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Sensitivity Analysis for Linear Structural Equation
Models, Longitudinal Mediation with Latent Growth

Models and Blended Learning in Biostatistics Education
Abstract

In chapter 1, we consider the biases that may arise when an unmeasured

confounder is omitted from a structural equation model (SEM) and

sensitivity analysis techniques to correct for such biases. We give an analysis

of which effects in an SEM are and are not biased by an unmeasured

confounder. It is shown that a single unmeasured confounder will bias not

just one but numerous effects in an SEM. We present sensitivity analysis

techniques to correct for biases in total, direct, and indirect effects when

using SEM analyses, and illustrate these techniques with a study of aging

and cognitive function.

In chapter 2, we consider longitudinal mediation with latent growth

curves. We define the direct and indirect effects using counterfactuals and

consider the assumptions needed for identifiability of those effects. We

develop models with a binary treatment/exposure followed by a model where

treatment/exposure changes with time allowing for

treatment/exposure-mediator interaction. We thus formalize mediation

analysis with latent growth curve models using counterfactuals, makes clear

the assumptions and extends these methods to allow for exposure mediator

interactions. We present and illustrate the techniques with a study on

Multiple Sclerosis(MS) and depression.
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In chapter 3, we report on a pilot study in blended learning that took

place during the Fall 2013 and Summer 2014 semesters here at Harvard. We

blended the traditional BIO 200: Principles of Biostatistics and created ID

200: Principles of Biostatistics and epidemiology. We used materials from

the edX course PH207x: Health in Numbers: Quantitative Methods in

Clinical & Public Health Research and used. These materials were used as a

video textbook in which students would watch a given number of these

videos prior to class. Using surveys as well as exam data we informally assess

these blended classes from the student’s perspective as well as a comparison

of these students with students in another course, BIO 201: Introduction to

Statistical Methods in Fall 2013 as well as students from BIO 200 in Fall

semesters of 1992 and 1993. We then suggest improvements upon our

original course designs and follow up with an informal look at how these

implemented changes affected the second offering of the newly blended ID

200 in Summer 2014.

iv



Contents

1 Sensitivity analysis for unmeasured confounding in linear structural
equation models 1
Adam J. Sullivan and Tyler J. VanderWeele

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief overview of Linear Structural Equation Models . . . . . 3
1.3 Confounding and Bias of Effects . . . . . . . . . . . . . . . . . 6
1.4 Scope of Bias throughout a Structural Equation Model . . . . 10
1.5 Sensitivity Analysis for Structural Equation Models Under Un-

measured Confounding . . . . . . . . . . . . . . . . . . . . . . 14
1.6 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Missing Path Analysis . . . . . . . . . . . . . . . . . . . . . . 26
1.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Longitudinal Mediation with Latent Growth Curve 33
Adam J. Sullivan, Douglas D. Gunzler, Nathan Morris, Tyler J. VanderWeele

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Definition of Model . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Model with Growth Curve for Treatment/Exposure . . . . . . 45
2.4 Standard Errors of Direct and Indirect Effects . . . . . . . . . 55
2.5 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 The Results of Blended Instruction in Quantitative Methods in Pub-
lic Health: A Pilot Study 67
Adam J Sullivan, Jenny Bergeron, & Marcello Pagano

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Design and Implementation of Courses . . . . . . . . . . . . . 69
3.3 Evaluation of 2013 Fall Semester Courses . . . . . . . . . . . . 75
3.4 Changes Made to Summer 2014 ID 200 Course . . . . . . . . . 91
3.5 Evaluation of 2104 Summer Semester Course . . . . . . . . . . 92
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References 99

vi



List of Tables

1.1 Bias of Causal Effects . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 SEM effect estimates from scenario 3 simulation. . . . . . . . . 13
1.3 Missing Path Analysis . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Demographics of the 3,507 Patients in Sample . . . . . . . . . 62
2.2 Estimates from Model shown in Figure 2.3. Obtained using

Mplus version 7.2[49] . . . . . . . . . . . . . . . . . . . . . . . 63
2.3 Direct and Indirect Effects of Model in Figure 2.3 . . . . . . . 64

3.1 Student responses to Harvard T.H. Chan School of Public Health
end of course survey . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Demographic Information for Survey Sample . . . . . . . . . . 78
3.3 Bok Center Survey Results: In Class Meetings . . . . . . . . . 80
3.4 Bok Center Survey Results: Problem Sets and Assignments . . 81
3.5 Bok Center Survey Results: Online Instruction and Watching

Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 Comparison of Exam Scores Between Blended Courses and His-

torical Courses . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Comparison of scores for Blended courses vs BIO 201 (out of

24 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



Listing of figures

1.1 Path Diagram Example from Bollen with Newly Added U . . 3
1.2 Example SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Scenarios with Bias Present . . . . . . . . . . . . . . . . . . . 11
1.4 Penke and Deary: Figure 1 with Added Confounding . . . . . 25

2.1 Model 1: Without Interaction, covariates C left out for simplicity 36
2.2 Model 2: Without Interaction, covariates C left out for simplicity 46
2.3 MS and Depression Example . . . . . . . . . . . . . . . . . . . 60

3.1 Histograms of Exam Scores. . . . . . . . . . . . . . . . . . . . 87

viii



To my best friend and wife, Angela Sullivan, who continues to support my
dreams. To my father, Tim Sullivan, whose guidance and work ethic has
given me the motivation to continue on. To my mother, Bonnie Sullivan,
whose unending support and guidance gave me the strength when times got
tough. To my grandfather and friend, Lynn Watrous, who has been an
amazing friend and teacher my whole life. To my dear friend, mentor and
professor, Jake Jacobson, without your advice and support I would never
have attempted a graduate degree.

ix



Acknowledgments

Thank you to my wife, Angela Sullivan, whose patience and support has

been exactly what I have needed to complete this. Thank you to my parents,

Tim and Bonnie Sullivan, your amazing love and support has given me the

tools and strength to accomplish anything. Thank you to my friend and

grandfather, Lynn Watrous, your support and teaching has continued to

propel me in life. I am grateful for every second I get to spend with you or

talking with you. Thank you to the rest of my family for being such a great

support and keeping me grounded. Thank you to my adviser, Tyler J

VanderWeele, your guidance and patience have allowed me to grow

tremendously whether it be this dissertation, as a statistician or in my career

search. Thank you to my committee, Rebecca Betensky, Sebastien Haneuse

and Marcello Pagano. Thank you Rebecca for encouraging me and working

with me after my first attempt on my qualifying exams and for your

guidance ever since then. Thank you Sebastien for your thoughtful questions

and advise that help me see where I need to grow in my understanding.

Thank you Marcello for giving me the opportunity to teach with you and

x



further biostatistics education. Thank you to the rest of the biostatistics

department for the amazing opportunity to work with and know all of you.

Last but not least thank you Jake Jacobson, your wisdom and support is the

only reason I pursued a graduate degree.

Research reported in this publication was supported by the National

Institutes of Health under award numbers T32NS048005 and R01ES017876.

The content is solely the responsibility of the authors and does not

necessarily represent the official views of the National Institutes of Health.

xi



1
Sensitivity analysis for unmeasured

confounding in linear structural

equation models
Adam J. Sullivan and Tyler J. VanderWeele

1.1 Introduction

Linear structural equation models(LSEMs) are frequently used in many of

the social sciences [6, 63]. Many of the models used are complex and contain

various interrelationships. These relationships are shown in a model as paths.

LSEMs allow researchers to analyze multiple paths at the same time.

However it is often easy to think of variables that have been left out of a
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model which may have an impact on these relationships. This impact comes

in the form of biasing the effects which prompts the need for sensitivity

analysis. There is a large literature on sensitivity analysis for unmeasured

confounding for a single cause-effect relationship

[4, 9–11, 17, 18, 23, 25, 28, 29, 32–34, 37, 39, 40, 46, 57–60, 66, 70, 73, 77].

Here we apply and extend this literature to the setting of LSEMs with many

cause-effect relationships and a single unmeasured confounder.

A confounder is an extra variable that is causally related to both the

dependent and the independent variable. A confounder may be called an

unmeasured confounder if either no data was collected on it or it was left out

of the model that was analyzed. LSEMs have very strong assumptions that

are made about the functional form of the relationships, the distribution of

variables and having included all confounding variables in the model. Many

of the assumptions have been ignored in the models when used in practice

[72]. With the strong assumptions about confounding it is important to

know how sensitive the effects of interest are with respect to unmeasured

confounding.

In this paper we will describe what a LSEM is and discuss the basic

assumptions. Then we will consider sensitivity analysis where we will show in

what circumstances and for which effects an unmeasured confounder would

bias the results and what estimates are robust to the bias. We will then

discuss what other effects aside from the effects of interest are biased due to

unmeasured confounding. We will then give an example and discuss how to
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use this sensitivity analysis technique. Then we will consider a missing path

analysis in which we will discuss how the bias is affected if certain paths are

absent from the model.

1.2 Brief overview of Linear Structural Equation Models

We will begin by considering a brief overview of the basics of an LSEM. We

give an overview of the important concepts and language as well as a

background to the methods contained in the rest of this paper.

ξ Y

X1X2

δ1 δ2

ζ

U

γ

1
1

Figure 1.1: Path Diagram Example from Bollen with Newly Added U

Figure 1.1 is a simple path diagram that is shown by Bollen [6]. The

model contains both observable and latent variables. Observable variables

are variables that have been directly measured and are represented by

squares in the figure. Latent variables are variables that are not able to be

directly measured but can be inferred from observable variables in the model

and are represented by circles in the figure. Relationships between these

3



variables are represented by the arrows which are called paths. A line with a

single arrow represents a causal path, for example in figure 1.1, the arrow

ξ → Y, represents that ξ has a direct effect on Y.

The final parts of figure 1.1 which have not been mentioned previously are

δ1, δ2, and ζ. These represent random error effects on X1, X2 and Y

respectively. Random error is the element of randomness that is not

contributed by the other paths in the model. It should also be noted that

unless otherwise indicated, these errors are all uncorrelated with each other

and with ξ. In a LSEM, correlations are shown by using a double headed

arrow path between two variables. In the rest of the path diagrams in this

paper we will assume the errors are uncorrelated and leave the error terms

out for simplicity. However we note that there is still error associated with

each of the relationships as in figure 1.1. From the complete model in Figure

1.1 a LSEM assumes the following mathematical relationships:

y = γξ + ζ

x1 = ξ + δ1

x2 = ξ + δ2
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Traditionally LSEM assume that all of the above equations involve

variables that are normally distributed as well as that each path follows a

linear regression. Various extensions are possible for binary and ordinal

variables in which it is assumed that the observed binary or categorical

variables is the dichotomized or coarsened version of an underlying latent

continuous normally distributed variable [6].

Suppose now we have a variable U in the model that represents a missing

variable that was not accounted for in the analysis. This would bias our

effect estimates for the effect of ξ on Y. This is also sometimes called an

unblocked ”backdoor path” [52]. If that variable had not been accounted for

then even if there was no effect of ξ on Y (i.e. the arrow between the

variables is missing) we would likely find an association between ξ and Y

because of U. We would likely believe there is a causal relationship between ξ

and Y even though there is no true association present. We need to be very

mindful of this when positing models and this paper will detail steps to take

in order to assess how sensitive results on an LSEM are to the impact of an

unmeasured U. We will consider sensitivity analysis for total effects and for

direct and indirect effects which arise when multiple variables and

cause-effect relationships are being considered.

We note that in some settings an unmeasured confounder can be explicitly

included in a LSEM and in certain settings it is still possible to proceed with

estimation of certain effects [6]. Here we deal with the setting when the

unmeasured confounder has in fact not been included in the model and the
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researcher is interested in how the unmeasured confounder biases effect

estimates.

1.3 Confounding and Bias of Effects

1.3.1 Path Analysis with Confounding

Whether or not there is bias for a specific effect in the context of a LSEM,

will depend on whether all of the ”backdoor paths” between the exposure

and outcome are blocked or controlled for. In this section we will determine

whether there is bias within the effect estimates that the LSEM has given us

due to an incorrect model with a missing confounder.

We will consider what happens when a model is missing a single

confounder. We will first consider for which paths a potential confounder

might cause bias for the effect estimates. To illustrate this we will use figure

1.2. Suppose, as in figure 1.2 we have A which is an exposure, M which is a

mediator, and Y which is an outcome of interest. On a more complex

diagram, A, M and Y could be any three variables on the diagram for which

we were interested in the various total, direct and indirect effects. Once we

have chosen these three variables the analysis of bias can proceed as

described below. If we change the three variables chosen as the exposure,

mediator and outcome, we could proceed with a similar analysis for these

three variables as well. C1 and C2 are measured covariates and U is again an

unmeasured confounder. Note that in our models all of the variables are
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observable; however any of these variables could be latent as well with

multiple observed indicators as is typical in LSEM and this would not change

the results nor the sensitivity analysis. We will illustrate the results with

latent variables with multiple observed indicators in Section 1.6 below.

The direct effect is the path from the exposure, A, to the outcome, Y,

which is not mediated by any other variable. This is represented by the

A→ Y path in figure 1.2. An indirect effect is a path from A to Y that goes

through one or more other variables. This is referred to as the effect being

mediated by other variables. This is represented by the path, A→ M→ Y in

figure 1.2. The total effect is the combination of the direct and the indirect

effect. The total effect of A on Y would include both the direct path from

A→ Y as well as the path A→ M→ Y.

C1 C2 A M Y

U

Figure 1.2: Example SEM

1.3.2 Bias of Causal Effects

In this section we will consider diagrams similar to figure 1.2. We will change

the location of U in the diagram and examine how this affects the bias of the

three types of effects discussed in section 1.3.1 (total, direct and indirect).
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We summarize the results in Table 1.1 and formal arguments are given in the

appendix. Table 1.1 is laid out so that the rows represent where the left

arrow of the U variable points on the pathway from the treatment to the

outcome and the columns represent where the right arrow from U points on

the pathway.

Total Effects
Right

Pre-Exposure Exposure Mediator Outcome Post-Outcome

Le
ft

Pre-Exposure Not Biased Not Biased Not Biased Not Biased Not Biased
Exposure Biased Biased Not Biased
Mediator Not Biased Not Biased
Outcome Not Biased

Post-Outcome Not Biased

Direct / Indirect Effects
Right

Pre-Exposure Exposure Mediator Outcome Post-Outcome

Le
ft

Pre-Exposure Not Biased Not Biased Not Biased Not Biased Not Biased
Exposure Indirect Biased Direct Biased Not Biased
Mediator Direct and Indirect Biased Not Biased
Outcome Not Biased

Post-Outcome Not Biased

Table 1.1: Bias of Causal Effects

The cells indicate which of the effects are biased and which are unbiased in

each of the various settings. Justification is given in the appendix. Cells in

the table with the left arrow indicated to the right of the right arrow were

left blank. In most scenarios considered in Table 1.1, the unmeasured

variable would not produce bias for the total, indirect and direct effect of A

on Y. This is because many of the scenarios in Table 1.1 the unmeasured

variable affects two variables which occur either before the exposure or after

the outcome and thus does not bias the effects of interest. Table 1.1 gives
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only 3 scenarios which results in a bias of the effects of interest. Figure 1.3

shows the three interesting scenarios. The first one shown in figure 1.3a is a

case of exposure-mediator confounding. This is confounding where the U has

a causal relationship with both the exposure and with the mediator. With

this scenario there is bias in the total effect as well as the indirect effect.

There is a possibility of an association between A and M purely due to the

unmeasured U. This would mean that there may in fact be no indirect effect

of A→ M→ Y but our estimates would show otherwise. The direct effect

however is unbiased in this scenario. The second interesting scenario is

shown in figure 1.3b, this is a case of exposure-outcome confounding,

meaning that the unmeasured confounder has a causal relationship with the

exposure and the outcome. With this scenario there is bias in the total and

the direct effect; but the indirect effect is unbiased. Finally the last

interesting scenario is shown in figure 1.3c. This is a case of

mediator-outcome confounding. In this scenario both the direct and indirect

effects are biased. In the next section we will explore the bias that is present

in these scenarios and develop sensitivity analysis that can be used to assess

the impact of unmeasured variables.

The variables in the models we have considered are very simple. However

one can apply the results shown here to a LSEM of any size and complexity.

By breaking down the complex model into smaller parts like these scenarios

one can assess for bias due to confounding in different parts of the model. If

there are intermediate variables between the variables in the diagram chosen
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as the exposure A and mediator M and one of the arrows of U is pointed into

one of these intermediate variables, the bias analysis would be analogous to

the setting in which the arrow of U pointing into M itself. If there are

intermediate variables between the variables in the diagram chosen as the

mediator M and outcome Y and one of the arrows of U pointed into one of

the intermediate variables, the bias analysis would be analogous to the arrow

of U pointing into Y.

Each of the variables in figure 3 are displayed as a single variable for the

purpose of simplicity. However each of these variables can represent a group

of variables. For example in each of scenarios the variable C can be used to

represent all of the covariates that are being adjusted for. An example of this

variable grouping will be shown in section 1.6.

1.4 Scope of Bias throughout a Structural Equation Model

One key feature of an LSEM is the capacity to estimate the effects for any

path specified in the model. In section 1.3 we considered the bias created by

unmeasured confounding on the main effects of interest. This section will

consider what other effects in the LSEM are biased due to the unmeasured

confounding. We will show that with unmeasured confounding not just one

edge and effect estimate are biased but in fact many effect estimates and

even numerous distinct edges will be biased. Specifically, we show in the

appendix that for any variable V that has an edge into the variable at the

10



C A M Y

U

(a) Exposure-Mediator
Confounding

C A M Y

U

(b) Exposure-Outcome
Confounding

C A M Y

U

(c) Mediator-Outcome
Confounding

Figure 1.3: Scenarios with Bias Present

left most edge of the unmeasured confounder, the effect estimate of the edge

from V to the variable on the right most edge of the unmeasured confounder

will be biased. This means in scenario 1 any effect estimate of edges into M

will be biased for any variable that affects A. In scenarios 2 and 3 any effect

estimate of edges into the outcome, Y, will be biased for any variable that

affects A in scenario 2 or that affects M in scenario 3.

In order to further explore bias we will consider scenario 3,

mediator-outcome confounding, in more detail using simulations. The other

two scenarios will be considered in the appendix. Recall from section 1.3.2

that the M → Y relationship as well as the A → Y relationship is known to

be biased.
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For example, simulations can be used to illustrate that the C → Y

relationship is also biased. The following steps were done to simulate the

data which follows the paths shown in figure 1.3c:

1. C and U are normally distributed with mean 0 and standard deviation

1.

2. 20,000 values are simulated for both C and U.

3. The effects of C→ A, C→ M, A→ M, A→ Y, U→ M, U→ Y and M→

Y were all set to a moderate effect of 0.6.

4. The effect of C→ Y was set to 0.

5. A = 0.6C + εa, where εa is a random error term normally distributed

with mean 0 and standard deviation 1.

6. M = 0.6C + 0.6A + 0.6U + εm, where εm is a random error term

normally distributed with mean 0 and standard deviation 1.

7. Y = 0C + 0.6A + 0.6M + 0.6U + εy, where εy is a random error term

normally distributed with mean 0 and standard deviation 1.

This defines the paths exactly as in figure 1.3c and gives us a data set with

5 variables and 20,000 values for each variable. Then using Stata 13 the SEM

was fit two ways. The first fit was having the C → Y edge in the model,

knowing that this has a true effect of 0. The second model fit was leaving the

C → Y edge out of the model. Results are summarized in Table 1.2.

When the model is fit allowing for the possibility of a C→ Y edge (first

row) the M→ Y effect is upwards biased, with an estimate of 0.87 with or%

12



Scenario 3: Mediator-Outcome Confounding
C → A C → M A → M C → Y A → Y M → Y

True Model 0.6 0.6 0.6 0 0.6 0.6
C → Y in model 0.59 (0.58, 0.61) 0.61 (0.59, 0.63) 0.58 (0.56, 0.60) -0.17 (-0.19, -0.15) 0.44 (0.42, 0.45) 0.87 (0.86, 0.88)
C → Y not in model 0.60 (0.58, 0.61) 0.61 (0.59, 0.63) 0.58 (0.56, 0.60) – 0.40 (0.39, 0.42) 0.82 (0.81, 0.83)

Table 1.2: SEM effect estimates from scenario 3 simulation.

confidence interval (0.86, 0.88) instead of 0.6; the A→ Y effect is biased

downwards with an estimate of 0.44 (0.42, 0.45) instead of 0.6. We also find

that the effect of C→ Y is biased downward with an estimate of -0.17 (-0.19,

-0.15) instead of 0. Again this effect was set to zero in the simulations. When

leaving the C→ Y path out of the model the effect of A→ Y and M→ Y

remain biased downwards and biased upwards respectively. The bias of the

A→ Y edge is even larger than before with estimates of 0.40 (0.39, 0.42).

Our simulations in Table 1.2 illustrates that more effects other than the

direct and indirect effect are biased. An unmeasured confounder does not

just bias a single edge but many edges. A single unmeasured confounder can

thus introduce bias for many paths in an LSEM. Correcting biases for a

LSEM single unmeasured confounder does not just require correcting one

edge but many.

We will give methods in the next section for sensitivity analysis for specific

total, direct or indirect effects of interest. But when using such sensitivity

analysis it is recommended that in the presence of unmeasured confounding

researchers also mention the possibility of the other effects that could be

biased significantly as well.
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1.5 Sensitivity Analysis for Structural Equation Models Under

Unmeasured Confounding

1.5.1 Scenario 1: Exposure - Mediator Confounding

Consider the scenario in Figure 1.3a from Table 1.1. Here we see that the

total and indirect effects both are biased. The bias comes from the

possibility of an association being present based on the unblocked

“backdoor” path that was mentioned in section 1.2. Our goal is to quantify

the amount of bias that is present and to assess the robustness of the effects

to confounding with sensitivity analysis. Formal mathematical development

is given in the appendix (Section 1.9).

1.5.1.1 Total Effect Bias and Correction.

Consider the total effect under exposure-mediator confounding. This

confounding will bias the A→ M relationship and this in turn biases the total

effect for the A→ Y relationship. We will consider sensitivity analysis in this

setting. Let Badd denote the difference between the quantity estimated by the

LSEM (ignoring U) and the true causal effect of A on Y (i.e. what we would

have obtained had we included U as well). Suppose that the effect of U on Y

is constant across strata of A (i.e. U and A do not interact in their effects on

Y, this is typically assumed in a LSEM) and the mean of U is additive in both

14



C and A, VanderWeele [71] and Lin [39] have shown that the bias is given by

Badd = γd

where γ is the mean effect of U on Y, and d = m1 − m0, where m0 and m1 are

the means of U for two different levels of A being compared. If U were binary

m0 and m1 would be the prevalences of U in the two different levels of A being

compared. The parameter γ is the estimated effect that we would see if we

regressed Y on U and M. Once both γ and d are specified we can then

subtract the bias γd from the estimate of the effect of A on Y from the LSEM

to get a corrected estimate of the effect of A on M. We can also subtract the

bias factor γd from both limits of the 95% confidence intervals in order to

also get a corrected 95% confidence interval.

In general it is helpful to vary the values specified for both γ and d, as this

will allow one to assess the sensitivity of the estimate of the effect of A on Y.

In most cases the true values of γ and d are unknown and need to be

specified. We vary our specifications for both γ and d. This leads us to having

a range of values for the bias, Badd. Subtracting this range of values from the

estimate of the total effect we then have a range of values for the correct

total effect. We can then take the range of values for the bias, Badd, and

subtract them from the upper and lower bounds of the confidence interval

around the total effect in order to correct the confidence intervals as well.1

1Alternatively, it would have been possible to use sensitivity analysis to correct the
effect of A on M first and then use this to get a corrected total effect as well, but obtaining
corrected confidence intervals by correcting the A→ M relationship first is considerably more
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1.5.1.2 Indirect Effect Bias and Correction.

In section 3, we noted that the direct effect is unbiased by exposure-mediator

confounding so we do not need to do sensitivity analysis for this effect.

However, the indirect effect is biased by exposure-mediator confounding. In

section 1.2 it was noted that the total effect is the combination of the direct

and indirect effects. Since the direct effect is unbiased and since

Total Effect = Direct Effect + Indirect Effect

the bias for the indirect effect will be the same as the bias for the total effect.

Once the sensitivity analysis parameters γ and d are specified, we can thus

take the same bias factor γd and subtract this from the indirect effect and

both limits of its confidence interval to get a corrected estimate and

confidence interval for the indirect effect. We can use this approach to assess

the sensitivity of the indirect effect. As we vary the parameters, we can take

the range of values for the bias factor of the total effect used previously and

subtract them from the indirect effect and its confidence interval. This again

gives us a corrected indirect effect as well as corrected confidence interval in

each case.

complicated, whereas the correction approach presented here for estimates and confidence
intervals is relatively straightforward and as will be seen below we will likewise be able to
obtain similar corrected estimates and confidence intervals for the direct and indirect effects
as well.
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1.5.2 Scenario 2: Exposure - Outcome Confounding

Consider the scenario in Figure 1.3b from Table 1.1 of unmeasured

exposure-outcome confounding. Here we see that both the direct and total

effects are biased. As noted in Table 1.1 the indirect effect is unbiased.

1.5.2.1 Direct effect Bias and Correction.

Examining the direct effect we see that the unmeasured confounding biases

the direct effect A→ Y relationship. For sensitivity analysis for the direct

effect we can proceed in a similar manner as in Section 5.2. If U is additive in

both C and A and the effect of U on Y is constant across strata of A then if we

define Badd as the difference between our estimator using the LSEM ignoring

the unmeasured confounder and the true direct effect, then we have that:

Badd = γd,

where γ is the mean effect of U on Y and d = (m1 − m0), where m1 and m0 are

the mean of U for the two different levels of the exposure A being compared.

We again specify values for γ and d and calculate Badd = γd. This represents

the bias for the direct effect of A on Y. We can again subtract this bias factor

from our estimate of the direct effect and both limits of its confidence interval

to obtain a corrected estimate and confidence interval. We can then vary the

values of both γ and d and obtain a range of values and confidence intervals

for the direct effect to assess its sensitivity to unmeasured confounding.
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1.5.2.2 Total Effect Bias and Correction.

As discussed in section 3, the indirect effect is not biased by unmeasured

exposure-outcome confounding, but the total effect is biased by such

confounding. As in section 1.5.1.1 we know that

Total Effect = Direct Effect + Indirect Effect.

Since the indirect effect is unbiased, for any given level of the sensitivity

parameters γ and d, we can take the bias factor for the direct effect found

previously and subtract this from the total effect and both limits of its

confidence interval to obtain a corrected total effect and confidence interval.

We can do this for a range of values of the sensitivity analysis parameters for

the total effect as well.

1.5.3 Scenario 3: Mediator - Outcome Confounding.

Consider the scenario in Figure 1.3c from Table 1.1 with unmeasured

mediator-outcome confounding. Here we see that the direct and indirect

effects are both biased by such unmeasured mediator-outcome confounding.

The total effect in this scenario is however unbiased.

1.5.3.1 Direct Effect Bias and Correction.

Consider the direct effect of A on Y. If we are able to assume the direct effect

of U on the outcome Y is the same for all levels of a (i.e. no interaction
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between U and A) and the expected value of U is additive in A and (M,C)

(i.e. E [U|a,m, c] = g(a) + h(m, c) for some functions g and h) then if we define

the bias factor Badd to be the difference between our estimator of the direct

effect and the true direct effect we have [73]:

Badd = δγ

where δ is the difference in the mean value of U, conditional on M, between

the two levels of A we are comparing and γ is the direct effect of U on the

outcome Y, not through M

As before we will need to specify both δ and γ. Once we have specified a

range of values for both δ and γ we have a range of values for Badd. To assess

the sensitivity of the direct effect we subtract Badd from the estimate and

both limits of the confidence interval. We then have obtained a corrected

estimate and confidence interval for the direct effect.

1.5.3.2 Indirect Effect Bias and Correction.

We noted in section 3 that the total effect is unbiased by unmeasured

mediator-outcome confounding. Since

Total Effect = Direct Effect + Indirect Effect.

the bias for the indirect effect will be of equal magnitude but opposite sign as

that of the direct effect. We can thus add the bias factor for the direct effect
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to the estimate and both limits of the confidence interval of the indirect

effect to get a corrected indirect effect. We can do this for a range of values

for the sensitivity analysis parameters so that we can assess the sensitivity of

the indirect effect to the unmeasured confounding.

1.5.4 Discussion of Sensitivity Findings.

We now will consider the range of values for our effects once we have

specified a range of values for the sensitivity parameters. Three things may

happen with these ranges:

1. The range of the effects will contain zero.

2. The range of the effects will be in the same direction as the results of

the data analysis.

3. the range of the effects is in the opposite direction as the results of the

data analysis.

If the range of the effect contains zero this means that it is possible that

the effect of interest is sensitive to unmeasured confounding. We would have

evidence that the effect which was seen before sensitivity analysis may be

due to the unmeasured confounding.

If the range of values is in the same direction of the effect originally found

and does not include zero, this would indicate that the effect is relatively

robust to unmeasured confounding at least over the range of sensitivity

parameters considered.
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If part of the range of the values is in the opposite direction of the effect

originally found then it is possible that the confounding is strong enough to

have changed the direction of the effect.

In some cases, for an estimate effect to be reduced to zero, very large

values of the sensitivity analysis parameters may be required. This then

would provide evidence that in fact the effect under study is actually present,

and not entirely due to unmeasured confounding alone.

1.6 An Example

In this section we give an example of the use and interpretation of a

sensitivity analysis in the context of a published study on cognitive function.

This example comes for the work of Charlton et al [12]. This paper

considered the relationship between age and working memory. Charlton et al

[12] also evaluated whether DTI(diffusion tensor imaging) measured white

matter mediated the relationship between age and information processing

speed, working memory, flexibility and fluid intelligence. Charlton et al [12]

contained 118 subjects ages 50-90 with mean age 70 and standard deviation

10.5. Processing speed, working memory, flexibility and fluid intelligence were

assessed by standardized neuropsychological tests (see table 1 in Charlton et

al for more information on these tests). Based on their study Penke & Deary

[54] proposed the model which is shown in figure 1.4. This model contains

one outcome called the general factor of cognitivity or g factor which is a

latent variable and is inferred by processing speed, working memory,
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flexibility and fluid intelligence. Their model includes a direct effect of age on

the g-factor outcome as well as an effect mediated by DTI mean diffusivity.

Figure 1.4 here represents figure 1 in Penke & Deary with an added

unmeasured confounder of the relationship DTI mean diffusivity and the g

factor. There is the possibility, for example, of a genetic or biological factor

that would lead to an increase in DTI mean diffusivity(decrease in white

matter integrity [12]) and also a decrease in g factor. For the model fit by

Penke and Deary, as indicated in Figure 1.4, the direct effect of age on g

factor was -0.65 (-0.67, -0.62); the indirect effect of age on g factor through

DTI mean diffusivity is 0.0077 (0.0077, 0.0078). The indirect effect is found

by multiplying the effect of age on DTI mean diffusivity by the effect of DTI

mean diffusivity on g factor (0.77 ∗ 0.01 = 0.0077). All of the coefficients have

been standardized, meaning that the original variables in the model were

transformed into variables with mean 0 and standard deviation 1. We will

use the sensitivity analysis outlined in section 1.5.3 to consider how an

unmeasured mediator-outcome confounder might change these estimates

We begin by assessing the sensitivity of the direct effect. This has a bias of

the form Badd(m) = δγ, where for a fixed level of DTI mean diffusivity= m, δ

is the difference in prevalence of U between two ages one standard deviation

apart and γ is the effect of U on the g factor. We begin with considering

what values for δ and γ would suffice to eliminate the direct effect. This

could be done if the difference in prevalence of U at fixed m in ages one

standard deviation apart was δ=0.13, and the corresponding γ was -5. This
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would lead to Badd = (0.13)(−5) = −0.65. If we subtracted this bias from the

model’s estimate of the direct effect, we would obtain −0.65−−0.65 = 0.

With a corrected 95% confidence interval of (-0.02,0.03), and this would

suffice to completely eliminate the effect. Alternatively, a difference in

prevalences of 0.26 with an effect of U on Y of 2.5 would likewise give a bias

factor of (0.26)(-2.5)=-0.65 and suffice to eliminate the direct effect. While a

difference in prevalences of 0.13 (or possibly even 0.26) might be considered

plausible, an effect size of U on Y of 5 or even 2.5 standard deviations is

probably unlikely. That such extreme values for γ would be required to

eliminate the effect suggests that the direct effect is reasonably robust to

unmeasured confounding.

In contrast, with the indirect effect, a prevalence difference of δ = 0.05 and

an effect of U on Y of γ = −0.154 standard deviations would give a bias factor

of Badd = (0.05)− (0.154) = −0.0077 which would suffice to explain away the

indirect effect. This is a much more modest scenario than we considered for

the direct effect. Note that, as in section 5.3, we add this bias factor to the

indirect effect to get the corrected indirect effect, while we subtracted it from

the direct effect to get the corrected direct effect. If instead we specified the

prevalence difference to be δ=0.05 and the effect of U on Y were γ = 0.3

standard deviations, this would would give a bias factor of

Badd = (0.05)(0.3) = 0.015 and a corrected estimate and confidence interval of

-.0073 (-.0073, -.0072) which was the opposite direction of the initial effect.

We see that much less unnmeasured confounding is needed to eliminate the
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indirect effect than was the case with the direct effect. With the indirect

effect even a fairly modest amount of confounding could reverse the direction

of the effect. In this example we can be fairly confident that the direct effect

is robust to unmeasured confounding, but we see also that, due to the

possibility of unmeasured confounding we cannot really draw conclusions

about the indirect effect.

To illustrate sensitivity analysis further, we could also try specifying γ to

be similar in magnitude to the effect of other variables on the g factor. For

example, if we specified the effect of U on Y to be of the same magnitude as

the effect of age on the g-factor, -0.65, and specified the prevalence difference

to be δ=0.13 once again, we would have Badd = (0.13)(−0.65) = −0.0845.

When we subtract the bias factor from our estimated direct effect and both

limits of the confidence interval, we get a corrected direct effect estimate of

−0.5655(−0.5855,−0.5355), which is not very different from the initial estimate.

When we add this bias factor to the indirect effect and both limits of its

confidence interval we obtain −0.0768(−0.0768,−0.0767), which again is the

reverse direction of the initial indirect effect estimate.

We can also consider how unmeasured confounding would affect our direct

and indirect effect estimates if the effect of U on the g factor were exactly

one standard deviation. If we keep d = 0.13 and we let γ = −1 we have a bias

factor of Badd = (0.13)(−1) = −0.13, and the corrected direct effect would be

−0.52(−0.54,−0.49) and the corrected indirect effect would be

−0.1223(−0.1223,−0.1222). If we keep d = 0.13 and we let γ = 1 we have a bias
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factor of Badd = (0.13)(1) = 0.13, the corrected direct effect would be

−0.78(−0.8,−0.75) and the corrected indirect effect would be

0.1377(0.1377, 0.1378). With γ = 1 or γ = −1 these would be a fairly large

genetic effects; however the direct effect still would not be eliminated, but

the direction of the indirect effect is again reversed. Again the indirect effect

is sensitive to unmeasured confounding. It is thus possible that there is no

effect of DTI mean diffusivity on g factor and that any effect seen in the

model is due to the unmeasured confounding.

In summary, our sensitivity analysis suggests that it is unlikely any

unmeasured confounder of DTI mean diffusivity and g factor would explain

away the direct effect of age on g factor. It also suggests, however, that the

indirect effect of age on g factor through DTI mean diffusivity is highly

sensitive to unmeasured confounding.

Age Common Factor(g)

DTI Mean
Diffusivity

Flexibility

Speed

Working
Memory

Fluid
Intelligence

U

-.65

.77
.01 .83

.78

.59

.77

Figure 1.4: Penke and Deary: Figure 1 with Added Confounding
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1.7 Missing Path Analysis

In this section we will consider what happens to the biases considered above

when specific paths are absent. We will consider the three scenarios

discussed in section 1.5 and remove one path at a time checking whether

effects remain biased. Table 1.3 displays the results if specific edges are

absent and removed from the model. The table is split into 3 sections for the

total, direct and indirect effect. If we consider the total effect section of the

table and then if the A→ Y path is absent, we see that in the presence of

exposure-mediator confounding the total effect is still biased. However had

we been able to remove the M→ Y path, the total effect would be unbiased.

This means that if it is known that the M→ Y path does not exist in the

model (i.e. it is reasonable to assume that it has no effect) then the result

would be that the total and direct effects are both unbiased. When removing

either of these effects the indirect effect would be equal to zero.

This table will help the researcher to determine whether or not a

sensitivity analysis is appropriate for a particular model. We note that

removing a path should only be done if it is truly known on substantive

grounds that it is absent. A key assumption that we have explored in this

paper is that the LSEM is complete. This means we cannot remove a path

that should be there without introducing further bias.

Table 1.3 corresponds to the biases if one of the arrows (A→ M, A→ M or

M→ Y)is missing but we have an unmeasured confounder not included in the
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Total effect
Missing Arrows

A→ Y A→ M M→ Y
Exposure-Mediator Confounding Biased Biased Unbiased
Exposure-Outcome Confounding Biased Biased Biased
Mediator-Outcome Confounding Unbiased Unbiased Biased

Direct effect
Missing Arrows

A→ Y A→ M M→ Y
Exposure-Mediator Confounding Unbiased Unbiased Unbiased
Exposure-Outcome Confounding Biased Biased Biased
Mediator-Outcome Confounding Biased Biased Unbiased

Indirect effect
Missing Arrows

A→ Y A→ M M→ Y
Exposure-Mediator Confounding Biased Biased Unbiased
Exposure-Outcome Confounding Unbiased Unbiased Unbiased
Mediator-Outcome Confounding Biased Unbiased Biased

Table 1.3: Missing Path Analysis

model and we simply fit the SEM. However if we know for certain that one of

the edges (A→ M, A→ M or M→ Y) were missing then without fitting the

SEM we could still estimate certain effects. For example, if there were an

unmeasured exposure-mediator confounder and if we knew that the A→ M

edge were missing we would know the the indirect effect is 0 even though the

SEM would not estimate as 0 if we ignored the unmeasured confounding.
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1.8 Discussion

This paper considers sensitivity analysis for LSEMs. Three scenarios,

exposure-outcome confounding, exposure-mediator confounding and

mediator-outcome confounding were found to have bias associated with

either the total, direct or indirect effects, as well as potentially numerous

others. Section 1.5 showed a straight forward sensitivity analysis for each of

the three scenarios. We also showed the result that when you have an

unmeasured confounder other effects in the model will be biased as well.

Specifically, for any variable V that has an edge into the variable at the left

most edge of the unmeasured confounder, the effect estimate of the edge

from V to the variable on the right most edge of the unmeasured confounder

will be biased. This is the case for all potential variables V and thus many

edges may be biased by a single unmeasured confounder. For example in

exposure-outcome confounding, any other edge into the outcome will have a

biased effect estimate if that variable also affects the exposure. This paper

then showed situations in which the bias of the primary effects of interest

would be absent if it is known that certain edges in the model were absent.

However this should only be done if there is a valid reason for assuming that

a specific edge does not exist. Otherwise removing an edge will leave the

model incorrectly specified and the results would be biased. Theoretical

explanations for the work shown in this paper are discussed in the appendix.

We want to conclude by considering the importance and impact of what
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this kind of analysis can do. When unmeasured confounding is present we

cannot be sure if our results are reliable. This can lead to incorrect practices

and policies that are driven from the models we create and analyze. This

sensitivity analysis to unmeasured confounding allows a researcher to assess

the strength of the effects in the presence of confounding. If the sensitivity

analysis suggests that the results are not robust to unmeasured confounding

then it is possible to suggest that further research needs to be done with data

collected on the confounder as well. If results do hold up under sensitivity

analysis then there can be more confidence in the effects that have been

estimated.

Furthermore we note that while we chosen to use simplified models with a

single confounder in this paper these techniques can be applied to a model of

any size and any path where the confounder lies. By breaking the model

down into the smaller scenarios that we have discussed, we can use the

sensitivity analysis techniques to asses the individual paths and correct for

some of the bias that may be present.

1.9 Appendix

1.9.1 Arguments Concerning Table 1.1.

We use theory from causal diagrams here to demonstrate the points in the

text. We refer the reader to Pearl’s (2000) textbook for theory and

terminology on causal diagrams. We will consider the scenarios in Table 1.1
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and explain the biases that are present. With all of the models, U has been

left out of the actual analysis even though it is in the figure.

For the exposure-mediator confounder, shown in figure 1.3a, we see that

the total and indirect effects are biased. We condition on C in the analysis

but this does not block all backdoor paths from A to Y. The reason the total

effect is biased is because there exists an unblocked backdoor path from A to

Y. That path would be A← U→ M→ Y. If there was no effect of A on Y and

of A on M, then the total effect of A on Y would be 0 , but with the path

above left uncontrolled for our analysis this would show an effect of A on Y.

This is why the total effect would be biased. For the indirect effect in this

scenario we see that even if there were not a path from A to M, there would

appear to be an indirect effect because of the path: A← U→ M→ Y.

However, the direct effect is unbiased in the presence of an

exposure-mediator confounder (note that if there is no direct A← Y edge

then A will be independent of Y conditional on M even if the unmeasured

variable U is present).

For the exposure-outcome confounder, shown in figure 1.3b, we see that

the total and direct effects are biased. For the total effect if there is no path

from A to Y and from A to M, then there would be no total effect from A on

Y. However because of U there would be a path A← U→ Y giving rise to

association. This would suggest there is an effect even when there is not one.

For the direct effect we see that if there is no direct path from A to Y, there

is an open path A← U→ Y when conditioning on M. Again we would see an
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effect even when there is not one. For the indirect effect we can see that the

only path from A which goes through M is A→ M→ Y and the

exposure-outcome confounder would not generate bias.

For the mediator-outcome confounder, shown in figure 1.3c, we see that

the direct and indirect effects are biased. For the direct effect if we condition

on M we should block all paths from A to Y through M, in this case we

condition on a collider and open up the path A→ M← U→ Y and would

have association between A and Y conditional on M even if there were no true

effect. For the indirect effect we see that even if there were not an effect of M

on Y we would see association between M and Y because of the path

M← U→ Y,and thus if we ignore the mediator-outcome confounder, we may

find an indirect effect even when it is absent. For the total effect we see that

all backdoor paths from A to Y are blocked by C even if U is present.

1.9.2 Theoretical Explanation for Bias of Additional Paths

In section 1.4 it was noted that in the presence of an unmeasured

confounder, U, omitted from the LSEM that for any variable V that has an

edge into the variable at the left most edge of the unmeasured confounder,

the effect estimate of the edge from V to the variable on the right most edge

of the unmeasured confounder will be biased. In the case of

exposure-outcome confounding and mediator-outcome confounding all

estimated edges into the outcome will be biased for all variables that have

edges into the exposure or the mediator respectively. In the case of
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exposure-mediator confounding all estimated edges into the mediator will be

biased for all variables with edges into the exposure as well.

We will consider exposure-mediator confounding first as in Figure 1.3a.

When LSEM estimates the effect of A→ M it conditions on A. This blocks

the path C→ A→ M. However, because of U, A is a collider and when we

condition on it we open up the path C→ A← U→ M. Thus even if there

was no direct effect of C on M we would have a non-zero estimate for the

C→ M edge in a LSEM which ignored U. We next consider

exposure-outcome confounding which is shown in figure 1.3b. When the

LSEM estimates the effect of A→ Y it conditions on A. This blocks the paths

C→ A→ Y and C→ A→ M→ Y. However because A is again a collider it

opens up the path C→ A← U→ Y. This introduces a new unblocked path

from C to Y and would bias our estimate of the effect for the edge, C on Y.

Finally, we consider mediator-outcome confounding last which is shown in

figure 1.3c. When the LSEM estimates the effect of M→ Y it conditions on

M. This blocks the path C→ A→ M→ Y. However, M is now a collider on

the path C→ A→ M← U→ Y. This introduces a new path from C to Y and

would bias our estimate of the effect for the edge of C on Y.
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2
Longitudinal Mediation with Latent

Growth Curve
Adam J. Sullivan, Douglas D. Gunzler, Nathan Morris, Tyler J.
VanderWeele

2.1 Introduction

There is a large body of published literature on mediation analysis

[31, 36, 53, 56, 67–69, 74, 75]. Almost all of this literature has considered

mediation analysis for a single exposure, a single mediator and a single

outcome all at one point in time. However in many studies longitudinal data

is available and often not used. Instead empirical analysis often rely on the

cross sectional models which do not allow for exploiting the temporal

sequence of these variables. In addition, it has been shown that
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cross-sectional mediation analysis typically generates substantially biased

estimates of longitudinal parameters even under the ideal conditions when

mediation is complete [43]. The use of longitudinal models would allow for

less bias and stronger claims of causality.

In the literature there are three main types of longitudinal models

currently in use. The models are the autoregressive model [16, 27], latent

growth curve models [14, 21, 41, 48, 50, 76] and latent difference score

models [22, 44, 45]. In this paper the focus is on advancing the methodology

of mediation with latent growth curve models. We make three major

contributions to the literature. We put the models into a formal causal

framework so that they may be accurately used to make causal inferences.

We then clarify the assumptions needed in order to make causal inferences.

Finally we extend existing methodology to allow for interaction to be

assessed with these models.

We first consider a latent growth curve model with binary

treatment/exposure. With this model we consider the assumptions needed

for identifiabilty of the direct and indirect effects. We define the direct and

indirect effects, using counterfactuals, in the presence of interaction. We then

consider the scenario where there is a longitudinal treatment/exposure. We

consider the assumptions needed for identification and define the direct and

indirect effects using counterfactuals which allows for the presence of

interaction. We finish this paper with an data analysis example.

34



2.2 Definition of Model

When there is repeated measures data for the mediator and outcome,

mediation models can be fit using latent growth curve (LGC) modeling

[14, 21, 41, 48, 50, 76]. We use the parallel process model as shown by

MacKinnon [41] in which separate growth curves are specified for the

mediator and outcome. The treatment/exposure can also have a specified

growth curve, or as with a randomized trial, it can be binary. With these

growth models there are latent factors included. The first of these factors is

the intercept or average baseline of the subjects at the first measurement

occasion. The second factor is the slope or the trajectory of the growth after

the first measurement occasion. When using these models in the mediation

setting we examine the mediating relationships of these latent factors among

the growth models.

We begin with Model 1 shown in Figure 2.1. We have a binary treatment,

Xi; longitudinal mediator, M1,M2 and M3; and a longitudinal outcome, Y1, Y2

and Y3. With this model Xi affects both the intercept and slope of the

mediator and outcome growth models. The intercept and the slope of the

mediator growth model also both effect the intercept and the slope of the

outcome growth model.
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IYi SYi
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γ 3

Figure 2.1: Model 1: Without Interaction, covariates C left out for simplicity

More formally, equations (2.1) - (2.6) below specify the relationships

shown in Figure 2.1 with 1, . . . , t measurement occasions. We have the

following growth curve for the mediator:

Mit = IMi + SMit+ εMit (2.1)

IMi = δ0 + δ1Xi + δ′2C+ νIMi (2.2)

SMi = β0 + β1Xi + β′2C+ νSMi (2.3)
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and the following growth curve for the outcome:

Yit = IYi + SYIt+ εYit (2.4)

IYi = φ0 + φ1Xi + φ2IMi + φ3SMi + φ4XiIMi + φ5XiSMi + φ′6C+ νIYi (2.5)

SYi = γ0 + γ1Xi + γ2IMi + γ3SMi + γ4XiIMi + γ5XiSMi + γ′6C+ νSYi (2.6)

Where E [εMit] = E [εYit] = E [νIMi ] = E [νSMi ] = E [νIYi ] = E [νSYi ] = 0 and where

εMit , εYit , (νIMi , νSMi)and(νIYi , νSYi) are mutually independent and where C denotes

baseline covariates which, as discussed below we select to represent the set of

exposure-mediator, exposure-outcome and mediator-outcome confounders.

Equations 2.1 and 2.4 specify the growth models for individual i’s mediator

and outcome data respectively at time t. Both include an intercept, slope

and error component. Equations 2.2-2.3 and 2.5-2.6 specify the intercept and

slope functions for the mediator and outcome models respectively. Note that

equations 2.5 and 2.6 allow for treatment/exposure-mediator interaction. In

the absence interaction we specify φ4 = φ5 = γ4 = γ5 = 0.

We use counterfactual notation IYxm1m2 , SYxm1m2 , IMx and SMx, where IYxm1m2

denotes the value of the intercept model for Y if we were to set X = x, IM = m1
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and SM = m2; SYxm1m2 denotes the value of the slope model for Y if we were to

set X = x, IM = m1 and SM = m2; IMx denotes the value of the intercept model

for M if we were to set X = x and SMx denotes the value of the slope model for

M if we were to set X = x. We use Yxm1m2 to denote the counterfactual

outcome Y if we were to set X = x, IM = m1 and SM = m2. The natural direct

effect for two values of the exposure, x and x∗, is defined as

E [YxIMx∗SMx∗ − Yx∗IMx∗SMx∗ ] and expresses how much the intercept and slope of

the outcome process would change on average if the treatment/exposure were

changed from level x∗ = 0 to x = 1 but for each individual the intercept and

slope of the mediator process is kept at the level it would have taken under

the absence of the treatment/exposure. The natural indirect effect for two

values of the exposure, x and x∗, is defined as E [YxIMxSMx − YxIMx∗SMx∗ ] and

expresses how much the intercept and slope of the outcome process would

change on average if the treatment/exposure was controlled at level x = 1 but

the intercept and slope of the mediator process were changed from the level

they would take if the treatment/exposure was changed from x∗ = 0 to x = 1.
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We let A⨿ B|C denote that A is independent of B conditional on C. We

show below that the natural direct and indirect effects are identified if:

(C1) IYIMSM
, SYIMSM

⨿X|C (no unmeasured confounding for the exposure-outcome

relationship)

(C2) IYIMSM
, SYIMSM

⨿ IM, SM|X,C (no unmeasured confounding for the mediator-

outcome relationship)

(C3) IMx , SMx ⨿ X|C (no unmeasured confounding for the exposure-mediator

relationship)

(C4) IYm1,m2 , SYm1,m2 ⨿ IMx∗ , SMx∗ |C (no mediator-outcome confounders which are

affected by the exposure)

Proposition: For any function u if (C1) - (C4) hold then

E
[
u
(
IYxIMx∗SMx∗ , SYxIMx∗SMx∗

)]
=

∑
c,m1,m2

E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x∗, c) Pr(c)
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Proof:

E
[
u
(
IYxIMx∗SMx∗ , SYxIMx∗SMx∗

)]
=

∑
c

E
[
u
(
IYxIMx∗SMx∗ , SYxIMx∗SMx∗

)
|C = c

]
Pr(C = c)

(Iterated Expectations)

=
∑
c,m1,m2

E [u (IYxm1m2 , SYxm1m2) |C = c, IMx∗ = m1, SMx∗ = m2] Pr (IMx∗ = m1, SMx∗ = m2|C = c) Pr(C = c)

(Iterated Expectations)

=
∑
c,m1,m2

E [u (IYxm1m2 , SYxm1m2) |C = c] Pr (IMx∗ = m1, SMx∗ = m2|X = x∗,C = c) Pr(C = c)

(C4 & C3)

=
∑
c,m1,m2

E [u (IYxm1m2 , SYxm1m2) |X = x,C = c] Pr (IM = m1, SM = m2|X = x∗,C = c) Pr(C = c)

(C1 & consistency)

=
∑
c,m1,m2

E [u (IYxm1m2 , SYxm1m2) |X = x, IM = m1, SM = m2,C = c] Pr (IM = m1, SM = m2|X = x∗,C = c) Pr(C = c)

(C2)

=
∑
c,m1,m2

E [u (IY, SY) |X = x, IM = m1, SM = m2,C = c] Pr (IM = m1, SM = m2|X = x∗,C = c) Pr(C = c)

(consistency)

=
∑
c,m1,m2

E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x∗, c) Pr(c)

This completes the proof.

Then if we replace x with x∗ we get:

E
[
u
(
IYx∗IMx∗SMx∗ , SYx∗IMx∗SMx∗

)]
=

∑
c,m1,m2

E [SY|x∗,m1,m2, c] Pr (m1,m2|x∗, c) Pr(c)

from this it follows with u(IY, SY) = IY + SYt+ εY that the average natural

direct effect is given by:

E
[
u
(
IYxIMx∗SMx∗ , SYxIMx∗SMx∗

)
− u

(
IYx∗IMx∗SMx∗ , SYx∗IMx∗SMx∗

)]
=

∑
c,m1,m2

{E [u (IY, SY) |x,m1,m2, c]− E [u (IY, SY) |x∗,m1,m2, c]} Pr (m1,m2|x∗, c) Pr(c)
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If we replace x∗ with x we would get:

E
[
u
(
IYxIMxSMx

, SYxIMxSMx

)]
=

∑
c,m1,m2

E [u)IY, SY)|x,m1,m2, c] Pr (m1,m2|x, c) Pr(c)

from this

it follows with u(IY, SY) = IY+SYt+εY that the natural indirect effect is given by:

E
[
u
(
IYxIMxSMx

, SYxIMxSMx

)
− u

(
IYxIMx∗SMx∗ , SYxIMx∗SMx∗

)]
=

∑
c,m1,m2

E [u (IY, SY) |x,m1,m2, c] {Pr (m1,m2|x, c)− Pr (m1,m2|x∗, c)} Pr(c)

=
∑
c,m1,m2

E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x, c) Pr(c)− E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x∗, c) Pr(c)

With the model shown in Figure 2.1 we have that

Y = u (IY, SY) = IY + SYt+ εY. Thus given (2.5) and (2.6) we have

E [u (IY, SY) |x,m1,m2, c] = φ0 + φ1x+ φ2m1 + φ3m2 + φ4xm1 + φ5xm2 + φ′6c

+ (γ0 + γ1x+ γ2m1 + γ3m2 + γ4xm1 + γ5xm2 + γ′6c)t (2.7)

and

E [u (IY, SY) |x∗,m1,m2, c] = φ0 + φ1x
∗ + φ2m1 + φ3m2 + φ4x

∗m1 + φ5x
∗m2 + φ′6c

+ (γ0 + γ1x
∗ + γ2m1 + γ3m2 + γ4x

∗m1 + γ5x
∗m2 + γ′6c)t (2.8)
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Therefore the average natural direct effect is

∑
c,m1,m2

{
(φ1 + φ4m1 + φ5m2 + γ1t+ γ4m1t+ γ5m2t)(x− x∗)

}
Pr (m1,m2|x∗, c) Pr(c)

= (φ1 + φ4E [M1|x∗, c] + φ5E [M2|x∗, c] + γ1t+ γ4E [M1|x∗, c] t

+ γ5E [M2|x∗, c] t)(x− x∗)

= (φ1 + φ4(δ0 + δ1x∗ + δ′3c) + φ5(β0 + β1x
∗ + β′3c) + γ1t+ γ4(δ0 + δ1x∗ + δ′2c)t

+ γ5(β0 + β1x
∗ + β′2c)t)(x− x∗)

Given (2.2), (2.3), (2.5) and (2.6) we have

E
[
u
(
IYxIMxSMx , SYxIMxSMx

)]
= (φ2 + γ2t)δ0 + (φ3 + γ3t)β0 + φ0 + γ0t

+ (φ1 + γ1t+ (φ2 + γ2t)δ1 + (φ3 + γ3t)β1 + (φ4 + γ4t)(δ0 + δ′2c)

+ (φ5 + γ5t)(β0 + β′2c))x

+ ((φ4 + γ4t)δ1 + (φ5 + γ5t)β1)x
2 + (φ′6 + γ′6t+ (φ2 + γ2t)δ

′
2

+ (φ3 + γ3t)β
′
2)c
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E
[
u
(
IYxIMx∗SMx∗ , SYxIMx∗SMx∗

)]
= (φ2 + γ2t)δ0 + (φ3 + γ3t)β0 + φ0 + γ0t

+ (φ1 + γ1t+ (φ4 + γ4t)(δ0 + δ′2c) + (φ5 + γ5t)(β0 + β′2c))x

+ ((φ2 + γ2t)δ1 + (φ3 + γ3t)β1)x
∗

+ ((φ4 + γ4t)δ1 + (φ5 + γ5t)β1)xx
∗ + (φ′6 + γ′6t+ (φ2 + γ2t)δ

′
2 + (φ3 + γ3t)β

′
2)c

Therefore the average natural indirect effect is

∑
c,m1,m2

E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x, c) Pr(c)

− E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x∗, c) Pr(c)

= (φ1 + γ1t+ (φ2 + γ2t)δ1 + (φ3 + γ3t)β1 + (φ4 + γ4t)(δ0 + δ′2c)

+ (φ5 + γ5t)(β0 + β′2c))x+ ((φ4 + γ4t)δ1 + (φ5 + γ5t)β1)x
2

− ((φ4 + γ4t)δ1 + (φ5 + γ5t)β1)xx
∗

− (φ1 + γ1t+ (φ4 + γ4t)(δ0 + δ′2c) + (φ5 + γ5t)(β0 + β′2c))x

− ((φ2 + γ2t)δ1 + (φ3 + γ3t)β1)x
∗

= ((φ2 + γ2t)δ1 + (φ3 + γ3t)β1)(x− x∗)

+ ((φ4 + γ4t)δ1 + (φ5 + γ5t)β1)(x
2 − xx∗)
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As discussed previously in the absence of interaction we specify

φ4 = φ5 = γ4 = γ5 = 0. This leads to the following direct effect:

∑
c,m1,m2

{
(φ1 + φ4m1 + φ5m2 + γ1t+ γ4m1t+ γ5m2t)(x− x∗)

}
Pr (m1,m2|x∗, c) Pr(c)

= (φ1 + γ1t)(x− x∗)

and the following indirect effect:

∑
c,m1,m2

E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x, c) Pr(c)

− E [u (IY, SY) |x,m1,m2, c] Pr (m1,m2|x∗, c) Pr(c)

= ((φ2 + γ2t)δ1 + (φ3 + γ3t)β1)(x− x∗)
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The equations modeled here differ from that of the ones presented by

MacKinnon [41] in that the intercept of the outcome is not a cause of the slope of

the mediator. This follows because if IY affected SM then confounding assumption

(C4) would be violated because IY would be a mediator-outcome confounder (i.e. a

common cause of SM and Y) that was itself affected by the exposure. These

equations here unlike those of MacKinnon also allow for

exposure/treatment-mediator interaction.

2.3 Model with Growth Curve for Treatment/Exposure

In Section 2.2 the models were developed under the assumption of a binary

treatment/exposure. This is often the case in randomized trials. In this section we

consider the model displayed in Figure 2.2. This model allows for the

treatment/exposure to change with time and fits a growth curve for this as well.
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Figure 2.2: Model 2: Without Interaction, covariates C left out for simplicity

More formally, equations (2.9) - (2.17) specify the relationships shown in Figure

2.2 with 1, . . . , t measurement occasions. We have the following growth curve for

the treatment/exposure:

Xit = IXi + SXit+ εXit (2.9)

IXi = ρ0 + νIXi (2.10)

SXi = λ0 + νSXi (2.11)
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the following growth curve for the mediator:

Mit = IMi + SMit+ εMit (2.12)

IMi = δ0 + δ1IXi + δ2SXi + δ′3C+ νIMi (2.13)

SMi = β0 + β1IXi + β2SXi + β′3C+ νIMi (2.14)
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and the following growth curve for the outcome:

Yit = IYi + SYIt+ εYit (2.15)

IYi = φ0+φ1IXi+φ2SXi+φ3IMi+φ4SMi+φ5IXiIMi+φ6IXiSMi+φ7SXiIMi+φ8SXiSMi+φ′9C+νIYi

(2.16)

SYi = γ0+γ1IXi+γ2SXi+γ3IMi+γ4SMi+γ5IXiIMi+γ6IXiSMi+γ7SXiIMi+γ8SXiSMi+γ′9C+νSYi

(2.17)

Where E [εXit] = E [εMit] = E [εYit] = E [νIXi ] = E [νSXi ] = E [νIMi ] = E [νSMi ] =

E [νIYi ] = E [νSYi ] = 0 and where εXit , εMit , εYit , (νIXi , νSXi), (νIMi , νSMi)and(νIYi , νSYi) are

mutually independent and where C denotes baseline covariates which as discussed

below we select to represent exposure-mediator, exposure-outcome and

mediator-outcome confounders.

Equations 2.9, 2.12 and 2.15 specify the growth model for individual i’s

treatment/exposure, mediator and outcome respectively. Equations 2.10-2.11,

2.13-2.14 and 2.16-2.17 specify the intercept and slope for the exposure, mediator

and outcome respectively. Note that equations 2.16 and 2.17 allow for

exposure-mediator interaction. In the absence of interaction we specify

φ5 = φ6 = φ7 = φ8 = γ5 = γ6 = γ7 = γ8 = 0.

We use counterfactual notation IYx1x2m1m2 , SYx1x2m1m2 , IMx1x2 and SMx1x2 , where

IYx1x2m1m2 denotes the value of the intercept model for Y if we were to set IX = x1,

SX = x2, IM = m1 and SM = m2; SYx1x2m1m2 denotes the value of the slope model for Y if
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we were to set IX = x1, SX = x2, IM = m1 and SM = m2; IMx1x2 denotes the value of the

intercept model for M if we were to set IX = x1 and SX = x2 and SMx1x2 denotes the

value of the slope model for M if we were to set X = x. We use Yx1x2m1m2 to denote

the counterfactual outcome Y if we were to set IX = x1, SX = x2, IM = m1 and

SM = m2. The natural direct effect for two values of the intercept function of the

treatment/exposure x1 and x∗1 and for two values of the slope function of the

treatment/exposure x2 and x∗2 , is defined as E
[
Yx1x2IMx∗1 x∗2 SMx∗1 x∗2

− Yx∗1 x∗2 IMx∗1 x∗2 SMx∗1 x∗2

]
and

expresses how much the intercept and slope of the outcome process would change

on average if the intercept and slope functions of the treatment/exposure were

changed from levels x∗1 = x∗2 = 0 to x1 = a1 and x2 = a2 but for each individual the

intercept and slope of the mediator process is kept at the level it would have taken

under the absence of the treatment/exposure. The natural indirect effect for two

values of the intercept function of the treatment/exposure x1 and x∗1 and for two

values of the slope function of the treatment/exposure x2 and x∗2 , is defined as

E
[
Yx1x2IMx1x2SMx1x2

− Yx1x2IMx∗1 x∗2 SMx∗1 x∗2

]
and expresses how much the intercept and slope

of the outcome process would change on average if the if the intercept and slope

functions of the treatment/exposure were controlled at levels x1 = a1 and x2 = a2

but the intercept and slope of the mediator process were changed from the level

they would take if the if the intercept and slope functions of the

treatment/exposure functions were changed from x∗1 = x∗2 = 0 to x1 = a1 and x2 = a2.
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We show below that the natural direct and indirect effects are identified if:

(C5) IYIMSM
, SYIMSM

⨿ IX, SX|C (no unmeasured confounding for the exposure-outcome

relationship)

(C6) IYIMSM
, SYIMSM

⨿ IM, SM|IX, SX,C (no unmeasured confounding for the mediator-

outcome relationship)

(C7) IMx1x2 , SMx1x2 ⨿ IX, SX|C (no unmeasured confounding for the exposure-mediator

relationship)

(C8) IYm1,m2 , SYm1,m2 ⨿ IMx∗1 x∗2
, SMx∗1 x∗2

|C (no mediator-outcome confounders which are

affected by the exposure)

Proposition: For any function u if (C5) - (C-8) hold then

E
[
u
(
IYx1x2IMx∗1 x∗2 SMx∗1 x∗2

, SYx1x2IMx∗1 x∗2 SMx∗1 x∗2

)]
=

∑
c,m1,m2

E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x∗1 , x∗2 , c) Pr(c)
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Proof:

E
[
u
(
IYx1x2IMx∗1 x∗2 SMx∗1 x∗2

, SYx1x2IMx∗1 x∗2 SMx∗1 x∗2

)]
=

∑
c

E
[
u
(
IYx1x2IMx∗1 x∗2 SMx∗1 x∗2

, SYx1x2IMx∗1 x∗2 SMx∗1 x∗2

)
|C = c

]
Pr(C = c)

(Iterated Expectations)

=
∑

c,m1,m2

E
[
u (IYx1x2m1m2 , SYx1x2m1m2) |C = c, IMx∗1 x∗2 = m1, SMx∗1 x∗2 = m2

]
× Pr

(
IMx∗1 x∗2 = m1, SMx∗1 x∗2 = m2|C = c

)
Pr(C = c)

(Iterated Expectations)

=
∑

c,m1,m2

E [u (IYx1x2m1m2 , SYx1x2m1m2) |C = c] Pr
(
IMx∗1 x∗2 = m1, SMx∗1 x∗2 = m2|IX = x∗1 , SX = x∗2 ,C = c

)
× Pr(C = c) ((C8) & (C7))

=
∑

c,m1,m2

E [u (IYx1x2m1m2 , SYx1x2m1m2) |IX = x1, SX = x2,C = c]

× Pr (IM = m1, SM = m2|IX = x∗1 , SX = x∗2 ,C = c) Pr(C = c)

((C5) & consistency)

=
∑

c,m1,m2

E [u (IYx1x2m1m2 , SYx1x2m1m2) |IX = x1, SX = x2, IM = m1, SM = m2,C = c]

× Pr (IM = m1, SM = m2|IX = x∗1 , SX = x∗2 ,C = c) Pr(C = c) ((C6))

=
∑

c,m1,m2

E [u (IY, SY) |IX = x1, SX = x2, IM = m1, SM = m2,C = c]

× Pr (IM = m1, SM = m2|IX = x∗1 , SX = x∗2 ,C = c) Pr(C = c)

(consistency)

=
∑

c,m1,m2

E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x∗1 , x∗2 , c) Pr(c)

This completes the proof.
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Then if we replace x with x∗ we get:

E
[
u
(
IYx∗1 x∗2 IMx∗1 x∗2 SMx∗1 x∗2

, SYx∗1 x∗2 IMx∗1 x∗2 SMx∗1 x∗2

)]
=∑

c,m1,m2

E [u (IY, SY) |x∗1 , x∗2 ,m1,m2, c] Pr (m1,m2|x∗1 , x∗2 , c) Pr(c)

from this it follows with u(IY, SY) = IY + SYt+ εY that the average natural direct

effect is given by:

E
[
u
(
IYx1x2IMx∗1 x∗2 SMx∗1 x∗2

, SYx1x2IMx∗1 x∗2 SMx∗1 x∗2

)
− u

(
IYx∗1 x∗2 IMx∗1 x∗2 SMx∗1 x∗2

, SYx∗1 x∗2 IMx∗1 x∗2 SMx∗1 x∗2

)]
=∑

c,m1,m2

{E [u (IY, SY) |x1, x2,m1,m2, c]− E [u (IY, SY) |x∗1 , x∗2 ,m1,m2, c]} Pr (m1,m2|x∗1 , x∗2 , c) Pr(c)

If we replaced x∗ with x we would get:

E
[
u
(
IYx1x2IMx1x2SMx1x2

, SYx1x2IMx1x2SMx1x2

)]
=

∑
c,m1,m2

E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x1, x2, c) Pr(c)

from

this it follows with u(IY, SY) = IY+SYt+εY that the natural indirect effect is given by:

E
[
u
(
IYx1x2IMx1x2SMx1x2

, SYx1x2IMx1x2SMx1x2

)
− u

(
IYx1x2IMx∗1 x∗2 SMx∗1 x∗2

, SYx1x2IMx∗1 x∗2 SMx∗

)]
=∑

c,m1,m2

E [u (IY, SY) |x1, x2,m1,m2, c] {Pr (m1,m2|x1, x2, c)− Pr (m1,m2|x∗1 , x∗2 , c)} Pr(c)

With the model shown in Figure 2.2 we have that Y = u (IY, SY) = IY + SYt+ εY.

Thus given (2.16) and (2.17) we have

E [u (IY, SY) |x1, x2,m1,m2, c] = φ0 + φ1x1 + φ2x2 + φ3m1 + φ4m2 + φ5x1m1 + φ6x1m2 + φ7x2m1 + φ8x2m2

+ φ′9c+ (γ0 + γ1x1 + γ2x2 + γ3m1 + γ4m2 + γ5x1m1 + γ6x1m2 + γ7 + x2m1 + γ8x2m2 + γ′9c)t

and
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E [u (IY, SY) |x∗1 , x∗2 ,m1,m2, c] = φ0 + φ1x
∗
1 + φ2x

∗
2 + φ3m1 + φ4m2 + φ5x

∗
1m1 + φ6x

∗
1m2 + φ7x

∗
2m1 + φ8x

∗
2m2

+ φ′9c+ (γ0 + γ1x
∗
1 + γ2x

∗
2 + γ3m1 + γ4m2 + γ5x

∗
1m1 + γ6x

∗
1m2 + γ7 + x∗2m1 + γ8x

∗
2m2 + γ′9c)t

Therefore the average natural direct effect is

∑
c,m1,m2

{
(φ1 + γ1t+ (φ5 + γ5t)m1 + (φ6 + γ6t)m2)(x1 − x∗1 )

+(φ2 + γ2t+ (φ7 + γ7t)m1 + (φ8 + γ8t)m2)(x2 − x∗2 )
}

= (φ1 + γ1t+ (φ5 + γ5t)E [M1|x∗1 , x∗2 , c] + (φ6 + γ6t)E [M2|x∗1 , x∗2 , c])(x1 − x∗1 )+

(φ2 + γ2t+ (φ7 + γ7t)E [M1|x∗1 , x∗2 , c] + (φ8 + γ8t)E [M2|x∗1 , x∗2 , c])(x2 − x∗2 )

= (φ1 + γ1t+ (φ5 + γ5t)(δ0 + δ1x∗1 + δ2x∗2 + δ′3c) + (φ6 + γ6t)(β0 + β1x
∗
1 + β2x

∗
2 + β′3c))(x1 − x∗1 )

+ (φ2 + γ2t+ (φ7 + γ7t)(δ0 + δ1x∗1 + δ2x∗2 + δ′3c) + (φ8 + γ8t)(β0 + β1x
∗
1 + β2x

∗
2 + β′3c))(x2 − x∗2 )

Given (2.13), (2.14), (2.15) and (2.16) we have

E
[
u
(
IYx1x2IMx1x2SMx1x2

, SYx1x2IMx1x2SMx1x2

)]
= φ0 + γ0t+ (φ1 + γ1t)x1 + (φ2 + γ2t)x2

+ (φ3 + γ3t)(δ0 + δ′3c) + (φ4 + γ4t)(β0 + β′3c) + ((φ5 + γ5t)(δ0 + δ′3c) + (φ6 + γ6t)(β0 + β′3c))x1

+ ((φ7 + γ7t)(δ0 + δ′3c) + (φ8 + γ8t)(β0 + β′3c))x2 + ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)x1

+ ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)x2 + ((φ5 + γ5t)δ1 + (φ6 + γ6t)β1)x1x1

+ ((φ5 + γ5t)δ2 + (φ6 + γ6t)β2)x1x2 + ((φ7 + γ7t)δ1 + (φ8 + γ8t)β1)x2x1

+ ((φ7 + γ7t)δ2 + (φ8 + γ8t)β2)x2x2
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E
[
u
(
IYx1x2IMx1x2SMx1x2

, SYx1x2IMx1x2SMx1x2

)]
= φ0 + γ0t+ (φ1 + γ1t)x1 + (φ2 + γ2t)x2

+ (φ3 + γ3t)(δ0 + δ′3c) + (φ4 + γ4t)(β0 + β′3c) + ((φ5 + γ5t)(δ0 + δ′3c) + (φ6 + γ6t)(β0 + β′3c))x1

+ ((φ7 + γ7t)(δ0 + δ′3c) + (φ8 + γ8t)(β0 + β′3c))x2 + ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)x
∗
1

+ ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)x
∗
2 + ((φ5 + γ5t)δ1 + (φ6 + γ6t)β1)x1x

∗
1

+ ((φ5 + γ5t)δ2 + (φ6 + γ6t)β2)x1x
∗
2 + ((φ7 + γ7t)δ1 + (φ8 + γ8t)β1)x2x

∗
1

+ ((φ7 + γ7t)δ2 + (φ8 + γ8t)β2)x2x
∗
2

Therefore the average natural indirect effect is:

∑
c,m1,m2

E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x1, x2, c) Pr(c)− E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x∗1 , x∗2 , c) Pr(c)

= ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)x1 + ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)x2 + ((φ5 + γ5t)δ1 + (φ6 + γ6t)β1)x1x1

+ ((φ5 + γ5t)δ2 + (φ6 + γ6t)β2)x1x2 + ((φ7 + γ7t)δ1 + (φ8 + γ8t)β1)x2x1 + ((φ7 + γ7t)δ2 + (φ8 + γ8t)β2)x2x2

− ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)x
∗
1 − ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)x

∗
2 − ((φ5 + γ5t)δ1 + (φ6 + γ6t)β1)x1x

∗
1

− ((φ5 + γ5t)δ2 + (φ6 + γ6t)β2)x1x
∗
2 − ((φ7 + γ7t)δ1 + (φ8 + γ8t)β1)x2x

∗
1 − ((φ7 + γ7t)δ2 + (φ8 + γ8t)β2)x2x

∗
2

= ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)(x1 − x∗1 ) + ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)(x2 − x∗2 )

+ ((φ5 + γ5t)δ1 + (φ6 + γ6t)β1)(x1x1 − x1x∗1 ) + ((φ5 + γ5t)δ2 + (φ6 + γ6t)β2)(x1x2 − x1x∗2 )

+ ((φ7 + γ7t)δ1 + (φ8 + γ8t)β1)(x2x1 − x2x∗1 ) + ((φ7 + γ7t)δ2 + (φ8 + γ8t)β2)(x2x2 − x2x∗2 )

As discussed previously in the absence of interaction we specify

φ5 = φ6 = φ7 = φ8 = γ5 = γ6 = γ7 = γ8 = 0. This leads to the following direct effect:
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∑
c,m1,m2

{
(φ1 + γ1t)(x1 − x∗1 ) + (φ2 + γ2t)(x2 − x∗2 )

}
Pr (m1,m2|x∗, c) Pr(c)

=
{
(φ1 + γ1t)(x1 − x∗1 ) + (φ2 + γ2t)(x2 − x∗2 )

} ∑
c,m1,m2

Pr (m1,m2|x∗, c) Pr(c)

= (φ1 + γ1t)(x1 − x∗1 ) + (φ2 + γ2t)(x2 − x∗2 )

and the following indirect effect:

∑
c,m1,m2

E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x1, x2, c) Pr(c)− E [u (IY, SY) |x1, x2,m1,m2, c] Pr (m1,m2|x∗1 , x∗2 , c) Pr(c)

= ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)(x1 − x∗1 ) + ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)(x2 − x∗2 )

2.4 Standard Errors of Direct and Indirect Effects

When considering the direct and indirect effects it is important to be able to test

the statistical significance of these effects. Folmer[24], Sobel[61, 62], Bollen[5] and

Bollen & Stine[7] suggest applying the delta method to estimate the asymptotic

variances of the indirect and total effect. We suggest that the delta method is used

in this case as well. In the latent growth mediation context both the direct and

indirect effects are nonlinear functions of several model coefficient estimators. We

then use the first order multivariate delta method in order to approximate the

standard errors:

g
(
θ̂
)
≈ g(θ) +

∂g(θ)
∂θ

(2.18)
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Considering equation 2.18 we see that g(θ̂) is approximately equal to a linear

function of θ. We have from large sample theory that g
(
θ̂
)

is approximately

normal. Given that g(θ) is a constant we have a constant plus a multiple of a

normally distributed variable so in large samples g
(
θ̂
)

is approximately normal[7].

g
(
θ′
)
∼ N

(
g(θ),∇g(θ)′Var(θ)∇g(θ)

)
This means that we can use the normal distribution to create confidence

intervals as well as perform hypothesis tests on the direct and indirect effects of

models 1 and 2.

2.4.1 Standard Errors for Model 1

Using standard SEM software to fit model 1 results in estimates δ̂ of

δ ≡ (δ0, δ1, δ′2)′, β̂ of β ≡ (β0, β1, β
′
2)

′, φ̂ of φ ≡ (φ0, φ1, φ2, φ3, φ4, φ5, φ
′
6)

′ and γ̂ of

γ ≡ (γ0, γ1, γ2, γ3, γ4, γ5, γ
′
6)

′. Using these we take

θ ≡ (δ, β, φ, γ) ≡ (δ0, δ1, δ′2, β0, β1, β
′
2, φ0, φ1, φ2, φ3, φ4, φ5, φ

′
6, γ0, γ1, γ2, γ3, γ4, γ5, γ

′
6).

Given the direct effect for model 1 in Section 2.2 we have

g(θ) = (φ1+φ4(δ0+δ1x∗+δ′2c)+φ5(β0+β1x
∗+β′2c)+γ1t+γ4(δ0+δ1x∗+δ′2c)t+γ5(β0+β1x

∗+β′2c)t)
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Thus we have

∇g(θ) =
(
φ4 + γ4t, (φ4 + γ4t)x

∗, (φ4 + γ4t)c
′, φ5 + γ5t, (φ5 + γ5t)x

∗, (φ5 + γ5t)c
′, 0, 1

, 0, 0, δ0 + δ1x∗ + δ′2c, β0 + β1x
∗ + β′2c, 0

′, 0, t, 0, 0, (δ0 + δ1x∗ + δ′2c)t, (β0 + β1x
∗ + β′2c)t, 0

′)′
Thus SE (g(θ)) =

√
∇g(θ)′Var(θ)∇g(θ). This leads to the standard error of the

direct effect in model 1:

√
∇g(θ)′Var(θ)∇g(θ)|x− x∗|

Given the indirect effect for model 1 in Section 2.2 we have

g(θ) =
[
(φ2 + γ2t)δ1 + (φ3 + γ3t)β1

]
(x− x∗) +

[
(φ4 + γ4t)δ1 + (φ5 + γ5t)β1(x

2 − xx∗)
]

Thus we have

∇g(θ) =
(
0, (φ2 + γ2t)(x− x∗) + (φ4 + γ4t)(x

2 − xx∗), 0′, 0, (φ3 + γ3t)(x− x∗) + (φ3 + γ5t)(x
2 − xx∗)

, 0′, 0, 0, δ1(x− x∗), β1(x− x∗), δ1(x2 − xx∗), β1(x
2 − xx∗), 0′, 0, δ1t(x− x∗), β1t(x− x∗)

, δ1t(x2 − xx∗), β1t(x
2 − xx∗), 0′

)
Thus the standard error of the indirect effect in model 1:

√
∇g(θ)′Var(θ)∇g(θ)

2.4.2 Standard Errors for Model 2

Using standard SEM software to fit model 2 results in estimates ρ̂0 of ρ0, λ̂0 of λ0, δ̂

of δ ≡ (δ0, δ1, δ2, δ′3)′, β̂ of β ≡ (β0, β1, β2, β
′
3)
′, φ̂ of

φ ≡ (φ0, φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ
′
9)

′ and γ̂ of γ ≡ (γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ
′
9)

′.
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Using these we take

θ ≡ (ρ0, λ0, δ, β, φ, γ) ≡ (ρ0, λ0, δ0, δ1, δ2, δ
′
3, β0, β1, β2, β

′
3, φ0, φ1, φ2, φ3, φ4, φ5, φ6, φ7

, φ8, φ
′
9, γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ

′
9).

Given the direct effect for model 2 in Section 2.3 we have

g(θ) = (φ1 + γ1t+ (φ5 + γ5t)(δ0 + δ1x∗1 + δ2x∗2 + δ′3c) + (φ6 + γ6t)(β0 + β1x
∗
1 + β2x

∗
2 + β′3c))(x1 − x∗1 )

+ (φ2 + γ2t+ (φ7 + γ7t)(δ0 + δ1x∗1 + δ2x∗2 + δ′3c) + (φ8 + γ8t)(β0 + β1x
∗
1 + β2x

∗
2 + β′3c)(x2 − x∗2 )

Thus we have

∇g(θ) =
(
0, 0, (φ5 + γ5t)(x1 − x∗1 ) + (φ7 + γ7t)(x2 − x∗2 ), (φ5 + γ5t)x

∗
1 (x1 − x∗1 ) + (φ7 + γ7t)x

∗
1 (x2 − x∗2 )

, (φ5 + γ5t)x
∗
2 (x1 − x∗1 ) + (φ7 + γ7t)x

∗
2 (x2 − x∗2 ), (φ5 + γ5t)c

′(x1 − x∗1 ) + (φ7 + γ7t)c
′(x2 − x∗2 )

, (φ6 + γ6t)(x1 − x∗1 ) + (φ8 + γ8t)(x2 − x∗2 ), (φ6 + γ6t)x
∗
1 (x1 − x∗1 ) + (φ8 + γ8t)x

∗
1 (x2 − x∗2 )

, (φ6 + γ6t)x
∗
2 (x1 − x∗1 ) + (φ8 + γ8t)x

∗
2 (x2 − x∗2 ), (φ6 + γ6t)c

′(x1 − x∗1 ) + (φ8 + γ8t)c
′(x2 − x∗2 )

, 0, (x1 − x∗1 ), (x2 − x∗2 ), 0, 0, (δ0 + δ1x∗1 + δ2x∗2 + δ′3c)(x1 − x∗1 ), (β0 + β1x
∗
1 + β2x

∗
2 + β′3c)(x1 − x∗1 )

, (δ0 + δ1x∗1 + δ2x∗2 + δ′3c)(x2 − x∗2 ), (β0 + β1x
∗
1 + β2x

∗
2 + β′3c)(x2 − x∗2 ), 0

′, 0, (x1 − x∗1 )t, (x2 − x∗2 )t

, 0, 0, (δ0 + δ1x∗1 + δ2x∗2 + δ′3c)(x1 − x∗1 ), (β0 + β1x
∗
1 + β2x

∗
2 + β′3c)(x1 − x∗1 )

, (δ0 + δ1x∗1 + δ2x∗2 + δ′3c)(x2 − x∗2 ), (β0 + β1x
∗
1 + β2x

∗
2 + β′3c)(x2 − x∗2 ), 0

′ )

Thus the standard error of the direct effect in model 2:

√
∇g(θ)′Var(θ)∇g(θ)

Given the indirect effect for model 2 in Section 2.3 we have

g(θ) = ((φ3 + γ3t)δ1 + (φ4 + γ4t)β1)(x1 − x∗1 ) + ((φ3 + γ3t)δ2 + (φ4 + γ4t)β2)(x2 − x∗2 )

+ ((φ5 + γ5t)δ1 + (φ6 + γ6t)β1)(x1x1 − x1x∗1 ) + ((φ5 + γ5t)δ2 + (φ6 + γ6t)β2)(x1x2 − x1x∗2 )

+ ((φ7 + γ7t)δ1 + (φ8 + γ8t)β1)(x2x1 − x2x∗1 ) + ((φ7 + γ7t)δ2 + (φ8 + γ8t)β2)(x2x2 − x2x∗2 )
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Thus we have

∇g(θ) = ( 0, 0, 0, (φ3 + γ3t)(x1 − x∗1 ) + (φ5 + γ5t)(x1x1 − x1x∗1 ) + (φ7 + γ7t)(x2x1 − x2x∗1 )

, (φ3 + γ3t)(x2 − x∗2 ) + (φ5 + γ5t)(x1x2 − x1x∗2 ) + (φ7 + γ7t)(x2x2 − x2x∗2 ), 0
′, 0

, (φ4 + γ4t)(x1 − x∗1 ) + (φ6 + γ6t)(x1x1 − x1x∗1 ) + (φ8 + γ8t)(x2x1 − x2x∗1 )

, (φ4 + γ4t)(x2 − x∗2 ) + (φ6 + γ6t)(x1x2 − x1x∗2 ) + (φ8 + γ8t)(x2x2 − x2x∗2 )

, 0′, 0, 0, 0, δ1(x1 − x∗1 ) + δ2(x2 − x∗2 ), β1(x1 − x∗1 ) + β2(x2 − x∗2 )

, δ1(x1x1 − x1x∗1 ) + δ2(x1x2 − x1x∗2 ), β1(x1x1 − x1x∗1 ) + β2(x1x2 − x1x∗2 )

, δ1(x2x1 − x2x∗1 ) + δ2(x2x2 − x2x∗2 ), β1(x2x1 − x2x∗1 ) + β2(x2x2 − x2x∗2 )

, 0′, 0, 0, 0, δ1t(x1 − x∗1 ) + δ2t(x2 − x∗2 ), β1t(x1 − x∗1 ) + β2t(x2 − x∗2 )

, δ1t(x1x1 − x1x∗1 ) + δ2t(x1x2 − x1x∗2 ), β1t(x1x1 − x1x∗1 ) + β2t(x1x2 − x1x∗2 )

, δ1t(x2x1 − x2x∗1 ) + δ2t(x2x2 − x2x∗2 ), β1t(x2x1 − x2x∗1 ) + β2t(x2x2 − x2x∗2 ), 0
′

Thus the standard error of the indirect effect in model 2:

√
∇g(θ)′Var(θ)∇g(θ)

2.5 An Example

In this section we give an example of a longitudinal mediation analysis using latent

growth curve models and the definition of the direct and indirect effects shown in

section 2.2. The data and motivation of this example comes from Gunzler et
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al.[30]. Their goal was to develop an adjusted screening tool to better assess

depressive symptoms in Multiple Sclerosis (MS) patients. Screening for depression

in this population can be challenging due to the overlap of MS symptoms with

symptoms of depression. One mechanism by which MS may affect depression is

through physical limitations as measured, for example, by a timed 25-foot walk.

Disentangling these relationships can be key for treatment as depression is the

most frequent psychiatric diagnosis in MS patients [26].

Consider the latent growth curve model as shown in figure 2.3. We are

interested in how MS type (0→ relapsing,−1→ progessive) affects self-reported

depression screening (PHQ-9) directly and indirectly through a timed 25-foot

walk. As noted in Figure 2.3, log timed walk (ltw) and PHQ-9 (PHQ) are

measured at 6 different time points. These time points vary between subjects.

MS Type

Iltw Sltw

IPHQ SPHQ

ltw1 ltw2 ltw3 ltw4 ltw5 ltw6

PHQ1 PHQ2 PHQ3 PHQ4 PHQ5 PHQ6

δ 1

β
1

φ1

γ1

1 1 1 1 1 1

1 1 1 1 1 1
φ 2

γ2

φ 3

γ 3

Figure 2.3: MS and Depression Example

PHQ-9 is used both in screening and monitoring of depression in patients.
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Patients respond to a likert scale from 0 (not at all) to 3 (every day) about 9

different symptoms over the prior 2 weeks before their appointment[30]. This leads

to a total score with a range from 0 to 27. The 25-foot timed walk is a

quantitative test of mobility and leg function. Gunzler et al used an additional peg

test to quantitatively assess arm and hand function as well as using each symptom

of PHQ-9 as an outcome. Here we focus on the total PHQ-9 score as the outcome

and only the log timed walk for the mediator.

Gunzler et al.[30] used data from the Knowledge Program developed at

Cleveland Clinic’s Neurological Institute [2] which links PHQ-9 data to its EPIC

electronic health record. The Mellen Center[3] for MS manages more than 20,000

visits and 1,000 new patients every year for MS treatment. The Knowledge

Program tracks illness severity and treatment efficacy over time across the Mellen

Center. This data comes from a retrospective cohort containing patients with

measurements of PHQ-9 and a 25-foot timed walk data available. Table 2.1

displays the demographic information of the 3,507 patients in the sample from

2008 - 2011. In the table the patients are split by a PHQ-9 score of < 10 and ≥ 10,

where 10 is a validated threshold for moderate depression[35].

For this example we fit the following mediator process

ltwit = Iltwi + Sltwi + εltwit

Iltwi = δ0 + δ1CCLB1i + νIltwi

Sltwi = β0 + β1CCLB1i + νSltwi
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PHQ− 9 < 10 PHQ− 9 ≥ 10 P-valuen = 2, 502 n = 1, 005
PHQ-9 3.64± 2.75 15.26± 4.40 < 0.001
MSPS fatigue 1.62± 1.25 3.35± 1.12 < 0.001
MSPS cognitive 0.86± 0.96 2.23± 1.30 < 0.001
MSPS mobility 1.37± 1.58 2.39± 1.48 < 0.001
MSPS hand function 0.77± 0.94 1.79± 1.27 < 0.001
25-Foot time walk 7.85± 10.56 8.83± 7.61 0.002
9-hole peg test 23.68± 10.66 26.82± 12.48 < 0.001
Age 46.12± 11.88 44.47± 11.20 < 0.001
Baseline time since diagnosis 11.80± 10.00 10.89± 9.37 0.016
Female n(%) 1, 836(74) 740(74) 0.879
Race, n(%) 0.07

Caucasian 2,112 (85) 821 (82)
African-American 225 (9) 114 (11)

Other 144 (6) 65 (7)
MS type, n(%) 0.067

Relapsing 2,045 (84) 787 (82)
Progressive 383 (16) 177 (18)

Table 2.1: Demographics of the 3,507 Patients in Sample

and the following outcome process

PHQit = IPHQi + SPHQi + εPHQit

IPHQi = φ0 + φ1CCLB1i + φ2Iltwi + φ3IStwi + νIPHQi

SPHQi = γ0 + γ1CCLB1i + φ2Iltwi + φ3IStwi + νSltwi .

Where E [εltwit] = E
[
εPHQit

]
= E

[
νIltwi

]
= E

[
νSltwi

]
= E

[
νIPHQi

]
= E

[
νSPHQi

]
= 0 and

where εltwit , εPHQit , (νIltwi , νSltwi)and(νIPHQi
, νSPHQi

) are mutually independent. The

example here is included for the purposes of illustration only and no covariates are
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adjusted for in the analysis; future work will carefully assess what covariates need

to be adjusted for to make the confounding assumptions plausible.

Variable Estimate Std. Err. t Pr > |t| 95% CI
δ0 2.361 0.029 81.106 < 0.001 2.30416 2.41784
δ1 0.59 0.031 19.057 < 0.001 0.52924 0.65076
β0 0.066 0.012 5.695 < 0.001 0.04248 0.08952
β1 0.049 0.012 4.018 < 0.001 0.02548 0.07252
φ0 -0.825 0.996 -0.828 0.408 -2.77716 1.12716
φ1 -1.238 0.377 -3.288 0.001 -1.97692 -0.49908
φ2 3.677 0.499 7.365 < 0.001 2.69896 4.65504
φ3 -8.897 4.343 -2.049 0.04 -17.4093 -0.38472
γ0 1.643 0.463 3.552 < 0.001 0.73552 2.55048
γ1 0.396 0.18 2.205 0.027 0.0432 0.7488
γ2 -0.904 0.233 -3.875 < 0.001 -1.36068 -0.44732
γ3 8.185 2.096 3.905 < 0.001 4.07684 12.29316

Table 2.2: Estimates from Model shown in Figure 2.3. Obtained using Mplus
version 7.2[49]

Table 2.2 displays the results estimated by fitting the above model in Mplus.

Recall from Section 2.2 that for this model without interaction the direct effect is

(φ1 + γ1t)(x− x∗) and the indirect effect is ((φ2 + γ2t)δ1 + (φ3 + γ3t)β1)(x− x∗). We let

x = 0 and x∗ = −1 to reflect a change in MS status from relapsing to progressive

such that the direct effect is

(φ1 + γ1t)(x− x∗) = −1.238+ 0.396t

and the indirect effect is

((φ2+γ2t)δ1+(φ3+γ3t)β1)(x−x
∗) = ((3.677−0.904t)0.59+(−8.897+8.185t)0.049) = 1.733−0.132t
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Recall from Section 2.4.1 that the standard error of the direct effect is√
∇g(θd)′Var(θ)∇g(θd)|x− x∗| where ∇g(θd)′ = (0, 0, 0, 0, 0, 1, 0, 0, 0, t, 0, 0) and the

standard error for the indirect effect is
√
∇g(θid)′Var(θ)∇g(θid) where

∇g(θid)′ = ((0, (φ2 + γ2 ∗ t)(x− x∗), 0, (φ3 + γ3 ∗ t)(x− x∗), 0, 0, (δ1, β1)(x− x∗), 0, 0, δ1 ∗

t(x− x∗), β1 ∗ t(x− x∗)), where Var(θ) is estimated by Mplus.

Table 2.3 displays the direct and indirect effects at various time points as well as

a 95% confidence interval at each time point and p-value of the effect at that

particular time point. We see that initially direct effect is negative however it

becomes statistically insignificant sometime between 1 and 2 years. However the

indirect effect is positive with decreasing effect size yet remains statistically

significant throughout the duration of this study.

Time Direct Effect 95%CI Indirect Effect 95%CI
(years) Lower Upper p-value Lower Upper

0 -1.238 -1.97659 -0.49942 0.001 1.733477 1.270811 2.196144 < 0.001
1 -0.842 -1.50667 -0.17733 0.013 1.601182 1.245434 1.95693 < 0.001
2 -0.446 -1.21115 0.319154 0.253 1.468887 1.065199 1.872575 < 0.001
3 -0.05 -1.0382 0.938198 0.921 1.336592 0.768012 1.905172 < 0.001

Table 2.3: Direct and Indirect Effects of Model in Figure 2.3

MacKinnon[41] estimates as the direct effect γ1 = 0.396 95% CI (0.043, 0.749)

and an indirect effect of β1γ3 = (0.049)(8.185) = 0.401 95% CI (0.122, 0.680), where

the standard error of the indirect effect is
√

β21σ2γ3 + γ23σ
2
β1
= 0.142. This makes the

further assumption that the direct and indirect effect remain constant throughout

time as opposed to the methods in this paper which allow for the direct and

indirect effect to change with time.
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2.6 Discussion

This paper mathematically defines the direct and indirect effects of longitudinal

mediation with latent growth curve models using counterfactuals. We build upon

the models considered by MacKinnon[14, 41] but allowed for the presence of

treatment/exposure-mediator interaction. We then considered the assumptions

needed for identifiability of these direct and indirect effects. Those assumptions

are:

1. No unmeasured confounding of the exposure-outcome relationship

2. No unmeasured confounding of the mediator-outcome relationship

3. No unmeasured confounding of the exposure-mediator relationship

4. No mediator-outcome confounders which are affected by the exposure

We consider these effects using the above assumptions first with a model in

which the treatment/exposure is binary, followed by a model in which the

treatment/exposure itself changes with time. We find that latent growth mediation

models in current literature allow for the intercept of the outcome to be a cause for

the slope of the mediator. This violates assumption 4 since the intercept of the

outcome would become a mediator-outcome confounder which itself was affected

by exposure. We also find that with many models currently used in the literature

it is assumed that the direct and indirect effects remain constant while these

methods allow them to vary with time. With the direct and indirect effects defined

we consider the delta method for estimating the standard error of those effects.
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The methodology developed in this paper thus formalizes mediation analysis

with latent growth curve models using counterfactuals, makes clear the

assumptions and extends these methods to allow for exposure mediator

interactions.
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3
The Results of Blended Instruction in

Quantitative Methods in Public Health:

A Pilot Study
Adam J Sullivan, Jenny Bergeron, & Marcello Pagano

3.1 Introduction

Technology advances continuously. It is our responsibility as educators to carefully

evaluate when these advances have the potential to impact our teaching, and

consider how best to adopt or possibly ignore them.

As with most change, it is advisable to introduce slowly, drawing on parallels

with established methods of teaching. This will typically facilitate the comparison

of the new with the old, in order to evaluate whether the new methods improve
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the learning experience. For example, McGready and Brookmeyer [47], analyze

data from a study comparing online biostatistics courses with the traditional

course. In their study they found no statistical evidence of a difference in student

achievement when comparing the two styles of teaching. There is a wide and

growing body of literature on evaluating blended learning at the university level

[8, 13, 15, 19, 20, 38, 42, 65, 79]. Zhao and Breslow [78] compiled an extensive

literature review on blended learning and found that there were various studies

which showed statistically significant differences between blended and traditional

learning styles. However many of these studies adequately control for confounders

and they report that there is still no strong evidence that one blended method is

better than another at this time.

We are reporting on a pilot study we have carried out over the last two years at

the Harvard School of Public Health that was guided by the above considerations.

The focus of this report is on evaluating the impact these innovations have had on

the learning of biostatistics. We began designing 2 courses that allowed us to make

the comparisons/contrasts. These courses are:

1. Bio 200: Principles of Biostatistics (5 credits), an introductory biostatistics

course that has existed for almost 100 years at the Harvard School of Public

Health (although the name of the course has changed) and newly blended

for the first time in fall of 2013;

2. ID 200: Principles of Biostatistics and Epidemiology (7.5 credits), a new

course pioneered in the fall of 2013 and offered again in summer of 2014. ID

200 combines the materials of BIO 200 and EPI 500: Fundamentals of

Epidemiology (2.5 credits).
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Both of these courses were taught in a blended format, which consisted of online

materials as well as traditional classroom meetings. The online materials were

produced for the edX course PH207x: Health in Numbers: Quantitative Methods

in Clinical & Public Health Research. PH207x’s online material consisted of videos

covering the material listed in section 3.2. In between videos were a series of

multiple choice questions, discussion questions and applets to help further student

understanding. The traditional classroom meetings consisted of weekly discussion

and labs.

With this study we compare BIO 200 from fall of 2013 and ID 200 from fall of

2013 and summer of 2014 to BIO 200 classes from 1992 and 1993, as well as BIO

201: Introduction to Statistical Methods from the fall of 2013. BIO 201 is similar

in content to BIO 200 but the primary audience is for students with higher

mathematical and statistical backgrounds than BIO 200.

We first discuss the way in which our blended courses were designed. We then

analyze the delivery of this course from the perspectives of the students and an

informal comparison to both current and past courses. We then suggest changes to

consider when offering a course of this format. Finally we consider how

implementing these changes effected the assessment of ID 200 in the summer 2014

semester.

3.2 Design and Implementation of Courses

3.2.1 BIO 200

The blended format of BIO 200 was offered for the first time during the 2013 fall

semester. We used the edX platform with the biostatistics material loaded into
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weekly modules. These modules covered the material which is classically required

for accreditation in the MPH degree [1] and are covered in the book, Principle of

Biostatistics [51]:

Data Presentation Numerical Summary Measures

Rates and Standardization Life Tables1

Probability Theoretical Probability Distributions

Sampling Distribution of the means Confidence Intervals

Hypothesis Testing Comparison of Two Means

Analysis of Variance Non-parametric Methods

Inference on Proportions Contingency Tables

Correlation2 Linear Regression 2

Logistic Regression1 Sampling Theory1

These topics were covered over 15 weeks. Each week consisted of at least one

lesson module on the topics above. Modules were constructed with a series of short

video lessons, quick check questions, discussions, applets and online problem sets.

Many of the videos were 10 minutes or less and were utilized as a video “textbook”.

There were also instructional videos on how to utilize the associated statistical

computer program package, Stata [64], in order to evaluate the statistical methods

taught in each module. Many of the videos including the Stata instructional videos

as well as problem sets utilized a sample of data from the Framingham Heart

Study including 4,434 observations and 74 variables. This sample allowed the

students to become familiar with a real data set as they worked throughout the

course. The quick check questions are multiple choice questions that followed a
1This topic was not covered in the previous brick and mortar offering of BIO 200
2This topic was only briefly covered in the previous brick and mortar offering of BIO 200
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video. They were ungraded and could be answered as many times as the student

desired. The students were encouraged to watch all or part of a video over again if

they could not answer them correctly. A number of applets were used to help

students understand concepts (such as the quincunx applet [55] to help students

visualize the binomial distribution). For students who did wish to view the videos

or had difficulty in learning from videos it was suggested that they read from the

suggested course textbook [51] or the “jotter notes.” The jotter notes are edited

scripts of the video lessons with slides from the videos filled in where they would

have appeared in the video. Additional online material consisted of discussion

boards and problem sets. The discussion boards contained guided discussion

topics, module material discussion and discussion on the problem set material.

These boards were moderated by several teaching assistants to maintain accuracy

of information given. All students who emailed questions were instructed to place

their questions on the discussion board where both the question and responses

would be available to the entire class. The online problem sets consisted of multiple

choice and fill in answers based on conceptual as well as data analysis questions.

Prior to a weekly class, students were expected to complete the assigned

modules (Either by watching all of the videos or reading the textbook or “jotter

notes”). After completing this material they were asked to respond to an online

survey, called “Muddy Points Surveys”, on how comfortable they were with the

major concepts in the videos and practice problems. Concepts were rated on a four

point Likert scale ranging from “Very Unclear” to “Very Clear.” These surveys

helped to form the basis of the 80 minute class discussion with the professor each

week. These discussions contained review of that week’s particular modules as well

as more examples from new data sets of the Framingham Heart Study sample. In
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order to encourage more discussion the students were split into two groups of 65

students. In addition to the in class session students were assigned to a 2-hour lab

run by a teaching assistant. The lab sessions consisted of problem solving and data

analysis using Stata. Labs alternated between the teaching assistant teaching how

to solve a particular problem and individual or group work to solve the problems.

Problems were designed to walk the students through how a statistician would

approach and solve them.

3.2.2 ID 200

The blended format of ID 200 was first offered during the fall 2013 semester then

again in the summer 2014 semester. The fall semester spanned 15 weeks and the

summer semester spanned 6 weeks. With the fall semester the biostatistics

material covered was the same as in the fall 2013 BIO 200. For the summer Life

Tables and Sampling theory were removed due to the time constraints and course

load of the students (17.5 credits for their summer semester). Along with the

biostatistics component there was the addition of epidemiology component. For the

epidemiology component of ID 200 the topics covered were the same as PH207X:72



Prevalence Incidence

Measures of Association Case Reports

Experimental Studies Causal Inference

Cohort Study Design Confounding

Case Control Studies Stratification

Mantel-Haenszel Estimation Matching

Regression Coefficients Propensity Scores

Screening

In ID 200 the procedure was similar to BIO 200 with the exception that they

met once a week for 4 hours at a time. During this block of time the students had

about 80 minutes for biostatistics discussion, 25 minutes for epidemiology

discussion, 60 minutes for lab time and the rest of the time was devoted to a term

long project. The project for the fall semester was completed in groups where the

groups each determined a topic of interest and posited a series of questions about

the chosen topic. In some cases IRB approval was sought in order to survey

students at HSPH. Other groups utilized publicly available data for analysis. Once

the data was collected students analyzed their data and used various biostatistical

and epidemiological tests to best assess their posited questions. The project

culminated in a presentation given to the class, teaching assistants and faculty.

For the summer semester the project was again completed in groups but all groups

were required to design a survey, obtain IRB approval and then collect the data

from the summer students at the school. Once they analyzed this data they were

required to write a paper and give a presentation to the class and instructors.
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3.2.3 GAISE Guidelines

The Guidelines for Assessment and Instruction in Statistics Education (GAISE)

College Report gives six recommendations for an introductory course in statistics

1. Emphasize statistical literacy and develop statistical thinking.

2. Use real data.

3. Stress conceptual understanding, rather than mere knowledge of procedures.

4. Foster active learning in the classroom.

5. Use technology for developing conceptual understanding and analyzing data.

Both Bio 200 and ID 200 meet all of the proposed guidelines. Throughout the

course topics were tied together in order to boost statistical literacy and thinking.

The Framingham Heart Study data was utilized in videos, online discussion

questions, in-class discussions as well as problem sets gave students the

opportunity to work with real data which is not perfect (i.e. it contains missing

data as well non-normal data). The use of Stata throughout the course allowed for

actual data analysis to be performed. Labs and in-class discussions were designed

to get students engaged and to be active in their learning. Students performed

data analysis as a class, in small groups or individually. Finally the exam

questions were not written to test students ability to reproduce calculations or

multiple formulas, rather there were about the overarching concepts and core

knowledge of statistics. We consider it more valuable that a student would

understand what a concept was and why a particular test was used rather than

testing to see if they can compute a test statistic by hand. These guidelines allow

us to utilize blended learning and technology while maintaining the best current

standards of teaching in statistics education.
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3.3 Evaluation of 2013 Fall Semester Courses

3.3.1 Student’s Evaluation of Courses

We employed 3 different surveys to allow students to evaluate the course. The first

survey was a midterm survey given to the students using Qualtrics (Qualtrics,

Provo, UT). We chose to leave the results of this survey out of our analysis due to

complications with the survey. In order to maintain anonymity of the survey no

record of students names were kept. Initial review of the mid-term survey provided

sufficient evidence that some students answered multiple times. In one simple

example a student wrote that they had filled it out earlier but forgot one

comment. The second survey employed was the standard end of course evaluation

which is given by the Office of Education at Harvard T.H. Chan School of Public

Health. Given the complications that arose with the mid-term survey we had a

person experienced in evaluation from the Bok Center at Harvard carry out the

survey for us. Before we received the results of the survey the responses were

anonymized. Students were informed about the design of the survey and had the

option of taking this survey. Results for selected questions of both end of year

surveys can be seen in Table 3.1 and Tables 3.3, 3.4 and 3.5.

3.3.1.1 Survey 2 - End of Course survey Harvard T.H. Chan School of Public

Health

In the Harvard Chan School survey for ID 200, 29 out of 30 students (97%)

responded and for BIO 200, 114 out of 130 (88%) responded. In the Bok Center

survey for ID 200, 22 out of 30 students (73%) responded and for BIO 200, 68 out
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of 130 (52%) responded. Students were asked if they would recommend this course

to another student. For ID 200 58.6% of the respondents answered that they

probably or definitely would whereas 46.8% of students in BIO 200 answered the

same. This gives a combined 47.6% of the respondents in the two courses would

probably or definitely recommend this course to another. In Fall 2012 semester,

with the traditional teaching only, 95.5% of the respondents answered that they

would probably or definitely recommend this course to another student. There was

a statistically significant difference between the responses of the three courses.

When combining the data for the fall 2013 blended courses and comparing it to

2012 BIO 200 the p-value is still highly significant. This survey did not allow the

students to explain why they chose their responses.

When asked about the amount of time spent outside of class for the courses,

65.5% of ID 200 respondents answered that they spend less than or equal to 6

hours a week, 81.6% of BIO 200 respondents and 84.3% of 2012 BIO 200

respondents answered the same. There is a difference between the courses however

this is somewhat concerning as BIO 200 is a 5 credit course and ID 200 is a 7.5

credit course. Students should be spending at least 50% more time on ID 200.

They not only had the same biostatistics videos but had additional epidemiology

videos. ID 200 students also had additional problem set questions and a semester

project to work on.
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Finally students were asked about formal training in the content area prior to

taking this course. Table 3.1 displays the results and we find that there are

significant differences. Students in Fall 2013 ID 200 had more experience than that

of BIO 200. Students who self selected to take ID 200 in the Fall 2013 semester

may have chosen to do so due to having more exposure to statistics than BIO 200

students.

ID 200 BIO 200 BIO 200 ID 200 p-value
Definitely Would 6 (20.7) 17 (14.9) 91 (84.3) 11 (73.3) < 0.001
Probably Would 11 (37.9) 34 (29.8) 12 (11.1) 4 (26.7)

Probably Would Not 10 (34.5) 62 (54.4) 2 (1.9) 0
No Response 2 (6.9) 1 (0.9) 3 (2.8) 0

ID 200 BIO 200 BIO 200 ID 200 p-value
<2 hours 0 7 (6.1) 2 (1.9) 0 0.092
2-3 hours 2 (6.9) 34 (29.8) 38 (35.2) 2 (13.3)
4-6 hours 17 (58.6) 52 (45.7) 51 (47.2) 8 (15.3)

7-12 hours 8 (27.6) 17 (14.9) 14 (13) 4 (26.7)
>12 hours 1 (3.4) 4 (3.5) 2 (1.9) 1 (6.7)

No Response 1 (3.4) 0 1 (0.9) 0

ID 200 BIO 200 BIO 200 ID 200 p-value
None 3 (10.3) 41 (36) 50 (37) 0 < 0.001
Some 22 (75.9) 66 (57.9) 61 (56.5) 10 (66.7)

Considerable 2 (6.9) 6 (5.3) 6 (5.6) 5 (33.3)
No Response 2 (6.9) 1 (0.9) 1 (0.9) 0

Would you recommend this course to another? [n(%)]

On average, how many hours per week outside of class did you dedicate to this course? [n(%)]

Did you have formal training in the content area prior to taking this course? [n(%)]

Fall 2013 Fall 2012 Summer 2014

Fall 2013 Fall 2012 Summer 2014

Fall 2013 Fall 2012 Summer 2014

Table 3.1: Student responses to Harvard T.H. Chan School of Public Health
end of course survey

The responses from this survey suggest that students are not as comfortable

with this course as with the prior brick and mortar format. Some blended research

shows that students’ dislike of blended learning is from the extra workload [79],

given the student responses shown here it is not evident to us that students are

working more outside the classroom. They may believe that they are working

more and longer than they would have in a traditional course however this is not

upheld by our survey findings.
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3.3.1.2 Survey 3 - Bok Center Survey

In the Bok Center survey 22 out of 30 (73%) ID 200 students responded and 68

out of 130 (52%) BIO 200 students responded. Students were asked questions

about in class meetings, problem sets as well as online instruction and watching

behavior. They were also allowed to give extensive comments and written critiques

that we discuss as well. Table 3.2 shows some of the demographic information

which we use to compare the survey sample to the overall class. We note that in

the overall class data there is some missing data. One student selected FERPA so

their information is not shared. Other students with missing data are from other

Harvard schools outside of Harvard T.H. Chan School of Public Health and we

were unable to obtain access to their demographic data. Based on table 3.2 the

available demographic data suggests that there is no difference between the sample

for the survey and the overall class.

0.573 0.592
Female 13 (59.1) 14 (46.7) 47 (69.1) 83 (63.8)

Male 9 (40.9) 15 (50) 18 (26.5) 26 (20)
Missing 0 1 (3.3) 3 (4.4) 21 (16.2)

1 0.393
GHP 2 (9) 2 (6.7) 10 (14.7) 15 (11.5)
HPM 1 (5) 2 (6.7) 2 (2.9) 12 (9.2)
MPH 18 (81) 23 (76.7) 38 (55.9) 61 (46.9)
SBS 1 (5) 2 (6.7) 13 (19.1) 18 (13.8)
SHH 0 0 1 ( 1.5) 1 (0.8)

Missing 0 1 (3.3) 3 (4.4) 23 (17.7)

Sample Overall p-value Sample Overall p-value
ID 200 BIO 200

Concentration, Count (%)

Gender, count (%)

Table 3.2: Demographic Information for Survey Sample

Table 3.3 displays the results of the Bok Center survey pertaining to statements

regarding in class meetings. The first statement that students responded to was

that the in class meetings were well organized. In ID 200 48% of the respondents
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agree or strongly agree versus 34% who disagree or strongly disagree. In BIO 200

29% of the respondents agree or strongly agree versus 44% who disagree or

strongly disagree. In some comments students felt that the in class meetings did

not clarify the confusing portion of the videos or highlight the main points. The

second statement responded to was that the in class meetings expanded upon what

was learned online. In ID 200 29% of respondents agree or strongly agree versus

28% who disagree or strongly disagree. In BIO 200 31% of the respondents agree

or strongly disagree versus 42% who disagree or strongly disagree. The last

statement was that students were actively engaged in the in-class exercises and

discussion. In ID 200 64% of the respondents agreed or strongly agreed versus BIO

200 where only 35% of the respondents agreed or strongly agreed. This suggests

that the class size of 30 in ID 200 allowed for for engagement than the class size of

greater than 60 for BIO 200.

Table 3.4 displays the results of the Bok Center survey pertaining to statements

regarding problem sets and assignments.The first statement was that the weekly

problem sets helped the students think critically about the course material. In ID

200 81% of the respondents agreed or strongly agreed versus BIO 200 where 77%

agreed or strongly agreed. These high responses were as we had hoped when

designing the problem sets for the course. The second response was the muddiest

points survey helped students think critically about the material. In ID 200 10%

of the respondents agreed versus in BIO 200 where 9% agreed or strongly agreed.

We hoped the muddiest points surveys would have students think about all of the

concepts that the videos covered and pick which ones they most wanted to learn

more about in class. In order to ensure this we used these surveys to help with
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ID 200 BIO 200 ID 200 ID 200 BIO 200 ID 200
Strongly
Disagree

10 8 0 14 13 0
Disagree 24 36 0 14 29 0
Neutral 19 27 11 43 27 22

Agree 38 24 33 24 28 67
Strongly

Agree
10 5 56 5 3 11

ID 200 BIO 200 ID 200
Strongly
Disagree

5 5 0
Disagree 5 26 0
Neutral 27 35 11

Agree 59 33 67
Strongly

Agree
5 2 22

In Class Meetings [%]

Response 1: Were well-organized
Response 2: Expanded upon what I learned
online

Fall 2013 Summer 2014 Fall 2013 Summer 2014

Response 3: I was actively engaged in in-class
exercises and discussion

Fall 2013 Summer 2014

Table 3.3: Bok Center Survey Results: In Class Meetings

participation grade. Students mentioned that many times they blindly filled the

survey out just for participation points but did not put much into it. The last

statement on projects was only answered by ID 200 students, 52% of the

respondents agreed or strongly agreed that semester long project helped them to

think critically about the material. Students stated that they felt smaller groups

would have been better to assure all students worked on the project. They also

stated that a more strict time line would have kept them more focused on it during

the semester rather than rushed at the end.

Table 3.5 displays the results of the Bok Center survey pertaining to statements

regarding online instruction and watching behavior. The first statement was that

the online lessons were interesting and engaging. In ID 200 70% of the respondents

agree with this versus in BI0 200 where only 34% of the students agree or strongly
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ID 200 BIO 200 ID 200 ID 200 BIO 200
Strongly
Disagree

5 3 0 19 39
Disagree 10 9 0 22 34
Neutral 5 11 0 28 17

Agree 52 50 11 10 6
Strongly

Agree
29 27 89 0 3

ID 200 ID 200
Strongly
Disagree

14 0
Disagree 10 0
Neutral 14 0

Agree 33 44
Strongly

Agree
29 56

Fall 2013 Summer 2014 Fall 2013 Summer 2014

Homework and Assignments [%]

Response 4: The weekly homework assign-
ments helped me think critically about the
course material

Response 5: The muddiest points surveys
helped me think critically about the material

Fall 2013 Summer 2014

Response 6: The semester long project helped
me think critically about the material

Table 3.4: Bok Center Survey Results: Problem Sets and Assignments

agree with this. We find this intriguing as the biostatistics video material was

exactly the same for both courses. These responses may be in part due to the

students in ID 200 being self selected into this blended format. The second

statement was that online lessons were divided into manageable segments, 45% in

ID 200 versus 47% in BIO 200 agree or strongly agree. This left 35% in ID 200

versus 28% in BIO 200 who disagree or strongly disagree. Some students

commented that some videos were too long and they would lose attention on them.

This could simply be remedied by breaking longer videos up into shorter segments.

The last set of questions were about the watching behavior of the students. We

first asked them how often they multi-tasked while watching the online lessons. In

ID 200, 50% of the respondents said they did fairly often to very often. In Bio 200,

only 28% of the respondents did fairly often to very often. 10% of respondents in

ID 200 versus 26% of respondents in Bio 200 said they never multi-tasked while

81



ID 200 BIO 200 ID 200 ID 200 BIO 200 ID 200
Strongly
Disagree

10 14 0 15 8 0
Disagree 15 36 14 20 20 0
Neutral 5 16 43 20 25 14

Agree 70 31 29 40 44 57
Strongly

Agree
0 3 14 5 3 29

ID 200 BIO 200 ID 200 ID 200 BIO 200 ID 200
Never 10 26 14 10 13 0

Almost Never 15 17 29 15 36 43
Sometimes 25 28 29 25 22 0

Fairly Often 35 17 29 25 16 43
Very Often 15 11 0 25 14 14

ID 200 BIO 200 ID 200
Never 5 3 0

Almost Never 5 17 14
Sometimes 45 41 57

Fairly Often 40 27 14
Very Often 5 13 14

Online Instruction and Watching Behavior [%]
Response 7: Online lessons were interesting
and engaging

Response 8: Online lessons were divided into
manageable segments

Fall 2013 Summer 2014 Fall 2013 Summer 2014

Response 9: How often did you multitask
while watching online lessons?

Response 10: How often did you skip part of
the video?

Fall 2013 Summer 2014 Fall 2013 Summer 2014

Response 11: How often did you
rewind/repeat parts of the video

Fall 2013 Summer 2014

Table 3.5: Bok Center Survey Results: Online Instruction and Watching Be-
havior

watching lessons. This seems to contradict the above statement about online

lessons being interesting and engaging. BIO 200 respondents self reported being

less engaged or interested but were more likely to focus on the online lessons alone.

When asked how often they skipped part of a video 50% of ID 200 respondents

versus 30% of BIO 200 respondents answered fairly often to very often. Finally

when asked about how often they rewound or repeated parts of the video only 10%

of ID 200 respondents said that they almost never or never did in contrast to 20%

of BIO 200 respondents that answered the same.
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3.3.2 Evaluation of the Students

In this section we compare students in the Fall 2013 ID 200 and BIO 200 offerings

to each other, to students in the Fall of 2013 offering of BIO 201 andto students

from the Fall of 1992 and 1993 semesters. We use the course exams to compare the

2 courses and to test for differences in exam scores. We then compare the students

in ID 200 and BIO 200 to the traditional class, BIO 201. In order to achieve this

comparison we utilized the same exact exam question on all three of the final

exams. Finally we compare the exam scores of the current blended courses to that

of the traditional courses of the past.

3.3.2.1 Students in ID 200 versus students in BIO 200

The students self-selected to take ID 200 (30 students) versus BIO 200 (130

students) plus some epidemiology course to replace the epidemiology component of

ID 200, such as EPI500. We first consider whether we can detect any difference

between how these two groups of students handled the material.

The overlapping material was the biostatistics covered in both courses which

was identical. The online problem sets were identical with additional epidemiology

problems added to the problem sets of ID 200. Problem sets were assigned to be

completed individually. We did a problem by problem comparison on the home

works (roughly 10 problems a week, comparisons not reported here) and could not

detect a difference between the two groups of students. Overall, the ID 200

students had a mean grade of 95% (median 96%) and the BIO 200 students the

same mean (median 97%). Thus there was no discernible difference in how well the

two groups did in the problem sets they submitted.

83



Secondly, we gave three (equi-spaced in time) exams to the students.

Unbeknownst to the students, we gave the two groups the same biostatistical

component of the exam for the first and third exam. Table 3.6 shows the

percentages achieved by the students for all 3 exams (Note: Exam 2 Historical

differs in score as BIO 200 was matched with students in BIO 200 Fall 1993 and

ID 200 was matched with students in BIO 200 Fall of 1992).

1 96 98 94 95
Historical 84 86 84 86

2 89 91 88 89
Historical 84 87 96 98

3 92 94 91 93
Historical 78 79 78 79

Mean MeanMedian MedianExam
BIO 200 ID 200

Table 3.6: Comparison of Exam Scores Between Blended Courses and Histor-
ical Courses

We were unable to discern between the exam scores between these two groups.

Together with the problem set results, it seems, to the accuracy of our measuring

method, that there was no difference between the two groups’ performance.

3.3.2.2 Blended students versus current other students

One other introductory biostatistics class is also taught at Harvard T.H. Chan

School of Public Health, BIO 201 Introduction to Statistical Methods, was taught

in the traditional lecture/lab/problem set format. Incoming students typically

choose between BIO 200 and BIO 201 depending on their areas of concentration

and with those that are more mathematically inclined taking BIO201. The
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coverage is broader in BIO 200.

In order to try and compare students in the class we took a question from the

BIO 201 final and placed it on the 3rd exam for both BIO 200 and ID 200. This

question covered about one quarter of the points and was a topic that in previous

years has not been covered in the traditional BIO 200. Table 3.7 displays the

results of the problem scores.

Semester Course Students Mean Median
Fall 2013 BIO 201 99 21.7 23
Fall 2013 ID 200 30 22.2 23.5
Fall 2013 BIO 200 130 22.1 23

Summer 2014 ID 200 15 19.1 21

Table 3.7: Comparison of scores for Blended courses vs BIO 201 (out of 24
points)

We see that all of the grades were too close for statistical significance but the

trend would suggest that students in the blended courses did better than the

students in BIO 201. This is surprising since it is generally believed that the BIO

201 students are more quantitatively adept, the coverage in BIO 201 is much less

than in the blended course, and on a minor note, the exam question was written

by the BIO 201 instructor and one would expect the BIO201 students to be more

attuned to his wording of questions.

3.3.2.3 Historical Comparisons

To enhance the evaluations we also incorporated old exams. The current Exam 1

was also administered in Fall 1992 offering of BIO 200. The intent was to provide

a comparison between students taking the “same” course from the same instructor
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but 20 years later. We did something similar with Exam 3 by using the final exam

from Fall 1992 offering of BIO 200. For Exam 2 we gave different exams to the two

groups; for the ID 200 students we used the Fall 1992 BIO 200 exam 2, and for the

BIO 200 students we used the Fall 1993 BIO 200 exam. The results for all the

exams taken are displayed in Table 3.6.

Students in BIO 200 did considerably better on all the exams compared to their

historical counterparts. Except for the second exam for the ID 200 group, the

current group of students did considerably better than their counterparts from 20

years ago. It should also be noted that at the time of exam entry this type of

analysis was not planned and the scores for exam 2 report the overall grade

including biostatistics and epidemiology questions. We recognize that education

has changed greatly over the course of 20 years. Students now are more likely to

have seen statistics in high school and undergraduate programs than 20 years ago.

This is possibly an explanation for some of the grade improvement but this shows

promise for the blended teaching method as well.

The mean and median of course are summary statistics that by their very

summary definition may hide complexities that make the comparisons more

nuanced. Figure 3.1 displays the histograms of the different exam scores for BIO

200, ID 200 and the historical courses. For exams 1 and we can see that the

histograms for Fall 2013 BIO 200 and ID 200 are much more negatively skewed

than the historical comparison of Fall 1992. The histograms for these exams also

show the difficulty of comparing the exam scores. With the upper limit of 100% on

the exam we can see the distributions of the Fall 2013 classes becoming more

weighted on grades closer to that upper limit. For exam 2 we find that for Fall

2013 BIO 200 the histogram again shows a distribution more weighted towards
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100% however exam 2 for Fall 1992 BIO 200’s distribution of scores appears more

weight towards 100% than that of Fall 2013 ID 200.

Figure 3.1: Histograms of Exam Scores.

3.3.3 Discussion of Results and Suggested Changes

From the students’ perspective of the course there are four major areas of

comments: online videos, classroom, problem sets and labs. These are suggestions

for improvements to our course and future courses.

For the online component:

• Divide videos into manageable segments.

• Publish the video times so that students are better able to plan their week.

• Establish the purpose of each lesson and preview the organization.

• Improve the discussion format as it currently was not very helpful. Students

would prefer more real time interaction and collaboration then the

discussion board allowed for.
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For the in class component:

• Students would prefer meeting more than one session a week.

• Students felt the class was not integrated with videos, problem sets and labs.

• Students would like class to consist of:

– Question and Answer time to resolve misunderstandings.

– Review of main points of the videos and concepts.

– Time to practice problems and material in collaboration with their

classmates.

For the problem sets component:

• Align problem sets with videos and exams.

• Utilize more problems that address conceptual understanding to allow

students to check understanding of the course material.

For the lab component, students only suggestion was to move lab to earlier in

week to allow them more time to complete assignments after having lab.

Students in ID 200 found the project to be very useful. Some suggested smaller

group sizes and more structure in order to make sure they are working on it

throughout the semester.

Students mentioned that many videos were too long and a struggle to

adequately plan their week. This seems contradictory to the amount of time spent

outside of class on the two courses though. we do suggest keeping the videos to

under 10 minutes each and to post video times in order to give students more

information. We suggest that rather than meeting with the students once a week

for 80 minutes that meeting two times a week for 50 minutes a time may be better
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suited to their needs. Smaller class sizes would allow for adjustment of the in class

meetings. Students in ID 200 (class size 30) felt more engaged in the class than

students in BIO 200 (class size 65). Instead of lecturing or reviewing for the in

class time we suggest running the in class session similar to the labs. This would

be real life biostatistics problems that allow students to work together or

individually using Stata to aid in finding solutions. Within these problems

reviewing important concepts and answering questions.

For the problem set component we suggest making sure if the problem set is in

an online format to make sure the grading has a working error variance as well as

making sure there are as few bugs as possible.

Most importantly we suggest instructing the students on how to take a course

such as this. In table 3.5 many students reported multitasking while watching

videos. We suggest that they reserve breaks to in between videos and we believe

that having videos under 10 minutes would minimize the amount of multitasking

that was being done. Instructing the students on how to spread the video

materials over the course of a week would also be helpful to them.

Overall the majority of the students preferred having more interaction with

their classmates and professor than this format allowed for. They desired real time

feedback that the course did not offer. This could be changed with video office

hours or other times during the week where video conferencing could be utilized to

help students engage more.

Things we have learned from our research and informal comparison of the

courses:

• Inform the students that the videos are not replacements for the lectures.
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Rather, they are replacement for the book, if anything. The class discussion

is a more apt replacement.

• Allow students to annotate the videos to better find points difficult to

understand.

• Cold call in order to help push students to watch the videos and/or read the

“jotter note” or textbook and come to class prepared.

We were not able to show that the ID 200 students learned biostatistics better

than the BIO 200 students. Part of this was that the means and medians were too

close to 100% so there was not much space to see a difference. This was because

they did so much better than in the past that the exams which had some

discriminatory power in the past, no longer do! It is also possible that there was

no difference. We had hoped that learning introductory epidemiology and

biostatistics simultaneously would have a positive synergistic effect on the learning

of both. We hope that this will allow for longevity of understanding the concepts

taught in the course as they mover further from the course.

In summary, this is not by any means a stringent study to evaluate the students.

It is important to consider how this blended format will compare over time. It

would be beneficial to follow-up with these students in the future to test whether

blended learning leads to increased retention over that of a traditional class. The

existing evidence is that the students performed better, or at least as well, past

students. Presumably, as we become more adept at teaching a blended course, we

should improve. After all, this was the first time we taught in this manner.
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3.4 Changes Made to Summer 2014 ID 200 Course

With the summer course being over 7 weeks we took great care in utilizing the

suggested changes that students in the Fall 2013 courses suggested. We addressed

all concerns in the online, classroom, problem set and lab components of the

course. For the online component we divided many of the longer videos so that all

videos were at most 10 minutes or less. With the course management system each

module was listed with objectives, video times and respective jotter notes for the

module. All of these things were utilized to better explain what we expected the

students to learn as well as how much time they needed to plan for with the

videos. The new management system for the course allowed easier use of the

discussion board as well as instant alerts to the instructors so that we were aware

of questions immediately. This provided a simple and real time interaction for the

students. For the in class component we met twice a week for 4 hours each time.

Each class was started off with time for questions on any of the materials. Then

within the lab setting there was review of formulas and concepts before working

together on problems or paper reviews. The problem set component was revamped

and instead of being graded automatically the problem set was designed with data

analysis problems similar to the lab material. This provided a seamless interaction

between in-class work and problem sets. With each class being taught in a lab or

seminar format they essentially had problem solving and collaboration with

classmates each and every class. Most classes have 45 minutes to an hour left over

for working on the group projects.

In order to address other concerns of navigating this new style of the course we

created a couple new videos for them to watch before starting class material. The
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first video was designed to show them the course management system and to take

them through how to utilize it and access all the material. The next video

discussed strategy for how to take a blended course. It was suggested that they

watched a video with no distractions while taking notes. It was also suggested that

they could take breaks between the short videos in order to help them focus better

during the videos.

The last major changes for the summer course was the assignment of pre-course

work. The following topics were covered in the month of June before the course

started:

• Data Presentation

• Numerical Summary Measures

• Rates and Standardization

• Probability

• Prevalence

• Incidence

A comprehensive problem set was given to cover all of these concepts in order to

make sure the students understood before the first day of class.

3.5 Evaluation of 2104 Summer Semester Course

We wished to discover whether the changes noted in section 3.4 made an impact

on both the students knowledge gained as well as how students perceived the

course. In order to gauge student perception we use the end of the year survey

from Harvard T.H. Chan School of Public Health (the same as the one used in
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section 3.3.1.1 and a survey similar to the one conducted by the Bok center. In

order to gauge the knowledge of students we were unable to compare the 3 exams

as in fall 2013 course due to the time constraint of the summer semester. We did

however use the same exam question that was used in the fall 2013 final exam of

BIO 200, ID 200 and BIO 201.

3.5.1 Student’s Evaluation of Course

In the Harvard T.H. Chan School of Public Health survey, 15 out of the 15

students responded. In the other survey 9 out of 15 students responded. This is

similar to the fall 2013 survey from the Bok Center where 58.6% of ID 200 and

46.8% of the BIO 200 students responded. However in this instance both surveys

allowed for students to give further details regarding their perception of the course.

When asked about whether they would recommend this course to another

student 100% of the students responded that they probably or definitely would.

This is much different outcome than in the fall courses where combined only 47.6%

said the probably or definitely would. The students commented that this course

allowed them to work at their own pace. A number of students said that the labs

run in class provided an opportunity to expand on what they learned from the

online material. When asked about the amount of time spent outside of class for

the course 66.6% of the students responded that they spent less than or equal to 6

hours a week outside of class. This is very similar to the responses in the fall

courses but this time is concerning. The average time per week of the videos is 4

hours 43 minutes and 36 seconds. If each student watched the videos the 66.6%

would have had less than an hour and a half to do their problem set as well as

group project. It should be noted here that during these 6 weeks in the summer
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these particular students were taking 17.5 credits. This is likely to cause their time

available to spend on ID 200 to drop significantly. Finally when students were

asked about formal training in the content area prior to taking this course 33.3%

of the students reported that they had considerable training. This is different from

the fall courses but is expected given that the 15 students were enrolled in the

DrPH program as opposed to the fall where most students were enrolled in a an

MPH program.

For the in class meetings the first statement that students responded to was

that the in class meetings were well organized. For the summer 88.9% of the

students agreed or strongly agreed versus 0% disagreement. This is much different

from the fall evaluations where in ID 200 34% disagreed or strongly disagreed with

this statement. Students felt that having most of the time spent in class working

on problems was very valuable. The change to spending ore class time in a lab

setting seems to have helped students more. The second statement about in class

meetings was that they expanded on what the students learned online. In the

summer 2014 semester 77.8% of the students agreed or strongly disagreed versus

0% in disagreement. This is once again different from the fall courses. This

perhaps explains part of the positive response for promoting this class and how the

students felt about the organization. The last statement was that students were

actively engaged in the in class exercises and discussion 88.9% of the students

agreed or strongly agreed with this versus 0% in disagreement. This is consistent

with our conclusion on the fall courses that having smaller groups tends to help

students feel more engaged.

The first statement about problem sets was that the weekly problem sets helped

students to think critically about the course material. 100% of the students agreed
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or strongly disagreed with this. This is higher agreement than the semester and

may be attributed to the problem set being submitted in written format rather

than through an online grading system. The muddiest points surveys were

removed for the summer and the students were not asked about them. When

asked if the semester long project helped the students think critically about the

material, 77.8% agreed or strongly agreed. This is a larger percent of the students

than in the fall course.

The first statement about the online instruction was that the online lessons were

interesting and engaging. In the summer 42.9% of the students agreed or strongly

agreed versus 14.3% which disagreed. This again is different from the fall semester

and we do not understand the differences. The online materials were the same

with the exception that some longer videos were split into multiple shorter videos.

The statement of the online lessons being divided into manageable segments,

85.7% agreed or strongly agreed versus 0% in disagreement. This suggests that the

splitting of longer videos was helpful for students.

The last set of questions was on the online watching behavior of the students.

We first asked how often they multitasked while watching the online lessons; 28.6%

of the responded fairly often with 14.3% responding that they never did. This was

disappointing given that we spent more time teaching the students how to watch

videos and even split them into shorter videos to maintain their attention span.

However given that less than half agreed that they were engaging this seems

expected. When asked how often they skipped part of a video, 57.1% of the

students responded fairly often or very often. Finally when asked about how often

they rewound or repeated parts of the video 28.6% said that they did fairly often

or very often. This is an improvement over the fall courses and likely due to the
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time spent teaching the students how to watch the videos.

3.5.2 Evaluation of the Students

Given the time restraint of the summer course we did not give the 3 exams as is

traditionally done in the fall. With that said we have no way to compare the

exams as we did with the fall course. We did however give the students the same

final exam question as was given in the fall courses BIO 200, ID 200 and BIO 201.

Table 3.7 shows the mean and median score for this problem. We note that ID 200

in the summer has a lower mean and median though not statistically significant.

We feel much of this has to do with the students working their way from summary

statistics to logistic regression in only 6 weeks. With this time constraint we

expect the scores on a regression question to be slightly lower as they were here.

3.6 Discussion

With these 3 courses we were able to look at students perspectives as well as an

evaluation of the students compared to current and past students. The suggestions

made in section 3.3.3 were made for the summer course and seemed to have made

a positive impact on the results. With the changes made to video times students

felt they were much more manageable. Many students also commented that having

the video times for each week helped in planning out their time.

For the in class component the students in the fall felt the course was not

integrated. This was addressed and the students felt it was much more congruent.

The majority of class time being spent on lab type problems gave the students

more time to practice data analysis and Stata while under the guidance of the
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instructors. The problem sets were changed to follow more closely with lab

problems. This gave us more opportunity to see the thought process as well as the

work that the students used to arrive at their answers. This is very important to

understanding how they grasp the material.

We feel that our main take away points from these three courses is that the

students perform as well as the traditional classroom setting. When making

changes directed by the students evaluation of the course we can see a dramatic

change in the acceptance of the course. We suggest that when implementing

courses in this manner that surveying the students during and after the course will

allow the instructor to best meet the needs of their particular students.

We feel that it is good practice to keep the videos short or possibly under 10

minutes and to publish the times so that students can adequately plan. We also

have seen that students do not inherently know how to take a course with online

videos. More needs to be done to instruct them on the importance of note taking

and not multitasking while watching the videos.

For the in class component of the class it is important to give the students

practical problems to solve. Keeping the review to a minimum places more

emphasis on the importance of watching the videos before class as well as giving

them more time to work on real problems. It appears that smaller class sizes seem

to help students feel more engaged. If this is not possible we suggest having a

room where the students can be in groups and where instructors and teaching

assistants are making sure to make contact with each and every group.

Utilizing problem sets that give similar types of data analysis questions allows

for the instructor to gauge student’s grasp of the material. We maintain the

suggestion to understand the error variance of an automatic style of grading. If
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possible we suggest that written assignments be utilized so that there is better

understanding of students processes as they answer problems.

Blended learning classes can be useful and enjoyed by the students. More work

is needed to be done in order to evaluate the quality of learning done. Our study is

limited in that we compared students to students from 20 years prior and to

students in a different but similar course in the same semester. If possible

randomizing students to blended vs traditional style of teaching would allow us to

evaluate blended learning further.
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