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The mod 2 homology of free spectral Lie algebras

Abstract

The Goodwillie derivatives of the identity functor on pointed spaces form an operad ∂∗(Id)

in spectra. We compute the mod 2 homology of free algebras for this operad on suspension

spectra of simply-connected spaces.
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1. Introduction

Goodwillie calculus [8] associates to appropriate functors F : Top∗ → Top∗ a tower of

approximations

· · · → PnF → Pn−1F → · · · → P1F → P0F

that is analogous to the sequence of Taylor polynomials for functions of a real variable.

The homotopy fibers DnF = hofib(PnF → Pn−1F ) are called the layers of the Goodwillie

tower and are analogous to individual monomials f (n)(0)xn/n! in the Taylor expansion of a

function. Goodwillie proved that these layers are of the form DnF (X) = Ω∞(∂nF ∧X∧n)hΣn

for some sequence of spectra ∂nF where the n-th spectrum is equipped with an action of Σn.

These derivatives ∂nF are very interesting even for F = Id and have been much studied in

that case; they can be described as the Spanier-Whitehead duals of certain finite complexes.

The first such description was obtained by Johnson [11]; a second description is in terms of

partitions and appears in [3]. The partition complex Pn is the pointed simplicial set

NΠn

/(
N(Πn \ {0̂}) ∪N(Πn \ {1̂})

)
,

where Πn is the poset of partitions of a set with n elements, ordered by refinement; 0̂ and

1̂ denote its least and greatest element, respectively; and N denotes, as usual, the nerve

functor. We shall regard Pn as having the action of Σn induced by permutations of the

n-element set.

The layers of the Goodwillie tower of the identity are given by

Dn(Id)(X) = Ω∞ (Map∗(Pn,Σ
∞X∧n)hΣn) ,

where Map∗ denotes the spectrum of maps from a pointed space to a spectrum. This implies

that ∂n(Id) is Map∗(Pn, S), the Spanier-Whitehead dual of Pn.

In [6], Ching constructs an operad structure on ∂∗(Id) that is easiest to describe in dual

form: as a cooperad structure on P∗. That cooperad is the bar construction on the nonunital
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commutative operad in spectra (given by Commn = S for all n ≥ 1), so that the operadic

suspension of ∂∗(Id) is Koszul dual to the commutative operad and we can think of ∂∗(Id) as

a shifted version of the Lie operad. Alternatively, one can also see a relation between ∂∗(Id)

and the Lie operad using what is known about the homology of the partition complex,

namely that the space of n-ary operations of the Lie operad in Abelian groups is isomorphic

as a Z[Σn]-module to Hom(Hn−2(Pn), sgn) —where sgn is the sign representation of Σn.

The mod p homology of the layers,

Dn(X) := Dn(Id)(X) = (∂n(Id) ∧X∧n)hΣn
,

was studied in [3] in the case that X is a sphere. (Since the free ∂∗(Id)-algebra on a space X

is given by
⊕

n≥0 Dn(X), the results in that paper can be interpreted as being about the mod

p homology of the free ∂∗(Id)-algebra on Sn.) In the case p = 2, for example, what Arone

and Mahowald showed is that H∗(Dn(Sm);Fp) is only non-zero when n = 2k is a power of 2

and in that case it is Σ−kCU∗ as a module over the Steenrod algebra, where CU∗ is the free

graded Fp-vector space with basis given by the “completely unadmissible” words of length

k:

{Qs1 · · ·Qsku : sk ≥ m, si > 2si+1}

where u is a generator of Hm(Sm;Fp) and the action of the Steenrod algebra on CU∗ is given

by the Nishida relations.

In Behrens’ [4], he uses this computation to introduce mod 2 homology operations Q̄j :

Hd(L) → Hd+j−1(L) for j ≥ d on ∂∗(Id)-algebras. Part of an ∂∗(Id)-algebra structure on

L is a map ξ : (∂2(Id) ∧ L∧2)hΣ2 → L and since ∂2(Id) is S−1 with a trivial Σ2-action, we

have (∂2(Id) ∧ L∧2)hΣ2
∼= Σ−1L∧2

hΣ2
; using that identification we set Q̄j = ξ∗σ−1Qj where

Qj : Hd(L)→ Hd+j(L
∧2
hΣ2

) is a Dyer-Lashof operation. Behrens shows the Arone–Mahowald

computation can be interpreted as saying that the homology of the free ∂∗(Id)-algebra on Sn

has an F2-basis consisting of completely unadmissible sequences of Q̄j’s with excess at least
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n applied to the fundamental class of Sn, furthermore, he computes the relations satisfied

by the Q̄j’s.

In the present work we compute the mod 2 homology of the free ∂∗(Id)-algebra on the sus-

pension spectrum Σ∞X of a simply-connected space X, showing that it is roughly speaking

the free module over the ring of operations Q̄j’s on the free Lie algebra on H∗(X). It would

be of interest to extend these computations to free ∂∗(Id)-algebras on more general spectra

or to mod p homology for odd primes p; we leave these extensions to future work.

2. Homology operations on algebras for operads

Given an operad O in spectra we will denote by FO the free O-algebra functor. This

functor is a monad, and O-algebras are equivalently algebras for it. If E is an E∞-ring

spectrum, then there is an operad in E-module spectra we will denote by E ∧ O, and a

free (E ∧ O)-algebra functor FE∧O defined on E-module spectra. The E-module of n-ary

operations in E ∧ O is the free E-module on the spectrum On: (E ∧ O)n = E ∧ On; we

get an operad structure on E ∧ O induced from the operad structure on O because the

free E-module functor is symmetric monoidal. The free algebra functors are related in the

expected way: E ∧ FO(X) ∼= FE∧O(E ∧X). We will also make use of the functor between

O-algebras and (E ∧ O)-algebras induced by the free E-module functor, E ∧ −.

Remark 2.1. To achieve the structure describe above one can work in a symmetric monoidal

category of spectra, such as EKMM S-modules [12], taking “spectrum” to mean S-algebra

and “E∞-ring spectrum” to mean commutative S-algebra. This is the same framework used

in [6] to put an operad structure on the derivatives of the identity.

Also, we will only consider cofibrant operads for which the notion algebra is homotopy

invariant, meaning that we can think of the homotopy type of the free O-algebra as being

given by

FO(X) =
∨

n≥0

(On ∧Xn)hΣn ,
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and that we will think of an O-algebra structure on A as providing maps (On∧A∧n)hΣn → A.

Every class α ∈ Em
(
FO
(∨k

i=1 S
di

))
in the E-homology of the free O-algebra on a wedge

of k spheres gives a k-ary homology operation defined on the E-homology of any O-algebra

A, defined as follows:

Given xi ∈ Edi(A) (i = 1, . . . , k), we can represent each xi by a map of spectra Sdi →
E ∧ A, and thus the whole collection of them can be described by a single map of spectra

x̄ :
∨k
i=1 S

di → E ∧ A. Since E ∧ A is an (E ∧ O)-algebra, x̄ has an adjoint x̃ which is

a map of (E ∧ O)-algebras to E ∧ A from the free (E ∧ O)-algebra on
∨k
i=1 S

di , namely

FE∧O(
∨k
i=1 ΣdiE) = E ∧ FO(

∨k
i=1 S

di).

The homology operation corresponding to α, is α∗ :
⊗k

i=1 Edi(A) → Em(A) defined by

setting α∗(x1 ⊗ · · · ⊗ xk) to be represented by the map

Sm
α−→ E ∧ FO(

k∨

i=1

Sdi)
x̃−→ E ∧ A.

Notice that an analogous construction gives operations on the stable homotopy of (E∧O)-

algebras and given an O-algebra A, the operations on the E-homology of A coincide with

those produced on the homotopy of the (E ∧ O)-algebra E ∧ A.

To get a useful theory of homology operations for O-algebras, besides computing those

homology groups, the various Em(
∨k
i=1 S

di), one must organize the operations: find a rel-

atively small collection of operations that generate all others and find a generating set of

relations for the operations. This has been carried out for HFp-homology of algebras for the

En-operads, due to May in the case n = ∞, and due to F. Cohen in the case 1 ≤ n < ∞;

see [7].

Homology operations with field coefficients are simpler to study, because of the following

result:

Proposition 2.2. Let O be a operad in spectra. The homology with coefficients in a field k

of the free O-algebra on a spectrum X is a functor of the homology of X.
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Proof. Consider the following commutative diagram:

Sp
FO
��

Hk∧−
// Hk−Mod

FHk∧O
��

π
// D(k)

∼=
//

F̂
��

GrVectk

F̃
��

Sp
Hk∧−

// Hk−Mod
π
// D(k) ∼=

// GrVectk

Here Sp denotes the category of spectra, Hk−Mod denotes the category of Hk-module

spectra, D(k) is the homotopy category of Hk−Mod or, equivalently, the unbounded derived

category of vector spaces over k and GrVectk is the category of graded vector spaces over k.

The functor π is the projection from Hk−Mod to its homotopy category; this functor

preserves coproducts but when the characteristic of k is not 0, it does not send homotopy

quotients by the action of Σn to quotients by the action of Σn, so the induced monad F̂

is no longer the free algebra functor for an operad. Finally, when k is a field there is an

equivalence D(k) ∼= GrVectk, allowing us to define the monad F̃ so that the last square

commutes. �

3. The operad ∂∗(Id) and the Spectral Lie operad

Recall that the suspension of an operad O is an operad sO defined so that:

• sO-algebra structures on ΣA correspond to O-algebra structures on A,

• the free algebra functors satisfy FsO(ΣX) = ΣFO(X), and

• as a symmetric sequence, (ΣO)n is given by (S−1)∧n∧ΣOn with Σn acting diagonally,

permuting the smash factors on the left and acting on ΣOn via the suspension of the

action on On (that is, it acts trivially on the suspension coordinate of ΣOn).

By the spectral Lie operad we mean the desuspension s−1∂∗(Id) of the operad formed by

the Goodwillie derivatives of the identity. It is the spectral Lie operad which is most closely

analogous to Lie algebras and some of our formulas would be simpler for it, but we will

stick to the language of the ∂∗(Id)-operad and ∂∗(Id)-algebras to make using the available
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literature easier. As a symmetric sequence, the spectral Lie operad is given by the derivatives

of the functor ΩΣ : Top∗ → Top∗ (see [8, Section 8]).

As we said before, the easiest way to describe the operad structure of ∂∗(Id) is to describe a

cooperad structure on the bar construction of the nonunital commutative operad, and obtain

the operad structure of ∂∗(Id) by taking Spanier-Whitehead duals. To describe Ching’s

cooperad structure, we need to explain how to think of the points of |Pn| as trees.

3.1. The partition complex as a space of weighted trees. Before we describe how to

assign trees to simplices of Pn or to points of |Pn|, let us fix some conventions for trees:

• A tree is, as usual in graph theory, a finite connected graph without cycles.

• We will only deal with rooted trees, that is, trees with a distinguished vertex, called

the root, that is incident to only one edge1. That edge is called the root edge.

• In a rooted tree any vertex other than the root which is incident to a unique edge is

called a leaf, and the edge it is incident to is a leaf edge.

• All other edges are called internal edges.

• We will orient rooted tree towards the root, so that every non-root vertex has a

unique outgoing edge, and every non-leaf vertex has one or more incoming edges.

• A leaf labeling of a rooted tree with set of labels A is a bijection between A and the

leaves of the tree.

Now, a k-simplex in Pn is given by a chain of partitions 0̂ = λ0 ≤ λ1 · · · ≤ λk = 1̂, this

gives us a rooted tree with leaves labeled by {1, 2, . . . , n}, of with k + 1 “levels”: a level for

the root and for each λi a level whose vertices correspond to the blocks of λi. The vertex

corresponding to a block of some λi has a single outgoing edge connecting it to the vertex for

the unique block of λi+1 containing it. A picture makes this construction clear, see Figure 1.

To points of the geometric realization |Pn| we will associate weighted trees below, but first

some definitions:

1That the root is required to have valence 1 is not standard in graph theory.
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1 4 5 2 3
1|4|5|2|3 = λ0

1|45|2|3 = λ1

1|45|23 = λ2

145|23 = λ3

14523 = λ4

Figure 1. The tree associated to a simplex of Pn.

• A weighting on a rooted tree is an assignment of a non-negative real weight2 to each

edge of the tree in such a way that for each leaf v, the sum of the weights of the edges

on the path from v to the root is 1.

• A weighted tree is a rooted tree equipped with a weighting.

Now, every point of |Pn| can be described by giving a k-simplex of Pn and a point x in

the topological k-simplex, |∆k| = {(x0, . . . , xk) ∈ Rk+1 : xi ≥ 0,
∑
xi = 1}. Given this data

we construct a weighting on the tree associated above to the k-simplex of Pn:

• First, declare that all edges going from the level for λi to the the next lowest level

have weight xi.

• Then, for each vertex with only one incoming edge and one outgoing edge, merge the

two edges, adding the weights.

Remark 3.1. Notice that the trees we associated to simplices of Pn have a height, that is, all

of their leaves are at the same distance from the root. This is not the case for the weighted

trees associated to points of |Pn|, because of the merging of edges. On the other hand,

the weighted trees we constructed never have vertices of valence 2 (vertices with a single

incoming edge and a single outgoing edge), but the trees corresponding to simplices might

have them.
2This is called length in [6].
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The above construction gives a homeomorphism [6, Proposition 4.13] between |Pn| and

the space B(Comm)(n) of weighted trees with leaves labeled by n := {1, 2, . . . , n}. For an

arbitrary finite set A of leaf-labels, the space B(Comm)(A) consists of certain weighted trees

subject to certain identifications:

• The points of B(Comm)(A) are weighted trees with leaves labeled by A. The trees

are required to have no vertices of valence 2.

• The identifications are as follows:

– If the root edge or any leaf edge of T has weight 0, then T is identified with the

basepoint.

– If an internal edge e of T has weight 0, T is identified with T/e, the weighted

tree obtained by contracting the edge e.

Remark 3.2. Ching describes the bar construction B(O) on an arbitrary reduced operad O
in pointed spaces in terms of weighted trees; the above is what the description simplifies to

in the case of the bar construction on the nonunital commutative operad, whose spaces of

operations are given by Comm(A) = S0 for A 6= ∅.

3.2. The cooperad structure of B(Comm). Given (unweighted) trees U and V with leaves

labeled by A and B respectively, and given a ∈ A, we can construct a new tree U ∪a V ,

called the grafting of V onto U , by identifying the root edge of V with the leaf edge of U at

the leaf labeled by a. The leaves of U ∪a V are naturally labeled by A∪aB := (A \ {a})∪B.

Again, a picture makes this clearer, see Figure 2.

Definition 3.3 ([6, Definition 4.16]). Given two sets of leaf-labels A and B, and a label

a ∈ A the cooperadic structure map

◦a : B(Comm)(A ∪a B)→ B(Comm)(A) ∧B(Comm)(B)

on a (A ∪a B)-labeled weighted tree T is defined as follows:
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U

a

A \ {a}

V

B

U ∪a V

A \ {a}

B

v

Figure 2. Grafting of trees.

• If the underlying unweighted tree of T can be obtained as U∪aV for some (necessarily

unique) unweighted trees U and V with leaves labeled by A and B respectively, we

will give certain weightings to U and V and declare that ◦a(T ) = U ∧ V .

Let v be the vertex of T that serves as root for the copy of V sitting inside T (as

indicated in Figure 2). All paths to the root of T starting from a leaf labeled by an

element of B pass through v. Since in T the total weight of each path from a leaf

to the root is 1, all paths from a leaf labeled by an element of B to v must have the

same total weight, say ω.

The weightings of U and V are defined as follows:

– Every edge in U except the leaf edge at a is given the same weight as in T ; the

leaf edge at a is given weight ω.

– Each edges of V is given weight w/ω where w is the weight that edge has in T .

• If the underlying unweighted tree of T cannot be obtained by grafting a B-labeled

tree onto an A-labeled one, ◦a(T ) is the basepoint.

Remark 3.4. Again we gave Ching’s definition only in the special case of interest here.

4. Two kinds of Lie algebras in characteristic 2

In this section we collect a few definitions about (graded) Lie algebras we will need later.

We will actually need to use two different notions of Lie algebras. The usual definition of
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Lie algebra in characteristic 0 is equivalent to being an algebra for an operad Lie in Abelian

groups. One can take algebras for that operad in the category of R-modules or of graded

R-modules for a commutative ring R and this gives one possible definition of graded Lie

algebra. Since ∂∗(Id) is the suspension of the spectral version of the Lie operad, we are also

interested in algebras for the suspension sLie.

Spelling out the structure we see that a graded Lie-algebra L over a commutative ring R

is a graded module equipped with a binary operation [−,−] : Li ⊗ Lj → Li+j satisfying:

• anti-symmetry, [x, y] = −(−1)|x||y|[y, x], and

• the Jacobi identity,

(−1)|z||x|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

(Where x and y are homogeneous elements of degrees |x| and |y|.)
For sLie-algebras things are only slightly different:

• The bracket has degree −1: [−,−] : Li ⊗ Lj → Li+j−1.

• Anti-symmetry becomes graded commutativity:

[x, y] = (−1)|x||y|[y, x].

• The Jacobi identity stays the same!

All the signs in the above formulas come from the Koszul sign rule, that is, from the signs

in the symmetry isomorphism of the category of graded R-modules. Since we will work over

R = F2 we need not worry about signs, but we mention them to point out that for an element

x of even degree in a Lie-algebra (or of odd degree in a sLie-algebra), the definitions imply

that 2[x, x] = 0, but they don’t actually imply [x, x] = 0 if 2 is not invertible in R.

If R has characteristic 2, while [x, x] may not be 0, we do have that any brackets involving

it are 0: by the Jacobi identity,

[[x, x], y] = [[x, y], x] + [[y, x], x] = 2[[x, y], x] = 0.
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As an example showing [x, x] can be nonzero, the free Lie-algebra over F2 on one generator

x in an even degree is easily seen to have basis {x, [x, x]}.
Given a graded associative R-algebra A, the graded commutator [x, y] = xy− (−1)|x||y|yx

gives A the structure of a Lie-algebra, but all the algebras produced this way necessarily

have [x, x] = 0 for |x| even. This means that if a Lie-algebra over an R of characteristic 2

has some nonzero [x, x] with |x| even, it cannot be faithfully represented by commutators,

and thus does not inject into its universal enveloping algebra. This substantially changes

the theory of Lie algebras requiring an embedding into the universal enveloping algebra and

so at least one other definition of Lie algebra in characteristic 2 is sometimes used, one that

forces an injection into a Lie algebra of commutators.

In the case of R = F2 this other kind of Lie algebra simply adds the requirement that

[x, x] = 0 for all homogeneous x. We will call this kind of Lie algebra a Lieti-algebra —the

ti stands for totally isotropic. A definition for all rings R, due to Moore, just forces the

representation as a commutator Lie algebra to exist:

Definition 4.1. A graded Lieti-algebra (resp. sLieti-algebra) over R is graded R-module L

with a bracket Li ⊗ Lj → Li+j (resp. Li+j−1) and a monomorphism L→ A to some graded

associative algebra so that the bracket goes to the graded commutator xy−(−1)|x||y|yx (resp.

xy + (−1)|x||y|yx).

Our main interest in these algebras is that the basic products appearing in Hilton’s theorem

about the loop space of a wedge of spheres [10] form a basis (called a Hall basis) for a totally

isotropic Lie algebra, see the discussion in section 7.

5. Homology operations for ∂∗(Id)-algebras

Throughout this section L will denote an algebra for the operad ∂∗(Id). So in partic-

ular, L is a spectrum equipped with structure maps ξn : Dn(L) → L where Dn(L) =

(∂n(Id) ∧ L∧n)hΣn
. There is a more traditional way to describe the structure of an alge-

bra for an operad: by giving maps αn : ∂n(Id) ∧ L∧n → L that are Σn-equivariant for the
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trivial action on the codomain and the diagonal action on the domain. The relation between

these two styles of definition is captured in the following commutative diagram:

∂n(Id) ∧ L∧n
αn

//

��

L

��

=

$$

(∂n(Id) ∧ L∧n)hΣn

ξn

55

(αn)hΣn
// L ∧ Σ∞+BΣn

// L,

where the vertical maps are the canonical maps Y ∧n → Y ∧nhΣn
and the unlabeled horizontal

map is L ∧ Σ∞+ (−) applied to BΣn → ∗.

In this section we will describe some operations on H∗(L;F2) that will turn out to generate

all others, and whose definition will only require the map

ξ = ξ2 :
(
∂2(Id) ∧ L∧2

)
hΣ2
→ L.

Notice there is only one unweighted tree with two leaves, and it has an interval’s worth of

weightings; the identifications make B(Comm)(2) homeomorphic to S1, so ∂2(Id) = S−1

with a trivial Σ2-action. This implies that (∂2(Id) ∧ L∧2)hΣ2

∼= Σ−1L∧2
hΣ2

.

5.1. The shifted Lie bracket. We’ll start by describing the Lie bracket. Here we remind

the reader that ∂∗(Id) is not really analogous to the Lie operad, but rather is analogous to

its operadic desuspension.

Definition 5.1. The shifted Lie bracket on the homology of an ∂∗(Id)-algebra L is the map

[·, ·] : Hi(L)⊗Hj(L) → Hi+j−1(L) given by the fundamental class S−1 → ∂2(Id), that is, it

is the map induced on homology by the suspension of the structure map α2 : Σ−1L∧2 → L.

This operation really gives a sLie-algebra:
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Proposition 5.2. Given any ∂∗(Id)-algebra L, the shifted Lie bracket on H∗(L) gives H∗(L)

the structure of a sLie-algebra.

Remark 5.3. The following proof, that works directly with spectra before taking homology,

shows that H∗(L;Fp) is a sLie-algebra over Fp.

Proof. We’ve already proved symmetry, when we computed ∂2(Id) and saw it had the trivial

Σ2-action.

To prove the Jacobi identity, we will show that 1 + σ∗ + σ2
∗ : ∂3(Id) → ∂3(Id) is null-

homotopic where σ = (123) ∈ Σ3. We can work with Σ∞P3, before taking Spanier-Whitehead

duals.

Now, P3 consists of:

• a 1-simplex, corresponding to the chain 0̂ < 1̂, connecting the basepoint 0̂ = 1̂ with

itself, and

• three 2-simplices, say τ1, τ2, τ3, each filling in the above circle, corresponding to the

three chains 0̂ < (23|1) < 1̂, 0̂ < (13|2) < 1̂, and 0̂ < (12|3) < 1̂, respectively.

The 3-cycle σ permutes those three 2-simplices cyclically. We can compute 1 + σ + σ2 :

Σ∞P3 → Σ∞P3 as the composite:

Σ∞P3
∆−→

3∨
Σ∞P3

1∨σ∨σ2

−−−−→
3∨

Σ∞P3
∇−→ Σ∞P3.

Non-equivariantly we have an equivalence S2 ∨ S2
∼=−→ P3, where we will think of the first

S2 as mapping to P3 by sending the northern hemisphere to τ1, and the southern hemisphere

to τ2; we’ll abbreviate this map S2 → P3 as τ12 and use similar notation for other maps.

We’ll think of the second wedge summand S2 as corresponding to the map τ23.

We can think of a map
∨n Σ∞P3 →

∨m Σ∞P3 as given by an n × m matrix of maps

Σ∞P3 → Σ∞P3, and each such map as given by a 2× 2 matrix of maps Σ∞S2 → Σ∞S2.
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The matrices of ∆ and ∇ are just the 3× 1 and 1× 3 matrices each of whose entries is I,

the 2× 2 identity matrix. Once we have the 2× 2 matrix S representing σ : Σ∞P3 → Σ∞P3,

the matrix of 1 ∨ σ ∨ σ2 is given by 3× 3 diagonal matrix with I, S, S2 along the diagonal.

To compute the matrix S, notice that σ ◦ τ12 = τ23 and σ ◦ τ23 = τ31. The map Σ∞τ13 is

given by Σ∞τ12 + Σ∞τ23, and τ31 differs from τ13 by the reflection swapping the hemispheres

of S2, which has degree −1. So,

S =


0 −1

1 −1




This means the composite map 1 + σ + σ2 has matrix:

(
I I I

)



I 0 0

0 S 0

0 0 S2







I

I

I


 = I + S + S2,

which is readily computed to be 0. �

5.2. Behrens’s unary Dyer-Lashof-like operations. In [4, Chapter 1], Behrens inter-

prets Arone and Mahowald’s calculation [3] of H∗(Dn(X)) for a sphere X in the case p = 2

in terms of unary homology operations for the layer of the Goodwillie tower of a reduced

finitary homotopy functor F : Top∗ → Top∗. The Arone-Ching chain rule [1] gives the sym-

metric sequence of derivatives of F , ∂∗(F ), the structure of a bimodule for ∂∗(Id). Behrens’s

operations only use the left module structure and could be defined on the mod 2 homology

of any symmetric sequence which is a left module over ∂∗(Id). In particular, regarding an

∂∗(Id)-algebra as a symmetric sequence concentrated in degree 0, we get unary operations

on the mod 2 homology of an ∂∗(Id)-algebra:

Definition 5.4 (adapted from [4, Section 1.5]). Let L be a spectrum equipped with the

structure of an ∂∗(Id)-algebra. We define homology operations

Q̄j : Hd(L)→ Hd+j−1(L),
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as follows: for x ∈ Hd(L), we set Q̄jx := ξ∗σ−1Qjx where

• ξ : Σ−1L∧2
hΣ2

∼= D2(L)→ L is part of the ∂∗(Id)-algebra structure of L,

• σ−1 : Hd+j(L
∧2
hΣ2

)→ Hd+j−1(D2(L)) is the (de)suspension isomorphism, and

• Qj : Hd(L)→ Hd+j(L
∧2
hΣ2

) is a Dyer-Lashof operation.

Note that Q̄j has degree j − 1 but the notation for it uses “j” because it is named after

Qj. Also notice that if j < d and x ∈ Hd(L), we have Q̄jx = 0 simply because Qjx = 0.

Remark 5.5. By modifying the setting of the definition of the Q̄j, we’ve introduced a potential

ambiguity! For a free ∂∗(Id)-algebra L = F∂∗(Id)(X) on some spectrum X, there are two

different ways in which we could mean Q̄jx for x ∈ H∗(L): using definition 5.4, or using

Behrens’ original definition for the functor Id. Let us explain what that definition is and

show it agrees with our definition in this case.

Given a functor F : Top∗ → Top∗, part of the left ∂∗(Id)-module structure on ∂∗(F ) is a

Σ2 o Σi-equivariant map ∂2(Id) ∧ ∂i(F )∧2 → ∂2i(F ). This induces a map

ψi : Σ−1(Di(F )(X))∧2
hΣ2

∼=
(
∂2(Id) ∧ ∂i(F )∧2 ∧X∧2i

)
hΣ2oΣi

→
(
∂2i(F ) ∧X∧2i

)
hΣ2i

∼= D2i(F )(X),

and for x ∈ Hd(Di(F )(X)), Behrens defines Q̄jx = (ψi)∗σ−1Qjx.

Given x ∈ Hd(Di(Id)(X)) ⊂ H∗(F∂∗(Id)(X)) and a j ≥ d, to show that the Q̄jx from

Definition 5.4 agrees with this original version of Q̄jx ∈ Hd+j(D2i(Id)(X)) ⊂ H∗(F∂∗(Id)(X))

we just need to unwind the definitions, the point being that both the left ∂∗(Id)-module

structure of ∂∗(Id) and the ∂∗(Id)-algebra structure of F∂∗(Id)(X) come directly from the

operad structure maps of ∂∗(Id).
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Definition 5.6. Let R̄ be the F2-algebra freely generated by {Q̄j : j ≥ 0} subject to the

following relations:

Q̄rQ̄s =
r−s−1∑

k=0

(
2s− r + 1 + 2k

k

)
Q̄2s+1+kQ̄r−s−1−k, if s < r ≤ 2s.

That relation allows one to rewrite any monomial in the Q̄j into a linear combination of

CU -monomials, that is monomials Q̄J = Q̄j1Q̄j2 · · · Q̄jk where J = (j1, . . . , jk) is a (possibly

empty, corresponding to 1 ∈ R̄) sequence of integers satisfying ji > 2ji+1 for i = 1, . . . , k−1.

Definition 5.7. A non-negatively graded module M over R̄ is called allowable if whenever

x ∈M is homogeneous of degree n and j1 < j2 + · · ·+ jk + n, we have Q̄j1Q̄j2 · · · Q̄jkx = 0.

Remark 5.8. This notion of allowable requires more operations to vanish than required by

degree considerations, that is, more than required by the condition Q̄jx = 0 when x ∈ Md,

j < d. Indeed, that last condition only implies Q̄j1Q̄j2 · · · Q̄jkx = 0 when ji < ji+1 + · · · jk +

n − (k − i) for some i; note the extra negative term −(k − i). The reason for this extra

vanishing required is the isomorphism in [4, Theorem 1.5.1], that in the notation used there,

sends σkQ̄j1Q̄j2 · · · Q̄jkιn 7→ Qj1Qj2 · · ·Qjkιn. The Qj do have that vanishing property just

for degree reasons.

Proposition 5.9. Given an ∂∗(Id)-algebra L, the action of the operations Q̄j makes H≥0(L)

into an allowable R̄-module.

Remark 5.10. Since our goal is to compute H∗(F∂∗(Id)(Σ
∞X)), we are focusing here on the

relations p(Q̄0, Q̄1, . . .)x = 0 that hold between the Q̄j when applied to classes x in non-

negative degree.

Proof. We will deduce that the operations act allowably and satisfy the relations in the

algebra R̄ from [4, Theorem 1.5.1]. That theorem states that if we define R̄n to be the

quotient of R̄ obtained by imposing the additional relations Q̄j1Q̄j2 · · · Q̄jk = 0 whenever
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j1 < j2 + · · ·+ jk + n, then
⊕

k≥0

H∗(D2k(Sn)) = R̄n{ιn},

where ιn is the fundamental class of H̃n(Sn) (thought of as living in Hn(D1(Sn)) ∼= H̃n(Sn));

and the operators Q̄j obey all the relations in the algebra R̄n.

Given any class x ∈ Hn(L), we can represent it by map x : ΣnHF2 → HF2 ∧ L of

HF2-module spectra. This corresponds to a map x† : HF2 ∧ F∂∗(Id)(S
n) → HF2 ∧ L of

(HF2 ∧ ∂∗(Id))-algebras. The naturality of the Q̄j operations shows that given any R ∈ R̄
we have H∗(x†)Rιn = Rx, so that if the relation Rιn = 0 is satisfied in H∗(F∂∗(Id)(S

n)), the

relation Rx = 0 holds in H∗(L). �

Notice that it also follows from theorem [4, Theorem 1.5.1], that the CU -monomials Q̄J

are linearly independent.

6. Algebraic structure of homology of ∂∗(Id)-algebras

We can now state the algebraic structure of the homology of an ∂∗(Id)-algebra:

Definition 6.1. An allowable R̄-sLie-algebra is a graded F2-vector space M , equipped with

• a shifted Lie bracket [−,−] : Mi ⊗Mj →Mi+j−1, and

• the structure of an allowable R̄-module on M≥0,

such that

(1) Q̄kx = [x, x] if x ∈Mk, and

(2) [x, Q̄ky] = 0 for any x ∈Mi, y ∈Mj.

Remark 6.2. Notice that condition 2 only has content when k ≥ j, since otherwise Q̄ky = 0.

Theorem 6.3. Given any ∂∗(Id)-algebra L, the operations described above give its mod 2

homology H≥0(L) the structure of a allowable R̄-sLie-algebra.
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Proof. We’ve already shown that the bracket gives H∗(L) the structure of a sLie-algebra and

of an allowable R̄-module in propositions 5.2 and 5.9. We will prove properties 1 and 2 from

Definition 6.1 in lemmas 6.4 and 6.5 below. �

It will be convenient to recall a construction of the Dyer-Lashof operation Qk : Hj(L)→
Hj+k(L

∧2
hΣ2

) for k ≥ j. A class x ∈ Hj(L) can be represented by a map x : ΣjHF2 →
HF2 ∧ L of HF2-module spectra. Applying the second extended power functor we get a

map x⊗ 2
hΣ2

: (ΣjHF2)
⊗ 2
hΣ2
→ (HF2 ∧ L)⊗ 2

hΣ2
, where we’ve used ⊗ for the smash product of HF2-

module spectra. Since the free HF2-module functor is symmetric monoidal and preserves

homotopy colimits, (HF2 ∧ Y )⊗ 2
hΣ2

∼= HF2 ∧ Y ∧2
hΣ2

; so that we can regard x⊗ 2
hΣ2

as being a map

(ΣjHF2)
⊗ 2
hΣ2
→ HF2 ∧ L∧2

hΣ2
.

Now, (ΣjHF2)⊗ 2 has trivial Σ2-action (since this is about HF2-module spectra, we need

not worry about signs in the symmetry of ⊗), so (ΣjHF2)
⊗ 2
hΣ2

∼= Σ2jHF2 ∧ Σ∞+BΣ2. Let

qk−j : Σk−jHF2 → HF2 ∧ Σ∞+BΣ2 pick out the unique non-zero class of degree k − j in

H∗(BΣ2); then Qkx is represented by

Σj+kHF2

qk−j⊗id
Σ2jHF2−−−−−−−−→(HF2 ∧ Σ∞+BΣ2)⊗ Σ2jHF2

∼= (ΣjHF2)
⊗ 2

hΣ2

x⊗ 2
hΣ2−−−→ HF2 ∧ L∧2

hΣ2
.

Lemma 6.4. For any ∂∗(Id)-algebra L and x ∈ Hk(L), we have Q̄kx = [x, x].

Proof. This follows easily by unwinding the definitions: if x is represented by a map x :

ΣkHF2 → HF2 ∧ L, both sides are represented by the desuspension of some composite

ΣkHF2 ⊗ ΣkHF2 →
(
ΣkHF2

)⊗ 2

hΣ2

x⊗ 2
hΣ2−−−→ HF2 ∧ L∧2

hΣ2

HF2∧Σξ−−−−→ HF2 ∧ L,

where ξ : Σ−1L∧2
hΣ2
→ L is the structure map. For [x, x] the first map is taken to be the

quotient map, while for Q̄kx it is q0 ⊗ idΣ2kHF2
, which agrees with the quotient map. �

Lemma 6.5. For an ∂∗(Id)-algebra L and x ∈ Hi(L), y ∈ Hj(L) we have [x, Q̄ky] = 0.
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Proof. For k < j, Q̄ky = 0. For k = j, by Lemma 6.4, [x, Q̄ky] = [x, [y, y]] and this is 0 as

explained in section 4.

To analyze the case k > j, we begin by unwinding the definitions in terms of representing

maps x : ΣiHF2 → HF2 ∧ L and y : ΣjHF2 → HF2 ∧ L. To make the next diagram

fit on the page, we introduce some temporary notation: [i] := ΣiHF2, L̄ := HF2 ∧ L,

BΣ2 := HF2 ∧ Σ∞+BΣ2 and ∂n := ∂n(Id). Then [x, Q̄ky] ∈ Hi+j+k−2(L) is represented

by the the composite from the top left corner to the bottom right corner in the following

commutative diagram:

[i+ j + k − 2]

id[i−1]⊗Σ−1qk−j⊗id[2j]
��

Σ−1[i]⊗ Σ−1(BΣ2 ⊗ [2j])

∼=
��

∂2 ∧ (∂1 ∧ [i])⊗ (∂2 ∧ [j])⊗ 2
hΣ2

(∂1∧x)⊗(∂2∧y)⊗ 2
hΣ2

��

θ[i],[j]
// (∂3 ∧ [i+ 2j])h(Σ1×Σ2)

(∂3∧x⊗y⊗2)h(Σ1×Σ2)

��

∂2 ∧ (∂1 ∧ L̄)⊗ (∂2 ∧ L̄)
⊗ 2

hΣ2

id⊗(HF2∧ξ)
��

θL̄,L̄
// (∂3 ∧ L̄∧3)h(Σ1×Σ2)

ξ′3
��

∂2 ∧ L̄⊗ L̄
HF2∧α2

// L̄.

The horizontal arrows whose labels involve θ are defined using the structure map θ : ∂2 ∧
∂1 ∧ ∂2 → ∂3, namely,

θX,Y : ∂2 ∧ (∂1 ∧X)⊗ (∂2 ∧ Y )⊗ 2
hΣ2
→ (∂3 ∧X ⊗ Y ⊗2)h(Σ1×Σ2)

is given by (θ ∧ idX⊗Y ⊗2)h(Σ1×Σ2).

The arrow labeled ξ′3 is HF2 smashed with the composite

(
∂3 ∧ L∧3

)
h(Σ1×Σ2)

(α3)h(Σ1×Σ2)−−−−−−−→ L ∧ Σ∞+BΣ2 → L,
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and that the bottom square commutes follows from the definition of algebra for an operad.

To conclude the proof, we will show that (∂3 ∧ [i + 2j])h(Σ1×Σ2) is concentrated in degree

i+2j−2, which means the composite from the top of the diagram to that point must be null

if k 6= j. Now, that spectrum is equivalent to HF2∧Σi+2j(∂3)h(Σ1×Σ2) because the (Σ1×Σ2)-

action on [i + 2j] is trivial. So we need to describe ∂3 as a (Σ1 × Σ2)-spectrum. Recall the

description of P3 = B(Comm)(3) from the proof of Proposition 5.2: it consists of three 2-

dimensional disks with their boundaries identified, one for each of the three partitions (12|3),

(13|2), (23|1). The (Σ1×Σ2)-action fixes one of the disks and swaps the other two, so that P3

is equivariantly equivalent to Σ2Σ∞+ Σ2, the double suspension of the regular representation

of Σ2. Then ∂3 is Σ−2Σ∞+ Σ2 and (∂3)h(Σ1×Σ2)
∼= S−2, as required. �

Remark 6.6. Lukas Brantner has written a similar proof of this lemma that will appear in

[5]. His argument analyzes the structure map θ showing it is the double desuspension of the

tranfer map Σ∞+BΣ2 → S and thus vanishes on mod 2 homology. I am grateful to him for

sharing his proof with me at a time when I was still confused about the ”bottom operation”

and thought this result only held for k > j.

7. Homology of free ∂∗(Id)-algebras on simply-connected spaces

Now we can state our main result:

Theorem 7.1. Given a simply-connected space X, the mod 2 homology of the free ∂∗(Id)-

algebra on Σ∞X is the free allowable R̄-sLie-algebra sLR̄(H̃∗(X)) on the reduced homology

H̃∗(X).

More precisely, the canonical map sLR̄(H̃∗(X))→ H∗(F∂∗(Id)(Σ
∞X)) is an isomorphism.

We will prove Theorem 7.1 in special cases of increasing generality in the next few sections,

but first we will give a convenient construction of the free allowable R̄-sLie-algebra. This

will involve the notion of basic products, that we now recall:
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Definition 7.2. The basic products on a set of letters x1, . . . , xn are defined and ordered

recursively as follows:

The basic products of weight 1 are x1, x2, . . . , xk, in that order.

Suppose the basic products of weight less than k have been defined and ordered. A basic

product of weight k is a bracket [w1, w2] where

• w1 and w2 are basic products whose weights add up to k,

• w1 < w2 in the order defined so far,

• if w2 = [w3, w4] for some basic products w3 and w4, then we require that w3 ≤ w1.

Once all the products of weight k are defined, they are ordered arbitrarily among themselves

and declared to be greater that all basic products of lower weight. We will assume these

choices of order are fixed once and for all.

Marshall Hall proved in [9] that the basic products form a basis for the free Lie algebra

on x1, x2, . . . , xk. That result is for the totally isotropic, ungraded version of Lie algebra,

but it clearly extends, at least for R = F2 where the grading does not introduce signs, to

both Lieti-algebras and sLieti-algebras: if the letters have assigned degrees |xi|, we assign to

each basic product w with ` letters of total degree d, the degree |w| = d in the Lieti case and

|w| = d− ` in the sLieti case.

Proposition 7.3. The free allowable R̄-sLie-algebra sLR̄(V ) on a graded F2-vector space

V is the free allowable R̄-module on the free sLieti algebra on V , in symbols AR̄(FsLieti(V )),

equipped with a bracket defined as follows:

First, fix a basis β of V and consider the basis of AR̄(FsLieti(V )) consisting of all Q̄Jw

where:

• J = (j1, . . . , jk) is a CU-sequence of integers, and

• w is a basic product of degree at most jk in letters from β.

Now define the bracket on AR̄(FsLieti(V )) on that basis as indicated below and extended bi-

linearly:
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• [Q̄J1w1, Q̄
J2w2] = 0 if J1 6= ∅ or J2 6= ∅.

• The bracket [w1, w2] of basic products is defined recursively as follows:

(1) If [w1, w2] is also a basic product, then the bracket is the basis element corre-

sponding to [w1, w2].

(2) [w1, w2] = Q̄|w1|w1 if w1 = w2.

(3) [w1, w2] = [w2, w1] if w1 > w2.

(4) [w1, w2] = [w3, [w4, w1]] + [w4, [w1, w3]] if w1 < w2 and w2 = [w3, w4] with w1 <

w3.

Proof. In [9], Hall defines the Lieti bracket on the linear span of the basic products as above,

except that (2) is replaced with [w1, w1] = 0. He then proves that the recursion in the

definition does terminate and that it produces a Lieti-algebra, that is, that the bracket is

anti-symmetric, satisfies the Jacobi identity and [x, x] = 0 for all x. A straightforward

adaptation of his proof will show that the above definition also terminates and produces

an allowable R̄-sLie-algebra. But before we explain that, let’s assume the bracket does

define a R̄-sLie-algebra and check that it is free. Let f : V → E be a morphism of graded

vector spaces where E is an allowable R̄-sLie-algebra. There is a unique bracket-preserving

extension of f to the linear span of the basic products, and therefore a unique extension of

f to a morphism of allowable R̄-modules AR̄(FsLieti(V )) → E. That this unique extension

is also a morphism of allowable R̄-sLie-algebras is clear from the above definition of the

bracket.

And now we check the bracket correctly produces an allowable R̄-sLie-algebra. First of all,

notice that the degrees of the various parts of the definition are correct for a shifted bracket.

Secondly, having [w1, w1] = Q̄|w1|w1 instead of 0 does not affect termination of the recursion

at all. Both 0 and Q̄|w1|w1 have the following properties: (1) they are expressions containing

no further brackets, so if a term reduces to one of them that term requires no further

reduction, and (2) if they appear inside a bracket, the term containing that bracket is 0.
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This means that the process of reducing a bracket [x, y] to a linear combination of basic

products by repeatedly applying the recursive definition uses exactly the same steps in both

Hall’s Lieti case and in our R̄-sLie case, the only difference being that any [w,w] that appear

on their own (that is, not inside a bracket) will reduce to Q̄|w|w instead of 0.

Next we must check that this bracket satisfies [x, Q̄ky] = 0, [x, x] = Q̄|x|x, symmetry and

the Jacobi identity. All of these need only be checked on the given basis. Symmetry and

that [x, Q̄ky] = 0 are directly built in to the definition, as is the fact that [x, x] = Q̄|x|x when

x is a basic product. When x = Q̄Jw for J = (j1, . . . , jk) with k ≥ 1, we have [x, x] = 0

(since J 6= ∅), but we also have |x| = j1 + · · · + jk + |w| − k < j1 + · · · + jk + |w| so that

Q̄|x|x = Q̄|x|Q̄Jw = 0 is required by allowability.

Now only the Jacobi identity remains to be checked:

∑

cyclic

[
Q̄J1w1, [Q̄

J2w2, Q̄
J3w3]

]
= 0.

If any Ji 6= ∅, all three terms are 0, so assume all Ji = ∅. This remaining case can be proved

exactly as in [9, Section 3, p. 579], with one tiny change. There is only one place in that

proof where the condition [w,w] = 0 is used: it is at the very beginning of the argument for

the Jacobi identity. The proof starts by considering the case when two of the wi are equal,

say w1 = w2. Then the terms [w1, [w1, w3]] and [w1, [w3, w1]] cancel by anti-symmetry and

the remaining term is 0 since [w3, [w1, w1]] = [w3, 0]. In our case, that last term still vanishes:

[w3, [w1, w1]] = [w3, Q̄
|w1|w1] = 0. The rest of Hall’s argument goes through verbatim. �

7.1. The free ∂∗(Id)-algebra on a sphere. For X = Sn, Theorem 7.1 is essentially a

restatement of [4, Theorem 1.5.1] using Proposition 7.3. Indeed, the free sLieti-algebra on

H̃∗(Sn) = F2{ιn} is just F2{ιn} again, so that sLR̄(H̃∗(Sn)) = AR̄(F2{ιn}), which is what

Behrens shows H∗(F∂∗(Id)(S
n)) to be.
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7.2. The free ∂∗(Id)-algebra on a finite wedge of spheres. Now we consider the case

of X = Sd1 ∨ Sd2 ∨ · · · ∨ Sdk for some integers di ≥ 2; in this case FO(X) can be computed

from the results of [2], which we now summarize.

Consider a bit more generally the case X = Σ(X1 ∨ · · · ∨ Xk), where the Xi are some

connected spaces. In [2] there is a computation of Dn(Id)(X) = ΣDn(ΩΣ)(X1∨· · ·∨Xk) that

takes multi-variable Goodwillie derivatives on “both sides of the Hilton-Milnor theorem”.

The Hilton-Milnor theorem (see [13, Section XI.6]) gives a homotopy equivalence between

ΩΣX = ΩΣ(X1 ∨ · · · ∨ Xk) and the weak3 infinite product
∏

w ΩΣYw(X1, . . . , Xk), where

w runs over the basic products on k letters, and each Yw is the functor obtained from the

word w by interpreting the i-th letter as Xi, and the bracket as the smash product; so that

Yw(X1, . . . , Xk) = X
∧m1(w)
1 ∧ · · · ∧X∧mk(w)

k with mi(w) counting the number of occurrences

of the i-th letter in w.

To describe an explicit map giving this equivalence we need to recall the definition of

the Samelson products. Let G be an H-group and c : G × G → G be the commutator

map. The composite map G × {e} → G × G
c−→ G is null as is the analogous map from

{e} × G. This means that G ∨ G → G × G c−→ G is null and thus there is a pointed map

c̄ : G ∧ G → G (whose homotopy class is well-defined). Now given any two pointed maps

α : W → G and β : Z → G, we can defined their Samelson product 〈α, β〉 as the composite

W ∧ Z α∧β−−→ G ∧G c̄−→ G.

Given a basic product w there is a map hw : Yw(X1, . . . , Xn) → ΩΣX obtained from w

by interpreting the i-th letter as the canonical map Xi ↪→ X → ΩΣX and interpreting the

bracket as the Samelson product. Let h̄w : ΩΣYw(X1, . . . , Xn) → ΩΣX be the extension

of hw to a map of A∞-spaces and for any set B of basic words let h̄B be the composite
∏

w∈B ΩΣYw(X1, . . . , Xn)
∏
h̄w−−−→ (ΩΣX)B

µ−→ ΩΣX. Then the Hilton-Milnor theorem can be

stated as saying that the colimit of h̄B over all finite sets of basic products is an equivalence.

3This means the homotopy colimit of the finite products, where the maps in the colimit include a product
into a larger product using the basepoint on the extra factors.
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The result Arone and Kankaanrinta obtain from the Hilton-Milnor equivalence [2, Theorem

0.1] is the following equivalence of spectra:

(
∂n(ΩΣ) ∧ Σ∞

(
X∧n1

1 ∧ · · · ∧X∧nk
k

))
h(Σn1×···×Σnk

)
∼=

∨

d|gcd(n1,...,nk)


 ∨

w∈W (
n1
d
,...,

nk
d

)

Dd(ΩΣ) (Yw(X1, . . . Xk))


 ,

where W (n1

d
, . . . , nk

d
) is the set of basic products on k-letters involving the i-th letter

exactly ni

d
times.

We can use this to get a nice formula for Σ−1F∂∗(Id)(X):

F∂∗(ΩΣ)(X1 ∨ · · · ∨Xk) =
∨

n

Dn(ΩΣ)(X1 ∨ · · · ∨Xk)

=
∨

n

(
∂n(ΩΣ) ∧ Σ∞(X1 ∨ · · · ∨Xk)

∧n)
hΣn

=
∨

n

(
∂n(ΩΣ) ∧

∨

n1+···+nk=n

IndΣn
Σn1×···×Σnk

(X∧n1
1 ∧ · · · ∧X∧nk

k )

)

hΣn

=
∨

n1,...,nk

(
∂n1+···+nk

(ΩΣ) ∧ (X∧n1
1 ∧ · · · ∧X∧nk

k )
)
h(Σn1×···×Σnk

)

=
∨

n1,...,nk


 ∨

d|gcd(n1,...,nk)


 ∨

w∈W (
n1
d
,...,

nk
d

)

Dd(ΩΣ) (Yw(X1, . . . , Xk))






=
∨

m1,...,mk,d


 ∨

w∈W (m1,...,mk)

Dd(ΩΣ) (Yw(X1, . . . , Xk))




=
∨

w∈W
F∂∗(ΩΣ) (Yw(X1, . . . , Xk)) ,

where the last wedge runs over all basic products in k letters, and the next to last step uses

the change of variables mi = ni

d
: this gives a bijection between all (k+1)-tuples (n1, . . . , nk, d)

of positive integers with d | gcd(n1, . . . , nk), and all (k+ 1)-tuples (m1, . . . ,mk, d) of positive

integers.
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This in turn tells us, for F∂∗(Id), that:

F∂∗(Id) (Σ(X1 ∨ · · · ∨Xk)) =
∨

w∈W
F∂∗(Id) (ΣYw(X1, . . . , Xk)) .

Plugging in Xi = Sdi−1, for some di ≥ 2, we get that

F∂∗(Id)

(
Sd1 ∨ · · · ∨ Sdk

)
=
∨

w∈W
F∂∗(Id)

(
S|w|

)
,

so that Proposition 7.3 allows us to conclude Theorem 7.1 for the wedge Sd1 ∨ · · · ∨Sdk from

the case of single spheres.

7.3. The free ∂∗(Id)-algebra on a simply-connected space. Bootstrapping from the

previous cases to F∂∗(Id)(X) for general simply-connected X is purely formal using the fact

that H∗(F∂∗(Id)(X)) only depends on the homology of X, as shown in Proposition 2.2.

Let φX : sLR̄(H̃(X))→ H∗(F∂∗(Id)(Σ
∞X)) be the canonical map coming from the univer-

sal property of the the free allowable R̄-sLie-algebra.

If X is an arbitrary wedge of spheres, each of dimension at least 2, then we can write X

as a filtered colimit of finite wedges of spheres and these fall under the previous case. Since

homology and the free functors we are using all commute with filtered colimits, the result

also holds for such an X.

Now, for a general simply-connected X, pick an F2-basis {xj} of H̃∗(X) and use it to

construct an equivalence of HF2-module spectra f :
∨
j Σ|xj |HF2 → HF2 ∧ Σ∞X. The

natural transformation φ is a special case of a natural transformation ψV : sLR̄(π∗(V )) →
π∗(FHF2∧∂∗(Id)(V )) for HF2-module spectra V , in the sense that φX = ψHF2∧Σ∞X . In the

naturality square

sLR̄(π∗(
∨
j Σ|xj |HF2))

ψ
(
∨
j Σ
|xj |HF2)

//

sLR̄(π∗(f))

��

π∗(FHF2∧∂∗(Id)(
∨
j Σ|xj |HF2))

π∗(FHF2∧∂∗(Id)(f))

��

sLR̄(π∗(HF2 ∧ Σ∞X))
ψ(HF2∧Σ∞X)

// π∗(FHF2∧∂∗(Id)(HF2 ∧ Σ∞X)),
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all maps are known to be isomorphisms (the vertical ones because f is an equivalence, the top

one because it is φ
(
∨

j S
|xj |)) except the bottom one, which therefore also is an isomorphism.
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