor to bio-based acrylate. Currently, 3HP is isolated from the cell
culture and chemically converted to acrylate. In vivo production of acrylate obviates this
step by allowing its direct fermentation. We produced 1.62 + 0.05 mM and 0.27 * 0.04 mM
acrylate from 50mM and 5mM 3HP, respectively. Addition of the mcr plasmid resulted in
60 + 37 uM acrylate produced from glucose. These conversion efficiencies are low for
commercial acrylate production, but perfect for tracking 3HP production.

The acuR-based 3HP biosensor will be a better choice than the prpR-based

biosensor for most 3HP production enhancement applications. The lack of catabolite

repression and dramatically higher dynamic range are key considerations. Substantial
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work has been done to remove the catabolite repression from prpR, but with little success
(21). The fact that acuR senses acrylate, which is not naturally present in cells, while prpR
senses 2-methlycitrate, is another important consideration. The background levels of 2-
methlycitrate in the cells may account for the elevated basal fluorescence and lower
dynamic range of the prpR biosensor.

We apply the real-time sensing paradigm to two additional metabolic pathways to
demonstrate that real-time observation of product formation is generalizable to many
biosensor and pathway combinations. The first additional pathway produces glucarate
from glucose through the action of three heterologous enzymes. Glucarate is a DoE ‘top
value added chemical’ to produce from biomass, with applications as a renewable
replacement for petrochemicals and as a building block for new ultra-hydrophilic polymers
(11). Several papers describe construction and optimization of the glucarate biosynthesis
pathway (22-24). However, attaining high titers remains challenging due to the low
stability and activity of myo-inositol oxygenase, making this pathway a prime target for
optimization by directed evolution. The ability to monitor glucarate production in
individual cells will enable studies combining flow-cytometry and directed mutagenesis.

We combined the previously characterized glucarate biosensor with the glucarate
biosynthesis pathway comprised of IPTG inducible myo-inositol-1-phosphate synthase
(Ino1, Saccharomyces cerevisiae), myo-inositol oxygenase (MI0OX, Mus musculus) and
uronate dehydrogenase (Udh, Agrobacterium tumefaciens) (Fig. 3.6A). We anticipated that
the glucarate biosensor would produce a fluorescent response proportional to the amount
of glucarate produced within the cell. To evaluate whether or not this was the case, we
maintained identical production conditions (e.g., genetics, media composition) but varied
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the exogenously supplemented precursor molecules with the hypothesis that compounds
further along in the biosynthesis pathway (i.e., separated from glucarate by fewer
reactions) would result in a faster rate of glucarate formation. Addition of glucarate itself
resulted in the fastest rate of GFP production and ultimately the highest amount
fluorescence (Fig. 3.6B). As expected, we observed a similar fluorescent response to
glucarate in biosensor strains with, and without, the biosynthesis pathway. In contrast,
none of the other exogenously supplied molecules resulted in a fluorescent response in the
biosensor strain lacking the glucarate biosynthesis pathway (Fig. 3.6C). This indicates that
glucarate and not the precursor molecules trigger the fluorescent response. In the strain
containing both the biosensor and the biosynthesis pathway, addition of glucuronate to the
media resulted in a fluorescent response lagging glucarate by about 90 minutes, ultimately
achieving an end-point fluorescence that was 80% that of glucarate. This is in contrast to
the addition of myo-inositol, which resulted in a fluorescence response lagging that of
glucuronate by 60 minutes. Notably, the end-point fluorescence achieved by the addition of
myo-inositol is just 20% that of glucuronate addition. Media supplemented with 50mM

glucose resulted in no fluorescent response within the duration of the experiment (Fig.

3.5B).
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Figure 3.6: Real-time observation of glucarate production. (A) Glucarate can be produced
from glucose with the expression of three heterologous enzymes of various activities. Udh
has high activity, MIOX has low activity and Ino1 competes with glycolysis for glucose-6-
phosphate. The presence of glucarate activates the biosensor. (B) Intermediates of
glucarate biosynthesis are added to the media. Fluorescence is observed over time as the
intermediates are converted to glucarate. Biosensor activation by glucuronate (blue line)
lags behind activation by glucarate (green line). Both glucarate and glucuronate activation
are faster than activation by myo-inositol (purple line) or glucose (tan line), reflecting the
dynamics of the biosynthesis pathway. End-point fluorescence trends well with LC/MS
determined glucarate titers. (C) In the absence of the glucarate biosynthesis pathway there
is no biosensor activation or glucarate production (as determined by LC/MS) from any of
the pathway intermediates. Addition of glucarate resulted in biosensor activation (green
line). Error bars and confidence bands represent the 95% confidence interval (n=3).

The fluorescent output of the glucarate biosensor reflects the properties of the
glucarate biosynthesis pathway. The conversion of glucuronate to glucarate is known to be
the fastest heterologous reaction in the biosynthesis of glucarate (23). Correspondingly, we
see robust biosensor activation when glucuronate is the starting material. The fluorescent

response to myo-inositol addition is slow and corroborates the difficulty of using M.

musculus MIOX in the catalysis of myo-inositol to glucuronate in E. coli (24). The lack of
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biosensor response to additional glucose may reflect the fact that glucarate biosynthesis is
competing with glycolysis for glucose-6-phosphate. [t may take substantial Ino1 activity to
create meaningful quantities of myo-inositol. Low myo-inositol production would be
further compounded by weak MIOX activity, ultimately yielding low glucarate titers and
biosensor mediated fluorescence. Tuning the endogenous metabolism to balance glycolysis
with glucarate production, while screening for fluorescence resulting from glucose
supplementation, would be a powerful strategy for finding strains that produce high
glucarate titers. A similar approach can be taken in searching for a more effective variant of
MIOX from a library of targeted or untargeted mutations.

In addition to revealing the relative rates of product formation, the fluorescent
response is a good proxy for product titer. The fluorescence observed eight hours after
addition of the precursor molecules was measured and compared to the glucarate titers
achieved under similar conditions. Glucarate production was observed for every condition
tested when the cells contained the biosynthesis pathway. No production was observed
without the pathway. Glucarate formation was observed in rich LB media even without
additional substrate added. Addition of 5mM glucose did not result in a significant increase
in glucarate titer within eight hours, consistent with the observed lack of a fluorescent
response. However, addition of myo-inositol resulted in an elevated glucarate titer as
reflected in the fluorescent response. Addition of glucuronate resulted in glucarate
production at a 97% yield (background production of glucarate from LB was subtracted).
This yield reflects the high fluorescence achieved by glucarate addition. Plotting titer as a
function of fluorescence reaffirms that fluorescence is a good predictor of titer across the
four culture conditions evaluated here (R? = 0.96, Fig. B.3).
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For the last example of real-time observation of metabolite production we use a
muconate biosensor to monitor product formation in a muconate biosynthesis pathway.
Muconate is a diacid that can be hydrogenated to adipate, a major platform chemical with
global sales of two million tons per year (25). Production of muconate from renewable
sources such as glucose enables renewable production of adipate products such as nylon
and polyurethane. Real-time observation of muconate production is achieved by linking
intracellular muconate concentration to GFP expression through a muconate biosensor
constructed from benM, a LysR-type transcriptional regulator derived from Acinetobacter
baylyi (26). In order to achieve various muconate production rates for real-time
observation, we produced muconate from a range of precursor molecules by implementing
the biosynthetic pathway developed by Draths and Frost (12,27). This pathway uses three
heterologous enzymes to convert 3-dehydroshikimate (DHS), an intermediate of aromatic
amino acid biosynthesis, to cis,cis-muconate (Fig. 3.7A). The branch-point from
endogenous metabolism is catalyzed by DHS dehydratase (Acinetobacter baylyi, quiC)
resulting in protocatechuate, which in turn is decarboxylated to catechol by
protocatechuate decarboxylase (Klebsiella pneumonia, aroY) before oxygenation to
muconate by catechol 1,2-dioxygenase (Acinetobacter baylyi, catA). Combining the non-
optimized muconate biosynthesis pathway with the newly constructed muconate
fluorescent biosensor provides an ideal test case for real-time observation of muconate

production.
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Figure 3.7: Real-time observation of muconate production. (A) Muconate is produced from
glucose by expression of three heterologous enzymes. The committed step of muconate
biosynthesis is the conversion of 3-dehydroshikimate (DHS) to protocatechuate (PC). (B)
Muconate pathway intermediates were added after one hour and fluorescence was
monitored over time. Each late pathway intermediate activated the biosensor within an
hour. Conversion of glucose to muconate was much slower (pink line). (C) End-point
measurements of fluorescence reveal that the muconate biosynthesis pathway is necessary
for biosensor activation by pathway intermediates (top panel). The presence of the
pathway enables precursors to trigger the biosensor. Consistent with its place far upstream
in the metabolic pathway, glucose is the only substrate that achieves lower fluorescence
(pink bar - middle panel). Background fluorescence is observed without glucose (grey bar
- middle panel). Muconate supernatant titers were determined by HPLC. Less muconate
was produced by DHS (purple bar - bottom panel) than the subsequent intermediates
(blue, green bars - bottom panel). Muconate production from glucose (pink bar - bottom
panel) was below the limit of quantification by HPLC. Error bars and confidence bands
represent the 95% confidence interval (n=3).

A rapid fluorescence response was observed for the pathway intermediates DHS,
protocatechuate and catechol, while a slow response was observed when muconate
production was started from glucose (Fig. 3.7B). No response to any of the intermediates
was observed when the muconate biosynthesis pathway was absent. The observation that
DHS produces a response as fast as the other pathway intermediates suggests that
competition with aromatic amino acid biosynthesis is not limiting the rate of muconate
production under these conditions. In contrast, the slow rate of GFP expression resulting

from the addition of glucose provides evidence that achieving a sufficient supply of
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endogenous DHS may be limiting in the genetic background used here. This is consistent
with the negative feedback that exists at both the transcriptional and allosteric levels in
aromatic amino acid biosynthesis (12). The negative feedback is designed to throttle the
production of DHAP (the precursor to DHS and consequently muconate) in the presence of
aromatic amino acids. Strains optimized for muconate biosynthesis overexpress a feedback
resistant mutant of aroF that is defective in product inhibition. Other genetic modifications
aimed at increasing the DHS pool have included knockout of aroE and overexpression of
aroB and tktA (12).

Examining end-point fluorescence reveals that the final fluorescence achieved is
consistent with the muconate titers measured in the supernatant at that time-point (Fig.
3.7C). While the end-point fluorescence of the late intermediates is similar, it is
dramatically lower for glucose. This is reflected in the titers, as muconate production from
glucose was lower than our limit of detection at this early time-point. In this case, the
biosensor is more sensitive than the traditional methods of quantification. This may be
attributed to intracellular versus extracellular sensing; unless muconate is actively
transported out of the cell, intracellular concentrations would be expected to rise before
supernatant concentrations. A biosensor for protocatechuate was recently developed and
used to measure end-point fluorescence resulting from the production of protocatechuate
from DHS(28). Using this intermediate biosensor with our muconate biosensor to control
GFP and RFP would enable screens aimed at minimizing the concentration of potentially
toxic pathway intermediates while maximizing end-product formation.

Through this work we have developed a framework for tracking the formation of
metabolic products in real-time using fluorescent biosensors. We demonstrated that the
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fluorescence achieved by a cell is indicative of its productivity: higher fluorescence is
indicative of higher product titers. Fluorescence as a proxy for product titer not only allows
for real-time observation of product formation, but also enables cells to report their own
individual progress in producing a chemical. This allows millions of cells to be evaluated in
minutes by combining biosensor technology with fluorescent activated cell sorting (FACS).
FACS has increasingly been used to characterize libraries of mutant cells (28,29). The
throughput of phenotype evaluation in metabolic engineering can be increased by more
than three orders of magnitude by relying on FACS as a primary screen and only using
HPLC or mass spectrometry to evaluate the most promising individuals (3). By reliably
linking product formation to fluorescence, we enable the last low-throughput step of the
metabolic engineering design-build-test cycle to be multiplexed, alleviating the primary

bottleneck in the development of biologically-based products.

Materials and Methods

Chemicals and Reagents

All reagents were obtained from Sigma unless otherwise noted. Antibiotics and IPTG
were obtained from Gold Biotechnology. PCR mix was purchased from Kapa Biosystems. 3-
hydroxypropionate was purchased from Toronto Research Chemicals. Cerulenin was
purchased from Cayman Chemical and dissolved in ethanol. Acrylic acid was stored at room
temperature with 200ppm MEHQ as an inhibitor and diluted immediately prior to use. All
cell culture additives were dissolved in deionized water to achieve appropriate working

concentrations.
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Strains and Plasmids

Plasmids were constructed using Gibson isothermal assembly methods (30) and
cloned into DH5a electrocompetent cells purchased from New England Biolabs.
Biosynthesis of product molecules was carried out in either BL21 (DE3) or DH5q, as noted
in the text. The prpR-based 3HP biosensor was implemented as a two-plasmid system. The
first plasmid is pPro24-GFP (Addgene plasmid #18880), which expresses GFPuv under the
control of the methyl-citrate responsive transcription factor, prpR, on a pBR322 origin of
replication providing [3-lactam resistance. The second plasmid (pJKR-PCS) was constructed
such that the enzyme propionyl-CoA synthase was under the control of the constitutive
promoter prod (31) on a ColA origin of replication providing kanamycin resistance. The
acuR-based 3HP biosensor is composed of two plasmids. The first is the previously
characterized high-copy acrylate biosensor p]JKR-H-acuR (Addgene plasmid #62567),
which expresses sfGFP under the control of the acrylate responsive transcription factor,
acuR, on a pUC origin of replication providing [3-lactam resistance. The second is derived
from pJKR-PCS such that PCS is truncated between amino acids 1400 and 1401. The
enzyme acrylyl-CoA hydrolase from Acinetobacter baylyi was subsequently cloned into the
plasmid under the control of the P2 (32) constitutive promoter. The resulting plasmid is
designated pJKR-PCSfrag-ACH. The 3HP biosynthesis plasmid, designated pJKR-MCR, was
constructed such that malonyl-CoA reductase from Chloroflexus aurantiacus was expressed
by the pLlacO (9) promoter under the control of Lacl on a p15a origin of replication with
spectinomycin resistance. The glucarate biosensor is the previously characterized plasmid

pJKR-H-cdaR (Addgene plasmid #62557), which expresses sfGFP under the control of the
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glucarate responsive transcription factor, cdaR, on a pUC origin of replication providing (3-
lactam resistance. The glucarate biosynthesis pathway was implemented on a single
plasmid, pJKR-GA-EXP, which expresses the genes MIOX, Ino1 and Udh co-cistronically
from an IPTG-regulated T7 promoter on a p15a origin of replication providing kanamycin
resistance. MIOX from Mus musculus and Ino1 from Saccharomyces cerevisiae were
synthesized with codons optimized for E. coli expression. Udh was obtained from
Agrobacterium tumefaciens genomic DNA (ATCC #33970D-5). The muconate biosensor was
constructed with sfGFP under the control of the muconate-responsive transcription factor
benM (Acinetobacter baylyi) on a pUC origin of replication providing spectinomycin
resistance. BenM was constitutively expressed with the proB (31) promoter. To provide an
option for expression normalization, the RFP mKate2 was constitutively expressed from
the P11 (32) promoter. The resulting plasmid is designated pJKR-H-benM. The muconate
biosynthesis pathway was constructed as a single plasmid with codon optimized variants
of the biosynthesis genes expressed co-cistronically from an IPTG inducible T7 promoter

on a p15a origin of replication providing [3-lactam resistance.

3-Hydroxypropionate Biosensor Characterization

DH5a cells doubly transformed with plasmids pPro24-GFP and pJKR-PCS, or
plasmids pJKR-H-acuR and p]JKR-PCSfrag-ACH, were exposed to increasing concentrations
of 3HP and monitored for GFP expression. Cells were grown overnight to saturation before
being diluted 1:100 into fresh LB media and incubated at 200RPM and 37°C. After four
hours, 150pl of the log-phase cells were transferred to 96-well plates and 3HP was added

to the appropriate final concentration. Each inoculation and induction was performed in
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triplicate. Strains lacking the biosensor helper plasmids were included to reveal that the
biosensor activation was indeed dependent on the presence of the helper plasmids. In the
case of the end-point measurements, fluorescence was measured 16 hours after 3HP
addition with a Biotek HT plate reader (excitation 485/20, emission 528/20). Time course
data was collected over a 16 hour period on the same plate reader at 37°C with fast shaking
and 10 minute measurement intervals. Fluorescence was normalized by optical density.
Fold induction was determined by dividing the fluorescence obtained at the current
induction level by the fluorescence obtained without induction. Error bars represent the

95% confidence interval derived from the standard error of the mean.

3-Hydroxypropionate / Acrylate Production and Monitoring

BL21 cells containing the plasmids for the prpR- and acuR-based 3HP biosensors
were transformed with the plasmid pJKR-MCR. These production strains were grown up
overnight and back-diluted 1:100 into fresh LB media and incubated at 200RPM and 37°C.
After four hours, 150pl of the log-phase cells were transferred to 96-well plates and
exposed to 3HP production conditions. The prpR-based biosensor production strain was
incubated with and without 1mM IPTG and 20pg/ml cerulenin in LB. The acuR-based
biosensor production strain was incubated with 50mM glucose and different combinations
of ImM IPTG and 20pg/ml cerulenin. Growth-normalized fluorescence was observed in the
Biotek HT plate reader as described above. End-point measurements were taken after 12
hours. 3HP production titers were determined by liquid-chromatography and mass

spectrometry (LC/MS). The strain used for 3HP titer measurements only contained the
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production plasmid pJKR-MCR. Overnight cultures were inoculated 1:100 into 1mL of LB
supplemented with 1mM IPTG, 20pg/ml cerulenin and 50mM glucose in 96-well blocks.
Production took place at 900RPM and 37C for 16 hours before supernatants were isolated
and filtered at 0.2um for LC/MS. Samples were prepared for acrylate analysis in an
identical manner with DH5a as the strain background. Production of acrylate from glucose
was carried out with 50mM glucose, 1mM IPTG and 20pg/ml cerulenin. Acrylate was
measured on a Thermo q-Exactive mass spectrometer equipped with a Thermo 3000
Ultimate pHPLC. All production runs were setup in triplicate. Error bars represent the 95%

confidence interval derived from the standard error of the mean.

Glucarate Production and Monitoring

Glucarate production monitoring was carried out in BL21 cells doubly transformed
with pJKR-H-cdaR and pJKR-GA-EXP. BL21 transformed with pJKR-H-cdaR alone was used
as a control. Overnight cultures back-diluted 1:100 into Davis media supplemented with
5g/L glucose. After four hours incubating at 200RPM and 37°C, 150yl of the log-phase cells
were transferred to 96-well plates and exposed to 1mM IPTG with the pathway
intermediates noted in the text. Normalized fluorescence was observed for eight hours
after addition of the pathway intermediates as described above. End-point measurements
were taken after eight hours. Glucarate production for titer measurement was carried out
in BL21 transformed with pJKR-GA-EXP. An overnight culture was inoculated 1:100 into
1mL of LB supplemented with 1mM IPTG and the specified concentration of pathway
intermediate. Production took place in 96-well blocks at 900RPM and 37°C for eight hours

before supernatants were isolated and 0.2um filtered for LC/MS. All production runs were
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setup in triplicate. Error bars represent the 95% confidence interval derived from the

standard error of the mean.

Muconate Production and Monitoring

Muconate production monitoring was carried out in BL21 cells doubly transformed
with pJKR-H-benM and the muconate production plasmid pMuc1l. Overnight cultures were
grown overnight before being diluted 1:100 into LB and incubated at 200RPM and 37°C.
After four hours, 150pl of the log-phase cells were transferred to 96-well plates and
monitored in the plate reader. After one hour, the specified concentration of pathway
intermediate was added in triplicate and fluorescence monitoring was resumed. End-point
measurements were made five hours after the addition of intermediates. Strains
transformed with the muconate production plasmid alone were used to determine product
titers. An overnight culture was inoculated 1:100 into 1mL of LB supplemented with the
specified concentration of pathway intermediate. Production took place in 96-well blocks
at 900RPM and 37°C for five hours. The quantity of muconate in the supernatant was
determined by absorbance at 210nm on an Agilent HPLC equipped with an Aminex HPX-
87H column (Bio-Rad) operated in isocratic mode with 0.1% phosphoric acid. All
production runs were setup in triplicate. Error bars represent the 95% confidence interval

derived from the standard error of the mean.
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Chapter 4: Evolution-guided optimization of biosynthetic
pathways

Abstract

Engineering biosynthetic pathways for chemical production requires extensive
optimization of the host cellular metabolic machinery. Because it is challenging to specify a
priori an optimal design, metabolic engineers often need to construct and evaluate a large
number of variants of the pathway. We report a general strategy that combines targeted
genome-wide mutagenesis to generate pathway variants with evolution to enrich for rare
high producers. We convert the intracellular presence of the target chemical into a fitness
advantage for the cell by using a sensor domain responsive to the chemical to control a
reporter gene necessary for survival under selective conditions. Because artificial selection
tends to amplify unproductive cheaters, we devised a negative selection scheme to
eliminate cheaters while preserving library diversity. This scheme allows us to perform
multiple rounds of evolution (addressing ~10° cells/round) with minimal carryover of
cheaters after each round. Based on candidate genes identified by flux balance analysis, we
used targeted genome-wide mutagenesis to vary the expression of pathway genes involved
in the production of naringenin and glucaric acid. Through up to four rounds of evolution,
we increased production of naringenin and glucaric acid by 36- and 22-fold, respectively.
Naringenin production (61 mg/L) from glucose was more than double the previous highest
titer reported. Whole genome sequencing of evolved strains revealed additional untargeted

mutations that likely benefit production, suggesting new routes for optimization.
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Introduction

Microbial production of chemicals presents an alternative to ubiquitous chemical
synthesis methods. Biosynthetic production is attractive because it can utilize a broad
assortment of organic feedstocks, proceed under benign physiological conditions, and
reduce environmentally deleterious byproducts. Biosynthetic alternatives are being
pursued for wide range of chemicals, from bulk commodity building blocks to specialty
chemicals.

Natural cells are seldom optimized to produce a desired molecule. To achieve
economically viable production, extensive modifications to host cell metabolism are often
required to improve metabolite titer, production rate and yield. The optimizations of
biosynthetic pathways for 1,3-propanediol(1), flavonoids(2, 3), L-tyrosine(4), and 1,4-
butanediol(5) illustrate this complexity. Fortunately, computational models of cellular
metabolism, such as flux-balance analysis (FBA), aid in predicting metabolic changes likely
to improve the production of a target molecule. Powerful methods including
oligonucleotide-directed genome engineering(6) (MAGE) and Cas9-mediated editing can
specifically mutate the genomic targets predicted by FBA. But the combinatorial space of
these genomic mutations quickly outstrips the throughput of current analytical methods
for evaluating chemical production in individual clones (<103 samples machine! day1).

Biosensors that report on the concentration of a chemical within each individual cell
can alleviate this screening bottleneck. Such sensor-reporters transduce the binding of a
target small molecule by a sensory protein or RNA into a gene expression readout(7). The
resulting expression of a fluorescent reporter gene or antibiotic resistance gene allows

facile identification of mutant cells with increased production of the target chemical.
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Sensor-reporters have been employed to screen for increased microbial production
of several chemicals, including the isoprenoid precursor mevalonate(8), L-lysine (9, 10), 1-
butanol(11) and triacetic acid lactone(12). These studies evaluated a set of variants that
altered the expression or coding sequences of one or two key enzyme genes encoded on a
plasmid(8, 10-12). Similarly, a lysine-responsive sensor-reporter was used to uncover new
endogenous enzyme mutants in Corynebacterium glutamicum implicated in higher L-lysine
production(9).

We sought to expand the scope of sensor-directed metabolic engineering to the
directed evolution of whole endogenous pathways. Using FBA as a guide, we
simultaneously targeted up to 18 E. coli genomic loci to induce mutations in regulatory or
coding sequence of genes implicated in biosynthesis of a target molecule. We established a
robust selection, utilizing a sensor protein responsive to the target chemical to regulate the
expression of an antibiotic resistance gene. Nearly a billion pathway variants could be
evaluated simultaneously, enriching for the best producers when selection pressure was
applied.

A major challenge faced by this selection approach (and a difficulty for most genetic
selections) is the incidence of cheater cells that survive without producing the target
molecule. These cheaters evolve to survive selection by mutating the sensor or selection
machinery, rather than through higher target molecule synthesis. Lacking a metabolic
burden, these ‘evolutionary escapees’ outcompete the top producers during a selection.
Multiple selection cycles compound escape, obscuring productive cells and making further
pathway evolution infeasible. We therefore devised a selection scheme that, by toggling
between negative and positive selection, allows us to remove escapees from the population
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when they arise. This strategy maintained high selection fidelity, permitting multiple
rounds of evolution to progressively enrich for higher producing cells.

For sensor-reporter metabolic engineering to be generalizable, sensor domains
specific to many different target molecules must be available. Fortunately, natural sensors
exist for a wide array of industrially-relevant chemicals, including aliphatic hydrocarbons,
short-chain alcohols, sugars, amino acids, polymer building blocks, and vitamins. Many
more sensor domains are likely to be present among the thousands of additional bacterial
regulators known from sequence(13-15) that remain to be characterized. We adapted 10
regulators to our selection system, creating synthetic dependence on their cognate inducer
molecules, and demonstrated the utility of two of these for genome-wide metabolic

engineering.
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Figure 4.1: Sensor-selector design and pathway optimization through toggled selection (A)
Sensor-selector genetic architecture. (B) Methods for tuning sensor-selectors to reduce
escape rate and shift operational range. Escape rate is reduced by (1) adding a degradation
tag, (2) mutating the RBS of the selector, (3) including multiple orthogonal selectors or (4)
including an additional copy of the sensor. Activating an exporter shifts the sensor-selector
operational range. (C) Toggled selection protocol for biosynthetic pathway optimization
through multiple rounds of evolution. Negative selection eliminates cheaters; subsequent
positive selection identifies higher producing clones from a diverse library.

Results

Sensor-selectors are a specific example of the sensor-reporter paradigm that use a
gene whose product confers a fitness advantage (e.g. antibiotic resistance) as the reporter.
Our sensor-selector architecture encodes a chemical-responsive sensor domain together

with its cognate promoter, which controls a selectable reporter (Fig. 4.1A). We show that

91



this general implementation is suitable for transcriptional regulators (both activators and
repressors) and riboswitches, that collectively respond to a wide variety of chemicals (Fig.
4.2A and Table C.1).

Each sensor-selector exhibits unique behavior, dependent on sensor affinity for the
chemical, sensor type and induction response; for example, the escape rate and operational
range can vary over orders of magnitude for different sensors (Fig. 4.2A). For each sensor,
the operational range is defined as the chemical concentration range over which cells
continue to experience a marginal fitness advantage with increasing concentration. The
lower bound of the range reflects the lowest concentration of exogenously supplied inducer
that provides a selective advantage. The upper bound of the range indicates that higher
inducer concentration provides no additional fitness advantage. This range informs the
utility of a sensor for optimizing a pathway. We measured the operational range of ten
sensor-selectors; the MphR(21), TtgR(22) and TetR (24) operational ranges were
measured for multiple inducers (Fig. 4.2A).

Under selection pressure, most cells in a sensor-selector strain population survive
only when the target chemical is detected. But a small fraction of the cells survive absent
the chemical. ‘Evolutionary’ escape results from mutations that permanently reduce
selection sensitivity, and additionally, natural sensors may not have evolved to completely
repress the basal expression level of the genes they regulate. In our selections, the resultant
constitutive or leaky selector expression generates false positives, making it difficult to
identify rare winners. Promoter engineering to optimize the placement of operator sites
can yield very tight repression(16), but this approach requires specific development for
each sensor. Instead, our standardized construction allows us to reduce the effect of leaky
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selector expression through common cis-regulatory modifications that are sensor-
independent. These modifications include appending a degradation tag to the selector to
accelerate its proteolysis and mutating the ribosome binding site (RBS) of the selector gene
to attenuate translation (Fig. 4.1B).

We implemented several modifications in the TtgR-TolC sensor-selector strain for
comparison. Appending ssrA degradation tag variants to TolC reduced escape, in
correlation to the strength of the degradation tag(17), by as much as six orders of
magnitude (Fig. 4.2B). However, reduced escape also decreased the operational range. We
adjusted the spacing between the RBS and translation start site of TolC to achieve fine-
grained translation control(18). Five of ten spacing mutations reduced escape rate while
maintaining a measurable operational range (Figs. 4.2B, C.6). For a dual selector strain, in
which TtgR regulates both tolC and a kanamycin resistance gene, observed escape rates
support the hypothesis of escape through leaky reporter expression: with both SDS and
kanamycin present, the escape rate was much lower (5.2+0.21 x 10-8 cell/cell) than with
either SDS alone (1.7£0.092 x 10-> cell/cell) or kanamycin alone (4.4+0.44 x 10-* cell/cell).
Finally, we observed substantial escape rate reduction using two copies of the ttgR sensor
gene and a single TolC selector (Fig. 4.2B). Because TtgR acts as a transcriptional repressor,
evolutionary escape requires inactivating mutations to both gene copies, and higher sensor
expression may reduce escape through tighter basal repression of the selector.

Sensors are useful for pathway optimization only when the intracellular
concentration of the target chemical is within the operational range of the sensor. We
hypothesized that expressing an exporter of the target chemical should decrease the
intracellular concentration, shifting the operational range (Fig. 4.1B). We studied this
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export effect by expressing a tetracycline exporter, TetA, in cells that place the tetracycline-
responsive sensor, TetR in control of chloramphenicol acyltransferase (CAT) expression.
When this strain expressed tetA, the entire operational range for tetracycline, including
both the lower detection threshold and upper saturation point, shifted about ten-fold
higher (Fig. 4.2D). This effect was tunable by controlling tetA expression from the
arabinose-inducible pBAD promoter (Fig. 4.2E). The CAT selector was used here due to

improved titration of drug sensitivity.
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Figure 4.2: Characterization of sensor-selector modifications. (A) Escape rate and
operational range of ten sensors with cognate inducer chemicals and TolC as a selector.
Horizontal bars depict the operational range. The lower bound of the range reflects the
lowest concentration of exogenously supplied inducer that provides a selective advantage.
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The upper bound of the range indicates that higher inducer concentration does not
increase fitness advantage. (B) Effect of genetic modifications on the TtgR-TolC sensor-
selector escape rate and operational range. Escape rate (light blue bars, left axis) is the
proportion of cells that evade selection (cfu/cells plated). Escape rate not shown if below
the limit of detection (10-19 cfu/cells plated). Escape rate operational range ratio (blue
boxes, right axis) is the ratio of the high concentration of the operational range to the low
concentration of the operational range. (C) MAGE mutagenesis increases the escape rate
(CFU/cells plated) in the CdaR-TolC strain. Treatment with colicin E1 removes escapees in
a dose-dependent manner. (D) Tetracycline exporter (tetA) expression shifts the
operational range of the TetR-CAT (chloramphenicol acetyltransferase) sensor-selector.
Growth lag times reported for orthogonal concentration gradients of tetracycline vs.
chloramphenicol in the absence of tetA (top panel) compared to tetA expression (bottom
panel). (E) The shift in TetR-CAT operational range is tunable by titration of tetA
expression. The minimum tetracycline concentration required for growth (y-axis) at a
given selection pressure (x-axis) for three tetA expression levels: none (diamonds),
intermediate (triangles), high (circles). Error bars represent S.E.M. of production from 3
biological replicates.

Pathway Evolution by Toggled Selection

To maximize the likelihood of identifying rare cells with a higher production
phenotype, we developed a toggled selection scheme (Fig. 4.1C) that preserves library
complexity while eliminating evolutionary escapees. Evolutionary escapees are cells that
acquire mutations to survive selection without producing the target chemical. This escape
prevents the identification of rare winners in a selection, and confounds multiple rounds of
evolution as these escapees outcompete the productive cells. Through toggled selection we
can selectively kill the escapees at each round, and carry over the productive cells for
further improvements in subsequent rounds. We chose TolC(19) as a selector because of its
utility for both positive selection (using sodium dodecyl-sulfate; SDS) and negative
selection (using colicin E1). MAGE is highly mutagenic, increasing the escape rate from
below 10-7 to above 10-3 after five cycles in the CdaR-TolC sensor selector strain. This

increase could be reversed by incubation with colicin E1 (Fig. 4.2C), because evolutionary
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escapees evade SDS toxicity through mutations that constitutively express tolC, making
them highly susceptible to colicin E1. Crucially, we ensure that productive cells are not also
killed during negative selection by maintaining a pathway gene under tight transcriptional
control, which prevents prematurely triggering the sensor (Fig. 4.1C). After negative
selection, we induce the regulated enzyme, allowing cells to produce the target chemical,
and the sensor expresses tolC in proportion to chemical production. By toggling to positive
TolC selection with SDS, we enrich for higher producers, and these can be characterized for

their production phenotypes or subjected to further pathway evolution (Fig. 4.1C).

Naringenin Pathway

We implemented the toggled selection scheme to evolve E. coli toward higher
production of two chemicals: naringenin and glucaric acid. Naringenin, a pharmacologically
useful plant flavonoid molecule, was chosen because previous efforts serve to benchmark
our optimization(2, 3, 20). E. coli requires four heterologous enzymes to synthesize
naringenin from glucose: tyrosine ammonia lyase (TAL), 4-coumaroyl ligase (4CL),
chalcone synthase (CHS) and chalcone isomerase (CHI)(3) (Fig. 4.3A). Because this
pathway consumes tyrosine and malonyl-CoA, our strain engineering strategy targeted
endogenous E. coli gene regulatory and coding loci to increase the availability of these
precursors (SI Appendix, Table S4). The scope of this work was genomic mutagenesis, so
the heterologous genes were left untargeted.

We performed flux balance analysis (FBA) toward increased malonyl-CoA, because
its availability limits naringenin production (SI Appendix, Table S6)(2, 20). FBA identified
three key pathways: glycolysis, fatty acid biosynthesis and the tricarboxylic acid (TCA)

cycle (Fig. 4.3A and Table C.3). Greater flux through glycolysis by up-regulation of gapA4,
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pgk and pdh should increase pools of acetyl-CoA, which is converted to malonyl-CoA by
acetyl-CoA carboxylase enzymes accABCD. Because acetyl-CoA is oxidized in the TCA cycle,
we targeted for down-regulation TCA enzymes mdh, fumBC and acnAB. To throttle acetyl-
and malonyl-CoA consumption in fatty acid biosynthesis, we targeted fabBDFH for down-
regulation. Availability of tyrosine, the other precursor for naringenin production, is
limited by activity of two enzymes in aromatic biosynthesis, aroG(21) and tyrA(4) that are
inhibited by 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) and chorismate,
respectively. We targeted aroG and tyrA for coding sequence changes shown to alleviate
product inhibition. These predictions (Fig. 4.3A) corroborate interventions experimentally
shown to increase production of malonyl-CoA(20), tyrosine(22) and naringenin(2, 3).

Previous efforts to engineer the naringenin pathway have relied on plasmid-based
over-expression or complete knockouts(20); for tightly-regulated or essential central
metabolism genes, such drastic modifications can have deleterious growth defects. For
finer control of gene expression states, which can more closely balance biosynthetic and
survival objectives, we used multiplex automated genome engineering (MAGE)(6).
Oligonucleotides for MAGE mutagenesis were targeted to Shine-Dalgarno sequences to
finely increase or decrease translation efficiency, to alternative start codons (CTG, GTG or
TTG) to yield larger translational attenuation, or to introduce premature stop codons or
coding frameshifts for complete inactivation (SI Appendix, Table S4). Seven genes were
identified by FBA for overexpression to increase flux through glycolysis and to convert
acetyl-CoA to malonyl-CoA.

Four rounds of evolution by toggled selection were performed on the strain
containing two copies of the ttgR sensor gene controlling TolC, due to its favorable
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combination of escape rate and operational range (Fig. 4.2B). We verified that TtgR
responds only to naringenin but not the pathway intermediate p-coumaric acid (Fig. C.3).
After four rounds, each consisting of about 15 cycles of targeted mutagenesis followed by
toggled selection, the best strain identified produced 36 times more naringenin than the
parent strain (Fig. 4.3B). We screened approximately 20 colonies to identify the highest
producer at each round. With a supernatant concentration of 39 mg/L, the production titer
of this strain surpasses the highest published production of naringenin (29 mg/L) directly
from glucose(3) (Fig 4.3B). We further enhanced the production titer to 61 mg/L by
overexpressing E. coli acetyl-CoA carboxylase genes (accABCD), which have been shown to
increase endogenous malonyl-CoA levels (Figs. 4.3B, C.1). Through genetic changes alone,
we were able to nearly recapitulate the high naringenin titer (84 mg/L) previously
achieved by addition of cerulenin, an inhibitor of fatty acid biosynthesis, which is
prohibitively expensive for industrial scale production (3).

We sequenced the genomes of the starting strain and seven high-producing strains
isolated after evolution round four. All seven strains incorporated RBS or start codon
changes at several targeted loci (Figure 4.3C). We found a number of mutations associated
with malonyl-CoA production (Fig. 4.3C and Table C.7). In the TCA cycle, fumarase was
down-regulated by a fum( start codon mutation in all seven strains (likely due to its
selection in an early round). Several fatty acid genes were also down-regulated. Fatty acid
biosynthesis genes whose products initiate synthesis from acetyl-CoA (fabH) or malonyl-
CoA (fabD) were down-regulated by start codon or RBS mutations in seven and four
strains, respectively. The fatty acid elongation gene fabF had start codon attenuation (GTG
to TTG) in four strains and a purine to pyrimidine mutation in the RBS predicted to lower
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translation rate(23) in a fifth strain (Fig. 4.3C and Table C.7). None of the seven strains had
a down-regulation target knocked out, and none of the strains had mutations affecting fabB,
an essential gene, reflecting a balance between production and growth objectives.
Computational prediction of translation rate shows that selected clones enrich for RBS and
start codon mutations that attenuate translation of genes, consistent with FBA predictions
(Fig. C.4).

Three strains exhibited targeted mutations in tyrosine biosynthetic genes shown to
alleviate product inhibition. All three produced substantially more coumaric acid, including
two strains with the tyrA mutation A354V, which produced at least an order of magnitude
more coumaric acid (Fig. 4.3C). This large coumaric acid buildup suggests that malonyl-CoA
may be limiting for naringenin production in these strains. In support of this idea,
overexpression of the enzymes accABCD, which convert acetyl-CoA to malonyl-CoA,
increased naringenin production almost 1.5-fold in the evolved strain (Fig. 4.3B).

While the MAGE process concentrates diversity generation on targeted loci and
increases the probability of sampling specific mutations hypothesized to confer beneficial
phenotypes, it also has unintended mutagenic effects. Whole genome sequencing revealed
many non-targeted mutations in the producer strains (Fig. 4.3C and Table C.8), including
several mutations likely involved in higher naringenin production. Frameshifts inactivated
mhpD, which catabolizes aromatic compounds similar to coumaric acid(24), and hcaT, a
putative transporter of phenylpropionates like coumaric acid(25). Similarly, a frameshift in
entB, which diverts chorismate from aromatic biosynthesis, may increase tyrosine
production(26). We speculate that knocking out all three enzymes facilitates production of
naringenin by increasing the concentration of the precursor, p-coumaric acid. Attributing
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function to non-coding regulatory mutations is more tenuous. However, we observed a
mutation in the Shine-Dalgarno sequence of rpoD, mutation of which increases tyrosine

production(22).
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Figure 4.3: Optimization of the naringenin biosynthetic pathway. (A) Endogenous E. coli
genes targeted by MAGE to increase malonyl-CoA and tyrosine availability for naringenin
production; targeted genes are colored: blue: up-regulation, red: down-regulation, green:
coding changes, gray: untargeted knocked out genes. (B) Average naringenin production
titers (mg/L) for parent and highest producer after each round of evolution (blue bars).
Production titer (mg/L) from fed batch bioreactor fermentation of the highest producer
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and highest producer with accABCD overexpressed (red bars). (C) Genotype and
production phenotype of the top seven producers (in no particular order) from the fourth
round of toggled selection. Colored boxes denote the type of genetic modification.
Mutations founds at targeted genes are shown in the left box, those at untargeted genes,
right box. Naringenin (light bars) and coumaric acid (dark bars) concentrations for single
production measurements are shown alongside the corresponding genotype. Error bars
represent S.E.M. of production from 3 biological replicates.

Glucaric Acid Pathway

In order to validate directed evolution by sensor-selectors as a generalizable
method, we optimized the production of glucaric acid in E. coli. Glucaric acid was chosen for
two reasons. First, unlike naringenin production, previous work to modulate endogenous
pathways was absent. Second, glucaric acid was identified as a key renewable chemical for
the replacement of petroleum-based polymer production. Glucaric acid can be synthesized
in E. coli by expression of three exogenous enzymes: myo-inositol-1-phosphate synthase
(Ino1), myo-inositol oxygenase (MIOX) and uronate dehydrogenase (Udh)(27) (Fig. 4.4A).

To ensure that the heterologous enzymes were functional and provided a growth
advantage under selective conditions, we measured growth lag times in the cdaR-tolC
sensor-selector strain after exogenously providing pathway intermediates (glucose, myo-
inositol and glucuronic acid). Furthermore, we verified cdaR is specifically activated by
glucaric acid, and does not respond to pathway intermediates myo-inositol and glucuronic
acid (Fig. C.7).

Increasing concentrations of glucaric acid result in lower lag times for cells grown in
the presence of SDS. Under selective conditions, decreasing growth lag times reflect the
decreasing number of enzymatic reactions required to produce glucaric acid for cdaR-tolC

activation (Fig. 4.4B). Higher concentrations of myo-inositol and glucuronic acid resulted in
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shorter lag times under selective conditions, but increasing glucose or glucaric acid
concentrations in the media did not result in a growth advantage. In the case of glucaric
acid this is expected as both 1 mM and 10 mM are above the operational range. With
glucose, one possible explanation is that an increase in glucose in the media results in
additional flux through glycolysis and central metabolism rather than increased flux
through the glucaric acid pathway, which likely operates slower than glycolysis. The lag
time observed at the high glucuronic acid concentration is comparable to the lag time
observed with glucaric acid supporting the previous finding that the Udh enzyme acts on a
fast time scale when compared to the selection (27, 28). A long lag time even at a high
concentration of myo-inositol indicates that the MIOX enzyme is less efficient as reported
in previous work(29).

Efforts to increase glucaric acid production in E. coli have focused on co-localization
of pathway enzymes(30) and improving MIOX solubility(29). To date, modifying
endogenous E. coli pathways has not been explored. We hypothesized that glycolysis and
the pentose phosphate pathway were competing with Ino1 for glucose-6-phosphate (gép),
the branch-point for glucaric acid production. We used MAGE to introduce degeneracy in
the RBS of genes involved in catabolism of g6p (SI Appendix, Table S5). We similarly
targeted the RBS sequences of mdh and suhB, the endogenous phosphatase responsible for
dephosphorylating myo-inositol-1-phosphate (31) (Fig. 4.4A). Degeneracy in the RBS
sequences allowed the selection to sample both up- and down-regulation of the genes. We
hypothesized that tuning the rate of glycolysis would allow the glucaric acid pathway to
compete for glucose more effectively while still facilitating robust cell growth. The product
of the pgi gene shuttles gbp into glycolysis and its disruption has been shown to increase
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the intracellular pool of g6p(32), the substrate of Ino1. The growth defect of a pgi mutant
can be rescued by overexpression of sthA(31) and thus pgi and sthA were chosen for
simultaneous expression modulation. The other major pathway for gé6p catabolism is the
pentose phosphate pathway and is initiated by the product of zwf, which was also targeted
for expression modification. To prevent flux diversion of the intermediate molecule
glucuronic acid into the Entner-Doudoroff pathway, we targeted uronate isomerase (uxaC)
for a knockout. To avoid catabolism of glucaric acid, we also targeted glycerate kinase
(garkK) for a knockout.

We performed 5 cycles of MAGE on seven genomic targets (SI Appendix, Table S5)
to achieve a predicted prevalence of approximately 1x10-¢ for strains incorporating
mutations at all seven loci. The statistically most common strain contained a single
mutation and was predicted to account for 40% of the cell population. After MAGE followed
by toggled selection, the enriched non-clonal culture produced 7-fold more glucaric acid
than the parent. The best clone isolated from this population produced 22-fold more than
the parent (Fig. 4.4C and Table C.7). This highest producing strain contained a targeted
nonsense mutation in garkK, a gene not previously shown to enhance glucaric acid
production. None of the other targeted genes were mutated, but an untargeted nonsense
mutation in the L-glyceraldehyde 3-phosphate reductase gene (yghZ) was found. As an
aldo-keto reductase, yghZ has fairly broad substrate specificity(33) and could be diverting
carbon flux away from glucaric acid by reducing glucuronate to gluconate.

Glucaric acid titers were improved 22-fold over the parent strain; however, absolute
production of glucaric acid remained substantially lower (1.2 mg/L, Fig. 4.4C) than
previously reported titers(27). Moon et. al. carried out glucaric acid production in an E. coli
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B-strain (BL21), while we optimized the pathway in the MAGE-competent E. coli K-strain.
To investigate the possible role of strain background (B vs K strains) in glucaric acid
production, we measured glucaric acid titer in our parent K-strain and BL21. We found that
glucaric acid titer was 300 times higher in BL21 with the same glucaric acid enzymes and
culture conditions (Fig. C.5).

There are substantial differences between B and K strains of E. coli that are difficult
to bridge through naive mutagenesis. Notably, B strains have altered carbohydrate
metabolism when compared to K strains as well as an enhanced capacity for recombinant
protein production(28). Previous work to produce glucaric acid in E. coli has revealed
MIOX to be a highly unstable enzyme(27) and the primary limit on production may lie in
protein folding and stability, rather than host-cell glucose metabolism. Our evolved K strain
grew just slightly worse than the parent strain, ruling out gross metabolic deficiency as the
cause of low production (Fig. C.8). In light of these considerations, subsequent rounds of
diversification and selection were not pursued in the K-strain background. Currently, work
is underway to enable MAGE in BL21 for optimization of production pathways better
suited for E. coli B-strains. These results highlight that directed evolution is not a
replacement for the careful choice of a host strain, but should complement thoughtful

strain selection.
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Figure 4.4: Optimization of the glucaric acid biosynthetic pathway. (A) Glucaric acid
biosynthetic pathway showing key intermediate metabolites and enzymes. Heterologous
gene names are underlined. Endogenous E. coli genes targeted by MAGE for expression
modification: blue: RBS modification, red: knockout. (B) Lag time in growth reflects time
required for the pathway enzymes to produce activating levels of glucaric acid in the
sensor-selector strain CdaR-TolC. Pathway intermediates are supplied exogenously (dark
blue 10 mM; light blue 1 mM). Error bars represent S.E.M. of production from 3 biological
replicates (C) Glucaric acid titers in parent strain, post-selection mixed population and
highest producing clone (bars). Squares indicate titers produced by clones isolated from
the post-selection population. Error bars represent S.E.M. of production from 3 biological
replicates.
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Discussion

Rapid advances in DNA sequencing and DNA synthesis technologies(34, 35) have
not been accompanied by similar advances to enable the high throughput evaluation of
phenotypes. Our implementation of small-molecule sensors coupled to selection advances a
versatile platform that can transform biosynthetic phenotypes into fitness differences.
These differences empower us to employ evolution followed by sequencing to reveal clues
to potential metabolic pathway inefficiencies and to identify targets for subsequent rounds
of evolution. The multiplex mutations facilitated by MAGE enable us to target all candidate
genes predicted by FBA without prior assumption of the relative importance of each target.
Because selection amplifies faster dividing cells, we indirectly enrich for variants that
suitably balance biomass and biosynthetic objectives. We show that toggled selection
refreshes the pool of productive cells by removing evolutionary escapees. Toggled selection
enables multiple rounds of evolution to progressively enrich for higher producing variants.
Combining beneficial mutations from independently evolved strains could lead to even
higher metabolite production due to epistatic synergies. The incidence of evolutionary
escapees and off-target mutations is likely to be significantly reduced by transiently
repressing mismatch repair(36). While this may decrease untargeted beneficial mutations
(mhpD, entB and hcaT in naringenin biosynthesis) in a single round of evolution, mutations
that provide significant selective advantage will ultimately be enriched over multiple
rounds.

Besides pathway optimization, we can use sensor-selectors to screen libraries of

synthetic or metagenomic sequences for novel biosynthetic operons, new enzyme
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functions, and transporters. The vast reservoir of natural chemicals found in microbial
species remain largely inaccessible because the enzymatic pathways for their synthesis are
not known. With sensor-selectors, large libraries encoding natural or synthetic operons can
be interrogated to identify the putative pathway for a target chemical.

Natural sensor domains exist for many classes of molecules that are of economic
interest; however, some metabolite targets have no known sensor to detect them. We
expect this challenge to be addressed by advances in protein design and by efforts to
characterize new transcription factors encoded in metagenomes. Clever use of existing
sensors will also allow the optimization of multiple pathways that use common
intermediates. For biosynthetic pathways diverging only in late ‘decoration’ steps, we can
leverage class-specific sensors to optimize the production of many related molecules by
simply exchanging terminal enzymes. For example, our best naringenin production strain
likely has an elevated intracellular concentration of malonyl-CoA, which could be used
immediately for the improved production of fatty acid-derived targets or polyketides.

Evolution is a powerful tool for resolving the complexity of biology. Using evolution
to guide rational design should ultimately lead to a better understanding of the genotypic

basis of biological function.

Materials and Methods

Sensor-Selector Strain Construction
All sensor-selector strains were constructed from E. coli MG1655 derivative ECNR2

(AbioAB::Red-A prophage-bla AmutS::Cm) to facilitate recombineering and MAGE(6).
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Sensor-selector constructs were genomically integrated using a standard architecture (Fig.

4.1A).

Glucaric Acid Pathway Construction and Optimization

A plasmid (pT7GAEXP) enabling glucaric acid biosynthesis in E. coli was
constructed, encoding: the Mus musculus myo-inositol-oxygenase (MIOX) gene; the
Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene; and the
Agrobacterium tumefaciens uronate dehydrogenase (UDH) gene. MAGE (8) mutagenesis
was used to target seven genes (SI Appendix, Table S5) for expression change in sensor
selector strain CdaR-TolC expressing pT7GAEXP. One cycle of toggled negative and positive
selection was used to enrich for mutations benefitting glucaric acid production, as assayed

by clonal production and mass spectrometry.

Naringenin Pathway Construction and Optimization

Four heterologous genes enabling naringenin production were cloned into two
plasmids for expression in the dual TtgR-TolC sensor-selector strain: tyrosine-ammonia
lyase (TAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS) and chalcone
isomerase (CHI) (3) MAGE (8) mutagenesis targeted 20 endogenous genes (SI Appendix,
Table S3) for expression and coding changes in this strain. Four iterations of mutation and
toggled negative and positive selection enriched for mutations benefitting naringenin

production, as assayed by clonal production and mass spectrometry.
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Chapter 5: A fluorimostat for programmable control of gene
expression

Abstract

A simple-to-construct device providing programmatic and closed-loop control of
gene expression would enable new experimental capabilities in biology labs everywhere.
We have designed the fluorimostat to suit this need. The fluorimostat allows bioengineers
to control gene expression via cellscript, a new biological scripting module for Python. We
implemented a cellscript protocol to autonomously determine the cooperatively of the
mphR macrolide biosensor over a wide range of gfp expression levels. The fluorimostat also
enables closed-loop control of expression, allowing complex genetic programs to
continuously correct for drift and other perturbations over periods of minutes to weeks.

Designs and scripts are freely available on GitHub.

Introduction

Precise control of gene expression is required to study the dynamics of natural and
synthetic biological systems(1,2). Achieving such exquisite control remains challenging, as
cells studied in batch culture are constantly transitioning from one growth phase to
another(2,3). Turbidostats maintain cells at a constant density and are used to achieve
long-term steady-state growth, enabling experiments that would otherwise be confounded
by the effects of growth phase transition. An even greater challenge is the maintenance of

steady-state gene expression, which is difficult to achieve in batch culture, but would
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enable much more robust experimentation. We developed the fluorimostat to address this
challenge. The fluorimostat is an inexpensive and easy-to-construct device that enables a
series of precise gene expression levels to be defined programmatically and maintained in
the presence of perturbations.

We designed the fluorimostat to enable scriptable and autonomous control of
biological systems for engineers and biologists everywhere. Previous closed-loop
expression systems have relied on immobilized cells and epifluorescence microscopy for
the evaluation of expression states(4,5). Other demonstrations have relied on batch
cultures of cells, or evaluation with flow-cytometry(6,7). Most recently, light-controlled
gene expression has been exploited for the convenient property that it can be
instantaneously added or removed(7-9). However, relying on light constrains the range of
inducible expression systems that can be studied to a limited set of regulators with low
dynamic range(10). Furthermore, the above systems rely on expensive equipment not
typically dedicated to cell culture, limiting the potential ubiquity of these systems. By
relying on inexpensive components and providing detailed instructions for setup and
operation, we make the fluorimostat available to labs everywhere.

The fluorimostat is designed as a bridge between biology and software. As such, we
have followed open-source principles in making our designs accessible both intellectually
and practically. In order to maximize backwards compatibility with existing inducible
systems, we have designed the fluorimostat to work with any chemical inducer. To ensure
forward compatibility, we monitor fluorescence with an inexpensive inline
spectrophotometer, allowing multiplexed observation of any fluorophore of interest. We
have developed a stand-alone GUI for observation and manipulation of the system. For
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more complex biological programs, the behavior of the system can be scripted through the
cellscript Python library. In this paper we develop a cellscript function that enables the
fluorimostat to autonomously characterize the induction properties of the mphR macrolide
antibiotic biosensor. Finally we implement a PID controller to demonstrate closed-loop

control of gene expression.

Results and Discussion

The fluorimostat system is built from three discrete modules: the growth chamber,
the induction chamber and the spectrophotometric flow cell. The growth chamber,
operating as a turbidostat, maintains cells in a logarithmic growth phase through simple
hysteretic control. When the optical density of the growth chamber reaches the specified
upper limit, fresh media is added while spent media is removed until the optical density
reaches the specified lower limit. Cells from the growth chamber are continuously pumped
into the induction chamber. The concentration of inducer in the induction chamber is
maintained at a defined level by software-actuated pumping of a concentrated inducer
solution. The residence time of cells in the induction chamber is controlled by the ratio of
flow rate to working volume.

Cells exiting the induction chamber pass through a spectrophotometric flow cell on
their way to waste. The flow cell is constructed with 530nm (green) and 470nm (blue)
LEDs for excitation of RFP and GFP, respectively. The LEDs and desired filters are held in
place with a 3D-printed assembly and can be easily reconfigured. The spectrophotometer
monitors the cells via a fiber-optic cable coupled to the flow cell at an angle orthogonal to

the direction of illumination. The software parses the spectrum, informing the actuation of
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inducer addition in the context of closed-loop control. The entire system is operated within
a 37°C warm-room and constructed such that a simple clean-in-place (CIP) procedure can

be performed in less than 20 minutes.
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Figure 5.1: Fluorimostat process flow diagram. The growth chamber is maintained at a
constant cell density through closed-loop hysteresis. The induction chamber is operated in
either closed- or open-loop mode. Effluent from the induction chamber is passed through
an LED illuminated spectrophotometric flow cell. The fluorimostat software calculates
fluorescence intensity (a.u.) from the spectrum. The process controller actuates the inducer
pump to achieve either a specified concentration of inducer (in open-loop mode) or a
specified fluorescence level (in closed-loop mode).

All aspects of the fluorimostat are monitored and controlled through a GUI built in
Labview and distributed in both binary and source-file formats. Configuration of the
fluorimostat and scripting of biological programs can be performed through the cellscript
Python library. The fluorimostat is instantiated as an object with user-configurable

parameters such as flow rate, cell density and residence time. Biological programs are

compiled from commands as simple as setting the induction level to a certain value for a
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period of time, or as complicated as a sinusoid or other waveform with a given period and
amplitude.

We used the fluorimostat to automate the characterization of a small-molecule
inducible system. Characterization of inducible system parameters such as the hill
coefficient or the maximal rate of expression is challenging in batch culture because large
dilutions are needed to avoid approaching stationary phase before collecting of sufficient
fluorescence data(2). Furthermore, in batch culture, the gene expression rate is the
derivative of the fluorescence corrected for fluorophore maturation, degradation and
dilution(2). In contrast, the fluorimostat operates at steady state, making fluorescence a
direct measurement of the dilution-normalized gene expression rate. As a result, induction
parameters are determined by simply modeling the transient behavior of the system as it
adjusts to changes in inducer concentration. Arbitrary changes in the fluorimostat set point

are used to estimate induction parameters using following system of equations:

ST
C =Che Pt + T (1—e7PY
ch (1—e™PY)

The concentration of inducer and level of fluorescence in the induction chamber are
denoted C and F with the subscript zero indicating initial conditions. D is the dilution rate
of the induction chamber while fand r are the flow rates from the growth chamber to the
induction chamber and from the inducer reservoir to the induction chamber, respectively.
The concentration of inducer in the reservoir is denoted s. Vimax, Vmin, h and K are the hill

function parameters that describe the induction response of the inducible system.
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The concentration of inducer in the induction chamber is modeled precisely from
the physical properties of the system. The fluorescence is in turn modeled from inducer
concentration and the parameters of the hill function. Evaluating these equations each time
the flow rate of inducer is modified results in a prediction of fluorescence over the course
of the experiment. Minimizing the error between the predicted fluorescence and the
observed fluorescence produces estimates for Vimax, Vimin, h and K. Bootstrapping the
measured signal generates a distribution for each of the parameters and allows an estimate
of the induction transfer function to be plotted. If the range of concentrations explored by
the fluorimostat covers the majority of the transfer function then sufficient information

was captured for a good fit.
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15 Induction Chamber Dynamics
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Figure 5.2: Computational design of an open-loop fluorimostat experiment. The user
specifies a range of steady-state concentrations and their respective durations. The
cellscript software encodes the desired concentrations as a series of inducer pump flow

rates (top panel). The physical parameters of the system (e.g. pump rate, volume) are used
to calculate the transient concentrations of inducer (middle panel). Promoter parameters
estimated from previous experiments are used to predict the fluorescence that will be

observed during the experiment (bottom panel).

We encoded this characterization pipeline in the cellscript Python module and
deployed it for the automated characterization of mphR. The mphR transcriptional
repressor permits gene expression when bound to erythromycin(11). Higher erythromycin
concentrations result in greater gene expression rates from the mphA promoter, in turn
driving expression of the green fluorescent protein (GFP). Characterization of mphR was

carried out through a series of four logarithmically-spaced induction levels that we
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anticipated would cover the majority of the induction transfer function. The resulting
fluorescence response varied over a 25-fold range and yielded a mean Vmax, Vmin, h and K
of 51 RFU/min, 258 RFU/min, 3.3 and 106uM, respectively. These values are similar to

previously reported values derived for this promoter-repressor pair(2).

A automated curve fitting and parameter estimation
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Figure 5.3: The fluorimostat and cellscript Python module were used to characterize
genetically encoded biosensors. (A) A simple script encoded a range of erythromycin
concentrations each maintained for four hours. A mathematical model of the mphR
biosensor was fit to the observed fluorescence. (B) The parameters of the Hill function
were estimated by fitting the model several times on data bootstrapped from the original
measurements. (C) The transfer function between inducer concentration and gene
expression rate was determined from the fitted parameters. The actual concentrations

evaluated in the experiment are superimposed on the Hill function to visualize the breadth
of the fit.
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Proportional-integral-derivative (PID) control was implemented to enable long-
term induction programs capable of correcting for drift and other perturbations. We
demonstrated PID control by allowing the fluorimostat software to autonomously control
the inducer pump rate while attempting to achieve three consecutive set points. Set points
were achieved with minimal overshoot or oscillation. The controller output is the sum of
the proportional, integral and derivative terms. We plotted each of these terms over the
course of the experiment to reveal how the controller was operating. Noise is primarily
introduced by the derivative term as it amplifies any noise is the input signal. Noisy control

did not impact the ability of the system to reach the desired fluorescence levels.
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Figure 5.4: Closed-loop control of gene expression. Three consecutive fluorescence set
points were evaluated with decreasing periods (first panel). The controller output during
the experiment was noisy with the bulk of the values falling within 5% of the mean set
point (second panel). Separating the controller output into the individual components
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reveals the majority of noise comes from the derivative controller (panels three through
five).

Going forward we will continue to support fluorimostat development with the aim
of reducing the cost of implementation and increasing utility to researchers with additional
functionality. The fluorimostat described here will complement other open source
laboratory tools such as the recently released flexistat turbidostat(12) and soon to be

released Wyss Evolvulator 2.0.

Materials and Methods

Fluorimostat Design and Operation

The fluorimostat is operated within a humidity and temperature controlled room
maintained at 37°C. The growth chamber is fed by a media reservoir that is continuously
pumped at a flow rate significantly greater than the growth rate of the cells. When cell
density is below the desired set point, fresh media is diverted to the reservoir such that
cells can grow without dilution. When cell density is above the desired set point, a valve
directs media into the growth chamber such that the cellular density is decreased. A waste
port simultaneously removes excess fluid to maintain a constant volume in the growth
chamber. The density of cells within the growth chamber is monitored by the
transmittance observed by a photodiode located across the growth chamber from a
continuously illuminated LED. The growth chamber is located on a stir-plate and mixed by
a magnetic stir-bar. Cells are continuously pumped from the growth chamber to the

induction chamber. The induction chamber is operated at a smaller volume than the
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growth chamber such that the desired induction chamber dilution rate will require a flow
rate smaller than the effective dilution rate of the growth chamber, avoiding depletion of
growth chamber working volume. The induction chamber receives a constant flow rate
from the growth chamber and a variable, but negligible, flow rate from the inducer pump.
The control software actuates the inducer pump to achieve either the desired inducer
concentration or the desired fluorescence set point, depending on whether the fluorimostat
is operating in closed- or open-loop mode. Cells are pumped from the induction chamber to
the photometric flow-cell at a low flow rate to avoid generating bubbles. The volume of the
induction chamber is maintained at a constant level by a high flow rate waste efflux at a
specified fluid level within the chamber. The photometric flow cell consists of a cuvette
with three quartz windows. Inlet and outlet fittings allow the induction chamber effluent to
flow between the windows. High power LEDs are seated against two of the windows while
a fiber-optic cable with collimated lens is seated against the third orthogonal window. The
fiber-optic cable directs light to a spectrophotometer, which in turn feeds the observed
spectrum back to the control software. Luer-lock fittings were used for all tubing
connections. Any connections made within the warm-room were sanitized with 70%
ethanol. A simple clean-in-place (CIP) procedure was used to avoid the need for device
disassembly between experiments. To perform the CIP procedure, the media reservoir is
disconnected and replaced with a 10% bleach solution. The bleach solution is pumped
throughout the system and maintained for a residence time of at least 10 minutes. The
media reservoir is reconnected and used to rinse remaining bleach out of the system before

inoculation with cells. Approximately 1mL of cells grown to saturation are inoculated
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through the aseptic waste septum of the growth chamber. Experiments are carried out

once cells achieve steady-state growth.

Signal Processing

Induced cell culture was passed into a quartz cuvette flowcell (Starna 583.4-F) ata
rate of 1.2 ml/min. Alternating GFP and RFP fluorescence measurements were taken by
exciting the culture with a 470nm or 530nm high-powered LED (Thorlabs, Inc M530L3,
M470F1), respectively. A BLACK-Comet UV-VIS spectrometer (StellarNet, Inc) was used to
capture each emission spectrum with a 4000 ms integration time. The raw GFP and RFP
fluorescence values were calculated by summing the amplitudes of the wavelengths from
500-520nm and 574-594nm, respectively. Raw fluorescence values are reported in the log
file at 10-second intervals, and a smoothed fluorescence signal was generated as follows for

closed-loop control:

_SoX3 + F
B 4

So is the previous smoothed fluorescence value, F is the current raw fluorescence

value, and S is the calculated smoothed fluorescence value.

Chemicals and Reagents

All chemicals were purchased from Sigma unless otherwise specified. Erythromycin
was purchased from Millipore (part #329815) and dissolved in 50% ethanol to 20mM.
Davis media consisted of 7g/L dibasic potassium phosphate, 2g/L monobasic potassium

phosphate, 1g/L ammonium sulfate, 0.1% tween 20, 4.5g/L glucose, 0.5g/L sodium citrate,
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12.5mg/L magnesium sulfate, 5mg/L thiamine and 0.5g/L casamino acids. Appropriate

antibiotics were added as necessary to maintain plasmids.

Strains and Plasmids

The previously described mphR biosensor was used in this study (p]JKR-H-mphR).
The E. coli strain DH5a was used for all experiments. Strains were inoculated from glycerol
stocks and grown to saturation overnight in LB media supplemented with appropriate
antibiotics. Approximately 1ml of saturated cells were inoculated into the growth chamber

and allowed to reach an exponential state of growth prior to experimentation.

Inducible System Characterization

The mphR biosensor was characterized with the automated method described
below. A strain of DH5a E. coli with the p]JKR-H-mphR plasmid was maintained at an optical
density of 0.18-0.20 within the growth chamber. A flow rate of 1.5ml/min was used to feed
the induction chamber maintained at a volume of 45ml. A peristaltic pump with a
maximum flow rate of 0.28ml/min dispensed inducer from a 20mM erythromycin
reservoir. The cellscript module was used to assemble a protocol for the Labview software
to follow. The protocol called for sequential inducer pump duty cycles of 1.3%, 2.7%, 5.4%
and 11% with the entire sequence bracketed by long periods without pumping. The
different duty cycles were maintained for 4 hours and corresponded to steady-state
erythromycin concentrations of 50uM, 100uM, 200uM and 400uM. The Labview software

logged the measured fluorescence and current inducer pump duty cycle every minute for
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the duration of the experiment. The cellscript module read the log file and determined
inducible system parameters using the algorithm described below.
First, concentration for each minute of the experiment was determined using the

equation:

ST
C =Che Pt + T (1—e7PY

where C is the current concentration of inducer in the induction chamber, Cy is the
previous concentration of the inducer in the induction chamber, fis the flow rate from the
growth chamber to the induction chamber, r is the current flow rate from the inducer
reservoir to the induction chamber and D is the dilution rate of the induction chamber
calculated as D = f + r/ v where v is the induction chamber volume. Next the fluorescence

for each minute of the experiment was modeled using the equation:

bt ch (1—ePHd
F :Foe + Vmaxm_i_vmin T

where F is the current fluorescence, Fo is the previous fluorescence and Vpmin, Vimax, Kand h
are the parameters of the hill function, which relates inducer concentration to gene
expression rate. Vyin is the gene expression rate in the absence of inducer, Vpnax is the
maximum gene expression rate achievable with any amount of inducer, K is the half-
maximal parameter and reflects the concentration of inducer that results in half-maximal
induction and h is the hill coefficient, which indicates the cooperativity of the system. The
dilution rate D is calculated as above while d captures the effect that increasing inducer
flow rate has on cell density with d = f/(f + r). The inducer flow rate is determined by

multiplying the current duty cycle by the maximum inducer pump flow rate.
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Finally, the model of fluorescence over time was used to determine the inducible
system parameters. The SciPy function minimize was used to minimize the quadratic mean
of the difference between the modeled fluorescence and the measured fluorescence over
the duration of the experiment using sequential least squares programming(13). The entire
process outlined above was carried out ten times on samples bootstrapped from the
original dataset in order to determine confidence intervals for the fit parameters. The
parameters estimates were used to plot the transfer function of inducer concentration to
gene expression. The concentrations that were experimentally evaluated are superimposed

on this plot such that the breadth of the fit can be visually inspected.

Closed Loop Control
Closed-loop control of induction levels was achieved through the implementation of
a conventional parallel proportional-integral-derivative (PID) controller in Labview

(National Instruments):

t

u(t) = Kpe(t) + Kif e(t)dt + Kd%e(t)

0

The Cohen-Coon open-loop tuning method was used to derive initial PID gains from
open-loop step function experimental data. Fine-tuning of the gain values was performed
using plant simulation of the induction system, with model parameters derived from open-
loop experimentation. For the purposes of the PID control, the fluorescence value (a.u.) was
the process variable and the set point, on a scale of 0-100, represented the integer

percentage of full inducer flow rate. The PID control loop was run one per ten seconds
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during an experiment, and was provided with a smoothed input signal as described in

“Signal processing.”
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Chapter 6: Conclusion

This thesis advances our capabilities to control and evaluate biological systems.
Allosteric transcriptional regulators were repurposed as synthetic biosensors that enable
precise control of gene expression. The properties of these biosensors were characterized
to enable their use in complex synthetic circuits. The biosensors were then redeployed in
selections and screens that enable multiplexed phenotype evaluation for bio-based
chemical production. Methods to modulate the parameters important for successfully
finding highly productive cells were determined. Real-time observation of product
formation was demonstrated for acrylate, muconate, glucarate and 3-hydroxypropionate.
Multiplexed phenotype evaluation was used to optimize the production of naringenin and
glucarate. Finally, truly programmable biology was enabled through the creation of the
fluorimostat.

This thesis describes work completed over the last several years. Many of the ideas
are still evolving and follow-up work is being carried out. The biosensors characterized in
E. coli are being reengineered for use in mammalian cells. Demonstration of biosensor
activity in cell-free systems has been completed, and work is underway to create a fully
cell-free directed evolution platform that relies on emulsion sorting technology. The cell-
free directed evolution system will be especially important for producing toxic products
such as phenol or acrylate. The cell-free system also provides an ideal environment to
evolve enzymes that are ultimately intended for operation outside of cells.

While we have used the fluorimostat to autonomously characterize inducible

systems, it is also valuable in directed evolution and the automated optimization of
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metabolic pathways. We are currently implementing a system where the fluorimostat
monitors glucarate production via the glucarate biosensor and automatically modulates the
timing and magnitude of heterologous enzyme expression such that product formation
rates are maximized. We are also initiating collaborations in which the fluorimostat will be
used to carry out continuous evolution experiments. To further worldwide adoption of the
fluorimostat, we are integrating its development with the Wyss Evolvulator to make an
even cheaper and more modular open source hardware platform. In this way, the
fluorimostat will continue to evolve and a community will be fostered for further hardware
and software development.

Going forward, [ will continue promoting the use of multiplexed phenotype
evaluation in the design-build-test cycle for metabolic engineering. Companies at the
leading edge of metabolic engineering are already beginning to adopt multiplexed genome
engineering and phenotype evaluation in their design cycles. As the ease and effectiveness
of genome engineering progresses, the efficient evaluation of biological designs will

become an increasingly important component of the biological engineering process.
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Appendix A: Supplemental information for Chapter 2

Supplemental Figures

Figure A.1: Fluorescence and growth kinetics for the low-copy implementations of the
glucarate, erythromycin, acrylate and and naringenin biosensors.
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Induction and growth kinetics for the low-copy glucarate (CdaR), erythromycin (MphR),
acrylate (AcuR) and naringenin (TtgR) biosensors. Chemical inducers are added at time
zero and fluorescence is observed for eight hours. Lower panels show the optical density of
the induced cultures over time. Induction levels are indicated by shade, with darker colors
indicating higher inducer concentrations. Glucarate induction levels are 13mM, 4.4mM,
1.5mM, 0.49mM, 0.17mM and no inducer addition. Erythromycin induction levels are
150uM, 51uM, 17uM, 5.6uM, 1.9uM and no inducer addition. Acrylate induction levels are
5mM, 2.5mM, 1.3mM, 0.63mM, 0.31mM and no inducer addition. Naringenin induction
levels are 9mM, 3mM, 0.33mM, 0.11mM, 0.037mM and no inducer addition. Fluorescence
and optical density are normalized as described in the Methods. The standard error of the
mean is represented with a 95% confidence interval (n=3).
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Figure A.2: Fluorescence and growth kinetics for the arabinose and anhydrotetracycline
(aTC) biosensors.
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Induction and growth kinetics for the high- and low-copy arabinose (AraC) and
anhydrotetracycline (TetR) biosensors. Chemical inducers are added at time zero and
fluorescence is observed for eight hours. Lower panels show the optical density of the
induced cultures over time. Induction levels are indicated by shade, with darker colors
indicating higher inducer concentrations. Arabinose induction levels are 490uM, 170uM,
55uM, 18uM and no inducer addition. Anhydrotetracycline induction levels are 430nM,
210nM, 110nM, 53nM and no inducer addition. Fluorescence and optical density are
normalized as described in the Methods. The standard error of the mean is represented
with a 95% confidence interval (n=3).
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Figure A.3: Promoter activities and model fits for the low-copy biosensors.
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Low-copy promoter activity was fit to a model of inducible gene expression. The
maximum expression velocity of each inducible promoter was determined at
various levels of induction (points). The data was fit to a Hill function modified to
account for basal and maximal promoter activity (green lines). The
anhydrotetracycline (TetR) and naringenin (TtgR) biosensors show high induction
cooperativity. The arabinose (AraC), glucarate (CdaR), acrylate (AcuR) and
erythromycin (MphR) biosensors show low or moderate levels of cooperativity. The
10mM acrylate, 1400uM and 450pM erythromycin induction conditions were
omitted from the modeling data due to high toxicity (red points). Error bars reflect
the 95% confidence interval for the measured expression velocity.
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Figure A.4: Single cell analysis of the low-copy biosensors.
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The behavior of single cells in response to chemical induction was evaluated by flow
cytometry. 100,000 cells from uninduced (grey), partially induced (green) and fully
induced (blue) populations were observed for each low-copy biosensor. The specific
concentration of inducer is indicated in the plot. Histograms are plotted with a
biexponential scale to render the wide range of biosensor activation. The absence of
large, well-separated bimodal distributions indicates that bulk fluorescent
measurements do indeed reflect the induction behavior of individual cells.

135



Supplemental Tables

Table A.1: Sequence of regulator proteins and cognate promoter/operators.

Regul
ator

Promoter / Operator
Sequence

Regulator Sequence

acuR

GCTTCACAACCGCACTTGATTTAATAGACCATACCG
TCTATTATTTCTGG

ATGCCGCTGACCGACACCCCGCCGTCTGTTCCGCAGAAACCGCGTCGTGGTCGTCCGCGTGGTGCTCCGGACGCTTCTCTGG
CTCACCAGTCTCTGATCCGTGCTGGTCTGGAACACCTGACCGAAAAAGGTTACTCTTCTGTTGGTGTTGACGAAATCCTGA
AAGCTGCTCGTGTTCCGAAAGGTTCTTTCTACCACTACTTCCGTAACAAAGCTGACTTCGGTCTGGCTCTGATCGAAGCTT
ACGACACCTACTTCGCTCGTCTCCTCGACCAGGCGTTCCTGGACGGTTCGCTGGCTCCGCTGGCTCGTCTGCGTCTGTTCAC
CCGTATGGCTGAAGAAGGTATGGCTCGTCACGGTTTCCGTCGTGGTTGCCTGGTTGGTAACCTGGGTCAGGAAATGGGTG
CTCTGCCGGACGACTTCCGTGCTGCTCTGATCGGTGTTCTGGAAACCTGGCAGCGTCGTACCGCTCAGCTGTTCCGTGAAG
CTCAGGCTTGCGGTGAACTGTCTGCTGACCACGACCCGGACGCTCTGGCTGAAGCTTTCTGGATCGGTTGGGAAGGTGCTA
TCCTGCGTGCTAAACTGGAACTGCGTCCGGACCCGCTGCACTCTTTCACCCGTACCTTCGGTCGTCACTTCGTTACCCGTAC
CCAGGAATAA

araC

AGAAACCAATTGTCCATATTGCATCAGACATTGCC
GTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCC
AACCGGTAACCCCGCTTATTAAAAGCATTCTGTAA
CAAAGCGGGACCAAAGCCATGACAAAAACGCGTAA
CAAAAGTGTCTATAATCACGGCAGAAAAGTCCACA
TTGATTATTTGCACGGCGTCACACTTTGCTATGCCA
TAGCATTTTTATCCATAAGATTAGCGGATCCTACC
TGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCA
TACCCGCTTTCATATCTTTCACTTTTTTTGGGCTAA
C

ATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGGGATACTCGTTTAACGCCCATCTGGTGGCGGGTTTAACGCCGATTGAG
GCCAACGGTTATCTCGATTTTTTTATCGACCGACCGCTGGGAATGAAAGGTTATATTCTCAATCTCACCATTCGCGGTCAG
GGGGTGGTGAAAAATCAGGGACGAGAATTTGTCTGCCGACCGGGTGATATTTTGCTGTTCCCGCCAGGAGAGATTCATCA
CTACGGTCGTCATCCGGAGGCTCGCGAATGGTATCACCAGTGGGTTTACTTTCGTCCGCGCGCCTACTGGCATGAATGGCT
TAACTGGCCGTCAATATTTGCCAATACGGGTTTCTTTCGCCCGGATGAAGCGCACCAGCCGCATTTCAGCGACCTGTTTGG
GCAAATCATTAACGCCGGGCAAGGGGAAGGGCGCTATTCGGAGCTGCTGGCGATAAATCTGCTTGAGCAATTGTTACTGC
GGCGCATGGAAGCGATTAACGAGTCGCTCCATCCACCGATGGATAATCGGGTACGCGAGGCTTGTCAGTACATCAGCGATC
ACCTGGCAGACAGCAATTTTGATATCGCCAGCGTCGCACAGCATGTTTGCTTGTCGCCGTCGCGTCTGTCACATCTTTTCC
GCCAGCAGTTAGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGCATTAGTCAGGCGAAGCTGCTTTTGAGCACTACCC
GGATGCCTATCGCCACCGTCGGTCGCAATGTTGGTTTTGACGATCAACTCTATTTCTCGCGAGTATTTAAAAAATGCACCG
GGGCCAGCCCGAGCGAGTTTCGTGCCGGTTGTGAAGAAAAAGTGAATGATGTAGCCGTCAAGTTGTCAtaa

cdaR

ATGCTGTTGATTGACGCCAGTGAGAACCCGGAACC
GGAAACGGAATCAAATCCGTGGGTCGAACAGTGGG
GCACGCTGTTGTCCTGATATGTTCAGCGAGCGGTA
AATGTCGTTTTAGCGGTGCTGAATCGAATCTTTTC
AGGCAAATGCCAGTAAAAACTGCTTCATAGCGCGG
ATTTTTACTGGCGTTTGCCTGGAGTCAAGCGATCC
ATTTCATACTCTTCTTTATTTCTTCGTTTTAACCCT
TCCTTTCTTGTTCTTGTTTTCATTTCCGTGAAGTGG
ATTCCACCGTCCAGGGCTAATGCCAAAATCGGGCCT
CATTGAACGCATTAATGTTGTGTTGTTGCACGGTG
AGCCGCTATGGCGCGCTTTTTATACTGCTATTGCCA
GATATAAACACGCGCCGTATTCGGCGAACGACCTA
TAAAAACGGCAAAAAACACCCTACGTCACCTCTGA
TTTCCTGGCGATGTCGCAGTCCAGAGTGAGCGTGG
CTAACGCGAATTTTCAGGAGTGCAACA

ATGGCTGGCTGGCATCTTGATACCAAAATGGCGCAGGATATCGTGGCACGTACCATGCGCATCATCGATACCAATATCAAC
GTAATGGATGCCCGTGGGCGAATTATCGGCAGCGGCGATCGTGAGCGTATTGGTGAATTGCACGAAGGTGCATTGCTGGT
ACTTTCACAGGGACGAGTCGTCGATATCGATGACGCGGTAGCACGTCATCTGCACGGTGTGCGGCAGGGGATTAATCTACC
GTTACGGCTGGAAGGTGAAATTGTCGGCGTAATTGGCCTGACAGGTGAACCAGAGAATCTGCGTAAATATGGCGAACTGG
TCTGCATGACGGCTGAAATGATGCTGGAACAGTCGCGGTTGATGCACTTGTTGGCGCAGGATAGCCGTTTGCGGGAAGAA
CTGGTGATGAACCTGATTCAGGCAGAGGAGAATACTCCCGCACTTACTGAATGGGCGCAACGGCTGGGGATCGATCTCAA
TCAACCGCGAGTGGTGGCTATTGTTGAGGTCGACAGCGGTCAGCTTGGCGTGGACAGCGCAATGGCGGAGTTACAACAAC
TGCAAAACGCGCTGACTACGCCCGAGCGTAATAATCTGGTGGCGATTGTCTCGCTAACCGAAATGGTGGTGTTGAAACCG
GCGTTGAACTCTTTTGGGCGCTGGGATGCAGAAGATCATCGTAAGCGAGTTGAACAACTGATTACCCGCATGAAAGAGTA
CGGCCAGCTGCGTTTTCGCGTTTCACTGGGCAACTATTTTACCGGTCCTGGCAGTATTGCCCGATCCTATCGTACGGCGAA
AACGACGATGGTGGTGGGTAAACAGCGGATGCCAGAAAGTCGCTGCTATTTTTATCAGGATCTGATGTTACCTGTGTTAC
TCGACAGTTTGCGTGGCGACTGGCAGGCCAACGAACTGGCGCGACCGCTGGCGCGGCTGAAAACGATGGACAATAACGGCT
TGCTGCGACGAACGCTGGCGGCGTGGTTTCGCCACAATGTGCAACCGCTGGCAACGTCAAAGGCGTTGTTTATTCATCGTA
ATACCCTGGAGTATCGGCTTAATCGTATATCGGAACTGACCGGGCTTGATTTGGGCAATTTTGATGACAGGTTGCTGCTG
TATGTGGCGTTACAACTGGATGAAGAGCGGtag

mphR

GGATTGAATATAACCGACGTGACTGTTACATTTAG
GTGGCTAAACCCGTCAA

ATGCCGCGTCCGAAACTGAAATCTGACGACGAAGTTCTGGAAGCGGCGACCGTTGTTCTGAAACGTTGCGGTCCGATCGAA
TTCACCCTGTCTGGTGTTGCGAAAGAAGTTGGTCTGTCTCGTGCGGCGCTGATCCAGCGTTTCACCAACCGTGACACCCTG
CTGGTTCGTATGATGGAACGTGGTGTTGAACAGGTTCGTCACTACCTGAACGCGATCCCGATCGGTGCGGGTCCGCAGGGT
CTGTGGGAATTCCTGCAGGTTCTGGTTCGTTCTATGAACACCCGTAACGACTTCTCTGTTAACTACCTGATCTCTTGGTAC
GAACTGCAGGTTCCGGAACTGCGTACCCTGGCGATCCAGCGTAACCGTGCGGTTGTTGAAGGTATCCGTAAACGTCTGCCG
CCGGGTGCGCCGGCGGCGGCGGAACTGCTGCTGCACTCTGTTATCGCGGGTGCGACCATGCAGTGGGCGGTTGACCCGGAC
GGTGAACTGGCGGACCACGTTCTGGCGCAGATCGCGGCGATCCTGTGCCTGATGTTCCCGGAACACGACGACTTCCAGCTG
CTGCAGGCGCACGCGTAA

tetR

TCGAGTCCCTATCAGTGATAGAGATTGACATCCCT
ATCAGTGATAGAGATACTGAGCACATCAGCAGGAC
GCACTGACCGAATTCATTAAA

ATGTCTCGTTTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAAC
CCGTAAACTCGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAAAAATAAGCGGGCTTTGCTCGACG
CCTTAGCCATTGAGATGTTAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCTGGCAAGATTTTTTACGT
AATAACGCTAAAAGTTTTAGATGTGCTTTACTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTACAGA
AAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTATGCCAACAAGGTTTTTCACTAGAGAATGCATTATATGCAC
TCAGCGCAGTGGGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAGTCGCTAAAGAAGAAAGGGAAACA
CCTACTACTGATAGTATGCCGCCATTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCAGCCTTCTTA
TTCGGCCTTGAATTGATCATATGCGGATTAGAAAAACAACTTAAATGTGAAAGTGGGTCTTAA

ttgR

CACCCAGCAGTATTTACAAACAACCATGAATGTAA
GTATATTCCTTAGCAA

ATGGTGCGTCGCACCAAAGAAGAAGCACAGGAAACGCGTGCGCAGATTATCGAAGCGGCCGAACGCGCGTTTTATAAACG
TGGTGTGGCACGTACCACGCTGGCAGATATTGCAGAACTGGCAGGTGTTACCCGCGGTGCAATCTACTGGCATTTCAACAA
TAAAGCCGAACTGGTTCAGGCACTGCTGGATTCTCTGCACGAAACGCATGATCACCTGGCCCGTGCAAGCGAATCTGAAGA
TGAACTGGACCCGCTGGGCTGCATGCGCAAACTGCTGCTGCAGGTGTTTAACGAACTGGTTCTGGATGCACGTACCCGTCG
CATTAATGAAATCCTGCATCACAAATGCGAATTTACGGATGATATGTGTGAAATTCGTCAGCAGCGCCAGAGCGCCGTGC
TGGATTGTCATAAAGGTATCACCCTGGCACTGGCAAACGCAGTTCGTCGCGGTCAGCTGCCGGGTGAACTGGATGTGGAA
CGCGCAGCGGTTGCGATGTTTGCCTATGTGGATGGCCTGATTGGTCGTTGGCTGCTGCTGCCGGATAGTGTTGATCTGCTG
GGCGATGTGGAAAAATGGGTTGATACCGGTCTGGATATGCTGCGTCTGAGCCCGGCGCTGCGCAAATAA
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Table A.2: Sequence of MIOX orthologs evaluated in this study.

MIOX Variant

Sequence

Candida
albicans

ATGGTAAACAAGGTCGGTAAATCTACTCTCGATAAGAGCACAAACCTAGATAAATCCAAAGGGAATATA
TTAGAGAAACTAGATGATGATATACTTCATGTCAATAGAATTCGAGGCTCTTTAACTAACAAAACTCCA
ATCACCAAAACCCATTCGATAGATGATGAGCTTAAACTAGAAGAACAATCAGAAACTGCCGCCGATGAA
AATTGGCAAATAGCATCGGAATATTATAAAAACATAGACACGAAGGCTTTCCGCCAATATGAATTAGCT
TGTGATAGAGTCAAACAGTTTTATGAAGAACAACATGAAAAACAAACCGTGGCGTATAATATTCAAGCA
AGAATTAATTTCAAAACTAAAACAAGAGCAAGAATGACAGTTTGGGAAGGACTAGAGAAATTAAACAAA
TTGTTAGATGATTCTGATCCCGACACCGAATTGTCACAAATAGATCATGCATTACAGACGGCAGAAGCTA
TACGGCGAGATGGGAAACCACGATGGTTTCAATTAGTTGGGTTGATTCATGATTTAGGGAAATTACTAT
ATTTTTTTGATTCTCGTGGTCAATGGGATGTAGTGGGTGATACTTTCCCTGTTGGTTGTAAATTCCTGAA
ACGGATTATTTTCCCTGATAGTTTTAAAAATAATCCAGATTTCCTAAATCCATTGTATAATACCAAATAT
GGCATATATTCAAAACATTGTGGATTAGATAAAGTCATGTTGAGTTGGGGTCATGATGAGTATATGTAT
CATGTTGCGAAAAAGAATTCGACATTACCACCGGAAGCATTGGCAATGATAAGGTATCATTCATTTTATC
CTTGGCATCAAGAATTGGCATATAGTTATTTAATGGATGAGCATGATAAAGAGATGTTGAAAGCAGTCA
AAGCTTTCAATTCCTATGATTTATATTCCAAGATAGATCAACAGTATGATGTTGAAGAGTTGAAACCAT
ATTACCTAGAGTTGATTGATGAGTTTTTCCCAAATAAAGTAATTGATTTTTAA

Francisella sp.
TX077308

ATGAGTCAGACCGTGGAAAACACGTTTGGCGAATTTCGTAACTACACCGATAGCAAATTCCAGGATCGTG
TGGAACGCACGTACAAAGATATGCACATTAACCAGAATCTGGAATACGTTACCCAGATGAAAGATAAAT
ACTTCAAACTGGATCTGGGTAAAATGGATGTGTACGAAGTTTTCAAACTGCTGGAAAACGTTCATGATG
AAAGCGATCCGGATAATGATCTGCCGCAGATCGAACACGCATATCAGACCGCGGAAGCCTGCCAGAACAA
ATTCCTGAAATCTGATACGGAACTGCGCGAAAATGCGCTGATTCGTAGTATCTTTCGCGATCATGAATGG
CAGAGCATTCCGAAAATCTGGCAGGATTTCTATACCAAAAAACAGAGTCTGGGCAATCTGTACAGCCATA
TTAAAGATTGGTCTTGGTTTCCGCTGGTTGGCTTCGTTCACGATCTGGGTAAAATCATGACCCTGCCGGA
ATATGGTCAGCTGCCGCAGTGGAGCACCGTGGGTGATACGTACCCGATTGCCTGCCCGTTTGCAAGCGCG
AACGTGTTTTCTCACCGTGAATTTGTTAAAGATTCTAAAGATTACAACAATTACAATACCGAAAGTGAA
ACGCATTATGGCAAATACGAGAAAAAATGTGGTTTCGATAACGTGGATATGAGCTTCGGTCACGATGAA
TACATCTACAAAGTTTTCGAACAGGGCAGCGATATCCCGTATGAAGGTCTGTACCTGCTGCGCTATCATT
CTTTCTACCCGTGGCACACCCCGCAGACGGGCGGTCATGCGTATCAGGAACTGGCCAACGAAAAAGATTG
GCTGCTGCTGCCGCTGCTGAAAGCCTTTCAGAAAGCGGATCTGTATTCTAAACTGCCGGAACTGCCGCCG
AAAGAAGTGCTGGAGAAAAAATACAAAAGTCTGCTGGATAAATGGGTTCCGAACAAGAAAATTAACTGG
TAA

Flavobacterium
johnsoniae

ATGAAAAAGCATATAGACACAGACAATCCGTTGAAAAATTTAGATGAGTGGGAAGATGATTTGTTAATG
CGATATCCTGACCCTTCTGAAGTAAATGAAAGTTTAAAAGAAAAGCAGAAAGAAGAATTTAGAAATTAT
GTCGATTCTGAAAGAGTAGAAACGGTAAAAGAATTTTACAGGATAAACCATACCTACCAAACTTATGAC
TTTGTATGCAGTAAAGAACAAGAATTTCTGCAATTTAATAGAAAAGAAATGTCAATCTGGGAAGCTGTC
GAGTTTTTAAACACGCTTGTAGACGACAGTGACCCAGATATTGACTTAGACCAGACACAGCACCTTTTAC
AGACTTCAGAAGCCATTCGTGCTGATGGTCATCCGGATTGGTTTGTACTGACAGGTTTCATTCACGATTT
GGGTAAAGTTTTATGCTTATTTGGAGAACCGCAATGGGCAGTCGTTGGCGATACTTTTCCGGTTGGCTGT
GCGTATTCGGATAAAATTGTGTATTCAGAATTTTTTAAAGAAAATCCGGATTATACAGATGAGAGATTC
AATACTAAACTAGGAATCTACACTGAAAACTGCGGATTAGATAACGTAAAAATGAGCTGGGGTCATGAC
GAATATTTGTATCAGATTATGAAAGATTATTTACCGGATCCTGCTTTATACATGATTCGTTATCACTCTT
TTTATTCGCAGCATAAAGAAAATGCGTATGCACATTTAATGAATGAAAAAGACATCGAAATGTTTGACT
GGGTTCGAAAATTCAATCCGTACGATTTGTATACAAAGGCTCCTGTAAAACCAGATGTTCAGGCATTACT
TCCTTATTATAAAGAATTAGTTGCTAAATATTTGCCTGAAAAATTGAAGTTTTAA

Mus musculus

ATGAAAGTGGATGTTGGCCCGGACCCGAGCCTGGTTTACCGCCCGGATGTGGACCCGGAAATGGCAAAAA
GCAAAGATTCGTTTCGTAACTACACCAGTGGCCCGCTGCTGGATCGTGTTTTTACCACGTATAAACTGAT
GCATACCCACCAGACGGTTGACTTTGTCAGCCGTAAACGCATTCAATATGGCGGTTTCTCTTACAAGAAA
ATGACCATCATGGAAGCGGTGGGCATGCTGGATGACCTGGTTGATGAATCAGATCCGGACGTCGATTTTC
CGAATTCGTTTCATGCGTTCCAGACGGCCGAAGGTATTCGCAAAGCCCACCCGGACAAAGATTGGTTCCA
TCTGGTCGGCCTGCTGCACGATCTGGGTAAAATCATGGCACTGTGGGGTGAACCGCAGTGGGCTGTGGTT
GGTGATACCTTTCCGGTGGGTTGCCGTCCGCAAGCAAGTGTCGTGTTTTGTGACTCCACCTTCCAGGACA
ACCCGGATCTGCAAGACCCGCGCTATTCAACGGAACTGGGCATGTACCAGCCGCATTGCGGTCTGGAAAA
CGTGCTGATGTCGTGGGGTCACGATGAATACCTGTACCAGATGATGAAATTCAACAAATTCAGCCTGCCG
TCTGAAGCCTTCTACATGATCCGTTTCCATAGTTTCTACCCGTGGCACACCGGCGGTGATTATCGCCAGC
TGTGCTCCCAGCAAGACCTGGATATGCTGCCGTGGGTGCAAGAATTCAACAAATTCGATCTGTACACGAA
ATGTCCGGATCTGCCGGACGTTGAATCTCTGCGTCCGTACTACCAAGGTCTGATTGATAAATACTGTCCG
GGCACCCTGTCGTGGTAA
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Table A.3: Inducer toxicity.

Inducer Concentration

acrylate(uM) 0 156 313 625 1250 2500 5000 10000
arabinose (uM) 0 55 165 494 1481 4444 13333 40000
aTC(mM) O 6.7 13.0 27 53 110 210 430
DMSO (%) 0 0.0069 0.021 0.062 0.19 0.56 1.7 5
erythromycin (no eryR, uM) 0 1.9 5.6 17 51 150 450 1400
erythromycin (uM) 0 1.9 5.6 17 51 150 450 1400
ethanol (%) 0 0.0027 0.0082 0.025 0.074 0.22 0.7 2
glucarate (uM) 0 55 165 494 1481 4444 13333 40000
naringenin (uM) 0 12 37 111 333 1000 3000 9000

Growth Rate (hr1)
acrylate 0.73 0.75 0.74 0.73 0.70 0.50 0.27 0.10
arabinose 0.78 0.76 0.80 0.86 090 092 092 0.95
aTC 0.74 0.75 0.74 0.75 0.75 0.70 0.70 0.54
DMSO 0.73 0.74 0.74 0.74 0.75 0.71 0.66 0.55
erythromycin (no eryR) 0.68 0.68 0.67 0.69 0.68 0.65 0.61 0.52
erythromycin 0.67 0.67 0.67 058 048 029 0.13 0.11
ethanol 0.70 0.75 0.75 0.76 0.75 0.71 0.66 0.52
glucarate 0.74 0.74 0.74 0.74 0.74 0.74 0.72 0.76
naringenin 0.69 0.73 0.72 0.72 0.68 0.53 040 0.16
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Table A.4: Inducer cross-reactivity (growth-normalized fluorescence)

erythromycin
arabinose
acrylate
glucarate
aTC
naringenin
IPTG
rhamnose
cumate
DMSO
ethanol
water

TtgR
11
8
9
7
8
111

O 0O O 0

TetR
9
8
8
7
152
7

oy OV 0 O O 3

CdaR
14
11

9
236
10
9
9
10

9
9
8
8

AcuR
11
10

485
10
10

8
10
11

9

9
8
7

AraC
25
1609
27
27
24
24
22
25
22
26
30
24

MphR
1063
8
10
9
10
8
10
10
9
10
8
7

control

co
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Appendix B: Supplemental Information for Chapter 3

Supplemental Figures

Figure B.1: Cells without the acuR-based 3HP biosensor helper plasmids do not
produce fluorescence in the presence of 3HP.
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The fluorescent response to the addition of acrylate indicates that the biosensor is
functional, but insulated against activation by 3HP without the enzymes necessary
to convert 3HP to acrylate. The confidence band represents the 95% confidence
interval determined by the standard error of the mean (n=3).
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Figure B.2: Representative chromatogram for acrylate measurement by LC-MS.

RT. 1091
A 30096748

z Ful
90= [66.70-1000.00]
= MS R _B2

105015 ggs 298 52
545 611 826 1042 352 4468
& 1750 9778
< e 2083 2280 2418 2570
3 i
o

LI L S e s e B e e
0 2 4 & 8 10 12 " % 18 20 22 24 2%
Time {min)

The samples were analyzed on a Thermo g-Exactive Plus mass spectrometer
equipped with a Thermo 3000 Ultimate uHPLC. A resolution of 70,000 was used on
the mass spectrometer. A hydrophilic interaction chromatography method was used
using a EMD Sequant pHILIC column (150 mm length, 2.1 mm ID, 5um particle size)
at a flow rate of 100 uL. /minute . Mobile phase A was 20 mM ammonium carbonate,
and B was acetonitrile. The gradient started at 100% B and linearly decreased to
40% B over 20 minutes. B was then decreased further to 20% over 10 minutes, and
then returned to initial conditions at 100% B over 0.1 minutes and maintained for
the next 11.9 minutes to equilibrate the column for the following run.

141



Figure B.3: Glucarate titer as a function of biosensor fluorescent response.
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Glucarate titer as a function of biosensor fluorescent response. Higher fluorescent
responses indicate higher glucarate production titers. Error bars represent the 95%
confidence interval derived from the standard error of the mean (n=3).
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Appendix C: Supplemental Information for Chapter 4

Supplemental Methods

Riboswitch Sensors

Because riboswitches affect expression control through translation of the
transcript rather than transcription, a modified sensor architecture was used. The
theophylline-responsive theoRR blocks translation unless theophylline is present
(23). We included the theoRR as a 5’ untranslated region of the tolC transcript,
allowing for translation only when theophylline was present.

The btuB vitamin B12-responsive riboswitch operates in an opposite manner to
theoRR, remaining in an open conformation natively, and attenuating translation
through RBS occlusion only when B12 or its derivatives are present (17). We
included the btuB riboswitch and the first 70 codons of btuB gene sequence (17) at
the beginning of the tetR transcript in a modified tetR-CAT sensor-selector. When
the btuB-tetR fusion is transcribed in the absence of vitamin B12, the riboswitch
structure within the btuB 5’-UTR is in its open conformation, allowing translation of
the btuB-tetR fusion protein, which represses the transcription of CAT, leaving the
cells chloramphenicol sensitive. In the presence of vitamin B12, the riboswitch
changes conformation to bind B12 and occludes the RBS, preventing btuB-tetR
translation and allowing strong transcription of CAT, leading to chloramphenicol
resistance. Using this strategy, the translation-attenuating B12-responsive btuB
riboswitch was used to control the expression of a positive selection marker.

Sensor-Selector Strain Construction

To construct the TtgR-TolC dual sensor strain, a linear PCR product composed
of 5’- zeocin resistance cassette—apFAB101 promoter(48)—RBS B0034
(AAAGAGGAGAAATTA)—ttgR-3° was amplified with 50 bp homology and
recombineered into the genome at locus 1529620 (numbered relative to the
MG1655 sequence) of the TtgR-TolC sensor-selector strain. (For pathway
optimization, the pLtetO promoter in the ttgR sensor gene construct at the tolC locus
was also replaced with apFAB101 promoter to avoid homology with pLtetO
promoters on naringenin pathway plasmid 2. To construct TtgR strain with dual
selectors, a linear PCR product composed of 5’- spectinomycin resistance cassette—
ttgAp promoter -3’ was amplified with 50 bp homology and recombineered 5’ to the
CAT gene at the AmutS::Cm locus of the into the TtgR-TolC sensor-selector strain.

Riboswitch-based sensor-selectors necessitated modifications to the standard
construction used for all transcription factor-based sensor-selectors. The
theophylline-responsive riboswitch (theoRR) sensor used promoter pLtetO to
directly transcribe tolC, with the theoRR appended 5’ to the tolC start codon as a 5’
untranslated region. The btuB riboswitch invertor was a modified version of the
TetR-CAT sensor-selector. The tetR gene ATG start codon was replaced by the 239
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bp of the E. coli btuB 5’-untranslated region, and the first 210 nucleotides of the btuB
coding sequence(17).

Sensor-selector strains CdaR-TolC and dual TtgR-TolC were modified before
pathway optimization to include T7 RNA polymerase under control of a pLac
promoter. A linear PCR product containing 5’- spectinomycin resistance cassette
reverse complement—pLac—T7 RNA polymerase gene - 3’ was amplified with 50
bp homology and recombineered into the genome to replace the bla gene within the
Red-A prophage.

Escape Rate Measurements

Sensor-selector escape rates were measured by growing cells overnight to
saturation in LB medium. Serial dilutions of cells were plated onto non-selective
plates to measure the saturation culture density (colony forming units/mL). Serial
dilutions of cells were plated onto appropriate selective plates (LB supplemented
with SDS or chloramphenicol) to measure the density of cells (CFU/mL) surviving
selection in the absence of chemical inducers. The density of cells surviving
selection was divided by the total saturation density to calculate the escape rate of
each sensor-selector.

TtgR-TolC Sensor-Selector Degradation Tags Modification

We appended three ssrA degradation signal variants of varying strengths(28) to
the 3’ end of the tolC selector gene coding sequence in the ttgR-tolC sensor-selector
strain. The ssrA variants were inserted in frame to replace the stop codon of the
selector by recombineering, using a zeocin resistance cassette as a selection marker
for integration. The following degradation tags were appended to the selector gene
in frame: strong (RPAANDENYALAA*), medium (RPAANDENYAAAV*), and weak
(RPAANDENYALVA Each strain was sequence verified. We determined the escape
rate and operational range for each degradation tag using orthogonal gradient
growth assays.

TtgR-TolC Sensor-Selector RBS Modification

We generated ten RBS variants by increasing or decreasing the separation
between the Shine Dalgarno sequence of promoter ttgAp (5’- CCGAGGATCCTC -3’)
and tolC translation start site by 1 to 5 bases (SI Appendix, Fig. S6). The underlined
bases remained unmutated. We designed oligonucleotides for each RBS variant and
used MAGE to modify the TtgR-TolC sensor-selector strain. We verified the ten
variants by sequencing colonies after MAGE, and determined the escape rate and
operational range for each of the ten RBS variants using orthogonal gradient growth
assays. We measured operational range and escape rates of the five RBS variants
that showed ligand induction response (Fig 2B, SI Appendix, Fig S6).
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TetA Exporter Plasmid Construction and Assay Conditions

Plasmid pKD46(54) (Genbank accession AY048746) was modified, replacing
lambda red exo, beta and gam genes with the Streptococcus tetracycline efflux pump
(tetA) gene, and also replacing beta lactamase (bla) gene with spectinomycin
resistance gene to create plasmid pBAD-tetA. The tetA gene is transcriptionally
controlled by the arabinose-inducible pBAD promoter. Plasmid pBAD-tetA was
transformed into TetR-CAT sensor-selector strain. This strain was characterized
using orthogonal gradient growth assays under the following tetA expression
induction conditions: no arabinose, 0.05 % arabinose (intermediate), or 0.5 %
arabinose with 4 hr pre-induction (high).

Orthogonal Gradient Growth Assay

Arrays of growth conditions were evaluated in 96-well plates (BD-Falcon).
Serial dilution of selection agent (SDS, chloramphenicol or colicin E1) along one axis
of the 96-well plate was followed by serial dilution of an inducer chemical along the
second axis to create the arrays in 150 pl of kanamycin supplemented LB media.
Overnight cultures picked from fresh colonies were inoculated at a dilution factor of
at least 1000 into each well. Plates were incubated at 30 °C with agitation and
measurement of optical density at 600 nm (OD600) for at least 16 hours in a Biotek
(Winooski, VT) plate reader.

Chemical detection concentration and saturation concentration thresholds
were found from these assays by determining the minimum chemical concentration
at which cells showed a growth response when compared to no chemical (detection
threshold) and the concentration at which higher chemical concentration showed
no additional growth benefit (saturation threshold). Data from single measurements
are reported in Figure 2A.

Glucaric Acid Production

Overnight cultures of cells were diluted 1:100 into selective LB supplemented with
50mM glucose and 1mM IPTG. 2ml deep 96-well blocks with a working volume of
1ml were incubated humidified at 37C and 900RPM. After 72 hours the plates were
spun down for 5 minutes at 4000rpm and the supernatants were filtered prior to
analysis.
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Naringenin Production

Cell were grown in M9 minimal medium supplemented with 1 % glucose, 1 mM
biotin, kanamycin and carbenicillin for 24 hours at 30 °C in deep 96-well plates with
fast shaking (900 rpm). After 24 hours, cultures are diluted 1:20 into fresh M9
glucose medium with 1 mM IPTG and incubated for 72 hours in deep 96-well plates
with fast shaking.

Glucaric Acid LC-MS Analysis

Detection and quantitation of glucaric acid from culture supernatant was
achieved by LC/MS/MS analysis performed with an Agilent (Agilent Technologies,
Santa Clara, CA) 6460 triple-quadrupole LC/MS/MS system. The ([M - H+]- /
product ion) monitored via electrospray ionization in the negative ion mode with
multiple reaction monitoring (MRM) was (209/85.1 amu). Mass spectrometer
parameter settings were gas temp (350 °C), gas flow (12 L/min), nebulizer pressure
(35 psi), sheath gas heater (400 °C), sheath gas flow (12 L/min), and capillary
(4000V). An external standard curve mixture was analyzed at various
concentrations 20 pg/uL - 10 ng/uL and utilized for quantitation.

Hydrophilic interaction chromatography (HILIC) conditions with a
Phenomenex Luna 5u NH2, 250 x 2.00 mm column (Torrance, CA) were as follows:
flow rate: 0.4 mLs/min; solvent A: 20 mM ammonium acetate + 20 mM ammonium
hydroxide in 95:5 water:acetonitrile, pH 9.45; solvent B: acetonitrile. The gradient
was as follows: t =0,85 % B; t =10 min, 0 % B; t = 11, 0 % B; 3 minute equilibration.

Naringenin LC-MS Analysis

Naringenin was extracted from culture supernatant by mixing with an equal
volume of ethyl acetate, mixed vigorously for 30 seconds on a benchtop vortexer,
and the mixture briefly centrifuged for phase separation. The organic (upper) phase
was transferred to a glass vial, and the ethyl acetate evaporated by gently circulating
inert gas into the glass vial. The sample is resuspended in 200 uL of methanol and
stored at -20 °C.

Samples were analyzed by LC/MS using a Bruker maXis impact Q-Tof (Billerica,
MA) with an Agilent 1290 HPLC (Palo Alto, CA). A 2 x 100 mm Phenomenex Gemini
column with 3 pm particle size (Torrance, CA) was used for a gradient separation.
Mobile phase A was 0.1 % formic acid in water and mobile phase B was acetonitrile
with a flow rate of 0.2 mL/min. The gradient began with 0 % B for 1 min, then
increased to 100 % B after 12 min and held for 3 min before returning to 0 % B.
Total run time was 20 min. The mass spectrometer was operated in the MRM mode
selecting (M-H)- for coumaric acid (m/z 163) and naringenin (m/z 271) with a
collision energy of 20 eV for each. The total ion chromatograms from each product
ion scan were plotted separately and integrated. Naringenin standards at 2 and 10
uM were used as standards.
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Whole Genome Sequencing

Strains for whole genome sequencing were grown overnight to saturation in LB
supplemented in appropriate antibiotics. Genomic DNA was extracted from 1 ml
culture using the Qiamp DNA Mini kit (Qiagen, Hilden, Germany). 1 pg genomic DNA
was sheared using a Covaris S2 Ultrasonicator (Covaris, Woburn, MA). Paired-end
libraries were prepared using the TruSeq DNA kit (Illumina, San Diego, CA). After
quantitative PCR quantification, libraries were sequenced using paired end 300 bp
sequencing on a MiSeq (Illumina) to mean of >100 coverage depth per genome.
Reads were aligned to the MG1655 genome sequence, and single nucleotide
polymorphisms (SNPs) and structural variations were detected using Lasergene
SeqMan Pro 11 software (DNAStar, Madison, WI).

Bioreactor Production of Naringenin

We used an Eppendorf Celligen 310 bioreactor for fed-batch fermentation of
the highest producing naringenin strain from the fourth round of evolution. A 1 liter
culture of the strain was grown in M9 medium supplemented with 1 % glucose,
casamino acids and biotin for 5 days at 32 °C with constant flow of pressurized,
filtered air. The pH of the culture was buffered with ammonium hydroxide, and
foaming was suppressed with anti-foaming agent. Glucose and casamino acids were
provided every 12 hours. Samples were drawn periodically and assayed for
coumaric acid and naringenin concentrations.

Supplemental Tables and Figures

Table C.1: Sensor-promoter pairs used in this study.

Sensor | Cognate promoter

BenM benAp(1)

theoRR | None: riboswitch(2)
btuB None: riboswitch(3)
AIkS alkBp(4)

Lacl pLlacO(5)

XyIR xylAp(6)

CdaR gudPp(7)

MphR mphAp(8)

TetR pLtetO(5)

TtgR ttgAp(9)
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Table C.2: List of codon optimized gene sequences used in this study.

Name

Sequence 5’ to 3’

ttgR

ATGGTGCGTCGCACCAAAGAAGAAGCACAGGAAACGCGTGCGCAGATTATCGAAGCGGCCGAA
CGCGCGTTTTATAAACGTGGTGTGGCACGTACCACGCTGGCAGATATTGCAGAACTGGCAGGTG
TTACCCGCGGTGCAATCTACTGGCATTTCAACAATAAAGCCGAACTGGTTCAGGCACTGCTGGA
TTCTCTGCACGAAACGCATGATCACCTGGCCCGTGCAAGCGAATCTGAAGATGAACTGGACCCG
CTGGGCTGCATGCGCAAACTGCTGCTGCAGGTGTTTAACGAACTGGTTCTGGATGCACGTACCC
GTCGCATTAATGAAATCCTGCATCACAAATGCGAATTTACGGATGATATGTGTGAAATTCGTC
AGCAGCGCCAGAGCGCCGTGCTGGATTGTCATAAAGGTATCACCCTGGCACTGGCAAACGCAGT
TCGTCGCGGTCAGCTGCCGGGTGAACTGGATGTGGAACGCGCAGCGGTTGCGATGTTTGCCTAT
GTGGATGGCCTGATTGGTCGTTGGCTGCTGCTGCCGGATAGTGTTGATCTGCTGGGCGATGTGG
AAAAATGGGTTGATACCGGTCTGGATATGCTGCGTCTGAGCCCGGCGCTGCGCAAATAA

mphR

ATGCCGCGTCCGAAACTGAAATCTGACGACGAAGTTCTGGAAGCGGCGACCGTTGTTCTGAAAC
GTTGCGGTCCGATCGAATTCACCCTGTCTGGTGTTGCGAAAGAAGTTGGTCTGTCTCGTGCGGC
GCTGATCCAGCGTTTCACCAACCGTGACACCCTGCTGGTTCGTATGATGGAACGTGGTGTTGAA
CAGGTTCGTCACTACCTGAACGCGATCCCGATCGGTGCGGGTCCGCAGGGTCTGTGGGAATTCC

TGCAGGTTCTGGTTCGTTCTATGAACACCCGTAACGACTTCTCTGTTAACTACCTGATCTCTTG

GTACGAACTGCAGGTTCCGGAACTGCGTACCCTGGCGATCCAGCGTAACCGTGCGGTTGTTGAA
GGTATCCGTAAACGTCTGCCGCCGGGTGCGCCGGCGGCGGCGGAACTGCTGCTGCACTCTGTTA

TCGCGGGTGCGACCATGCAGTGGGCGGTTGACCCGGACGGTGAACTGGCGGACCACGTTCTGGC
GCAGATCGCGGCGATCCTGTGCCTGATGTTCCCGGAACACGACGACTTCCAGCTGCTGCAGGCG

CACGCGTAA

MIOX

GTGAAAGTGGATGTTGGCCCGGACCCGAGCCTGGTTTACCGCCCGGATGTGGACCCGGAAATGG
CAAAAAGCAAAGATTCGTTTCGTAACTACACCAGTGGCCCGCTGCTGGATCGTGTTTTTACCAC
GTATAAACTGATGCATACCCACCAGACGGTTGACTTTGTCAGCCGTAAACGCATTCAATATGGC
GGTTTCTCTTACAAGAAAATGACCATCATGGAAGCGGTGGGCATGCTGGATGACCTGGTTGAT
GAATCAGATCCGGACGTCGATTTTCCGAATTCGTTTCATGCGTTCCAGACGGCCGAAGGTATTC
GCAAAGCCCACCCGGACAAAGATTGGTTCCATCTGGTCGGCCTGCTGCACGATCTGGGTAAAAT
CATGGCACTGTGGGGTGAACCGCAGTGGGCTGTGGTTGGTGATACCTTTCCGGTGGGTTGCCGT
CCGCAAGCAAGTGTCGTGTTTTGTGACTCCACCTTCCAGGACAACCCGGATCTGCAAGACCCGC
GCTATTCAACGGAACTGGGCATGTACCAGCCGCATTGCGGTCTGGAAAACGTGCTGATGTCGTG
GGGTCACGATGAATACCTGTACCAGATGATGAAATTCAACAAATTCAGCCTGCCGTCTGAAGCC
TTCTACATGATCCGTTTCCATAGTTTCTACCCGTGGCACACCGGCGGTGATTATCGCCAGCTGT
GCTCCCAGCAAGACCTGGATATGCTGCCGTGGGTGCAAGAATTCAACAAATTCGATCTGTACAC
GAAATGTCCGGATCTGCCGGACGTTGAATCTCTGCGTCCGTACTACCAAGGTCTGATTGATAAA
TACTGTCCGGGCACCCTGTCGTGGTAA
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Table C.3: Genomic MAGE targets used for naringenin pathway diversification.

Evolution
round

Up-regulation targets Down-regulation targets

Coding targets

1

accABCD aceEF gapA IpdA pgk| acnA fumC mdh sucC

2

accABCD aceEF gapA lpdA pgk| acnA fumC mdh sucC

accABCD aceEF gapA IpdA pgk| acnA fumC mdh sucC

fabBDFH

tyrA_M53I
tyrA_A354V

Table C.4: Oligonucleotides used for naringenin mutagenesis.

accA T7

accA 1C23100
accB T7

accB 1€23100
accD T7

accD 1C23100
aceE T7

aceE 1C23100
IpdA T7

IpdA 1C23100
gapA T7
gapA 1C23100
pgk T7

pgk 1C23100
fumB BTG
fumC BTG
mdh BTG
acnA BTG
tyrA Met53lle
tyrA Ala354Val
aroG Asp146As
accA RBS
accB RBS
accC RBS
accD RBS
aceE RBS
aceF RBS

Ind RBS
gapA RBS
pgk RBS

sucC BTG
fabB mutl
fabB mut2
fabB mut3
fabB mut4
fabB mut5
fabF mutl
fabF mut2
fabF mut3
fabF mut4
fabF mut5
fabF mut6
fabD mutl
fabD mut2
fabD mut3
fabD mut4
fabD mut5
fabH mutl
fabH mut2
fabH mut3
fabH mut4
fabH mut5
fabH mut6

accA
accA
accB
accB
accD
accD
aceE
aceE
IndA
IndA
gapA
gapA
pgk
pgk
fumB
fumC
mdh
acnA
tyrA
tyrA
aroG
accA
accB
accC
accD
aceE
aceF
IndA
gapA
pgk
sucC
fabB
fabB
fabB
fabB
fabB
fabF
fabF
fabF
fabF
fabF
fabF
fabD
fabD
fabD
fabD
fabD
fabH
fabH
fabH
fabH
fabH
fabH

C‘A*A“G*GAAATTCAGACTLamGTATTCCTGTATTAtctLcctatagtgagtcgtattaGTCAAACTCCAGTTCCACCTGCTCCGAACCAAT

A*T*T*C*AGACTcatAGTATTCCTGTATTAgctagcactgtaccta ctgagcta aaGTCAAACTCCAGTTCCACCTGCTCCGAA
C*G*G*T*GAAACGCCTGTCACAATCACACTAAACAAtaata AGAGTACGGAACCCACTCatgGATATTCGTAAGA
A*A*C*G*CCTGTCACAATCACACTAAACAALt, cagtcctaggtacagtgctagcAGAGTACGGAACCCACTCatgGATATTC

G*T*T*C*AATCCAGCTcatTAGGGACCTTTCTGTCTtctccctatagtgagtegtattaGAACCTGGTTCGATGCCAGTTTTATCTTTGGGGA
T*C*C*A*GCTcatTAGGGACCTTTCTGTCTgctagcactgtacctaggactgagetagecgtcaaGAACCTGGTTCGATGCCAGTTTTATCTT
A*A*C*G*TTCTGAcatGGGTTATTCCTTATCTATCTtctccctatagtgagtcgtattaAATAACGTTGAGTTTTCTGGAACCTGTCCCATTG
C*T*G*A*catGGGTTATTCCTTATCTATCTgctagcactgtaccta ctgagctagecy AATAACGTTGAGTTTTCTGGAACCTGTC
T*T*T*G*ATTTCAGTACTcatCATGACCTCTATATAtctccctatagtgagtegtattaTTTATCTCCGGCGGTCATACCCGTCGTCTTTCAG
T*T*C*A*GTACTcatCATGACCTCTATATAgctagcactgtacctaggactgagetagecgtcaaTTTATCTCCGGCGGTCATACCCGTCGTC
G‘T*A"A‘TTTTACAGGCAACCTTTTATTCACTAACAHatacgactcauatagggagaAATAGCTGGTGGAATATatgACTATCAAAGTAGG
T*T*A*C*AGGCAACCTTTTATTCACTAACAttgacggct: agcAATAGCTGGTGGAATATatgACTATCAA
A*T*C*T*TAATTACAGAcatGGTGAATCCTCTCGTTtctccctatagtgagtegtattaGATTCTAAAAGTTTTGCAGACGCTGCTTGCGTCT
A*T*T*A*CAGAcatGGTGAATCCTCTCGTTgctagcactgtacctaggactgagetagecgtcaaGATTCTAAAAGTTTTGCAGACGCTGCTT
A*C*G*C*CATTTTCGAATAACAAATACAGAGTTACAGGCTGGAAGCTBtgTCAAACAAACCCTTTATCTACCAGGCACCTTTCCCGATGGGGA
C*A*T*C*AATCGCCCCCATCGAATCTTTTTCGCTGCGTACTGTATTcaVGACCTGCTCCTCACCTGATTAATTTTTTCTTTCTGTTTTGCTTT
C*G*C*C*TGGCCAATACCGCCAGCAGCGCCGAGGACTGCGACTTTcaVCCTAAACTCCTTATTATATTGATAAACTAAGATATGTTGCTCCGC
C*T*G*A*AGAGAATCAGGGCTTCGCAACCCTGTCATTAAGGAGGAGCTBtgTCGTCAACCCTACGAGAAGCCAGTAAGGACACGTTGCAGGCC
G*T*A*C*ACCCAGAGCTTCCGCCTCTGCACGACGCGAGGCCAAaATAGATGCCTCGCGCTCCGGAACATAAATAGGCAGTCCAAAGCGGCTTT
T*C*A*T*TCGCCTGACGCAATAACACGCGGCTTTCACTCTGAAAACGCTGTaCGTAATCGCCGAACCAGTGCTCCACCTTGCGGAAACTGTCA
C*C*A*G*CTCATCAGGTCAGCGAGATATTGTGGGGTGATCATATtGAGAAACTCACCTGCCGCTGGCAGACCGCTGTCGTTAATATCAAGCAG
C*A*A*T*CGGCTGTTCAAAATCAAGGAAATTCAGACTcatAGTHHHHYYYYYHHTTAGTCAAACTCCAGTTCCACCTGCTCCGAACCAATGAG
C*G*G*T*GAAACGCCTGTCACAATCACACTAAACAAAGAGDDRRRRRDDDDCTCatgGATATTCGTAAGATTAAAAAACTGATCGAGCTGGTT
C*C*G*G*TAGAATTTGACGAGCCGCTGGTCGTCATCGAGtaaDDRRRRRDDDDAACATGCTGGATAAAATTGTTATTGCCAACCGCGGCGAGA
G*G*T*G*GGAGTAATGTTGCTTTTAATTCGTTCAATCCAGCTcatTAGHHHHYYYYYHHTCTGAACCTGGTTCGATGCCAGTTTTATCTTTGG
C*G*A*T*CGGATCCACGTCATTTGGGAAACGTTCTGAcatGGGHHHHYYYYYHHCTATCTAATAACGTTGAGTTTTCTGGAACCTGTCCCATT
C*C*G*A*TGTCCGGTACTTTGATTTCGATAGCCATTATHHHHYYYYYHHttaCGCCAGACGCGGGTTAACTTTATCTGCATCGATGTTGAATT
C*C*C*A*AGTACCACGACCTGAGTTTTGATTTCAGTACTcatCATHHHHYYYYYHHATTTATCTCCGGCGGTCATACCCGTCGTCTTTCAGGC
T*T*T*G*TAATTTTACAGGCAACCTTTTATTCACTAACAAATDDRRRRRDDDDTATatgACTATCAAAGTAGGTATCAACGGTTTTGGCCGTA
A*G*C*A*AGATCCAGATCGGTCATCTTAATTACAGAcatGGTHHHHYYYYYHHTTGATTCTAAAAGTTTTGCAGACGCTGCTTGCGTCTTACC
A*T*A*G*CGGGCAAAAAGTTGTTTTGCCTGATATTCATGTAAGTTcavGTGTTCTGTCCATCCTTCAGTAATCGTTATCTTTTAAACCGTAGA
A*A*C*A*ATGCCCAGGCCAGTAATCACTGCACGTTTCATTCAATACCTCNGTAAGTCGCACATAGAGTAAGTTTCGAATGCACAATAGCGTAC
A*A*C*A*ATGCCCAGGCCAGTAATCACTGCACGTTTCATTCAATACCTNTGTAAGTCGCACATAGAGTAAGTTTCGAATGCACAATAGCGTAC
A*A*C*A*ATGCCCAGGCCAGTAATCACTGCACGTTTCATTCAATACCNCTGTAAGTCGCACATAGAGTAAGTTTCGAATGCACAATAGCGTAC
A*A*C*A*ATGCCCAGGCCAGTAATCACTGCACGTTTCATTCAATACNTCTGTAAGTCGCACATAGAGTAAGTTTCGAATGCACAATAGCGTAC
A*A*C*A*ATGCCCAGGCCAGTAATCACTGCACGTTTCATTCAATANCTCTGTAAGTCGCACATAGAGTAAGTTTCGAATGCACAATAGCGTAC
T*G*C*C*CAGTCCGGTCACAACTACACGACGCTTAGACACGTTTGTCCTCNAGGGAGGGAAAAAATGATTCTAGTGGGACAAAAAGATAAAAC
T*G*C*C*CAGTCCGGTCACAACTACACGACGCTTAGACACGTTTGTCCTNCAGGGAGGGAAAAAATGATTCTAGTGGGACAAAAAGATAAAAC
T*G*C*C*CAGTCCGGTCACAACTACACGACGCTTAGACACGTTTGTCCNCCAGGGAGGGAAAAAATGATTCTAGTGGGACAAAAAGATAAAAC
T*G*C*C*CAGTCCGGTCACAACTACACGACGCTTAGACACGTTTGTCNTCCAGGGAGGGAAAAAATGATTCTAGTGGGACAAAAAGATAAAAC
T*G*C*C*CAGTCCGGTCACAACTACACGACGCTTAGACACGTTTGTNCTCCAGGGAGGGAAAAAATGATTCTAGTGGGACAAAAAGATAAAAC
T*G*C*C*CAGTCCGGTCACAACTACACGACGCTTAGACACGTTTGNCCTCCAGGGAGGGAAAAAATGATTCTAGTGGGACAAAAAGATAAAAC
C*C*C*T*GTCCAGGGAACACAAATGCAAATTGCGTCATGTTTTAATCCTNATCCTAGAAACGAACCAGCGCGGAGCCCCAGGTGAATCCACCG
C*C*C*T*GTCCAGGGAACACAAATGCAAATTGCGTCATGTTTTAATCCNTATCCTAGAAACGAACCAGCGCGGAGCCCCAGGTGAATCCACCG
C*C*C*T*GTCCAGGGAACACAAATGCAAATTGCGTCATGTTTTAATCNTTATCCTAGAAACGAACCAGCGCGGAGCCCCAGGTGAATCCACCG
C*C*C*T*GTCCAGGGAACACAAATGCAAATTGCGTCATGTTTTAATNCTTATCCTAGAAACGAACCAGCGCGGAGCCCCAGGTGAATCCACCG
C*C*C*T*GTCCAGGGAACACAAATGCAAATTGCGTCATGTTTTAANCCTTATCCTAGAAACGAACCAGCGCGGAGCCCCAGGTGAATCCACCG
C*A*G*A*TAGCTGCCAGTACCAATAATCTTCGTATACATGTACGCTCAGTCANTTTTCGGTTATATACCGTCACTTGCAAACTGCGAGTTCGC
C*A*G*A*TAGCTGCCAGTACCAATAATCTTCGTATACATGTACGCTCAGTNACTTTTCGGTTATATACCGTCACTTGCAAACTGCGAGTTCGC
C*A*G*A*TAGCTGCCAGTACCAATAATCTTCGTATACATGTACGCTCAGNCACTTTTCGGTTATATACCGTCACTTGCAAACTGCGAGTTCGC
C*A*G*A*TAGCTGCCAGTACCAATAATCTTCGTATACATGTACGCTNAGTCACTTTTCGGTTATATACCGTCACTTGCAAACTGCGAGTTCGC
C*A*G*A*TAGCTGCCAGTACCAATAATCTTCGTATACATGTACGCNCAGTCACTTTTCGGTTATATACCGTCACTTGCAAACTGCGAGTTCGC
C*A*G*A*TAGCTGCCAGTACCAATAATCTTCGTATACATGTACGNTCAGTCACTTTTCGGTTATATACCGTCACTTGCAAACTGCGAGTTCGC
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Table C.5: Oligonucleotides used for glucaric acid mutagenesis.

MAGE Oligo Name
garKnull

uxaCnull
suhB-degen
pgi-degen
sthA-degen
zwf-degen
mdh-degen

Locus
garK
uxaC
suhB
pgi
sthA
zwf
mdh

Function
stop THT*C*C*CGAAATCCTTTTTCTATCGCCTGCGCAACCTCGCTGGCAGATTAACTTTCTTTTTAAGAGTCTGGGGCGATTACGATTTTCATACC
stop C*A*A*A*TGGCAATGGTAATCGAAAATCGGCTGGTCTTTTGCTTAGTCGTGTTACAGACGGCGGGCAAATTCGGTATCTAACAGGAAATCTTC
RBS C*T*C*G*CTGCTATACTCTGCGCCG TTTTCCCGTTCTTTAACATCCDDVVVVVDDDDCCG atgCATCCGATGCTGAACATCGCCGTGCGCGCA
RBS G*G*C*A*GCGGTC TGCGTTGGAT TGATGTTTTT CATTAGHHHH BBBBBHHTGA TTTTGAGAAT TGTGACTTTG GAAGATTGTA GCGCCAGTCA
RBS C*G*C*G*ATAAAATGTTACCATTCT GTTGCTTTTATGTATAAGAACDDVVVVVDDDDACC atgCCACATTCCTACGATTACGATGCCATAGTA
RBS G*T*C*A*CAGGCC TGGGCTGTTT GCGTTACCGC CATGTCHHHH BBBBBHHGTT AACTAACCCG GTACTTAAGC CAGGGTATAC TTGTAATTTT
RBS A*C*C*G*CCAGCA GCGCCGAGGA CTGCGACTTT CATCCTHHHH BBBBBHHTAT ATTGATAAAC TAAGATATGT TGCTCCGCTG CCGCGACCTT

Table C.6: List of key candidate genes for increasing naringenin predicted by flux
balance analysis.

Reaction
ACCOAC
G6PDH2r
GAPD

CS

FUM
TKT?2
RPE
PGM
ENO
F6PA

DHAPT
TPI
TALA
PYK

PGI
THD2pp
ACONT
MDH
PDH
TALA

Direction

Up
Down
Up
Down
Down
Down
Down
Up
Up
Up
Up

Up
Up
Up
Up
Up
Up
Down
Down
Up
Up

Gene(s)

b0185 and b2316 and b3255 and b3256
b1852

b1779

b0720

b1612 or b4122 or b1611
b2935

b3386

b0755

b2779

b0825

b2926
b1200 and b1199 and b1198 and b2415 and
b2416

b3919

b0008

b1676

b4025

b1602 and b1603

b0118

b3236

b0114 and b0115 and b0116
b0008
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Table C.7: Mutations and its corresponding genomic locus found in the seven
evolved naringenin pathway strains. Genomic locus is with reference to E. coli
MG1655 genome.

Strain Gene name Type of change Genomic locus Mutation
Strain 1 fabD RBS 1148940 A->G
fabF Start codon 1151162 GTG->TTG
fabH Start codon 1147982 ATG->GTG
fumC Start codon 1684612 ATG->TTG
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
Strain 2 fabF Start codon 1151162 GTG->TTG
fabH Start codon 1147982 ATG->GTG
fumC Start codon 1684612 ATG->TTG
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
Strain 3 fabD RBS 1148939 A->T
fabF Start codon 1151162 GTG->TTG
fabH Start codon 1147982 ATG->GTG
fumC Start codon 1684612 ATG->TTG
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
Strain 4 fabD RBS 1148940 A->G
fabH Start codon 1147982 ATG->GTG
fumC Start codon 1684612 ATG->TTG
aroG Coding 785291 G->A
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
Strain 5 fabF RBS 1151156 A->C
fabH Start codon 1147982 ATG->GTG
fumC Start codon 1684612 ATG->TTG
hcaT Frameshift 2665603 Cinsertion
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
Strain 6 fabF Start codon 1151162 GTG->TTG
fabH Start codon 1147982 ATG->GTG
fumC Start codon 1684612 ATG->TTG
tyrA Coding 2737031 G->A
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
Strain 7 fabD RBS 1148942 G->C
fabH RBS 1149790 G->C
fumC Start codon 1684612 ATG->TTG
tyrA Coding 2737031 G->A
mhpD Frameshift 372032 G deletion
entB Frameshift 627205 G insertion
rpoD RBS 3211052 A->G
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Mutations and its corresponding genomic locus found in the seven evolved glucaric
acid pathway strains

Strain Gene name Type of change Genomic locus Mutation
Strain 1 garK Nonsense 3269752 A->T
garK Nonsense 3269763 A->T

Table C.8: Number of mutations found in evolved naringenin pathway strains

Strain name Start codon Frameshift/Nonsense | Non-synonymous
Strain 1 3 10 65
Strain 2 3 9 67
Strain 3 3 10 67
Strain 4 2 10 70
Strain 5 2 11 65
Strain 6 3 9 70
Strain 7 1 11 67

Number of mutations found in evolved glucaric acid pathway strains

Strain name

Start codon

Frameshift/Nonsense

Non-synonymous

Strain 1

2

8

32

Figure C.1: Time course of naringenin and coumaric acid production titer in

bioreactor
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Figure C.2: Growth curve comparison between TtgR-tolC parent strain, evolved
strain and evolved strain + accABCD for naringenin production

Comparative growth rates - parent, evolved strain and evolved strain + accABCD
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Figure C.3: TtgR-tolC strain growth comparison under SDS selection, exposed to
Naringenin or Coumaric acid.
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Salis calculation of predicted RBS change effects

Figure C.4

RBS A->T

450
400
350
300
250
200 |
150
00
50
0 -

-
(syun Aseayique)
@)eJ UonenNIUl UoKe[SUE) PAdIPaLd

G}
\
<
-S
[22]
o
(e}
A
] o
e 3
he o
—t
O 9 9 9 9 9 9 9 © ©
S & &6 8 & & & & &
S & © 6 8 & & & o
00 W < N O 0 O < N
R T B B
(syun Aseayiqae)
93k uoyeniul uoyejsues) padIpald
Y}
=
10}
"
Y
=
<
(e}
I\.,
G}
(%)
o
T o
o
& L

e
Q
€
2
=
=
o o o o o o o o
o o o o o o o
S & & & & & ©
o o o o o o o
< N o 0 © < o~
- - —
(syun Aseniqae)
9jeJ uneniul uoye|suely paipald
P
A
h
2
<
o
5
I 2
w
[aa]
w o
)
& L
—
=

—t
o o o o © o

o 1n O un
M N N -
(syuun Asenqae)

9jeJ UOLIELIUI UOLIR|SUEL) PAIPAId

o o
wn

450

40
35
100

154



Figure C.5: Glucaric acid production by the pT7GAEXP plasmid in the cdaR-tolC
sensor-selector strain (E. coli K12 background) and BL21 Star.

- 05
oT0)

E o4
—

8

= 0.3
T
& 02
L

g 0.1
&)

=

o0 0.0

18.42 - 20
- 15
- 10
-5
0.05
-0
cdaR-tolC BL21 Star

Figure C.6: TtgR operator RBS spacing modifications to reduce escape rate.
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Figure C.7: CdaR-tolC sensor selector strain response to glucaric acid pathway
intermediates

lag time (hr)
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Figure C.8: Growth comparison of CdaR-tolC parent and best evolved glucaric acid
production strain. IPTG used to induce pT7GAEXP glucaric acid production plasmid.
Mean +/- standard deviation, 5 replicates.
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