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Structures on Forms of K-Theory

Abstract

In the early 1970s, Morava studied forms of topological K-theory and observed

that they have interesting number theoretic connections. Until very recently, forms

of K-theory have not been studied in greater depth and integrated into the modern

theory of topological modular forms. In this dissertation, some expected structured

ring spectra and locality results are established on forms of K-theory. Forms of alge-

braic structures are usually classified by Galois cohomology. Based on the structured

ring spectra and locality results established, a criterion is given for distinguishing

homotopy equivalence classes of forms of K-theory via a computation in the second

homotopy group of the spectrum.
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1 Introduction

1.1 Historical Background

A principal open problem in algebraic topology is to uncover patterns in and compute

the stable homotopy groups of spheres. The contemporary approach of chromatic

homotopy theory seeks to capture periodic phenomena in layers enumerated by a

non-negative integer n known as the height, analogous to the constituent frequencies

of light. Complex K-theory is the exemplar of a height one cohomology theory, or

equivalently, its representing object, a spectrum. Its p-adic completion Kp lies at the

bottom of a family of spectra known as Morava E-theory En: Kp is a first Morava

E-theory E1. Morava E-theory En is central to the study of the nth monochromatic

layer, and the fundamental work of Goerss, Hopkins, and Miller [3] establishes it

as a highly structured commutative, or E∞-, ring spectrum, which enables various

sophisticated constructions.

In 1973, Morava, motivated by classical questions about integrality properties

of characteristic classes of smooth manifolds, studied forms of p-complete K-theory

cohomology K∗p(−) [8]. Generally speaking, a form of an algebraic structure over a

base is an object of the same type such that the two objects become isomorphic after

extension of their common base:

Definition 1.1. Given a category C with pullbacks, an object S in C, and an object

S ′ → S in the overcategory C/S, an S ′/S-form of an object X → S in C/S is another

object Y → S in C/S such that the pullbacks X ×S S ′ → S ′ and Y ×S S ′ → S ′ are

isomorphic.

The analogous definition with pushouts instead of pullbacks can be made in the

opposite category Cop. We shall work in the latter context.
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The concept of forms occurs in many algebraic areas of mathematics as it is related

to descent theory.

Definition 1.2. A W (Fp)/Zp-form of p-complete K-theory cohomology K∗p(−) is a

multiplicative cohomology theory R∗(−) taking values in the category of Zp-modules,

with the property that

K∗p(−)⊗Zp W (Fp) ∼= R∗(−)⊗Zp W (Fp)

as multiplicative cohomology theories (although not canonically).

HereW (Fp) is the ring of p-typical Witt vectors of Fp, obtained by adjoining to Zp

all primitive mth roots of unity, where m is coprime to p, and taking its p-completion.

Recall that Zp = W (Fp). Morava showed:

Theorem 1.3 (Morava [8]). There is a bijection

{isomorphism classes of W (Fp)/Zp-forms of K∗p(−)}
∼=−→ Z×p .

He observed that forms ofK-theory have interesting number theoretic connections,

for example to the Ramanujan tau function or the quartic residue character.

Example 1.4 (Morava [8]). The Ramanujan tau function is the multiplicative func-

tion τ : N→ Z defined by the generating function

∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24 = ∆(z),

where ∆(z) is the discriminant modular form and q = exp(2πiz), =z > 0.
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There is a W (F11)/Z11-form R∗(−) of K∗11(−) whose associated topological index

t-indR∗ : MU∗ → Z ⊂ Z(11)

satisfies

t-indR∗(CP(n− 1)) = τ(n) and t-indR∗(M ×N) = t-indR∗(M) · t-indR∗(N).

Nowadays, there is a theory that makes Example 1.4 conceivable, if no less surpris-

ing: the theory of topological modular forms, which is a universal object mapping to

elliptic cohomology theories—even periodic multiplicative cohomology theories E∗(−)

whose formal group law is isomorphic to the formal group law of a elliptic curve over

E0(∗)—and whose coefficient ring is closely related to the classical ring of modu-

lar forms. The theory of topological modular forms is intricately connected to the

height two layer in chromatic homotopy theory. From a modern perspective, the

W (F11)/Z11-form R∗(−) of K∗11(−) in Example 1.4 is an elliptic cohomology theory

for the modular group Γ0(11) of level 11.

Morava’s results were proven when E∞-ring spectra, which enable a strengthen-

ing of his results, were in their infancy, and before the advent of elliptic cohomology.

Forms of K-theory were not studied in greater depth until 2009, when they began

to be studied by Behrens and Lawson [2], Lawson and Naumann [6], and Hill and

Lawson [4] in connection with the modern theories of topological modular and auto-

morphic forms.

In the present dissertation, I study forms of K-theory in the contemporary frame-

work of structured ring spectra (in a suitable Bousfield localized category)—specifically

forms of the p-adically complete K-theory spectrum Kp—in an attempt to bring new
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insights to the chromatic picture.
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1.2 Modern Framework

In the years since Morava proved his results, there have been developments in ho-

motopy theory that enable one to formulate a strengthening of Morava’s results. In

this subsection, we briefly recall three key components of this framework: E∞-ring

spectra, Morava K-theory K(n), and a power operation ψ for K(1)-local E∞-ring

spectra which we shall subsequently require.

E∞-ring spectra can be motivated as follows. Recall that ring spectra are ring

objects when regarded as objects in the homotopy category of spectra. For sophisti-

cated applications such as the construction of homotopy fixed points under a group

action or quotient spectra, however, one does not wish to forget all information when

passing to the homotopy category of spectra, nor is it feasible to restrict consider-

ation to ring objects in the original category. A compromise suitable for describing

the multiplicative structure on K-theory and other spectra of interest is to not only

require the spectrum to be a ring spectrum, but simultaneously remember the ho-

motopies that make the relevant diagrams commute and higher homotopies between

these homotopies; these are known as coherence conditions. This notion is precisely

defined using the notion of an algebra over the E∞-operad [7], and spectra with this

data are called E∞-ring spectra.

It is common to study the category of ring spectra via its fields, namely the ring

spectra E such that every module spectrum over E is free, that is, it is a wedge of

suspensions of E. The fields in the category of ring spectra form a family known as

Morava K-theory K(n), which correspond to a height n cohomology theory for each

non-negative integer n and a fixed prime p. GivenK(n), we can consider the operation

of Bousfield localization with respect to it. It turns out that K(n)-localization has

several nice properties: for instance, it does not affect the nth monochromatic layer,
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and results about the K(n)-local category for different n and p can be combined

to give information about the stable homotopy category. The first Morava K-theory

K(1) is closely related to the p-completeK-theory spectrumKp as follows. The group

Z×p of p-adic units acts on Kp via the Adams operations ψλ, λ ∈ Z×p . For p ≥ 3, the

maximal finite subgroup µ of Z×p is the group of (p−1)th roots of unity, and K(1) can

be obtained as KAd
p /p, where KAd

p is the Adams summand of Kp, its homotopy fixed

points by the action of µ. In general, Kp/p is a wedge of p− 1 copies of suspensions

of K(1).

A K(1)-local E∞-ring spectrum R possesses operations

θ, ψ : π0(R)→ π0(R)

such that ψ is a ring homomorphism and θ imparts the structure of a θ-algebra on

π0(R): ψ(x) = xp + pθ(x). We sketch the construction of these two operations here,

following [5].

LetSp be the symmetric group on p elements, let BSp+ denote the unreduced sus-

pension spectrum of its classifying space, and consider itsK(1)-localization LK(1)BSp+.

There are two natural maps

LK(1)BSp+ → LK(1)S
0,

where S0 is the sphere spectrum. One map arises from the projection to a point

Sp → {e}; we shall denote it by ε. The other map comes from the transfer map; we

shall denote it by Tr. One can show that the map

LK(1)BSp+

(ε,Tr)−−−→ LK(1)S
0 × LK(1)S

0
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is a weak equivalence.

Define maps

ψ′, θ′ : LK(1)S
0 → LK(1)BSp+

in the K(1)-local stable homotopy category by requiring that

ε(ψ′) = 1, ε(θ′) = 0,

Tr(ψ′) = 0, Tr(θ′) = −(p− 1)! .

The inclusion {e} → Sp gives rise to a map

e : LK(1)S
0 ' LK(1)B{e}+ → LK(1)BSp+

and ε◦ e = 1. Moreover, from the Mackey double coset formula, Tr ◦e = p!. It follows

that

e = ψ′ − pθ′. (1.1)

Let R be aK(1)-local E∞-ring spectrum and let x ∈ π0(R). The E∞-ring structure

associates to x a map

P (x) : LK(1)BSp+ → R

such that the homotopy class of P (x) ◦ e (precomposed by the localization S0 →

LK(1)S
0) is xp. One defines operations

ψ, θ : π0(R)→ π0(R)

by taking ψ(x) and θ(x) to be the homotopy classes of P (x) ◦ ψ′ and P (x) ◦ θ′

respectively. The equation (1.1) then gives us the relation xp = ψ(x)− pθ(x).
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In Subsection 2.2, we shall use ψ on a related spectrum to extend ψ to a map

πn(R)→ πn(R) for all n ∈ N.
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1.3 Statement of the Main Results

In terms of modern concepts, forms of the p-complete K-theory spectrum Kp are de-

fined as follows. One works in the closed symmetric monoidal category of p-complete

ring spectra. Denote by S0
p the p-complete sphere spectrum, the unit of this category,

and by S0
p∞ the unique spectrum satisfying π∗(S0

p∞) ∼= π∗(S
0
p)⊗ZpW (Fp) on the level

of homotopy.

Definition 1.5. An S0
p∞/S

0
p-form of Kp is a p-complete ring spectrum R such that

(Kp ∧S0
p
S0
p∞)∧p ' (R ∧S0

p
S0
p∞)∧p .

Note that this definition is dual to that given in Definition 1.1.

The spectrum Kp has a unique E∞-ring structure (up to contractible choice) [3]

and is K(1)-local. In this dissertation, I demonstrate that S0
p∞/S

0
p-forms of Kp satisfy

the same results:

Theorem 1.6. The ring structure on every S0
p∞/S

0
p-form of Kp has a unique refine-

ment to an E∞-ring structure.

Theorem 1.7. Every S0
p∞/S

0
p-form of Kp is K(1)-local.

In practice, forms of Kp which arise from topological modular forms often come

equipped with an E∞-ring structure as well as the data ψ : π2(R)→ π2(R), where ψ is

the map mentioned in Subsection 1.2, in terms of Hecke operators on modular forms.

It is thus desirable to have a method to identify the form of Kp encountered. I further

provide a method to distinguish homotopy equivalence classes of E∞-S0
p∞/S

0
p-forms

of Kp via a direct computation involving the operation ψ in the second homotopy

group of the spectrum:
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Theorem 1.8. Let R be an E∞-S0
p∞/S

0
p-form of Kp. The operation ψ : π2(R) →

π2(R) satisfies ψ(x) = εpx for some ε ∈ Z×p , and the value of the constant ε deter-

mines a bijection between homotopy equivalence classes of E∞-S0
p∞/S

0
p-forms of Kp

and Z×p .
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2 Main Results

2.1 Preliminaries

Before proving the main results, we recall the theory involving forms of an algebraic

structure.

There is the following general principle:

Principle 2.1 ([12, Chapter III, §1]). Let K/k be a field extension and let X be an

object defined over k. If K/k is a Galois extension, then there is an injective map

{k-isomorphism classes of K/k-forms of X} ↪→ H1(Gal(K/k),AutK(X)),

where the Galois group acts by conjugation, which is a bijection in many cases (e.g.

when X is a vector space with a (p, q)-tensor or a quasiprojective variety).

Moreover, in such a situation, the K/k-forms of X can be recovered from X×kK

by taking the fixed points of or quotient by the action of the Galois group Gal(K/k)

for different actions of Gal(K/k) on X ×k K.

In the case of S0
p∞/S

0
p-forms of Kp, the situation is as follows [2]:

There is an action of Aut(W (Fp)/Zp) ∼= Gal(Fp/Fp) on (Kp∧S0
p
S0
p∞)∧p which acts

in the expected manner on homotopy groups. Kp can be recovered as the homotopy

fixed points of the action of the Frobenius σ which topologically generates Gal(Fp/Fp):

there is a homotopy pullback square of ring spectra

Kp
//

��

_� (Kp ∧S0
p
S0
p∞)∧p

(id,σ)

��
(Kp ∧S0

p
S0
p∞)∧p

∆ // (Kp ∧S0
p
S0
p∞)∧p × (Kp ∧S0

p
S0
p∞)∧p

11



where ∆ is the diagonal map.

By Goerss-Hopkins-Miller theory [3], the spaces of E∞-ring automorphisms AutE∞(Kp)

and AutE∞((Kp ∧S0
p
S0
p∞)∧p ) are homotopy discrete and

π0(AutE∞((Kp ∧S0
p
S0
p∞)∧p )) ∼= π0(Autmult((Kp ∧S0

p
S0
p∞)∧p )),

where Autmult((Kp ∧S0
p
S0
p∞)∧p ) denotes the space of multiplicative automorphisms

f : (Kp ∧S0
p
S0
p∞)∧p → (Kp ∧S0

p
S0
p∞)∧p , that is, automorphisms such that the diagram

((Kp ∧S0
p
S0
p∞)∧p ∧S0

p
(Kp ∧S0

p
S0
p∞)∧p )∧p //

f∧f
��

(Kp ∧S0
p
S0
p∞)∧p

f
��

((Kp ∧S0
p
S0
p∞)∧p ∧S0

p
(Kp ∧S0

p
S0
p∞)∧p )∧p // (Kp ∧S0

p
S0
p∞)∧p

commutes up to homotopy. These multiplicative automorphisms are in turn in bijec-

tion with

Hom(Kp∧S0pS
0
p∞ )∧p

∗
((Kp ∧S0

p
S0
p∞)∧p ∗((Kp ∧S0

p
S0
p∞)∧p ), (Kp ∧S0

p
S0
p∞)∧p ∗).

One can show that

Exts(Kp∧S0pS
0
p∞ )∧p

∗
((Kp ∧S0

p
S0
p∞)∧p ∗((Kp ∧S0

p
S0
p∞)∧p ), (Kp ∧S0

p
S0
p∞)∧p ∗)

vanishes for s > 0, so that the universal coefficient theorem implies that

π0(AutE∞((Kp∧S0
p
S0
p∞)∧p )) ∼= ((Kp ∧S0

p
S0
p∞)∧p

∗
((Kp∧S0

p
S0
p∞)∧p ))× ∼= Z×p ×Gal(Fp/Fp).
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On the other hand, there is a short exact sequence

0→ π0(AutE∞(Kp))→ π0(AutE∞((Kp∧S0
p
S0
p∞)∧p ))→ π0(AutE∞/Kp((Kp∧S0

p
S0
p∞)∧p ))→ 0

where AutE∞/Kp((Kp ∧S0
p
S0
p∞)∧p ) are the E∞-ring automorphisms of (Kp ∧S0

p
S0
p∞)∧p

which fix Kp. It is known that π0(AutE∞(Kp)) is the Morava stabilizer group S1
∼= Z×p

whose elements are Adams operations ψλ, where λ ∈ Z×p . It follows that the short

exact sequence splits, so there is an isomorphism

π0(AutE∞((Kp ∧S0
p
S0
p∞)∧p )) ∼= π0(AutE∞(Kp))× π0(AutE∞/Kp((Kp ∧S0

p
S0
p∞)∧p ))

and

π0(AutE∞/Kp((Kp ∧S0
p
S0
p∞)∧p )) ∼= Gal(Fp/Fp).

Moreover, the action of the Frobenius is by an E∞-ring map.

Denote the subgroup π0(AutE∞/Kp((Kp ∧S0
p
S0
p∞)∧p )) ⊂ π0(AutE∞((Kp ∧S0

p
S0
p∞)∧p ))

by GalKp . We shall write ((Kp ∧S0
p
S0
p∞)∧p )hGalKp to denote the above homotopy pull-

back and call it a homotopy fixed point spectrum.

In general, the different S0
p∞/S

0
p-forms R of Kp can be recovered up to homotopy

as homotopy pullbacks for twisted versions of σ, where one replaces σ by σR = σ ◦ψλ

for some choice of Adams operation ψλ ∈ π0(AutE∞(Kp)):

Lemma 2.2 (Behrens-Lawson [2]). There is a homotopy pullback square

R //

��

_� (Kp ∧S0
p
S0
p∞)∧p

(id,σ◦ψλ)=(id,σR)
��

(Kp ∧S0
p
S0
p∞)∧p

∆ // (Kp ∧S0
p
S0
p∞)∧p × (Kp ∧S0

p
S0
p∞)∧p .
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Moreover, the action of σR = σ ◦ ψλ is by an E∞-ring map.

Each σR topologically generates a subgroup GalR ⊂ π0(AutE∞((Kp ∧S0
p
S0
p∞)∧p ))

which is isomorphic to Gal(Fp/Fp), mirroring the situation in Principle 2.1. As before,

we shall write ((Kp ∧S0
p
S0
p∞)∧p )hGalR to denote the homotopy pullback defined in this

manner and call it a homotopy fixed point spectrum.
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2.2 Proofs of the Main Results

We now proceed to prove the results mentioned in Subsection 1.3. For the convenience

of the reader, we recall the results here.

Theorem 2.3. The ring structure on every S0
p∞/S

0
p-form of Kp has a unique refine-

ment to an E∞-ring structure.

The proof uses the following result.

Definition 2.4. An E∞-R-algebra R′ is étale if

(a) the map π0(R)→ π0(R′) is étale in the sense of ordinary commutative algebra,

and

(b) the natural map π0(R′)⊗π0(R) π∗(R)→ π∗(R
′) is an isomorphism.

Theorem 2.5 (Lurie, Higher Algebra, Theorem 8.5.4.2). Let R be an E∞-ring spec-

trum. The ∞-category of étale E∞-R-algebras is equivalent under π0 to the nerve of

the ordinary category of étale π0(R)-algebras.

Proof of Theorem 2.3. It is known that Kp has a unique E∞-ring structure. [3] First,

we note that (Kp ∧S0
p
S0
p∞)∧p is an étale E∞-Kp-algebra. (Kp ∧S0

p
S0
p∞)∧p inherits an

E∞-ring structure from the algebra map and the map

Zp = π0(Kp)→ π0((Kp ∧S0
p
S0
p∞)∧p ) = W (Fp)

is étale by the Jacobian criterion since W (Fpn) is an unramified extension of Zp

for each n ∈ N. By Theorem 2.5, (Kp ∧S0
p
S0
p∞)∧p has a unique E∞-ring structure

refining its ring structure because of the uniqueness of the algebra map π0(Kp) →

π0((Kp ∧S0
p
S0
p∞)∧p ).
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As mentioned in Lemma 2.2, every S0
p∞/S

0
p-form R of Kp can be recovered up

to homotopy as the homotopy fixed point spectrum ((Kp ∧S0
p
S0
p∞)∧p )hGalR . It follows

that R inherits an E∞-ring structure from (Kp ∧S0
p
S0
p∞)∧p . R cannot have more than

one E∞-ring structure refining its ring structure since the same would then need to

be the case for (R ∧S0
p
S0
p∞)∧p .

Theorem 2.6. Every S0
p∞/S

0
p-form of Kp is K(1)-local.

We use the following lemma.

Lemma 2.7. Kp/p ∧X is K(1)-local for any spectrum X.

Proof. We use the fact that Kp/p is a wedge of p− 1 copies of suspensions of K(1).

As mentioned in Subsection 1.2, Morava K-theory is a field in the category of ring

spectra, that is, every module spectrum over K(n) is a wedge of suspensions of K(n).

In particular, Kp/p ∧X is a wedge of suspensions of K(1), so it is K(1)-local.

Proof of Theorem 2.6. Recall that a spectrum R is E-local if every map X → R is

nullhomotopic whenever X is E-acyclic, that is, X ∧ E is zero.

We proceed by making a series of reductions. First, it suffices to show that (Kp∧S0
p

S0
p∞)∧p is K(1)-local, since every S0

p∞/S
0
p-form R of Kp is obtained as a homotopy

pullback involving (Kp ∧S0
p
S0
p∞)∧p , so that any map X → R is nullhomotopic if every

map X → (Kp ∧S0
p
S0
p∞)∧p is also nullhomotopic.

Next, since (Kp∧S0
p
S0
p∞)∧p is p-complete, it suffices to show that (Kp∧S0

p
S0
p∞)∧p /p

n

is K(1)-local for each n ∈ N, as it will then follow from the universal property of

p-completion that (Kp ∧S0
p
S0
p∞)∧p is also K(1)-local.

Finally, since there are fiber sequences

(Kp ∧S0
p
S0
p∞)∧p /p→ (Kp ∧S0

p
S0
p∞)∧p /p

n → (Kp ∧S0
p
S0
p∞)∧p /p

n−1,
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it in turn suffices to show that (Kp∧S0
p
S0
p∞)∧p /p is K(1)-local; K(1)-locality of (Kp∧S0

p

S0
p∞)∧p /p

n for n ≥ 2 will then follow by induction on n using the fiber sequences.

The result then follows from Lemma 2.7 since (Kp∧S0
p
S0
p∞)∧p /p ' Kp/p∧S0

p∞ .

As mentioned in Subsection 1.2, every K(1)-local E∞-ring spectrum R possesses

operations

θ, ψ : π0(R)→ π0(R)

such that ψ is a ring homomorphism and θ imparts the structure of a θ-algebra on

π0(R). [5] For any form R of Kp, the only ring homomorphism π0(R) = Zp → π0(R)

is the identity homomorphism, so ψ is unable to distinguish forms of Kp. However,

one can obtain an operation ψ : π2(R) → π2(R) that is able to distinguish forms of

Kp, by considering the function spectrum RSn .

Lemma 2.8. If R is an E∞-ring spectrum and Z is a space, then the function spec-

trum RZ is also an E∞-ring spectrum.

Lemma 2.9. If a spectrum R is Y -local, then the function spectrum RSn is also

Y -local.

Proof. Suppose X ∧ Y is zero. Then

[X,RSn ] = [ΣnX,R] = 0

since R is Y -local.

Consequently, if R is a K(1)-local E∞-ring spectrum, then so is RSn . Hence one

obtains operations

ψ : π0(RSn)→ π0(RSn).
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That is, there are operations πn(R) → πn(R) for each n ∈ N which we shall also

denote by ψ.

Theorem 2.10. Let R be an E∞-S0
p∞/S

0
p-form of Kp. The operation ψ : π2(R) →

π2(R) satisfies ψ(x) = εpx for some ε ∈ Z×p , and the value of the constant ε deter-

mines a bijection between homotopy equivalence classes of E∞-S0
p∞/S

0
p-forms of Kp

and Z×p .

Proof. Recall from Lemma 2.2 that R can be recovered as the homotopy fixed point

spectrum ((Kp∧S0
p
S0
p∞)∧p )hGalR . On the level of homotopy, we obtain from the Mayer-

Vietoris sequence

π2(R) = {x ∈ π2((Kp ∧S0
p
S0
p∞)∧p ) | σR(x) = x}.

Recall that σR = σ ◦ ψλ, where σ is the Frobenius and ψλ is an Adams operation on

Kp.

Let y = 1−L ∈ π2((Kp∧S0
p
S0
p∞)∧p ) be a generator of π2(Kp) ⊂ π2((Kp∧S0

p
S0
p∞)∧p ),

where L is the class of the tautological bundle on S2 = CP1. Recall that (1−L)2 = 0.

Thus

ψλ(y) = ψλ(1− L) = 1− Lλ = 1− (1− (1− L))λ = λ(1− L) = λy.

Suppose that x = µy where µ ∈ π0((Kp ∧S0
p
S0
p∞)∧p ). Then

µy = σR(µy) = σ ◦ ψλ(µy) = σ(µψλ(y)) = σ(µ)ψλ(y) = σ(µ)λy.

Hence σ(µ) = µλ−1. Finally, we use the fact that ψ is Frobenius-linear and, on

18



π2(Kp), is induced by the Adams operation ψp. [10] It then follows that

ψ(x) = ψ(µy) = σ(µ)ψ(y) = µλ−1py = λ−1px.

Theorem 2.10 thus provides a way to identify a form of Kp without recourse to

1-cocycles in the first Galois cohomology group.
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3 Future Directions

As noted in Subsection 1.1, concrete forms of K-theory which involve the Ramanujan

tau function or the quartic residue character arise from elliptic cohomology. I intend

to compute the action of ψ on π2(R) in these cases and other examples of interest.

I wish to interpret both existing and new results about forms of K-theory in the

context of topological modular forms, so as to tie them closer to current research.

By extending topological modular forms to a functorial family of objects cor-

responding to elliptic curves with level structure and modular forms on them and

restricting to the cusps, Hill and Lawson [4] obtain E∞-ring maps from topological

modular forms with level structure to forms of K-theory. I am interested in studying

the properties of these maps.

Besides considering forms of K-theory that arise from topological modular forms,

I also hope to consider forms of K-theory arising in topological automorphic forms,

as in [2].

Being an E∞-ring spectrum, Morava E-theory En possesses power operations

whose structure has been studied by Ando [1] and Rezk [10]. Rezk has calculated

the structure in detail for height two [9, 11]. I hope to use the theory of power

operations in Morava E-theory to develop analogous criteria to distinguish forms of

higher Morava E-theory.
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