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Abstract

Case-noncase studies, also known as case-control studies, are ubiquitous in epi-

demiology, where a common goal is to estimate the e↵ect of an exposure on an outcome

of interest. In many areas of application, such as policy-informing drug utilization re-

search, this e↵ect is inherently causal. Although logistic regression, the predominant

method for analysis of case-noncase data, and other traditional methodologies, may

provide associative insights, they are generally inappropriate for causal conclusions.

As such, they fail to address the very essence of many epidemiological investigations

that employ them. In addition, these methodologies do not allow for outcome-free

design (Rubin, 2007) of case-noncase data, which compromises the objectivity of re-

sulting inferences.

This thesis is directed at exploring what can be done to preserve objectivity in

the causal analysis of case-noncase study data. It is structured as follows.

In Chapter 1 we introduce a formal framework for studying causal e↵ects from

case-noncase data, which builds upon the well-established Rubin Causal Model for

prospective studies.

In Chapter 2 we propose a two-party, three-step methodology — PrepDA — for

objective causal inference with case-noncase data. We illustrate the application of

our methodology in a simple non-trivial setting. Its operating characteristics are
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investigated via simulation, and compared to those of logistic and probit regression.

Chapter 3 focuses on the re-analysis of a subset of data from a published arti-

cle, Karkouti et al. (2006). We investigate whether PrepDA and logistic regression,

when applied to case-noncase data, can generate estimates that are concordant with

those from the causal analysis of prospectively collected data. We introduce tools for

covariate balance assessment across multiple imputed datasets. We explore the po-

tential for analyst bias with logistic regression, when said method is used to analyze

case-noncase data.

In Chapter 4 we discuss our technology’s advantages over, and drawbacks as com-

pared to, traditional approaches.
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Chapter 1

Framework for causal inference in

case-noncase studies

1.1 Introduction

1.1.1 The case-noncase study

The case-noncase study, also known as case-control study, is ubiquitous in epi-

demiology and biostatistics for screening factors suspected to be associated with rare

diseases, and for quantifying how disease risk varies with said factors. It is, in fact,

uniquely suited to the study of rare diseases, for which prospective cohort studies are

often impractical due to prohibitive costs and restrictive logistics. A cohort study, for

instance, may require follow-up of a sizable study population — possibly over an ex-

tensive period of time — to insure data collection on an adequate number of diseased

units. In contrast, the case-noncase study generally allows for a faster and less costly
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Chapter 1: Framework for causal inference in case-noncase studies

investigation via selection of study subjects based on the outcome of interest. That

is to say, the study starts after outcomes have been realized (and possibly observed).

As such, the case-noncase design is retrospective and non-randomized (randomization

cannot be used to assign units to particular treatments or regimes).

In its simplest form, the case-noncase study examines the relationship between a

single pre-specified binary treatment and a binary outcome. For example, in policy-

informing drug utilization research, the study might concern the e↵ect of taking or

not taking a particular medication (the treatment) on the subsequent occurrence or

non-occurrence of disease (the outcome). In case-noncase jargon, individuals with a

particular disease or condition are called ‘cases’, whereas those without the disease

or condition are called ‘noncases’1. After all outcomes have been realized, cases and

noncases are sampled with di↵ering probabilities. Cases are oversampled as a means

to get around the issue of outcome rarity. We consider the scenario in which all

cases have been sampled. This can be accomplished, say, through data collection via

surveillance programs and registries. Noncases, on the other hand, are commonly

selected via simple random sampling from an underlying cohort, whose existence is

guaranteed under the setup of a case-cohort design2 (Prentice, 1986), or by means of

retrospective matching (Holland and Rubin, 1988). In this thesis we do not address

studies of the latter type because retrospective matching is, in our opinion, an oft-

misleading and generally inadequate method for pretreatment bias reduction in causal

e↵ect estimation (see Section 1.2.9). Instead, we focus on studies of the former type.

1Our use of the ‘noncase’ terminology intends to avoid confusion between the meanings of control

as in non-occurrence of disease, and control as in non-exposure to active treatment.
2In a case-cohort design, a subcohort of noncases is randomly selected from a well-defined cohort.
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Henceforth, we assume as research goal the quantification of the causal e↵ect of a

possible disease-causing treatment on an outcome of interest.

1.1.2 A brief literature review of the statistical analysis of

case-noncase data

According to Breslow and Day (1980), an implementation of the case-noncase

study was first reported in Lane-Claypon (1926). It was not until two decades later,

however, that research articles on methodology and the statistical analysis of case-

noncase data surfaced. Of particular importance were the classical Cornfield (1951)

and Mantel and Haenszel (1959) papers. Cornfield (1951) showed that it was possi-

ble to estimate a relative risk from case-noncase data. Mantel and Haenszel (1959)

introduced the �2 measure of statistical significance and a pooled estimator of rela-

tive risk. Mantel and Haenszel (1959) also discussed the role and limitations of the

case-noncase design, and emphasized its relationship to cohort studies. Cornfield’s

early work gave way to a series of notable papers on the estimation of (log-)odds

ratios (see, e.g., Woolf, 1955; Haldane, 1955; Gart, 1966). The 1970s brought gen-

eralizations of relative risk and odds ratio estimates to case-noncase designs with

retrospective matching (e.g., Miettinen’s (1970) estimation of relative risk from indi-

vidually matched case-noncase studies).

An important subsequent development was the demonstration that logistic regres-

sion can be applied to the (associative) analysis of case-noncase data (Anderson, 1972,

1973; Mantel, 1973; Seigel and Greenhouse, 1973; Prentice and Pyke, 1979). Pren-

tice and Pyke (1979), in particular, demonstrated that the “[odds ratios’] asymptotic

3
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variance matrices may be obtained by applying the original logistic regression model

to the case-control study as if the data had been obtained in a prospective study”.

Logistic regression has since become the predominant method for the analysis of

case-noncase study data. Gefeller et al.’s (1998) literature survey revealed a dramatic

increase in its use over the 1955-1994 period: its rate of implementation rose from

18.4% in 1955, to a staggering 87.2% in 1994.

Among recent developments is Rose and van der Laan’s (2009b; 2009a) work on

nonparametric estimation of marginal causal e↵ects from (retrospectively matched)

case-noncase data via weighted targeted maximum likelihood estimation.

1.1.3 Causal inference under the Rubin Causal Model

The statistical framework for causal inference based on the idea of potential out-

comes was first proposed by Neyman (1923) for randomized experiments. It was

extended by Rubin (1974, 1977, 1978a) to non-randomized studies under a formal

structure now commonly called Rubin’s Causal Model (RCM, see Holland, 1986).

The RCM consists of three components. The first is a set of fundamental notions:

unit, treatment, covariate and potential outcomes. The second is the concept of an

assignment mechanism. The third, and optional, component is a Bayesian model.

We briefly outline each of these components below. The reader is referred to Imbens

and Rubin (2015) for a comprehensive reference on the topic of causal inference in

statistics, social sciences, and biomedical sciences under the RCM.

The first part of the RCM introduces four fundamental notions: unit, treatment,

covariate and potential outcomes. A unit is a person or physical object at a partic-
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ular point in time. Suppose that each unit in a study is subject to two treatments,

or interventions (e.g., an active treatment and a control treatment) whose e↵ects we

wish to assess. For each of these units, we define the two potential outcomes (assum-

ing SUTVA, see Holland, 1986) as the outcome that would be realized (an possibly

observed) under the control treatment, and the outcome that would be realized (and

possibly observed) under active treatment. Note that it is possible for outcomes to

be realized but not observed. This can occur, for example, in a case-noncase study: a

unit’s outcome, although realized, will not be observed by the investigator if the unit

under consideration is not selected into the case-noncase sample (see Sections 1.2.5

and 1.2.6 for further discussion). Because at most one of the treatments can be ap-

plied at any given time to any given unit, only the potential outcome corresponding to

said applied treatment is realized, and hence observable. The other, i.e. the outcome

that would have been realized had the alternative treatment been applied, is miss-

ing (Fundamental Problem of Causal Inference Holland, 1986). Accordingly, causal

inference, or the inference of causal e↵ects — which in turn are defined as the com-

parison of units’ potential outcomes under the two treatments — can be formulated

as a missing data problem. In tackling this problem, it is desirable to compare units

in the active treatment group to those units from the control treatment group who

share similar background characteristics. As such, causal inference methods generally

take into account units’ covariates, which are defined to be background characteristics

that could not have been a↵ected by treatment assignment.

The second component, the assignment mechanism, gives the probability of being

assigned to the active treatment for each unit in the study as a function of units’
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covariates and, possibly, units’ potential outcomes. This mechanism plays a central

role in causal inference as it explains the occurrence of missing potential outcome

data. What’s more, the assignment mechanism enables researchers to understand,

formulate and explicitly state any assumptions (e.g., unconfoundedness of the assign-

ment mechanism, see Rubin, 1975; Imbens and Rubin, 2015) made in reaching causal

conclusions.

The third, and optional, component of the RCM is a Bayesian probability model

on the science, which is understood to be the triplet consisting of covariates, the

potential outcome under active treatment, and the potential outcome under control

treatment, for all units in the population. (The science, as such, is the object of

causal inference.) The probability model is generally used by analysts to either (a)

infer relevant super-population parameters, or (b) impute missing potential outcome

data via posterior predictive sampling for purposes of finite-population inference.

1.1.4 Outcome-free design for objective causal inference

According to Rubin (2007), “typically in order to get a drug approved, US Food

and Drug Administration (FDA) requires carefully specified randomized designs and

carefully specified primary analyses and secondary supporting analyses, and often the

data collection and first pass analyses are carried out by a [sic] agent independent

from the organization trying to get approval for the drug. There is thus tremendous

pressure to live with the answers that come from the pre-specified design and anal-

yses.” This modus operandi ensures objectivity in the investigation of causal e↵ects

from randomized experiments.

6
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In contrast, “observational studies are generally fraught with problems that com-

promise any claim for objectivity of the resulting causal inferences” (Rubin, 2008).

In regression adjustment, for instance, study design is not separated from outcome

analysis. For this reason, it is both possible and tempting for researchers “to fish

for a certain result, [by] fitting several models until the desired or expected answer

appears” (Pattanayak et al., 2011). Chapter 3 explores this idea in the context of

case-noncase data analysis.

Accordingly, Rubin (2007) advocates that “observational studies can and should

be designed to approximate randomized experiments as closely as possible... [These

studies] should be designed using only background information to create subgroups

of similar treated and control units, where similar here refers to their distributions of

background variables. Of great importance, this activity should be conducted without

any access to any outcome data, thereby assuring the objectivity of the design.” By

‘design’, Rubin means all contemplation, collection, organization, and analysis of data

that takes place prior to seeing any outcome data.

We henceforth define ‘objective’ causal inference as that whose design phase is

‘blinded’ to outcome data. Although ‘blinded causal inference’ might, as such, be

more fitting terminology for the topic discussed in this thesis, we proceed with the

term ‘objective’ for purposes of consistency with Rubin (2007).

7
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1.1.5 Case-noncase study applications, and the need for ob-

jective and causal inference

Applications of case-noncase studies span a wide and diverse range of fields, from

public health policy, to drug utilization research, to litigation support. For example,

Centers for Disease Control and Prevention (CDC) investigated in 2006 the associa-

tion between Fusarium keratitis, a rare and dangerous fungal infection of the cornea,

and use of Bausch & Lomb’s ReNu with MoistureLoc R� contact lens solution. The

agency concluded an increased risk for Fusarium keratitis associated with use of the

solution (Barry et al., 2006). These findings had regulatory, market, and litigative

implications. Soon after the agency posted its report, FDA recommended that “con-

sumers... stop using ReNu with MoistureLoc R� immediately” (Schultz, 2006). A

month later, Bausch & Lomb announced its decision “to voluntarily recall and per-

manently remove this contact lens solution from the worldwide market” (Barry et al.,

2006). It is reported that between 2008 and 2009, Baush & Lomb has “settled nearly

600 fungal-infection lawsuits” (USA Today, 2009). Another example is Raz et al.

(2014), a topical study that found a positive association between maternal exposure

to particulate matter air pollution, and odds of autism spectrum disorder (ASD).

Said article got reported by several media outlets soon after its publication (e.g.,

Gallagher, 2014), and is likely to fuel further discussion on the link between autism

and pollution.

It can be argued that both these studies, in character with most medical science

investigations, were conducted with a view to inform policies. (As a matter of fact,

Raz et al. (2014) concludes that “air pollution is a modifiable risk factor for autism,
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and reduced exposure during pregnancy could lead to lower incidence of ASD and re-

duce the substantial, increasing economic burden of ASD on families and on society”.)

CDC’s investigation proved to be notably impactful in that regard.

Nonetheless, although associative studies are adequate for exploratory purposes

and can be relied upon for the instatement of reasonable precautionary measures

(e.g., e↵orts should be made to mitigate risk of Fusarium keratitis), they are generally

inappropriate for policy making (recollection of ReNu with MoistureLoc R�, if not a

causative agent of Fusarium keratitis, is arguably unfair to Bausch & Lomb and its

shareholders). In our view, policy makers should, instead, strive to rely on causal

findings.

When analyzing case-noncase data for purposes of causal inference, we believe that

an e↵ort should be made to (a) work under a formal causal framework specifically

tailored to retrospective designs, (b) state, within the confines of this framework, all

assumptions made in reaching conclusions, and (c) of great importance, design the

study, pre-analysis, without access to any outcome data. While conceptually straight-

forward for cohort studies, outcome-free design is complex for the case-noncase de-

sign. Any one-party, one-step design methodology without access to outcome data

is infeasible: by design, sampling of units is conducted as a function of realized po-

tential outcomes, which in turn induces dependence between treatment assignments

and realized potential outcomes in the case-noncase sample (see Section 1.2.5). Con-

sequently, this invalidates the naive implementation of matched sampling methods

to case-noncase data. In Section 2.1, we propose a two-party, three-step method-

ology that circumvents this problem. To our knowledge, such methodology, along

9
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with a formal Rubin Causal Model-based framework for studying causal e↵ects from

case-noncase (or more generally, retrospective) data, has not been proposed to date.

1.2 A causal framework for case-noncase studies

In this section we introduce a formal framework for studying causal e↵ects from

case-noncase data, which extends the well-established Rubin Causal Model to retro-

spective studies.

1.2.1 The case-noncase study as a cohort study with missing

data

We frame the case-noncase study as a (hypothetical) prospective cohort study

with missing data (see Figure 1.1 below). Specifically, the data missing from this (hy-

pothetical) cohort consists of covariate, treatment assignment, and potential outcome

data for the non-sampled noncases — the non-sampled units, — and non-realized po-

tential outcome data for all cases and those sampled noncases — the sampled units.

We believe that this missing data formulation has the benefit of conceptually ty-

ing retrospective studies to their underlying prospective cohort studies, for which

there exists an array of well-accepted methods for objective causal e↵ect estimation

(e.g., see Rubin, 2006; Imbens and Rubin, 2015). In Sections 1.2.2 through 1.2.8, we

expound our missing data framework, under which our methodology, introduced in

Chapter 2, operates.

10



Chapter 1: Framework for causal inference in case-noncase studies

Figure 1.1: The case-noncase study as a cohort study with missing data. Adapted
from Greenberg et al. (2004).

To be clear, the idea of the case-noncase study as a missing data problem is

not new: this view was advocated by Wacholder in a 1996 Epidemiology paper (see

Wacholder, 1996). Our work, however, departs from Wacholder’s (and others’), in

that (a) we focus on laying a formal framework for drawing causal inferences from

case-noncase study data which involves, but is not limited to, missing data theory,

(b) we put forward a methodology that enables objective estimation of causal e↵ects

from case-noncase data, and (c) our approach relies on multiple imputation, and is

inherently Bayesian.

In e↵ect, the inferential approach taken in Section 2.2 of this thesis is that of “cal-

ibrated Bayes” (Little, 2006). That is, while our method for inference is — in part —

Bayesian, its properties are evaluated under the frequentist paradigm. In addition,

our inferential framework is phenomenological, in that it focuses on observable values.

Rubin (1978b), arguing in favor of this approach, notes that “[t]here do not exist pa-
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rameters except under hypothetical models; there do, however, exist actual observed

values and values that would have been observed. Focusing on the estimation of pa-

rameters is often not what the applied person wants to do since a hypothetical model

is simply a structure that guides him to do sensible things with observed values.”

Lastly, in the spirit of the Rubin Causal Model, throughout this thesis we separate

well-defined, observable objects of inference (e.g., the finite-population average causal

e↵ect), from the process by which the investigator learns about said objects of infer-

ence (e.g., the case-noncase study as a prospective observational study design with

missing data), from the assumptions and statistical methods employed to estimate

said quantities of interest (e.g., unconfoundedness, Bayesian multiple imputation).

This approach contrasts with the commonly used techniques in the epidemiological

literature (see Section 1.1.2) which generally, from the onset, define estimands as

parameters embedded in some posited statistical model, without placing particular

emphasis on question definition nor framework setup (nor pre-analysis design).

1.2.2 Population cohort and sample cohort

We define two notions — population cohort and sample cohort — to distinguish

between two central sets of units, to which we allude throughout this thesis. We

define population cohort3 as the prospective cohort study population from which

case-noncase data is sampled retrospectively, if such population exists (e.g., under a

case-cohort design). Otherwise, we define the population cohort as the hypothetical

3The term source population has instead been previously used in various epidemiology papers.
We believe that the term population cohort has the advantage of directly alluding to the sampling
nature of the case-noncase problem.

12



Chapter 1: Framework for causal inference in case-noncase studies

prospective cohort study population from which case-noncase data is assumed to

have arisen. Analogously, we define sample cohort as the set of units retrospectively

sampled from the population cohort — this is the case-noncase sample.

The population cohort is the finite population of inference. That is to say, it is

generally the population of interest to the investigator. For that reason, we do not

attempt to infer anything about units outside this population in Chapter 2 of this

thesis, which focuses on finite-population inference. Consequently, the process by

which the population cohort is selected, e.g., by taking a simple random sample from

some larger (super-)population or by virtue of availability of census data or hospital

records, is immaterial to the finite-population analysis, but for the instance in which

a super-population model is assumed for inferential purposes, as will hold true in

Section 2.2.

1.2.3 Population cohort: complete (observable) data

The framework introduced here builds upon the well-established Rubin Causal

Model for prospective cohort studies. The concept of unit, and notions of treatment,

covariate, and potential outcomes — all of which are observable quantities — all hold

under our framework, and apply to units in the population cohort. We supplement

these ideas with the concept of potential sampling indicators, which we define below.

We begin by introducing notation, which readers acquainted with the RCM should

find familiar. Let the population cohort consist of N units4, indexed by i = 1, · · · , N .

Associated with each unit is a 1 ⇥ k vector of covariates, x

i

. Let X denote the

4Henceforth, unless specified otherwise, “unit” is understood to mean “population cohort unit”.
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N ⇥ k matrix consisting of all units’ covariates. Further, let W denote the vector

of assignments. The components W
i

of W indicate exposure to active treatment

when equal to 1, and zero otherwise. Under SUTVA (Holland, 1986), Y
i

(0) and Y
i

(1)

denote the potential outcome values of unit i under control treatment and active

treatment, respectively. We let Y
i

(w) = 1 if unit i is a case when W
i

= w, and

Y
i

(w) = 0 otherwise. Collectively, variables Y (1) and Y (0) constitute the N�vectors

of potential outcomes, under active treatment and control treatment, respectively.

Drawing an analogy to potential outcomes, we introduce the idea of potential

sampling indicators. The two potential sampling indicators associated with each unit

are the indicators for inclusion of the unit in the sample cohort under each of the two

treatment regimes. That is, we define unit i’s potential sampling indicators as the

sampling indicator that would be realized under control treatment and the sampling

indicator that would be realized under active treatment. We denote the two variables

by S
i

(0) and S
i

(1), respectively, and let S
i

(w) = 1 when unit i is included in the

cohort sample if assigned to treatment w, and 0 otherwise. For example, S
3

(0) = 1

and S
3

(1) = 0 signifies that unit 3 would be sampled under control treatment, but not

under active treatment. Note that, because only one treatment can be applied to any

given unit at any given time, only the potential sampling indicator corresponding to

said applied treatment is realized; the other, namely, the potential sampling indicator

corresponding to the alternative treatment, is missing. Also note that our definition

tacitly assumes that the potential sampling indicator for any unit does not vary with

treatments assigned to other units. We call this assumption SUTVA-S, analogously

and in reference to SUTVA (Holland, 1986):

14



Chapter 1: Framework for causal inference in case-noncase studies

Assumption 1 (Stable Unit Treatment Value Assumption for Sampling

(SUTVA-S)). The potential sampling indicators for any unit do not vary with the

treatments assigned to other units.

More generally, for each unit i in the population cohort and treatment assignment

vector W , we let variable S
i

(W ) denote the potential sampling indicator of unit i

under treatment assignment vector W . We then let S
i

(W ) = 1 if unit i is sampled

under assignment configuration W , and S
i

(W ) = 0 otherwise. This generalized

notation would be used, for example, in a study in which sampling under allocation

of 10% of units to active treatment, say, is of interest. SUTVA-S, however, does hold

under the case-noncase setup considered throughout this thesis. We therefore let

S(1) and S(0) denote the column potential sampling indicator vectors under active

treatment and control treatment, respectively.

Ultimately, observable population cohort data consists of (a) the vectors of po-

tential sampling indicators S(0) and S(1), (b) the vector of assignments W , (c) the

vectors of potential outcomes Y (0) and Y (1), and lastly (d) the matrix of covariates

X. We represent these variables jointly by the complete data matrix Ỹ

compl

:

Ỹ

compl

= (S(0), S(1), W , Y (0), Y (1), X) (1.1)

1.2.4 Causal estimands

A causal e↵ect is defined as the comparison of potential outcomes under active

treatment and control treatment. A finite-population causal estimand is any function

of the triplet (Y (0), Y (1), X) that satisfies the definition of causal e↵ect.
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Let Ȳ (0) = 1

N

P

i

Y (0) and Ȳ (1) = 1

N

P

i

Y (1). In Table 1.1 below, we define

three causal estimands of public health interest: the risk di↵erence, the relative risk,

and the odds ratio.

Table 1.1: Three primary causal estimands for dichotomous outcomes. Adapted from
Chretien (2010).

Epidemiological

term

Finite population

estimand
Super-population estimand

Risk Di↵erence (RD) ⌧

FP

= Ȳ (1)� Ȳ (0) ⌧

SP

= E

SP

[⌧
FP

]

= Pr(Y (1) = 1)� Pr(Y (0) = 1)

Relative Risk (RR) rr

FP

=
¯

Y (1)

¯

Y (0)

rr

SP

= E

SP

[rr
FP

] ⇡ Pr(Y (1)=1)

Pr(Y (0)=1)

Odds Ratio (OR) !

FP

=
Ȳ (1)

1�Ȳ (1)
Ȳ (0)

1�Ȳ (0)

!

SP

= E

SP

[!
FP

] ⇡ Pr(Y (1)=1)

Pr(Y (1)=0)

.

Pr(Y (0)=1)

Pr(Y (0)=0)

Estimands can be extended so as to incorporate covariate information. For exam-

ple, an analyst may be interested in the risk di↵erence for all males in the population

cohort,

⌧
males

=
1

N

X

i: unit i is a male

⇣

Y
i

(1)� Y
i

(0)
⌘

,

or in the e↵ect of a drug for those units who were exposed to it:

⌧
treated

=
1

N

X

i:Wi=1

⇣

Y
i

(1)� Y
i

(0)
⌘

.

16



Chapter 1: Framework for causal inference in case-noncase studies

1.2.5 Two mechanisms create missing data, or not

Two mechanisms create missing data, or not; one via assignment of each unit to

one of the two possible treatment regimes, the other via sampling or non-sampling of

units into the sample cohort. We call these two mechanisms the assignment mecha-

nism and the realized sampling mechanism, respectively.

Notation

To reflect the existence of two stages of missing data generation, we introduce

double-superscript notation inspired by that in Rubin (1987). Under this notation,

and when applicable5, the first superscript indicates whether a given unit’s mea-

surement or variable (e.g., potential outcome) is realized or missing as a result of

the assignment mechanism, and the second superscript indicates whether the unit in

question is included in, or excluded from, the sample cohort.

We define this notation in Table 1.2 below, where Y denotes a dummy variable

associated with unit i in the population cohort.

5See below for examples of non-applicability.
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Table 1.2: Notation.
Y denotes a dummy variable associated with unit i in the population cohort.

Notation Definition

Y

r, ·
i

realized (irrespective of inclusion or not in the cohort sample)

Y

mis, ·
i

missing (irrespective of inclusion or not in the cohort sample)

Y

r, inc

i

realized and included in the sample cohort

Y

r, exc

i

realized and excluded from the sample cohort

Y

mis, inc

i

missing and included in the sample cohort

Y

mis, exc

i

missing and excluded from the sample cohort

Y

·, inc

i

always-realized (by default) and included in the sample cohort

Y

·, exc

i

always-realized (by default) and excluded from the sample cohort

Accordingly, we let Y r, ·
i

and Y mis, ·
i

denote, respectively, the realized and missing

potential outcome of each unit i in the population cohort. By definition:

Y r, ·
i

= W
i

Y
i

(1) + (1�W
i

)Y
i

(0) (1.2)

Y mis, ·
i

= (1�W
i

)Y
i

(1) + W
i

Y
i

(0) (1.3)

Likewise, associated with each unit i are one realized, and one missing, potential

sampling indicator, which we denote by Sr, ·
i

and Smis, ·
i

, respectively. By definition,

and under SUTVA-S:

Sr, ·
i

= W
i

S
i

(1) + (1�W
i

)S
i

(0) (1.4)

Smis, ·
i

= (1�W
i

)S
i

(1) + W
i

S
i

(0) (1.5)
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For example, Sr, ·
7

= 1 would denote inclusion of unit 7 in the cohort sample under

treatment received by unit 7. Note that, by default, the treatment assignment and

covariate variables are “always-realized” in that they do not have missing potential

counterparts the way potential outcomes and potential sampling indicators do. As

such, we let x

·, inc

i

and x

·, exc

i

denote, respectively, the (always-realized and) included,

and (always-realized and) excluded covariate vectors for unit i. Namely,

x

·, inc

i

= x

i

if Sr, ·
i

= 1 (1.6)

and x

·, exc

i

is missing data when Sr, ·
i

= 0. Similarly, we let W ·, inc

i

and W ·, exc

i

denote,

respectively, the (always-realized and) included, and (always-realized and) excluded

assignment for unit i. Hence,

W ·, inc

i

= W
i

if Sr, ·
i

= 1 (1.7)

and W ·, exc

i

is missing data when Sr, ·
i

= 0. Finally, we let Y r, inc

i

and Y mis, inc

i

de-

note, respectively, unit i’s realized and included, and missing and included potential

outcome. That is,

Y r, inc

i

= Y r, ·
i

if Sr, ·
i

= 1 (1.8)

Y mis, inc

i

= Y mis, ·
i

if Sr, ·
i

= 1 (1.9)

Variables Y r, exc

i

and Y mis, exc

i

are excluded, and therefore constitute missing data.

Note that these variables are non-identifiable without unit i’s treatment assignment
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information.

Unit-level notation introduced in this section readily extends to vectors, and ma-

trices when applicable.

The assignment mechanism

The first missing data mechanism, previously discussed in Section 1.1.3, is the

assignment mechanism. One of the three central components of the RCM, the as-

signment mechanism is the process that governs which population cohort units are

exposed to the active treatment, and which are exposed to the control treatment.

Formally, it is defined (see Rubin, 1975; Imbens and Rubin, 2015) as a “function

that assigns probabilities to all 2N possible N�vectors of assignments W , given the

N�vectors of potential outcomes Y (0) and Y (1), and given the N ⇥ K matrix of

covariates X:

Definition 1 (Assignment Mechanism). The assignment mechanism is a row-

exchangeable function Pr(W |W , Y (0), Y (1)), taking on values in [0, 1], satisfying

X

W2{0,1}N

Pr(W |X, Y (0), Y (1)) = 1, (1.10)

for all X, Y (0), and Y (1).”

We refer the reader to Imbens and Rubin (2015) for additional discussion and

examples.
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The potential sampling mechanism

As its name suggests, the potential sampling mechanism is the process that governs

sampling or non-sampling of population cohort units under both treatment regimes.

Formally, we define it as a function that assigns probabilities to all 2N ⇥ 2N possible

pairs of N�vectors of potential sampling indicators, given the N�vectors of potential

outcomes Y (0) and Y (1), the N⇥K matrix of covariates X, and given the N�vector

of treatment assignments W :

Definition 2 (Potential Sampling Mechanism). Given a population cohort of

N units, the potential sampling mechanism is a row-exchangeable function

Pr(S(0), S(1)|W , X, Y (0), Y (1)), taking on values in [0, 1], satisfying

X

S(0)2{0,1}N
, S(1)2{0,1}N

Pr(S(0), S(1)|W , X, Y (0), Y (1)) = 1, (1.11)

for all W , X, Y (0), and Y (1).

Note that the potential sampling mechanism applies to both potential sampling

indicator vectors despite it being impossible, by the fundamental problem of causal

inference, to observe both indicators simultaneously for any given unit. This attribute

makes it a hypothetical construct: under our case-noncase setup, for instance, whether

any given unit would have been sampled under the treatment alternative to the one

actually received6 has no direct bearing on the (non-)inclusion of said unit in the

cohort sample. Notwithstanding, we introduce the potential sampling mechanism as

above for three main reasons.

6We assume treatment compliance and thereby use “assigned” and “received” interchangeably.
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The first is pedagogical and expository. The potential sampling mechanism al-

lows investigators to contemplate the occurrence (and to quantify the probability) of

unit sampling under both treatment regimes: “Had she been exposed to the alterna-

tive treatment, would unit 5 have been selected into the sample cohort? If so, with

what probability?”. The mechanism, as such, elucidates the complex relationship

between the sample cohort and the population cohort. What’s more, we believe that,

much in the same way that potential outcomes, in conjunction with the assignment

mechanism, make explicit the very nature — and challenges — of causal inference

(e.g., it being a missing data problem, where missingness is governed by the assign-

ment mechanism), potential sampling indicators, in conjunction with the potential

sampling mechanism, reveal the conceptually subtle nature of the causal inference

problem for retrospective designs.

The second reason is that of generality. The potential sampling mechanism defined

as above encompasses a large class of retrospective designs. Though fictional, a study

design under which sampling of any given unit under any given treatment depends

on that unit’s missing potential outcome can be formally defined under our setup.

Lastly, the potential sampling mechanism serves as a natural building block for

the realized sampling mechanism, which we define next.

The realized sampling mechanism

The realized sampling mechanism is the process that governs which population

cohort units are selected into the sample cohort, and which are not. Formally, we

define it as a function that assigns probabilities to all 2N possible realized sampling
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vectors S

r, ·, given the N�vectors of potential outcomes Y (0) and Y (1), the N ⇥K

matrix of covariates X, and given the N�vector of treatment assignments W :

Definition 3 (Realized Sampling Mechanism). Given a population cohort of

N units, the realized sampling mechanism is a row-exchangeable function

Pr(Sr, ·|W , X, Y (0), Y (1)), taking on values in [0, 1], satisfying

X

S

r, ·2{0,1}N

Pr(Sr, ·|W , X, Y (0), Y (1)) = 1, (1.12)

for all W , X, Y (0), and Y (1).

Properties of the realized sampling mechanism

Imbens and Rubin (2015) discuss “three general properties that assignment mech-

anisms may satisfy”: individualisticness, probabilisticness, and unconfoundedness.

Below, we define analogues of said properties for the realized sampling mechanism.

We then assess whether these properties hold under the case-noncase setup outlined

in Section 1.1.1; namely, under sampling of all realized population cohort cases, and

simple random sampling with known probability ⇡ > 0 of realized population cohort

noncases.

(i) Individualisticness

Definition 4 (Individualistic realized sampling mechanism). A realized sam-

pling mechanism is individualistic if the realized sampling probability of any particu-

lar population cohort unit is only a function of that unit’s assignment, covariate, and
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potential outcome values.

Proposition 1 (Individualisticness of realized sampling mechanism). The

realized sampling mechanism is individualistic.

Proof. The proposition follows immediately from the fact that, independently for

i = 1, · · · , N ,

Sr, ·
i

d

= Y r, ·
i

+ B(1� Y r, ·
i

) (1.13)

where B ⇠ Bern(⇡) is independent of Y r,·
i

.

⌅

(ii) Probabilisticness

Definition 5 (Probabilistic realized sampling mechanism). A realized sam-

pling mechanism is probabilistic if the realized sampling probability is strictly between

zero and one for every unit in the population cohort. That is, every unit has the possi-

bility of being selected into the sample cohort and the possibility of not being selected

into the sample cohort.

Proposition 2 (Probabilisticness of realized sampling mechanism). The

realized sampling mechanism is not probabilistic.

Proof. The proposition follows from noting that, for those units for which Y r, ·
i

= 1,

Pr(Sr, ·
i

= 1|W
i

, X
i

, Y
i

(0), Y
i

(1)) = 1. (1.14)

⌅
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(iii) Unconfoundedness

Definition 6 (Unconfounded realized sampling mechanism). A realized sam-

pling mechanism is unconfounded if it does not depend on the potential outcomes:

Pr(Sr, ·|W , X, Y (0), Y (1)) = Pr(Sr, ·|W , X, Y 0(0), Y 0(1)), (1.15)

for all W , X, Y (0), Y (1), Y 0(0), and Y

0(1).

Proposition 3 (Confoundedness and ignorability of realized sampling

mechanism). The realized sampling mechanism is confounded, but ignorable (Little

and Rubin, 2002) in that it can be written as a function of W, X and Y

r, · only,

without dependence on Y

mis,·.

Proof. See Proposition 1 proof. ⌅

Corollary 1 (Ignorability of realized sampling mechanism for Bayesian

inference). Under the conditions of Proposition 3, and assuming a priori inde-

pendence between the parameters of the distributions of Sr, ·
i

and Y r, ·
i

, the realized

sampling mechanism is ignorable for Bayesian inference, as defined in Little and Ru-

bin (2002).

We refer the reader to Little and Rubin (2002) for an in-depth discussion of

ignorability. A key implication and benefit of an ignorable missing data mechanism

is that it allows Bayesian inference to be based on the observed data likelihood only:

the missing data mechanism, as the name suggests, can be ignored. Conveniently,

the realized sampling mechanism is ignorable. However, it is also confounded.
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Consider equation 1.13 above. By definition, for those units i in the sample cohort,

Sr, ·
i

= 1. By (1.13), therefore,

1 = Sr, ·
i

(1.16)

d

= Y r, ·
i

+ B(1� Y r, ·
i

) (1.17)

= W
i

Y
i

(1) + (1�W
i

)Y
i

(0) + B(1� [W
i

Y
i

(1) + (1�W
i

)Y
i

(0)]). (1.18)

This illustrates that confoundedness of the realized sampling mechanism induces dis-

tributional dependence between treatment assignments and (realized) potential out-

comes in the sample cohort. In other words, the “sample cohort assignment mecha-

nism” (i.e., the population cohort assignment mechanism, restricted to sample cohort

units) is generally not unconfounded:

Pr(W ⇤|X⇤, Y ⇤(0), Y ⇤(1)) 6= Pr(W ⇤|X⇤) (1.19)

where for given variable Z, Z

⇤ := Z|
i:S

r, ·
i =1

. (Potential outcomes cannot be dropped

from the right-hand side of the equation, trivially because of the definition of starred

variables). This invalidates the use of matched sampling methods on sample cohort

data for purposes of pretreatment bias reduction in the estimation of population cohort

causal e↵ects.

1.2.6 Sample cohort: observed data

Ultimately, data that is observed by the analyst consists of (always-)realized vari-

ables for those units in the sample cohort. Specifically, observed data consists of (a)
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the vector of realized sampling indicators, S

r, ·, (b) the vector of realized and included

potential outcomes, Y

r, inc, (c) the vector of included assignments , W

·, inc and lastly

(d) the matrix of included covariates, X

·, inc. We represent these variables jointly by

the observed data matrix Ỹ

obs

:

Ỹ

obs

= (Sr, ·, Y r, inc, W ·, inc, X ·, inc) (1.20)

Henceforth, we shall refer to this set of observed data as case-noncase data, realized

sample cohort data, or simply as sample cohort data.

Conversely, missing data consists of (a) the vector of missing and included po-

tential outcomes Y

mis, inc, (b) the vector of missing and excluded potential outcomes

Y

mis, exc, (c) the vector of excluded assignments, W

·, exc and (d) the matrix of ex-

cluded covariates, X

·, exc. We represent these variables jointly by the missing data

matrix Ỹ

mis

:

Ỹ

mis

= (Y mis, inc, Y r, exc, W ·, exc, X ·, exc) (1.21)

Note that we omit S

mis, · which, although important for conceptual understanding,

plays no role in either missing data mechanism. Also note that under the assumption

of sampling of all cases, Y

r, exc is known to be 0.

1.2.7 Sample cohort data generation, summarized

Sample cohort data generation can be compactly summarized in the form of Table

1.3 below. In this toy example, the population cohort consists of 24 units. Assumed
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is sampling of all cases, and simple random sampling of noncases with sampling

probability ⇡ = 0.5. (Note that this sampling rate would generally be significantly

lower in real-life studies.) As such, Y
i

(w) = 1 implies S
i

(w) = 1 for w 2 {0, 1},

and all i 2 1, · · · , 24. Bolded vectors refer to variables introduced throughout this

section. Columns 2 to 5, in dark gray, represent observed data. Columns 7-12, in

light gray, represent complete data. (In particular, columns 10-12 are what Rubin

commonly refers to as “the science”; i.e. data which, if observed, would allow the

analyst to directly calculate the causal estimand of her choosing.) Lastly, column

6, which consists of the vector Yr, ·, represents partially observed data. When read

from right to left, the table illustrates sample cohort data generation, starting from

the population cohort.

1.2.8 Additional terminology

We introduce additional terminology for purposes of expository clarity in Section

2.1 (see, in particular, Section 2.1.2 discussion), and clarity in Chapter 3. We define

the complete population cohort dataset as the dataset consisting of population cohort

covariates, potential outcomes, and treatment assignments. We define the realized

population cohort dataset as the dataset consisting of population cohort covariates,

realized potential outcomes, and treatment assignments.
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Table 1.3: Sample cohort data generation: a toy example with N = 24 population
cohort units. All cases are sampled with probability 1; noncases are sampled via simple
random sampling with probability ⇡ = 0.5. As such, Y

i

(w) = 1 implies S
i

(w) = 1 for
w 2 {0, 1}, and all i 2 1, · · · , 24.

Unit Y

r, inc

W

·, inc

X

·, inc

S

r, ·
Y

r, ·
S(0) S(1) W Y (0) Y (1) X

1 1 0 x

1

1 1 1 1 0 1 0 x

1

2 1 0 x

2

1 1 1 1 0 1 1 x

2

3 1 0 x

3

1 1 1 0 0 1 0 x

3

4 1 0 x

4

1 1 1 1 0 1 1 x

4

5 1 1 x

5

1 1 1 1 1 1 1 x

5

6 1 1 x

6

1 1 1 1 1 1 1 x

6

7 1 1 x

7

1 1 1 1 1 1 1 x

7

8 1 1 x

8

1 1 1 1 1 1 1 x

8

9 0 0 x

9

1 0 1 1 0 0 0 x

9

10 0 0 x

10

1 0 1 0 0 0 0 x

10

11 0 0 x

11

1 0 1 1 0 0 0 x

11

12 0 0 x

12

1 0 1 0 0 0 0 x

12

13 0 0 0 1 0 0 0 x

13

14 0 0 0 0 0 0 0 x

14

15 0 0 0 1 0 0 0 x

15

16 0 0 0 0 0 0 0 x

16

17 0 1 x

17

1 0 0 1 1 0 0 x

17

18 0 1 x

18

1 0 1 1 1 0 0 x

18

19 0 1 x

19

1 0 0 1 1 0 0 x

19

20 0 1 x

20

1 0 1 1 1 0 0 x

20

21 0 0 1 0 1 0 0 x

21

22 0 0 0 0 1 0 0 x

22

23 0 0 1 0 1 1 0 x

23

24 0 0 1 0 1 1 0 x

24
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1.2.9 On retrospective matching

As an immediate application of the framework thus introduced, we discuss the

tangential topic of retrospective matching in case-noncase studies, from the causal

inference perspective. Following Holland and Rubin (1988), let ‘prospective matching’

be understood as matching in the sense of Rubin (2005b); namely, the matching of

control treatment units to active treatment units, on X. Let retrospective matching7

be understood as the “pairing of one or several noncases to each case, on the basis of

their similarity with respect to selected variables” (Schlesselman, 1982).

Retrospective matching is used for noncase sampling in the ‘matched case-noncase’

study design. It is a popular practice in applied epidemiological research: 46.4% of

case-noncase studies published in 1994 were of the matched type (Gefeller et al.,

1998). In spite of its popularity, retrospective matching has long been the subject of

controversy. For instance, according to a literature review by Rose and van der Laan

(2009b), many early texts described the method as a way to reduce ‘confounding’,

which Schlesselman defines as “the e↵ect of an extraneous variable that wholly or

partially accounts for the apparent e↵ect of the study exposure, or that masks an

underlying true association” (see, e.g., Schlesselman, 1982; Miettinen, 1970; Breslow

and Powers, 1978; Breslow and Day, 1980). The more recent articles, however, have

argued otherwise (see, e.g. Costanza, 1995; Rothman et al., 2008; Rose and van der

Laan, 2009b).

Of note, Schlesselman (1982) writes that “the primary objective of matching is

7The term was coined by Holland and Rubin (1988), and is typically simply referred to as
‘matching’ in the epidemiological literature.
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the elimination of biased comparisons between cases and [noncases ]”. Our position

is that matching, on the contrary, should be used to ensure unbiased comparison

between control treatment units and active treatment units. Prospective matching

achieves the latter purpose by reconstructing the blocked randomized design within

an observational dataset (Rubin, 2005b). That is, it creates balance in covariate

distributions between the two treatment subgroups. Retrospective matching, as we

now show, generally does not. Let us consider the example case-noncase datasets

represented in Tables 1.4 and 1.5 below. Also, let us assume, for the sake of argument,

unconfoundedness of the assignment mechanism in the presence of covariate sex.

By construction of dataset 1, exact retrospective matching is feasible — i.e, every

case can be matched to a noncase based on sex. However, it is impossible for the

investigator to learn about the treatment e↵ect via prospective matching, because

treatment assignment and sex are perfectly correlated. This shows that retrospective

matching does not, generally, ensure comparability between control treatment and

active treatement units.

Conversely, in example 2, exact prospective matching is possible — i.e., every

control unit can be matched to an active unit based on sex — whereas retrospective

matching is not — i.e., realized potential outcomes and sex are perfectly correlated.

This suggests that retrospective matching can misguide the investigator into discard-

ing data that is (highly) informative of the treatment e↵ect.
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Table 1.4: Retrospective matching,
example 1.
‘?’ denotes a missing potential outcome.
‘M’ stands for male; ‘F’ for female.
Retrospective matching is possible.
Can’t learn about treatment e↵ect,
even assuming unconfounded A.M.

Unit Y (0) Y (1) W Y

r, · sex

1 1 ? 0 1 M

2 1 ? 0 1 M

3 0 ? 0 0 M

4 0 ? 0 0 M

5 ? 1 1 1 F

6 ? 1 1 1 F

7 ? 0 1 0 F

8 ? 0 1 0 F

Table 1.5: Retrospective matching,
example 2.
‘?’ denotes a missing potential outcome.
‘M’ stands for male; ‘F’ for female.
Retrospective matching is impossible.
Can learn about treatment e↵ect,
assuming unconfounded A.M.

Unit Y (0) Y (1) W Y

r, · sex

1 1 ? 0 1 M

2 1 ? 0 1 M

3 ? 1 1 1 M

4 ? 1 1 1 M

5 0 ? 0 0 F

6 0 ? 0 0 F

7 ? 0 1 0 F

8 ? 0 1 0 F

Another disadvantage of the use of retrospective matching is the potential for

population cohort definition complication, or ill-definedness.

1.3 Discussion

To conclude, the causal inference framework introduced in this chapter extends

the many benefits of the Rubin Causal Model to retrospective studies. Through for-

mulation of the case-noncase study as a cohort study with missing data, our approach

fills a conceptual gap between (observational) prospective cohort studies and retro-

spective studies. Conceptual coherence ensues: a case-noncase study is a partially
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observed cohort study, which itself is a broken stratified randomized experiment. The

problem of causal inference for retrospective studies is therefore conceptually identical

to that for cohort studies: the challenge is to reconstruct, to the extent possible, the

broken randomized experiment.

In our view, our approach provides a deeper understanding of the case-noncase

study design and related causal inference problem, than do traditional methodologies.

For instance, the classical two-way table (Table 1.3) is typically used to summarize a

case-noncase study, but generally provides no causal insight, as discussed in Holland

and Rubin (1988). By contrast, our data generating mechanism table (Table 1.3)

makes explicit (a) the relationship between the population cohort and sample cohort,

and (b) the missing-data nature of the causal inference problem.

Moreover, as shown in Section 1.2.9, the potential outcomes perspective can shed

new light on an age-old controversy.

Advantages of our framework are further discussed in Chapter 4.

Table 1.6: Table of counts based on n
+1

cases and n
+0

noncases.

Noncases (Y = 0) Cases (Y = 1) Total

Control (W = 0) n

c0

n

c1

n

c+

Treated (W = 1) n

t0

n

t1

n

t+

Total n

+0

n

+1

n

++
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Chapter 2

PrepDA for objective causal

inference

2.1 PrepDA: preprocessing, design and analysis of

case-noncase study data for objective causal

inference

2.1.1 Introducing PrepDA

As stated in Section 1.2.5, because of the realized sampling mechanism’s con-

foundedness, and the thereby induced relationship between treatment assignments

and (realized) potential outcomes in the sample cohort, it is invalid to use matched

sampling methods (such as Mahalanobis metric matching) on sample cohort data for

purposes of pretreatment bias reduction in the estimation of population cohort causal
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e↵ects. As previously noted by Månsson et al. (2007), for instance, subclassification

by propensity score estimates from all population cohort cases and a simple random

sample of the noncases “should give consistent estimates of the true propensity score

under the null hypothesis, but not otherwise”. While one could analytically adjust

sample cohort-based estimates of the population cohort propensity score by account-

ing for the implicit conditioning on {Sr, · = 1}, such approach would violate Rubin’s

principle of outcome-free design for causal e↵ect estimation.

Instead, we propose a methodology that both circumvents the above confounded-

ness-related problem and adheres to Rubin’s principles of objective design. The pro-

cedure, which we call by the acronym “PrepDA” for Preprocessing Design Analysis,

stochastically recreates, via multiple imputation, a set of realized population cohort

datasets from realized sample cohort data. Each such simulated dataset constitutes

a prospective observational study, to which Rubin’s outcome-free design and analysis

procedures are then applied. This enables objective estimation of causal e↵ects from

case-noncase data via outcome-free matching or subclassification, post-data prepro-

cessing. By preprocessing, we mean all contemplating, collecting, organizing, model-

ing, and imputation of data.

PrepDA relies on the existence of two parties, say ‘A’ and ‘B’, that operate inde-

pendently from one another. For example, both parties could be research statisticians.

In another example, party A would consist of a team of pharmaceutical biostatisti-

cians and party B of independent statistical consultants.

Our methodology can be compactly summarized by the following three steps:

1. [preprocessing ] Using sample cohort data, Party A multiply imputes, under
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some statistical model, missing covariate, potential outcome, and treatment as-

signment data for the entire population cohort, thereby generating M simulated

complete population cohort datasets. Party A then strips outcome data from

each of the M imputed datasets. (Information regarding steps 2-4 is at this

stage withheld from Party A. Party B is assumed not to be involved in this first

step.)

Table 2.1 below depicts one such imputed dataset, starting hypothetically from Table

1.3 data.
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Table 2.1: Example of singly imputed com-
plete population cohort dataset, obtained by
implementing step 1 of PrepDA using ob-
served data from Table 1.3.
Imputed data appear in red, italicized.

Unit W Y (0) Y (1) X

1 0 1 (0) x

1

2 0 1 (1) x

2

3 0 1 (0) x

3

4 0 1 (0) x

4

5 1 (1) 1 x

5

6 1 (1) 1 x

6

7 1 (1) 1 x

7

8 1 (1) 1 x

8

9 0 0 (0) x

9

10 0 0 (0) x

10

11 0 0 (0) x

11

12 0 0 (0) x

12

13 (1) (0) (0) (x

13

)

14 (1) (1) (0) (x

14

)

15 (0) (0) (0) (x

15

)

16 (1) (0) (0) (x

16

)

17 1 (0) 0 x

17

18 1 (0) 0 x

18

19 1 (1) 0 x

19

20 1 (0) 0 x

20

21 (1) (0) (0) (x

21

)

22 (1) (0) (0) (x

22

)

23 (1) (1) (0) (x

23

)

24 (0) (0) (0) (x

24

)

Table 2.2: Table 2.1 dataset, with
outcomes suppressed.

Unit W X

1 0 x

1

2 0 x

2

3 0 x

3

4 0 x

4

5 1 x

5

6 1 x

6

7 1 x

7

8 1 x

8

9 0 x

9

10 0 x

10

11 0 x

11

12 0 x

12

13 (1) (x

13

)

14 (1) (x

14

)

15 (0) (x

15

)

16 (1) (x

16

)

17 1 x

17

18 1 x

18

19 1 x

19

20 1 x

20

21 (1) (x

21

)

22 (1) (x

22

)

23 (1) (x

23

)

24 (0) (x

24

)
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2. [design ] Party A turns over the M outcome-free imputed datasets to Party B

which, in turn, designs each one of the datasets. Design may involve, but is not

limited to, data trimming, matching or subclassification, and covariate balance

assessment (see, for example, Rubin, 2006, 2008; Imbens and Rubin, 2015).

In our running example, the outcome-free dataset from Table 2.1 above would be

turned over to party B.

3. [analysis] Once Party B’s design phase is finalized, Party A hands over to

party B realized outcome data from each of the M imputed datasets from step

1. Party B then analyzes each of the M imputed and matched or subclassified

realized population cohort datasets according to a strict pre-specified protocol,

and combines the M (sets of) results using Rubin’s rules for Multiple Imputation

(Rubin, 1987).

Table 2.3 below depicts the data that would be analyzed by Party B in this third

step of PrepDA.
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Table 2.3: Table 2.2 dataset, with singly imputed realized potential outcomes Y

r, ·

from Table 2.1 appended. (Or, equivalently, singly imputed realized population cohort
dataset.)

Unit Y

r, ·
W X

1 1 0 x

1

2 1 0 x

2

3 1 0 x

3

4 1 0 x

4

5 1 1 x

5

6 1 1 x

6

7 1 1 x

7

8 1 1 x

8

9 0 0 x

9

10 0 0 x

10

11 0 0 x

11

12 0 0 x

12

13 (0) (1) (x

13

)

14 (0) (1) (x

14

)

15 (0) (0) (x

15

)

16 (0) (1) (x

16

)

17 0 1 x

17

18 0 1 x

18

19 0 1 x

19

20 0 1 x

20

21 (0) (1) (x

21

)

22 (0) (1) (x

22

)

23 (0) (1) (x

23

)

24 (0) (0) (x

24

)
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2.1.2 Discussion

A parallel with prospective cohort and randomized studies

Note that the preprocessing step yields a stochastically generated approximation

of the case-noncase study’s underlying prospective cohort study. This approach ex-

tends Rubin’s (2007) proposal that prospective observational studies approximate

randomized experiments as closely as possible.

The importance of a two-party procedure

By design, PrepDA relies on two independent parties, where the first is exclusively

responsible for the preprocessing step, and the second for the design and analysis

steps. In particular, Party A should neither be aware of (i.e., is blinded to) party

B’s design and analysis protocols, nor the study’s causal objectives. To insure this,

information regarding steps 2-4 is withheld from Party A at the time of step 1 im-

plementation. The purpose of this separation is to minimize, to the extent possible,

analyst bias in causal e↵ect estimation. It prevents, in particular, any given analyst

from preprocessing cohort data in a manner that (could) deliberately impact(s) the

study’s overall findings. An example of such intentional manipulation is the fit of

various imputation models via trial and error, with knowledge of subsequent design

schemes and analysis protocols. We illustrate this idea in Section 2.1.2 below.
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The design and analysis, post-preprocessing, of realized versus complete

imputed population cohort datasets

To be clear, in the third step of the procedure, party B analyzes realized, not

complete, multiply imputed population cohort datasets. This serves two purposes.

The first is to recreate the analysis that would have been performed on the prospective

realized population cohort datasets, had that data been available to the investigator

— see Section 2.1.2 comment above. The second is to prevent the methodology from

being solely dependent on Party A’s imputation model: party B, in fact, imputes

missing (population cohort) potential outcome data in the analysis step of PrepDA.

Note that correct coverage of our procedure relies on having congeniality of the

imputation and analysis models (see Meng, 1977). In practice, this should not be of

major concern, unless models used by party A and party B have major inconsistencies.

In addition, the use of matching or subclassification methods in the design phase of

PrepDA, which limits reliance on model assumptions in the analysis step of PrepDA,

mitigates such risk. Also note that Party B’s analysis step may be redundant if the

imputer’s (Party A’s) model accurately estimates missing potential outcome data.

This, in turn, may result in the introduction of noise in the overall estimation of causal

e↵ects. We nonetheless believe that the added benefit of investigator objectivity,

which PrepDA guarantees, outweighs the risk of possible addition of analytical bias

and/or variance.
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Towards a new notion of covariate balance

PrepDA requires a new notion of covariate balance between active treatment and

control treatment groups. Because the causal e↵ect is estimated by combining esti-

mates obtained from M imputed datasets, there is a need to develop metrics that

adequately summarize balance over multiple datasets. This topic is postponed to

Chapter 3 of this thesis. An example of metric that comes immediately to mind is

the average standardized distance between active treatment and control treatment

covariate distributions, where the average is taken over the M imputed datasets.

A litigation example

Consider the scenario in which a pharmaceutical company is facing a class-action

lawsuit alleging one of its drugs, say ‘D’, causes birth defects. Suppose, further, that

evidence presented to the court includes a case-noncase dataset, which the plainti↵s’

experts analyzed using logistic regression, and concluded a statistically significant

association between intake of drug D and birth defects.

Now suppose that company’s counsel engages two independent statistical consul-

tants, ‘A’ and ‘B’, to analyze the dataset using PrepDA. Following consultant A’s

implementation of the preprocessing step, and upon consultant B’s review of the M

simulated outcome-free population cohort datasets, consultant B opines that there is

not enough overlap in the distributions of key covariates between individuals who took

drug D and those who did not take the drug, to conclude existence, or non-existence,

of a causal e↵ect of taking drug D on birth defects — the analysis, according to her,
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is inconclusive.

The above example illustrates a powerful application of PrepDA in the litigation

setting. In contrast to plainti↵s’ expert, analyst B could not have seen the litigation

answer before making any assessments regarding adequacy of data and/or analysis

methodology. Reliance on PrepDA, as such, protects her from accusations of delib-

erate data manipulation or subjective analysis, and thereby accords plausibility to

her findings. We refer the reader to Kousser (1984) and Greiner (2008) for further

discussion of the (mis)use of logistic regression in the litigation and academic set-

tings. Another related reference is Robertson (2010), which discusses blind expertise

in litigation.

Conclusion

To conclude, PrepDA shares the many advantages of Rubin’s methodologies for

causal inference (see Imbens and Rubin, 2015). Among other, PrepDA (a) allows

for outcome-free matching or subclassification for pre-treatment bias reduction, post-

preprocessing, (b) prevents researchers from running multiple (regression) models on

observed data, and ultimately choosing the one result that is most in line with their

research agenda, and (c) forces investigators to assess the validity of their causal

findings by checking for overlap in covariate distributions between treatment groups,

also post-preprocessing. We further discuss these advantages in Chapter 4.
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2.2 Simulation study: estimation of ⌧FP and !FP

from case-noncase data, assuming presence of

one covariate only

In this section we illustrate the application of PrepDA in a simple non-trivial

setting that assumes the presence of one covariate only; i.e., X

N⇥k

= X

N⇥1

. We

investigate our methodology’s operating characteristics via simulation under various

conditions, and compare them to those of logistic and probit regression when ap-

plicable. The problem addressed throughout this section is that of causal inference

with case-noncase data, where estimands of interest are the population cohort risk

di↵erence, ⌧
FP

= Ȳ (1)� Ȳ (0), and the population cohort odds ratio, !
FP

=
Ȳ (1)

1�Ȳ (1)
Ȳ (0)

1�Ȳ (0)

.

Naturally, we work under the framework introduced in Section 1.2.

2.2.1 A model for population cohort data generation

For each simulation condition (see Section 2.2.4), we generate complete population

cohort data, Ỹ

compl

, according to the following model. Let µ
0

, µ
1

2 R and p 2 (0, 1).

Marginally, the assignment of each unit i is modeled independently with a Bernoulli(p)

distribution:

W
i

|p ⇠ Bern(p). (2.1)
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For each i, independently and conditionally on treatment received W
i

, we let covariate

X
i

follow a Normal distribution with mean µ
Wi and variance �2

Wi
:

X
i

|W
i

, µ
Wi , �Wi ⇠ N (µ

Wi , �
2

Wi
). (2.2)

Specifications 2.1 and 2.2 induce the following assignment mechanism:

Pr(W
i

= w|X
i

, µ
0

, µ
1

, �
0

, �
1

, p) =
pw(1� p)(1�w) · �(X

i

; µ
w

, �2

w

)

(1� p) · �(X
i

; µ
0

, �2

0

) + p · �(X
i

; µ
1

, �2

1

)
, (2.3)

for w 2 {0, 1}. Next, let �
(j)

0

, �
(j)

X

2 R for j 2 {0, 1}. For all i, and given covari-

ates X
i

, potential outcomes Y
i

(0) and Y
i

(1) are modeled independently according to

generalized linear models:

Pr(Y
i

(0) = 1|X
i

, �
(0)

0

, �
(0)

X

) = F (�(0)

0

+ �
(0)

X

X
i

), and (2.4)

Pr(Y
i

(1) = 1|X
i

, �
(1)

0

, �
(1)

X

) = F (�(1)

0

+ �
(1)

X

X
i

), (2.5)

where F (·) is the c.d.f. of a specified distribution, and F�1(·) is the link function.

For purposes of this study, we consider the logit and probit links; see Section 2.2.4

for more details.

Finally, let ⇡ 2 (0, 1) fixed. We specify unit-level potential sampling probabilities

Pr(S
i

(0), S
i

(1)|W
i

, X
i

, Y
i

(0), Y
i

(1), ⇡)

independently for each unit i. We set (S
i

(0), S
i

(1)) to be conditionally independent
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of W
i

and X
i

(and �
(0)

0

, �
(0)

X

, �
(1)

0

, and �
(1)

X

) given Y
i

(0), Y
i

(1) and ⇡:

Pr(S
i

(0), S
i

(1)|W
i

, X
i

, Y
i

(0), Y
i

(1), ⇡) = Pr(S
i

(0), S
i

(1)|Y
i

(0), Y
i

(1), ⇡) (2.6)

Because sampling under control (active) treatment solely depends on unit i’s potential

outcome under control (active) treatment,

Pr(S
i

(0), S
i

(1)|W
i

, X
i

, Y
i

(0), Y
i

(1), ⇡) = Pr(S
i

(0)|Y
i

(0), ⇡) · Pr(S
i

(1)|Y
i

(1), ⇡). (2.7)

Together with the assumptions of sampling of all cases, and simple random sampling

with known probability ⇡ of noncases, this yields:

Pr(S
i

(0) = s
i0

, S
i

(1) = s
i1

|⇢⇢W
i

,⇢⇢X
i

, Y
i

(0), Y
i

(1), ⇡) =
�

⇡si0(1� ⇡)(1�si0)

�

1�Yi(0)

⇥ �

⇡si1(1� ⇡)(1�si1)

�

1�Yi(1)

. (2.8)

We represent the set of parameters from the above model by ✓:

✓ = (p, µ
0

, �
0

, µ
1

, �
1

, �
(0)

0

, �
(0)

X

, �
(1)

0

, �
(1)

X

)
0
. (2.9)

2.2.2 Sample cohort data generation

For each simulation condition and generated complete cohort dataset Ỹ

compl

, we

obtain Ỹ

obs

via simple application of Section 1.2.5 definitions.
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2.2.3 Two methods of analysis: PrepDA and regression ad-

justment

To each generated sample cohort dataset, we apply PrepDA and regression, as

follows.

PrepDA

Given the computational intensity of our simulations, we implement an automated

version of PrepDA. Practical demonstration of PrepDA’s objectivity and its contrast

to regression methods is postponed to Chapter 3.

1. [preprocessing ] We generate M = 100 imputed population cohort datasets

using Bayesian iterative simulation methods. We assume the generative model

from Section 2.2.1 with probit link function F�1(·) ⌘ ��1(·)1. The following

observed log-likelihood ensues:

1The probit link provides a convenient Gibbs sampler and closed-form analytical results.
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`(✓|Ỹ obs

) =
X

i:S

r, ·
i =1

(

W ·, inc

i

Y r, inc

i

log[�(�(1)

0

+ �
(1)

X

X ·, inc

i

)]

+ W ·, inc

i

(1� Y r, inc

i

)log[1� �(�(1)

0

+ �
(1)

X

X ·, inc

i

)]

+ (1�W ·, inc

i

)Y r, inc

i

log[�(�(0)

0

+ �
(0)

X

X ·, inc

i

)]

+ (1�W ·, inc

i

)(1� Y r, inc

i

)log[1� �(�(0)

0

+ �
(0)

X

X ·, inc

i

)]

+ (1�W ·, inc

i

)log[N(X ·, inc

i

; µ
0

, �2

0

)] + W ·, inc

i

log[N(X ·, inc

i

; µ
1

, �2

1

)]

+ W ·, inc

i

log[p] + (1�W ·, inc

i

)log[1� p]

)

+ (N � n
inc

)

⇥ log

"

1� (1� p) · �
(

�
(0)

0

+ �
(0)

X

µ
0

q

1 + �2

0

�
(0)

X

2

)

� p · �
(

�
(1)

0

+ �
(1)

X

µ
1

q

1 + �2

1

�
(1)

X

2

)#

(2.10)

where n
inc

:=
P

i

Sr, ·
i

, ✓ as in (2.9) and Ỹ

obs

= (Sr, ·, Y r, inc, W ·, inc, X ·, inc).

Two key steps are repeated to distributionally impute missing data Ỹ

mis

. The

first consists of drawing a set of parameters ✓

⇤ from the posterior distribution

of the parameters given the observed data, f(✓|Ỹ obs

), using MCMC sampling

via RStan software (Stan Development Team, 2014, see Appendix A.3.1 for

further details). Given this draw for the parameters, we substitute the values

✓

⇤ into the conditional distribution of Ỹ

mis

given Ỹ

obs

and ✓

⇤, f(Ỹ
mis|Ỹ obs

, ✓⇤),

to impute a set of missing data Ỹ

mis

. See Appendix A.3.2 for analytical and

computational specifics involved in this second setup.
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Next, we suppress both potential outcome vectors from each generated complete

population cohort dataset.

2. [design ] We trim each of the M = 100 outcome-free imputed population cohort

datasets. That is, we discard those units in the active treatment arm whose

covariate values do not overlap with the control treatment arm units’ values,

and those units in the control treatment arm whose covariate values do not

overlap with the active treatment arm units’ values. This prevents comparisons

to be made between units that are too dissimilar in X. We then partition the

remaining units into 5 subclasses, S = 1, · · · , 5, using quantiles of X.

3. [analysis] We analyze each of the M imputed realized population cohort

datasets using two procedures, “Neyman Subclassification with Multiple Im-

putation and Trimming” (NSMIT) and “Haldane-Gart Subclassification with

Multiple Imputation and Trimming” (HGSMIT). The first method estimates

the population cohort risk di↵erence, ⌧
FP

, whereas the second one estimates

the population cohort odds ratio, !
FP

. NSMIT and HGSMIT are summarized

as follows:

• Neyman Subclassification with Multiple Imputation and Trimming

(NSMIT)

For each trimmed imputed realized population cohort dataset (m), where

m = 1, · · · , M , we obtain a Neyman point estimate (Neyman, 1923) for
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the risk di↵erence within each of the 5 subclasses S:

⌧̂ (m)

s

=
1

N
ts

X

i:Wi=1, i2S

Y r,·
i

� 1

N
cs

X

i:Wi=0, i2S

Y r,·
i

(2.11)

⌘ ⌧̂
(m)

s,1

� ⌧̂
(m)

s,0

, (2.12)

for s 2 {1, · · · , 5}, where N
ts

=
P

N

i=1, i2S W
i

and N
cs

=
P

N

i=1, i2S(1�W
i

).

We then obtain an estimate of the variance of ⌧̂
(m)

s

:

\
var(⌧̂ (m)

s

) =
⌧̂

(m)

s,1

(1� ⌧̂
(m)

s,1

)

N
ts

+
⌧̂

(m)

s,0

(1� ⌧̂
(m)

s,0

)

N
cs

(2.13)

where N
s

=
P

i2S 1. (Note that Neyman’s method generates unbiased es-

timates of ⌧
FP

and generally conservative intervals in large samples (Ney-

man, 1923; Imbens and Rubin, 2015).) Next, we compute the overall

dataset (m)-specific Neyman point estimate, ⌧̂ (m), by averaging across sub-

classes, weighting according to the number of units in each subclass, and

the corresponding 95% large sample confidence interval.

We combine results from each of the M imputed datasets using Rubin’s

Rules for Multiple Imputation (Rubin, 1987) to get an overall estimate, ⌧̄ ,

of risk di↵erence:

⌧̄ =
1

M

X

m

⌧̂ (m) (2.14)
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and an estimate, T , of its variance,

T =

✓

1 +
1

M

◆

B + Ū (2.15)

where B = 1

M�1

P

m

(⌧̂ (m)� ⌧̄)2 and Ū = 1

M

P

m

\Var(⌧̂ (m)). The confidence

interval for ⌧ is obtained using:

(⌧̄ � ⌧)/
p

T ⇠ t
⌫

where ⌫ = (M � 1)
h

1 +
⌧̄

(1 + M�1)B

i

2

. (2.16)

• Haldane-Gart Subclassification with Multiple Imputation and Trimming

(HGSMIT)

In a similar fashion to NSMIT, for each trimmed simulated realized popu-

lation cohort dataset, we obtain an overall dataset (m)-specific point esti-

mate for the log odds ratio by averaging subclass-specific point estimates.

We then obtain the corresponding 95% interval. We use Haldane’s exten-

sion (Haldane, 1955) of Woolf’s method (Woolf, 1955) to estimate the log

odds ratio within each subclass S:

log(!̂(m)

s

) = log
h(nt1

s

+ 0.5)(nc0

s

+ 0.5)

(nt0

s

+ 0.5)(nc1

s

+ 0.5)

i

, (2.17)

for s 2 {1, · · · , 5}, where nt1

s

=
P

N

i=1, i2S W
i

Y r,·
i

, nc0

s

=
P

N

i=1, i2S(1 �

W
i

)(1�Y r,·
i

), nt0

s

=
P

N

i=1, i2S W
i

(1�Y r,·
i

) and nc1

s

=
P

N

i=1, i2S(1�W
i

)Y r,·
i

.

(An advantage of Haldane’s estimator over Woolf’s is that the former exists

for samples in which nt1

s

, nc0

s

, nt0

s

or nc1

s

has a null value.) We use Gart’s

51



Chapter 2: PrepDA for objective causal inference

method (Gart, 1966):

log!̂ ± 1.96
p

1/(nt1

s

+ 0.5) + 1/(nt0

s

+ 0.5) + 1/(nc1

s

+ 0.5) + 1/(nc0

s

+ 0.5)

(2.18)

to compute 95% confidence intervals. (Note that Haldane’s method pro-

duces an approximately unbiased estimate of !
FP

; Woolf’s method gen-

erates generally conservative intervals in large samples (Haldane, 1955;

Ding and Dasgupta, 2015).) We ultimately obtain an overall odds ratio

estimate !̄ and corresponding 95% confidence interval via application of

Rubin’s Rules for Multiple Imputation, followed by exponentiation.

(4.) [(preprocessing results)] In addition, we directly calculate the average risk

di↵erences and odds ratios from each of the M imputed complete population co-

hort datasets. This procedure yields M estimates of ⌧̂
FP

, T = {⌧̂ (1), · · · , ⌧̂ (M)},

and M estimates of !
FP

, O = {!̂(1), · · · .!̂(M)}. We obtain overall point esti-

mates and credible intervals for ⌧
FP

and !
FP

by taking the mean and (0.25,

0.975) quantiles of M and O, respectively.

We henceforth refer to this method as “Multiple Imputation” (MI).
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Logistic regression (LR) and probit regression (PR)

We fit logistic and probit regression models, where Y

r, inc is regressed on W

·, inc

and X

·, inc:

logit[Pr(Y r, inc

i

= 1|X
i

)] = �
0

+ �
!

W ·, inc

i

+ �
X

X ·, inc

i

(2.19)

��1[Pr(Y r, inc

i

= 1|X
i

)] = �
0

+ �
!

W ·, inc

i

+ �
X

X ·, inc

i

(2.20)

In both cases, we exponentiate the estimated regression coe�cient for W

·, inc to

obtain an estimate !̂
SP |W,X

= e
ˆ

�! of !
FP

. We obtain a corresponding 95% confidence

interval by exponentiating the endpoints of the conventional Normal-based confidence

interval for �̂
!

.

Note that the logistic regression method provides estimates of the conditional, not

marginal, and super, not finite, population odds ratio. Despite this, we implement

it so as to investigate the method’s performance in estimating the causal population

cohort odds ratio, an estimand we believe is of greater interest in many, if not most,

epidemiological studies.

Also note that probit regression is generally not used for purposes of (conditional)

odds ratio inference. We implement it here to investigate the regression methods’

sensitivity to link function F�1(·) misspecification.

2.2.4 Simulation design

We investigate frequentist operating characteristics of PrepDA under various simu-

lation conditions, and assess how logistic and probit regression perform in comparison
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for estimating !
FP

. Table 2.4 below specifies factors used in our study, which can be

described as a 26 factorial design.

Table 2.4: Simulation factors.

Factor Levels of factor

N {1000}

⇡ {0.1}

p {0.5}

�

(0)

0

{-3, -2}

�

(1)

0

{-3, -2}

�

(0)

X

{-1, -1

2

}

�

(1)

X

{-1, -1

2

}

�

2

0

{2}

µ

0

{0}

�

2

1

{1}

B = µt�µcr
�2
1+�2

0
2

{0, 1}

F

�(1)(·) {logit(·), �(·)}

In a typical case-cohort study, the two first factors would be known to the investi-

gator, whereas the last ten would be unknown. Simulation parameters were selected

so as to sensibly emulate real-life settings while taking into account the computa-

tionally intensive nature of the study. The latter, in particular, informed our choice

of population cohort size, N . A sampling rate of noncases of ⇡ = 0.1, in conjunc-

tion with chosen levels of N and �

:=
�

�
(0)

0

, �
(0)

X

, �
(1)

0

, �
(1)

X

�

ensured generation of

su�ciently large sample cohorts for purposes of statistical inference. Factor F�1 in-
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vestigates departure from the probit link, which is assumed in the preprocessing step

of PrepDA. Lastly, as in Cochran and Rubin (1973), we parametrize the distance

between treated and control group covariate means in terms of the standardized bias

B =
µ

t

� µ
c

q

�

2
1+�

2
0

2

(2.21)

so as to evaluate the factor’s influence independently of the variance ratio �

2
0

�

2
1
. A level

of B=2 was initially considered, but yielded too little overlap in covariate distributions

between treated and control sample cohort units, and was thus withdrawn from the

study.

For every combination of factor levels above, we generate 100 complete population

cohort datasets, as described in Section 2.2.1. From each generated complete popula-

tion cohort dataset, we obtain a sample cohort dataset. For purposes of comparison

with logistic and probit regression methods, data is regenerated if perfect separation

occurs in the fit of either the logistic or probit model. We then perform six di↵erent

analyses: MI and NSMIT to estimate the population cohort risk di↵erence, ⌧
FP

, and

MI, HGSMIT, LR and PR to estimate the population cohort odds ratio, !
FP

. Each

method is evaluated based on three criteria: mean coverage of the corresponding

nominal 95% intervals2, mean absolute percent bias, and mean interval width.

Our study can be compactly summarized in the form of a pseudo-algorithm, dis-

played below:

2To be clear, Bayesian posterior predictive intervals for MI and confidence intervals for NSMIT,
HGSMIT, LR and PR.
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Algorithm 1: Overview of simulation study

for each of the 64 simulation conditions do

(a) generate 100 complete population cohort datasets;

(b) generate 100 realized sample cohort datasets;

repeat steps (a) & (b) if perfect separation occurs;

for each realized sample cohort dataset do

apply PrepDA as outlined in Section 2.2.3;

run logistic and probit regressions as outlined in Section 2.2.3;

evaluate frequentist properties of each method by computing:

mean coverage

mean absolute percent bias

mean interval length

2.2.5 Results and discussion

Table 2.5 below provides a summary of generated population cohort data.

Table 2.5: Summary of generated population cohort data, across the 64⇥100 generated
datasets.

Min 1st quartile Median 3rd quartile Max

1

N

P

Y

i

(0) < 0.001 0.030 0.056 0.103 0.206

1

N

P

Y

i

(1) < 0.001 0.030 0.056 0.104 0.198

⌧

FP

-0.149 -0.030 0.000 0.030 0.143

!

FP

0.000 0.4829 1.000 2.031 107.300

The number of units in our generated sample cohort datasets ranged from 80 to

282, with a median of 158.
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Population cohort risk di↵erence ⌧
FP

Mean coverage of nominal 95% intervals (See Table 2.6). MI has ap-

proximately 92-94% coverage in all conditions except when B = 1 and the probit

link is used. In that case, it under-covers the true risk di↵erence. Nominal 95%

intervals generated by NSMIT have approximately 97%-98% coverage when data is

generated using the logistic link. Otherwise, coverage varies both by levels of B and

treatment e↵ect. When B = 0, NSMIT yields approximately nominal coverage. The

method under-covers when B = 1, with under-coverage being more significant in the

presence of a treatment e↵ect. We speculate this to be in part due to departures

from the large-sample Normality assumptions that are required for the construction

of Neymanian confidence intervals. In fact, under several simulation conditions, gen-

erated sample cohort datasets had as little as 100 units, 5 of which are cases. After

subclassification, this entailed even smaller sample sizes. Also note that, under our

simulation conditions, parameters ✓ are not sampled from posited generative prior

distributions. For this reason, small departures from nominal coverage are expected.

Finally, note that for both methods, coverage is in general higher when the logistic

link is used to generate data. This is as expected, given the slightly wider tails of the

logistic data generative model.
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Table 2.6: Mean coverage of nominal 95% interval for ⌧ .
⇤No treatment e↵ect is defined in terms of super-population parameters �. That is,
�

(0)

0

= �
(1)

0

and �
(0)

X

= �
(1)

X

.

No treatment e↵ect⇤ Treatment e↵ect

Method B \ DGP link Probit Logit Probit Logit

MI
0 .93 .94 .93 .92

1 .83 .94 .84 .92

NSMIT
0 .96 .98 .94 .97

1 .83 .98 .66 .97

Mean absolute percent bias (See Table 2.7). Under correct model speci-

fication, MI produces more bias when B = 1 than when B = 0. In all simulation

settings, NSMIT produces less biased estimates than MI, as expected. In particular,

under correct model specification and when B = 1, the di↵erence between mean ab-

solute percent bias produced by MI and NSMIT is most significant. Namely, there

exists a 2.5 to 4-fold decrease in mean absolute percent bias when NSMIT is applied

in lieu of MI. This demonstrates NSMIT’s e↵ectiveness in reducing pretreatment bias

in the estimation of the risk di↵erence estimand.
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Table 2.7: Mean absolute percent bias (⌧ estimand).
⇤No treatment e↵ect is defined in terms of super-population parameters �. That is,
�

(0)

0

= �
(1)

0

and �
(0)

X

= �
(1)

X

.

No treatment e↵ect⇤ Treatment e↵ect

Method B \ DGP link Probit Logit Probit Logit

MI
0 4.39 4.41 0.46 0.54

1 12.17 4.41 2.15 0.54

NSMIT
0 3.96 4.37 0.42 0.53

1 2.94 4.37 0.86 0.53

Mean nominal 95% interval width (See Table 2.8). Nominal 95% intervals

are narrow, which is expected given the rarity of outcome. As expected, MI produces

wider intervals when B = 1 than when B = 0: precision decreases when covariate

distributions di↵er between the two treatment groups.

Table 2.8: Mean width of nominal 95% interval for ⌧ .
⇤No treatment e↵ect is defined in terms of super-population parameters �. That is,
�

(0)

0

= �
(1)

0

and �
(0)

X

= �
(1)

X

.

No treatment e↵ect⇤ Treatment e↵ect

Method B \ DGP link Probit Logit Probit Logit

MI
0 .06 .10 .06 .10

1 .10 .10 .10 .10

NSMIT
0 .00 .00 .00 .00

1 .00 .00 .00 .00
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Population cohort odds ratio !
FP

Mean coverage of nominal 95% intervals (See Table 2.9). 95% intervals

generated by MI cover the odds ratio with approximately the same rate as for the

risk di↵erence estimand. 95% intervals generated by HGSMIT have approximately

98%-99% coverage under no treatment e↵ect, approximately nominal coverage when

the logistic link is used to generate data and a treatment e↵ect exists, and coverage

levels lower than 82% when the probit link is used to generate data and a treatment

e↵ect exists. LR produces approximately nominal coverage when the logistic link is

used to generate data and a treatment e↵ect exists. It slightly under-covers when

the probit link is used and a treatment exists. Otherwise, under the null hypothesis

of no treatment e↵ect, LR typically over-covers the odds ratio. Not surprisingly, PR

yields coverage of approximately 65% when a treatment e↵ect exists (the method is

not intended for odds ratio estimation), and 97% under the null hypothesis of no

treatment e↵ect. As is the case for the risk di↵erence estimand, under logistic link

data generation all methods generate intervals with coverage approximately equal to

or greater than under probit link data generation. Also, coverage rates are generally

higher under the null hypothesis of no treatment e↵ect.
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Table 2.9: Mean coverage of nominal 95% interval for !.
⇤No treatment e↵ect is defined in terms of super-population parameters �. That is,
�

(0)

0

= �
(1)

0

and �
(0)

X

= �
(1)

X

.

No treatment e↵ect⇤ Treatment e↵ect

Method B \ DGP link Probit Logit Probit Logit

MI
0 .93 .93 .92 .92

1 .83 .93 .85 .92

HGSMIT
0 .99 .98 .82 .95

1 .98 .98 .70 .95

LR
0 .98 .98 .94 .95

1 .98 .98 .92 .95

PR
0 .98 .97 .66 .68

1 .97 .97 .63 .68

Mean absolute percent bias (See Table 2.10). Similarly to the pattern

observed for NSMIT in the estimation of risk di↵erence, HGSMIT is most e↵ective

in reducing bias under correct model specification and when B = 1. In this setting,

the estimates it generates are less biased than those generated by LR and PR. Under

logistic link data generation, the HGSMIT estimator has slightly larger mean absolute

percent bias than that of LR. This di↵erence is negligible under the null hypothesis

of no treatment e↵ect (2% di↵erence), and somewhat more prominent under non-

null treatment e↵ect (9% di↵erence). We note that LR is more sensitive to model

misspecification, in that HGSMIT’s advantage over LR is greater under probit link

data generation (with as much as a 6-fold reduction in bias) than is LR’s advantage

over HGSMIT under logistic data generation (with at most a 1.2-fold reduction in
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bias). Also, under correct link function specification, HGSMIT outperforms MI in all

but the setting of a non-null treatment e↵ect and when B = 0. While this exception

requires further theoretical investigation, the former observation is expected, and

is due to trimming and subclass-specific estimation of odds ratios in HGSMIT. In

contrast, HGSMIT adds bias in the overall estimation of the odds ratio when the

logistic link is used to generate data; that is, in situations in which MI seems to

already be accurately estimating !
FP

. This was anticipated in Section 2.1.2. Lastly,

note that while B significantly influences mean absolute percent bias under probit

link data generation, it has no e↵ect whatsoever when the logistic link is used.

Table 2.10: Mean absolute percent bias (! estimand).
⇤No treatment e↵ect is defined in terms of super-population parameters �. That is,
�

(0)

0

= �
(1)

0

and �
(0)

X

= �
(1)

X

.

No treatment e↵ect⇤ Treatment e↵ect

Method B \ DGP link Probit Logit Probit Logit

MI
0 0.72 0.23 0.67 0.25

1 2.72 0.23 3.41 0.25

HGSMIT
0 0.30 0.25 1.11 0.34

1 0.39 0.25 1.45 0.34

LR
0 0.59 0.23 � 100 0.29

1 2.67 0.23 2.61 0.29

PR
0 0.31 0.14 0.86 0.32

1 0.66 0.14 1.96 0.32

Mean nominal 95% interval width (See Table 2.11). When a probit link

is used to generate data, both LR and PR yield notably wide confidence intervals.
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This merits further theoretical investigation. With non-overlap between covariate

distributions in the two treatment groups, HGSMIT produces narrower intervals than

MI under correct model specification (i.e., probit link) and wider intervals otherwise.

When data is generated via the logistic link, LR produces wider intervals than MI,

but slightly narrower intervals than HGSMIT. The substantive e↵ect of B on mean

interval width is the same as it is on mean absolute percent bias. All four methods

produce narrower intervals when the null hypothesis of no treatment e↵ect holds.

Table 2.11: Mean width of nominal 95% interval for !.
⇤No treatment e↵ect is defined in terms of super-population parameters �. That is,
�

(0)

0

= �
(1)

0

and �
(0)

X

= �
(1)

X

.

No treatment e↵ect⇤ Treatment e↵ect

Method B \ DGP link Probit Logit Probit Logit

MI
0 3.73 1.15 7.95 1.52

1 11.96 1.15 13.95 1.52

HGSMIT
0 3.76 1.72 5.92 2.36

1 3.51 1.72 4.04 2.36

LR
0 13.91 1.48 72.86 2.08

1 � 100 1.48 � 100 2.08

PR
0 � 100 0.82 � 100 0.93

1 � 100 0.82 � 100 0.93

Summary

Our simulations show that NSMIT and HGSMIT generally yield reasonable cov-

erage rates for nominal 95% intervals for ⌧ and !, although there are also indications

of the methods’ failure to perform satisfactory in more challenging situations (e.g.,
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in the presence of covariate imbalance). Said methods’ mean percent bias reduction

properties are as expected: when there exists non-overlap in covariate distributions

between the two treatment groups, NSMIT and HGSMIT are both e↵ective in re-

ducing bias, except when MI, in the preceding step 1 of PrepDA, produces accurate

estimates of the risk di↵erence and odds ratio, respectively. In these settings, NSMIT

and HGSMIT are prone to introducing minor noise in the overall estimation of causal

e↵ects. Moreover, HGSMIT generally yields similar results to LR in our controlled

simulation settings with the presence of one covariate only. HGSMIT (and MI), how-

ever, appears to be less sensitive to link function misspecification than LR and PR

with regards to its bias reduction and mean interval width properties.

We expect PrepDA’s analytical advantage over regression adjustment to better

materialize in practical settings. For one, dangers of linear extrapolation can be

significant with the latter method, especially in high dimensional observational stud-

ies. Step 2 of PrepDA should attenuate this problem. Second, regression-based data

snooping — which PrepDA disallows — can substantially impact analysis results, as

will be shown in Chapter 3.

Of note, Appendix A.2 outlines a Bayesian method for inferring causal e↵ects from

case-noncase data under the setup of framework 1.2, but with covariates suppressed.

Our simulations show that this method has properties similar to those of Woolf’s

(1955) well-accpeted procedure for the estimation of !
SP

. In addition, our method

produces credible intervals that achieve nominal 95% coverage.

64



Chapter 2: PrepDA for objective causal inference

On the application of PrepDA in practice

Because of the goal of our simulation study (to assess frequentist properties of

PrepDA), its setting (presence of one covariate only), and the automated nature of

the procedure, we did not in our algorithm check for overlap in covariate distributions

between the two treatment groups. We advise that analysts perform this crucial step

when implementing PrepDA in practice. Also note that the population to which

causal findings apply can change if data trimming occurrs. This should also be taken

into consideration in practical settings.

2.2.6 Extension to multivariate normal model

The model from 2.2.1 for population cohort data readily extends to multivariate

normal X, as follows. Let p 2 (0, 1). Marginally, the assignment of each unit i is

modeled independently with a Bernoulli(p) distribution:

W
i

|p ⇠ Bern(p). (2.22)

Let µ

0

:= (1, µ(0)

1

, · · · , µ
(0)

k

)T , µ

1

:= (1, µ(1)

1

, · · · , µ
(1)

k

)T 2 Rk, ⌃
0

,⌃
1

2 Sk

++

3 and

p 2 (0, 1). Then, for all i, independently and conditionally on treatment received W
i

,

we let the 1⇥k vector of covariates x

i

:= (X
i1

, · · · , X
ik

) follow a multivariate Normal

distribution with mean µ

Wi
and variance ⌃

Wi :

x

i

|W
i

, µ
Wi

,⌃
Wi ⇠MVN (µ

Wi
,⌃

Wi) (2.23)

3Sn
++

= {A 2 Rn⇥n : A = A

t and x

T
Ax > 0 for all x 2 Rn such that x 6= 0}
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Specifications 2.22 and 2.23 induce the following assignment mechanism:

Pr(W
i

= w|x
i

, µ
0

, µ
1

,⌃
0

,⌃
1

, p) =
pw(1� p)(1�w) · �

k

(x
i

; µ
w

,⌃
w

)

(1� p) · �
k

(x
i

; µ
0

,⌃
0

) + p · �
k

(x
i

; µ
1

,⌃)
,

(2.24)

for w 2 {0, 1}. Next, let �

(j) = (�(j)

0

, · · · , �
(j)

k

)T 2 Rk+1 for j 2 {0, 1}, and e

x

i

:=

(1, X
i1

, · · · , X
ik

) 2 R1⇥(k+1). For all i, and given the vector of covariates x

i

, potential

outcomes Y
i

(0) and Y
i

(1) are modeled independently according to the following two

probit models:

Pr(Y
i

(0) = 1|x
i

, �(0)) = �(ex
i

· �(0)) (2.25)

Pr(Y
i

(1) = 1|x
i

, �(1)) = �(ex
i

· �(1)) (2.26)

Finally, let the sampling mechanism as in equation (2.8).

Let the set of parameters from the above model be represented by ✓, where

✓ = (p, µ
0

,⌃
0

, µ
1

,⌃
1

, �(0), �(1)). (2.27)

In addition, let e

µ

j

:= (1, µ(j)

1

, · · · , µ
(j)

k

)T 2 Rk+1 for j 2 {0, 1} and

e⌃
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The observed log-likelihood is thus:

`(✓|Ỹ obs
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where n
inc

:=
P

i

Sr, ·
i

, ✓ as in (2.27) and Ỹ

obs

= (Sr, ·, Y r, inc, W ·, inc, X ·, inc).

A strategy, analogous to that presented in Section 2.2.3, for statistical inference

under the above model, is given in Appendix A.3.
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Chapter 3

PrepDA and logistic regression,

contrasted: a reanalysis of data

from Karkouti et al. (2006)

3.1 Objectives, background, and analysis outline

3.1.1 Objectives of this chapter

In a study analogous to LaLonde (1986) and Dehejia and Wahba (2002), we inves-

tigate whether PrepDA and logistic regression, when applied to case-noncase data,

can generate estimates that are concordant with those from the causal analysis of

population cohort data. The purpose of our work is to (a) illustrate the application

of PrepDA in the context of a real-life example, (b) investigate consistency, or lack

thereof, between results obtained via the application of PrepDA and logistic regres-
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sion to sample cohort data, and those derived from the causal analysis of population

cohort data, (c) introduce tools for covariate balance assessment across multiple im-

puted datasets, and (d) explore the potential for analyst bias with logistic regression,

when said method is used to analyze case-noncase data. To this end, we focus on the

re-analysis of a subset of data from a published article, Karkouti et al. (2006), which

we detail below.

3.1.2 Example dataset: Karkouti et al. (2006)

Karkouti et al. (2006) concerns a prospective nonrandomized study of two drugs,

aprotinin1 and tranexamic acid2, in patients who underwent cardiac surgery at the

Toronto General Hospital from 1999 to 2004. Aprotinin and tranexamic acid are both

used to prevent or treat excessive blood loss during complex surgery, such as cardiac

surgery. Until 2006, aprotinin was generally considered to be superior to trenexamic

acid, despite a lack of supporting clinical evidence (Linden, 2003; Karkouti et al.,

2006). Karkouti et al. (2006) investigates the drugs’ relative clinical utility and safety

on a variety of outcomes, such as postoperative risk of blood product transfusion,

stroke, infection, and mortality.

3.1.3 Construction of realized population cohort dataset

From data used in Karkouti et al. (2006), we construct a sub-dataset for pur-

poses of our analysis. We select eight key covariates, and construct another four

1Trasylol, produced by Bayer AG, Toronto, Ontario, Canada.
2Cyclokapron, produced by Pharmacia & UpJohn Inc., Mississauga, Ontario, Canada.
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by summing indicator variables related to the following clinical attributes: heart

surgery history, clinical presentation, coronary artery disease risk, and coronary artery

disease-associated illness. Table 3.1 details our resulting set of covariates. We con-

sider as primary outcome postoperative renal failure, defined as new requirement for

dialysis support3, and selected for its rarity (approximate rate of 1.90%). Of note,

we disregard patients with missing covariate or outcome data. The ensuing realized

population cohort dataset comprises N
pop

= 7, 416 patients, of whom 407, or 5.49%,

received aprotinin, and of whom n
c

= 141 are cases (i.e., patients with postoperative

renal failure).

3Dialysis is a process for removing waste and excess water from the blood, and is used primarily
as an artificial replacement for lost kidney function in people with renal failure (Medicine Net Sta↵,
2014).
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Table 3.1: Description of covariates in constructed dataset.
The first six covariates appear in the original dataset; that last four were constructed.
⇤Endocarditis is an infection of the inner lining of the heart (Mayo Clinic Sta↵, 2014a).
†An elective admission is a surgery that is scheduled in advance, because it does not
involve a medical emergency (Mosby, 2009).
‡Platelets, or thrombocytes, are colorless blood cells that play an important role in
blood clotting. Platelets stop blood loss by clumping and forming plugs in blood
vessel holes (Mayo Clinic Sta↵, 2014b).

Name Description
Levels (if applicable)

or example

type.surg type of surgical procedure isolated bypass, valve, other

act.endoc indicator for active endocarditis⇤ none, remote, active, active abscess

pre.HB
preoperative hemoglobin (HB)

concentration in dag/dL

elective.surg indicator for non-elective† admission elective, admission

age patient age

sex patient sex female, male

area patient body surface in m

2

plt.count platelet‡ count in 106/L

prev.surg
sum of indicators for

previous heart surgeries
e.g., aortic valve surgery

clinical
sum of indicators for

clinical presentation variables

e.g., most recent

myocardial infarction

cad.risk
sum of indicators for

coronary artery disease (CAD) risks
e.g., diabetes

asst.dis
sum of indicators for

diseases associated with CAD
e.g., previous stroke
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3.1.4 Generation of realized sample cohort dataset

From the aforementioned constructed dataset, we generate a synthetic case-noncase

sample. Following the case-cohort study design, we sample all cases, and take a simple

random sample of 10% of the noncases. The resulting realized sample cohort dataset

consists of N
sample

= 868 patients, of whom 76, or 8.76%, received aprotinin.

3.1.5 Outline of analysis strategy

Our strategy for data analysis is as follows. In Section 3.2, we perform the —

benchmark — causal analysis of population cohort data. In Sections 3.3 and 3.4,

we analyze sample cohort data using PrepDA and logistic regression, respectively.

Estimands of interest are the super-population risk di↵erence,

⌧
SP

= Pr(Y (1) = 1)� Pr(Y (0) = 1), (3.1)

and the super-population causal odds ratio,

!
SP

=
Pr(Y (1) = 1)

Pr(Y (1) = 0)

,

Pr(Y (0) = 1)

Pr(Y (0) = 0)
, (3.2)

in Sections 3.2 and 3.3, and the super-population conditional associative odds ratio,

!
SP |W,x

=
Pr(Y (W ) = 1|W = 1, x)

Pr(Y (W ) = 0|W = 1, x)

,

Pr(Y (W ) = 1|W = 0, x)

Pr(Y (W ) = 0|W = 0, x)
, (3.3)

in Section 3.4.

Henceforth, we define “receipt of aprotinin” as active treatment, and “receipt of
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tranexamic acid” as control treatment. Considering the context of our study, SUTVA

holds. In addition, we assume unconfoundedness of the assignment mechanism, de-

spite having chosen for analysis only a subset of pretreatment variables considered by

Karkouti et al.

3.2 Causal analysis of realized population cohort

dataset

In this section, we estimate the causal e↵ect of aprotinin versus tranexamic acid

on postoperative renal failure, using the realized population cohort dataset. In doing

so, we follow Rubin’s guidelines for the design and analysis of observational studies

(Rubin, 2007).

3.2.1 Design of observational data

Via logistic regression, we estimate propensity scores using all twelve covariates

available in the dataset. We run a 1:1 greedy nearest neighbor matching algorithm

(Rubin, 1973a) to select, out of a pool of 7009 control patients, 407 matches for

treated patients, based on their proximity on propensity score distance. Figures 3.1-

3.3 and Table 3.2 summarize the result of our algorithm. That is, matching yields an

overall satisfactory balance in covariate distributions between active treatment and

control treatment units. In particular, Figures 3.2 and 3.3 demonstrate an overlap

in estimated propensity scores between the control and treated subpopulations, after

matching. Table 3.2 and Figure 3.1 show a notable improvement in balance of covari-
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ate means for all 12 covariates, also after matching. In addition, t-tests (Table B.1,

Appendix B.1) suggest non-significant di↵erences in covariate means, post-matching,

between the two treatment groups, at the 0.05 significance level for all covariates but

prev.surg.

E↵orts were not undertaken to prioritize a subset of covariates for matching, given

the illustrative, as opposed to scientifically investigative, nature of our analysis.

Table 3.2: Mean within each treatment group for each covariate, before and after
matching.
Note: TA stands for tranexamic acid.

Initial After matching
X̄

aprtotinin

X̄
TA

X̄
aprotinin

X̄
TA

type.surg 2.56 1.47 2.56 2.61
act.endoc 0.10 0.01 0.10 0.08
pre.HB 126.66 133.98 126.66 128.99
elective.surg 0.44 0.42 0.44 0.42
age 55.37 62.86 55.37 55.64
sex 1.37 1.26 1.37 1.38
area 0.19 0.03 0.19 0.19
plt.count 8.94 1.93 8.94 8.20
prev.surg 1.08 0.09 1.08 0.84
clinical 5.57 6.55 5.57 5.43
cad.risk 1.83 3.12 1.83 1.78
asst.dis 0.72 0.44 0.72 0.71
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Figure 3.1: Standardized di↵erence in means, initial and after matching, for covari-
ates.
Note: to ensure fair before and after comparison, post-matching di↵erences in means
were standardized using the estimate of the variance of di↵erences in means before
matching. Displayed post-matching statistics are thus not t-statistics in the conven-
tional sense.
Vertical lines appear at standardized di↵erences in means of -2, 0 and 2, respectively.

75



Chapter 3: PrepDA and logistic regression, contrasted: a reanalysis of data from
Karkouti et al. (2006)

Histogram of propensity scores (aprotinin)

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Histogram of propensity scores (tranexamic acid)

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20
00

50
00

Figure 3.2: Histograms of estimated
propensity scores, by treatment, before
matching.
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Figure 3.3: Histograms of estimated
propensity scores, by treatment, after
matching.

3.2.2 Analysis outline and results

We apply Neyman’s method and simple linear regression on matched data to

estimate ⌧
SP

. We use Woolf’s method4 and logistic regression, also on matched data,

to estimate !
SP

. In both regression models, postoperative renal failure is regressed

on the indicator for receipt of aprotinin, and all twelve covariates. Regression is

used to adjust for any residual imbalance in covariate distributions (e.g., on variable

prev.surg) between the active treatment and control treatment subgroups (Rubin and

Stuart, 2007). Rubin (1973b, 1979); Robins and Rotnitzky (1995); Heckman et al.

(1997); Rubin and Thomas (2000) discuss the benefits of combining regression with

matching. Our results are displayed in Table 3.3 below. Results from the application

of the above methods on unmatched data are also included, for reference.

4Woolf’s estimator and Haldane’s (1955) approximately unbiased estimator produced approxi-
mately identical estimates of the odds ratio.
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Table 3.3: Causal analysis of realized population cohort dataset: results.

Unmatched group Matched group

estimand method point estimate 95% CI point estimate 95% CI

risk di↵erence
Neyman 0.071 (0.043, 0.098) 0.012 (-0.025, 0.050)

Regression 0.017 (0.001, 0.032) 0.004 (-0.031, 0.038)

odds ratio

Woolf 6.13 (4.12, 9.10) 1.18 (0.71, 1.97)

Regression 1.66 (0.95, 2.91) 1.34 (0.74, 2.44)

Our analysis concludes a non-significant causal e↵ect of aprotinin versus tranex-

amic acid on postoperative renal failure at the 0.05 significance level, for both the risk

di↵erence and odds ratio estimands. Neyman and linear regression yield estimates of

1.2% and 0.4%, respectively, for the risk di↵erence. Woolf and logistic regression es-

timate the odds ratio at 1.18 and 1.34, respectively. Given our use of well-established

causal inference methods in the above analysis, we regard these findings as bench-

marks.

3.3 Causal analysis of realized sample cohort dataset

via PrepDA

In this section we estimate the causal e↵ect of aprotinin versus tranexamic acid

on postoperative renal failure, this time using realized sample cohort data. We im-

plement the three steps of PrepDA (Section 2.1.1), barring the presence of two inde-

pendent parties, to estimate ⌧
SP

and !
SP

, as follows.
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3.3.1 Step 1: preprocessing

Exploiting the fact that, within the confines of our study, population cohort data

is known, we impute missing realized population cohort data,

Ỹ

mis

= (Y r, exc, W ·, exc, X ·, exc),

by drawing from the empirical approximation of the true conditional distribution of

missing data given the observed data, Pr(Ỹ
mis|Ỹ obs

), where Ỹ

obs

is defined as in

(1.20). We refer the reader to Appendix B.4 for further details. We thus generate a

total of M = 20 imputed population cohort datasets5.

This imputation strategy, although generally impracticable, ensures the imple-

mentation of PrepDA under correct imputation model specification. Furthermore,

it circumvents the current limitations of our methodology; that is, to normally dis-

tributed covariates and probit link function specification. Also note that the method

here circumvents the imputation of missing potential outcome data. In practice,

we recommend that analysts posit an imputation model on the complete population

cohort data matrix so as to adequately model all relevant data.

Figure 3.4 summarizes the result of our imputation procedure for covariate pre.HB.

It depicts, for active treatment units, histograms of said covariate, in both the pop-

ulation cohort and sample cohort. It also depicts superimposed densities from all 20

imputed population cohort datasets. As expected, distributions of pre.HB di↵er in

the population and sample cohort. This distortion is due to the confounded nature

5Our results were insensitive to additional imputations.
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of the realized sampling mechanism. (See Figures B.1 and B.2 in Appendix B.2 for

additional histograms.) What’s more, we observe that the imputed pre.HB data is in

agreement with “true”, population cohort, pre.HB data. That is, our imputation pro-

cedure successfully re-creates a stochastic version of the realized population cohort,

shown here for covariate pre.HB.
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Figure 3.4: Histogram/density of pre.HB variable in realized population cohort, real-
ized sample cohort, and imputed realized population cohort.

3.3.2 Design

We apply the matching algorithm from Section 3.2.1 to each imputed dataset. We

then assess overall covariate balance. To this end, we construct two types of plots
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which, in our opinion, together e↵ectively summarize balance of covariate means

across imputed datasets. The first plot, pictured in Figure 3.5, is an extension of Fig-

ure 3.1. It displays standardized di↵erences in means for all covariates in all imputed

datasets, before and after matching. In our example, we note an improvement in

average balance of covariate means, after matching, for all covariates. Further, with

the exception of prev.surg, di↵erences in standardized means are desirably concen-

trated around the null value. The second type of plot, in Figures 3.6 and 3.7, depicts

(relative) changes in standardized di↵erences in means, pre to post-matching, in all

imputed datasets, for a given covariate. This plot conveys the share of datasets within

which matching improved, or worsened, balance. In our example, balance improved

significantly across all datasets for covariate type.surg in uniform fashion. Such is,

however, the case in only 11 out of the 20 datasets for elective.surg. Nonetheless,

type.surg is well-balanced post-matching.

Note that the two preceding plots can be amended to display alternative met-

rics, such as di↵erences in covariate quantiles between the two treatment subgroups.

Examples of additional balance metrics and visual balance diagnostics are:

• Metrics for assessment of overall balance:

– Average, taken over M imputed datasets, mean Mahalanobis distance be-

tween covariate values of units in the active treatment and control treat-

ment subgroups.

– Proportion of covariates whose average balance improved upon matching.

• Metrics for assessment of balance for a given covariate:
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– Median di↵erence, across imputed datasets, in covariate ranges between

active treatment and control treatment units.

– Proportion, out of those imputed datasets for which initial balance was

unsatisfactory, of datasets with satisfactory balance after matching.

• Visual diagnostics:

– Plot of superimposed densities, as in Figure 3.4, of estimated propensity

scores under active treatment and control treatment regimes.

– Plot of superimposed densities of key covariates under active treatment

and control treatment regimes.

Weighting the above metrics according to importance of covariates provides yet

anther extension.

Further inspection of histograms and estimated propensity scores from each of our

imputed datasets (omitted here) confirmed satisfactory covariate balance.
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Figure 3.5: Standardized di↵erence in means, initial and after matching, for covari-
ates, for 20 imputed datasets.
Note: to ensure fair before and after comparison, post-matching di↵erences in means
were standardized using the estimate of the variance of di↵erences in means before
matching. Displayed post-matching statistics are thus not t-statistics in the conven-
tional sense.
Vertical lines appear at standardized di↵erences in means of -2, 0 and 2, respectively.
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Figure 3.6: Standardized di↵erences in
means for variable type.surg, for 20 im-
puted datasets.
Reduced absolute di↵erence in means af-
ter matching are represented in blue.
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Figure 3.7: Standardized di↵erences in
means for variable elective.surg, for 20
imputed datasets.
Reduced absolute di↵erence in means af-
ter matching are represented in blue. In-
creased, in red.

3.3.3 Analysis outline and results

We obtain point estimates and 95% confidence intervals for ⌧
SP

and !
SP

(see

Table 3.4) by applying methods from Section 3.2.2 to each imputed realized popula-

tion cohort dataset, and combining ensuing results using Rubin’s rules for multiple

imputation (Rubin, 1987).

83



Chapter 3: PrepDA and logistic regression, contrasted: a reanalysis of data from
Karkouti et al. (2006)

Table 3.4: Causal analysis of realized sample cohort dataset via PrepDA: results.

estimand method point estimate 95% CI

risk di↵erence
Neyman 0.013 (-0.025, 0.052)

Regression 0.005 (-0.033, 0.043)

odds ratio
Woolf 1.20 (0.71, 2.05)

Regression 1.34 (0.69, 2.62)

Table 3.4 above indicates that all methods yield point estimates and confidence

intervals that are in close agreement with population cohort analysis benchmarks

(Table 3.3).

3.4 Associative analysis of realized sample cohort

dataset via logistic regression

In this section, we use logistic regression to analyze, once again, the realized

sample cohort dataset. In addition, we explore the potential for analyst bias with

logistic regression methods.

3.4.1 Analysis outline and results

We analyze data according to the following pre-specified protocol. We regress post-

operative renal falure on the indicator for aprotinin receipt and all twelve covariates.

We also fit a model with all main e↵ects and 2-way interactions between covariates.

Then, starting with the aforementioned models, we run forward and backward step-

wise model selection (Hocking, 1976), using both the AIC (Akaike, 1973) and BIC
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(Gideon, 1978) information criteria. Point estimates and 95% confidence intervals for

the associative odds ratio, !
SP |W,x

, are reported in Table 3.5 below.

Table 3.5: Associative analysis of realized sample cohort dataset via logistic regression:
results.

baseline model model selection method point estimate 95% CI

main e↵ects

none 2.62 (1.21, 5.69)

forward model selection (AIC) 2.62 (1.21, 5.69)

backward model selection (AIC) 2.33 (1.16, 4.71)

forward model selection (BIC) 2.62 (1.21, 5.69)

backward model selection (BIC) 2.01 (1.01, 3.99)

main e↵ects and

2-way interactions

none 2.96 (1.06, 8.27)

forward model selection (AIC) 2.96 (1.06, 8.27)

backward model selection (AIC) 3.10 (1.16, 8.29)

forward model selection (BIC) 2.96 (1.06, 8.27)

backward model selection (BIC)† 2.21 (0.96, 5.08)

As can be seen, results generated by the above regression models stand in contrast

to population cohort analysis benchmarks (Table 3.3). In particular, none of the

estimates are contained within the 95% confidence intervals produced by Woolf’s

method, and only 3 out of the 10 estimates fall within the regression-generated interval

from Section 3.2. What’s more, 9 out of 10 outputs suggest a statistically significant

relationship between aprotinin intake and postoperative renal failure, which stands

in disagreement with benchmark results (as well as with model †, Table 3.5, results).
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3.4.2 The perils of logistic regression

Table 3.5 shows that standard model selection procedures alone can produce two

sets of results that imply substantively di↵ering study conclusions. So as to further

explore the potential for analyst bias, we distort, to the extent possible, regression

results by means of deliberate model selection. The outcome of this exercise — i.e.,

the resulting two models with most contrast results — is presented in Table 3.6.

Model details are provided in Appendix B.5.

Table 3.6: Associative analysis of realized sample cohort dataset via logistic regression,
with analyst bias: results.

model point estimate CI Hosmer-Lemeshow test p-value

1 2.11 (0.89, 4.99) 0.79

2 3.78 (1.36, 10.54) 0.11

The first model indicates a non-significant association between intake of aprotinin

versus tranexamic acid, and postoperative renal failure. The second suggests oth-

erwise, and yields an estimate of the odds ratio that is approximately 1.8-fold that

generated by model 1. Both models fit the data well per the Hosmer-Lemoshow test,

and are arguably reasonable in that they were obtained by simply adding quadratic

terms to models from Section 3.4.1 analysis.

The above exercise shows that regression, applied to case-noncase data, provides

analysts with ample opportunity to fish for sought-after results.
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3.5 Conclusion

We showed that, when applied to sample cohort data, and under the assumption

of correct imputation model, our technology can produce estimates for the super-

population risk di↵erence and odds ratio that are in agreement with those obtained

via application of standard causal inference methods to population cohort data. These

findings demonstrate — if only conceptually, in the artificial setting of known imputa-

tion model — the potential of PrepDA for the analysis of real-life case-noncase study

data.

In contrast, disparities between estimates of the associative odds ratio generated

by logistic regression on case-noncase data, and estimates of the causal odds ratio

produced by a prospective causal analysis, suggest that regression methods may be

inappropriate for purposes of causal inference with case-noncase data. This fact was

previously established for prospective designs (see, e.g., Cochran, 1957; Cochran and

Rubin, 1973; Rubin, 1973b, 2001).

Last but not least, our study demonstrates the perils of logistic regression with

regards to objectivity of (causal) analysis. Our empirical example shows that regres-

sion adjustment can be misused, via intentional model construction and selection, on

case-noncase data, to produce biased results. PrepDA guards against such practice.
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Discussion and future work

The causal inference framework introduced in Chapter 1 extends the many ben-

efits of the Rubin Causal Model to retrospective studies. Through formulation of

the case-noncase study as a cohort study with missing data, our approach fills a

conceptual gap between (observational) prospective cohort studies and retrospective

studies. Conceptual coherence ensues: a case-noncase study is a partially observed

cohort study, which itself is a broken stratified randomized experiment. The problem

of causal inference for retrospective studies is therefore conceptually identical to that

for cohort studies: the challenge is to reconstruct, to the extent possible, the broken

randomized experiment.

Much like the RCM, our approach focuses on first principles: problem definition,

framework setup, missing data theory, and Bayesian multiple imputation. This, in

turn, allows for clear formulation of assumptions (e.g., unconfoundedness) made in

reaching causal conclusions. It also discourages the careless application of standard

statistical techniques, such as regression adjustment, for purposes of causal analysis
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— the inclusion of outcome variables as predictors in a regression model comes to

mind. Last but not least, our approach provides a deeper understanding of the

causal inference problem for case-noncase studies than traditional methodologies. For

instance, as shown in Section 1.2.9, the potential outcomes perspective sheds new

light on the age-old controversy over the use of retrospective matching. The benefits

of potential outcomes-based causal inference, and of the missing data perspective in

applied and theoretical statistical problems, are further discussed in Rubin (2005a,b).

Our recommendation is that analysts ask a series of key questions when tackling

any given causal inference problem with case-noncase data. These include, but are

not limited to, “What estimand is of practical relevance?”, “How and why is the

case-noncase study better suited to addressing the problem?”, “Is the assignment

mechanism unconfounded?”, “Is the population cohort well-defined?”, “What scien-

tific knowledge can be incorporated into the study?”, and “How should potential

outcomes be modeled?”.

A fundamental di↵erence between our approach and the framework underlying

logistic regression is that the estimand is not forced to be a parameter in some super-

population model. As shown in Chapters 1 and 2, our technology allows for the defini-

tion, and inference, of population cohort (i.e., finite population) causal estimands, and

thereby focuses on quantities that we believe are of greater practical interest. In con-

trast, most epidemiological techniques generally focus on abstract super-population

statistical quantities. What’s more, our estimands are, by definition, causal. This is
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in contrast to the oft-studied “associative” odds ratio

Pr(Y (W ) = 1|W = 1)

Pr(Y (W ) = 0|W = 1)

,

Pr(Y (W ) = 1|W = 0)

Pr(Y (W ) = 0|W = 0)
(4.1)

(and other standard measures of association) which, as Holland and Rubin (1988)

demonstrate, has generally no causal relevance. Lastly, the choice of estimand is

flexible under our approach. That is to say, analyses are not restricted to logistic

and other multiplicative intercept models (as argued by Wacholder, 1996), nor to the

associative odds ratio, which is ubiquitous in epidemiological studies, in part because

of its non-sensitivity to choice of sampling design (prospective or retrospective; see,

e.g., Bishop et al., 1975). The NSMIT method, introduced in Section 2.2, for instance,

can estimate the population cohort risk di↵erence.

PrepDA guarantees objectivity, to the extent we believe is possible, in the esti-

mation of causal e↵ects from case-noncase data. In contrast, as shown in Chapter

3, regression adjustment can be misused, via intentional model construction and se-

lection, to produce biased results. Moreover, our findings suggest that regression

methods may be inappropriate for purposes of causal inference with case-noncase

data.

From a methodological perspective, our technology allows for the application of the

widely-accepted matched sampling methods for pretreatment bias reduction (Rubin,

2006; Imbens and Rubin, 2015) to retrospectively collected data, post-data prepro-

cessing. It also enables, and should encourage, investigators to assess the validity of

their causal findings, e.g. by checking for overlap in covariate distributions between

treatment groups, also post-preprocessing. A standard pre-specified analysis (e.g.,
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pre-specified regression analysis) of case-noncase data, though objective, does not.

Also, PrepDA can be extended to accommodate secondary outcome analysis, via

incorporation of secondary outcomes into the model for population cohort potential

outcomes. Future work will explore this topic.

Our simulations show that PrepDA-based methods NSMIT and HGSMIT gen-

erally yield reasonable coverage rates, although they under-cover in the presence of

covariate imbalance. Also, both methods are e↵ective in reducing bias, except when

MI produces accurate estimates of the risk di↵erence and odds ratio. In this type

of setting, NSMIT and HGSMIT are prone to introducing minor noise in the overall

estimation of causal e↵ects. In our view, this disadvantage is trumped by the con-

siderable benefit of analyst objectivity guaranteed by PrepDA. Moreover, HGSMIT

generally yields similar results to LR in our controlled simulation settings. However,

the former (and MI) appears to be less sensitive to link function misspecification

than the latter (and PR) with regards to bias reduction and mean interval width

properties.

A disadvantage of our technology, in its current form, however, is its dependence

on party A’s choice of imputation model. Accordingly, future research will investigate

the use of non-parametric imputation methods in the preprocessing step of PrepDA.

The use of spline regression methods, for instance, has been shown e↵ective for the

analysis of prospective observational study data (Gutmanan and Rubin, 2012). Future

research will also focus on the generalization of NSMIT and HGSMIT to more realistic

settings (e.g., in the presence of a mixture of continuous and categorical covariate

data). Thus far, our e↵orts have indicated this to be a di�cult undertaking, for
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both analytical and computational reasons. Lastly, our method is computationally

intensive, whereas traditional methods generally are not.

To conclude, our first exploration into bringing objectivity in causal inference

with case-noncase data suggests a tradeo↵ to be had between (a) objectivity of the

analysis of case-noncase data, and (b) inferential simplicity, computational e�ciency,

and — potentially — robustness (i.e., non-reliance on modeling assumptions). Despite

the aforementioned shortcomings of PrepDA, the findings of this thesis nevertheless

demonstrate our methodology’s potential for the objective and causal analysis of

real-life case-noncase data.
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Supplement to Chapter 2

A.1 PrepDA, step 1: prior specification and pos-

terior predictive draws

A.1.1 Prior specification on ✓

p ⇠ Beta(2, 2) (A.1)

µ
0

⇠ N (0, 10) (A.2)

�
0

⇠ Inv-Gamma(1.5, 2.5) (A.3)

µ
1

⇠ N (0, 10) (A.4)

�
1

⇠ Inv-Gamma(1.5, 2.5) (A.5)

�
(0)

0

⇠ Cauchy(0, 10) (A.6)

�
(0)

X

⇠ Cauchy(0, 10) (A.7)

�
(1)

0

⇠ Cauchy(0, 10) (A.8)

�
(1)

X

⇠ Cauchy(0, 10) (A.9)

A.1.2 Imputation of Ỹ

mis
: drawing from f(Ỹ

mis|Ỹ obs
, ✓)

• For those units for which Sr, ·
i

= 1:
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1. If W ·, inc

i

= 0:

Pr(Y mis, inc

i

= 1|Ỹ obs

, ✓) = Pr(Y mis, inc

i

= 1|Y r, inc

i

, W ·, inc

i

= 0, X ·, inc

i

, Sr,·
i

= 1, ✓)

= Pr(Y mis, ·
i

= 1|Y r, ·
i

, W
i

= 0, X
i

, Sr, ·
i

= 1, ✓)

= �(�(1)

0

+ �
(1)

X

X
i

) (A.10)

2. If W ·, inc

i

= 1:

Pr(Y mis, inc

i

= 1|Ỹ obs

, ✓) = Pr(Y mis, inc

i

= 1|Y r, inc

i

, W ·, inc

i

= 0, X ·, inc

i

, Sr,·
i

= 1, ✓)

= Pr(Y mis, ·
i

= 1|Y r, ·
i

, W
i

= 0, X
i

, Sr, ·
i

= 1, ✓)

= �(�(0)

0

+ �
(0)

X

X
i

) (A.11)

• For those units for which Sr, ·
i

= 0:

Given ✓, independently for each i, draw sequentially from conditional distribu-

tions using the following:

1.

Pr(W ·, exc

i

= 1|Ỹ obs

, ✓) = Pr(W ·, exc

i

= 1|Sr,·
i

= 0, ✓) (A.12)

=

p ·
h

1� �
n

�

(1)
0 +�

(1)
X µ1q

1+�

2
1�

(1)
X

2

oi

p ·
h

1� �
n

�

(1)
0 +�

(1)
X µ1q

1+�

2
1�

(1)
X

2

oi

+ (1� p) ·
h

1� �
n

�

(0)
0 +�

(0)
X µ0q

1+�

2
0�

(0)
X

2

oi
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2.

Pr(X ·, exc

i

|W
i

= 0, Ỹ
obs

, ✓) = Pr(X ·, exc

i

|W
i

= 0, Sr,·
i

= 0, ✓)

=
(1� �{�(0)

0

+ �
(0)

X

x
i

}) · �(x
i

; µ
0

, �2

0

)

1� �
n

�

(0)
0 +�

(0)
X µ0q

1+�

2
0�

(0)
X

2

o

(A.13)

Pr(X ·, exc

i

|W
i

= 1, Ỹ
obs

, ✓) = Pr(X ·, exc

i

|W
i

= 1, Sr,·
i

= 1, ✓)

=
(1� �{�(1)

0

+ �
(1)

X

x
i

}) · �(x
i

; µ
1

, �2

1

)

1� �
n

�

(1)
0 +�

(1)
X µ1q

1+�

2
1�

(1)
X

2

o

(A.14)

We sample from the above two distributions via grid sampling.

3 . Let

P
(i)

(j,k)|w := Pr((Y
i

(0), Y
i

(1))mis, exc = (j, k)|X
i

, W
i

= w, Ỹ
obs

, ✓)

= Pr((Y
i

(0), Y
i

(1))mis, exc = (j, k)|X
i

, W
i

= w, Sobs

i

= 0, ✓) (A.15)

Then

P
(i)

(0,0)|0 = 1� �(�(1)

0

+ �
(1)

X

X
i

) (A.16)

P
(i)

(0,0)|1 = 1� �(�(0)

0

+ �
(0)

X

X
i

) (A.17)

P
(i)

(0,1)|0 = �(�(1)

0

+ �
(1)

X

X
i

) (A.18)

P
(i)

(1,0)|1 = �(�(0)

0

+ �
(0)

X

X
i

) (A.19)

P
(i)

(0,1)|1 = P
(i)

(1,0)|0 = P
(i)

(1,1)|0 = P
(i)

(1,1)|1 = 0 (A.20)
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A.2 A potential outcomes alternative to Woolf’s

method for inferring (causal) e↵ects from case-

noncase data: a simulation study

A.2.1 The model

We assume the setup outlined in Section 1.2, with covariates suppressed. Let

p
0

, p
1

, �, and ⇡ 2 (0, 1). Independently for each unit i, i = 1, · · · , N , in the popu-

lation cohort, we posit the following models for purposes of population cohort data

generation and Bayesian inference:

• Potential outcomes:

Pr(Y
i

(0) = y
i0

, Y
i

(1) = y
i1

|p
0

, p
1

) = p(Y
i

(0) = y
i0

|p
0

) · p(Y
i

(1) = y
i1

|p
1

)

= pyi0
0

(1� p
0

)1�yi0 · pyi1
1

(1� p
1

)1�yi1 (A.21)

• Assignment mechanism:

Pr(W
i

= w|Y
i

(0), Y
i

(1), p
0

, p
1

, �) = �w(1� �)1�w, (A.22)

for w 2 {0, 1}.

• Sampling mechanism:

We assume sampling of all cases, and simple random sampling with known

probability ⇡ of noncases, which yields the following:
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Pr(S
i

(0) = s
i0

, S
i

(1) = s
i1

|W
i

, Y
i

(0), Y
i

(1), p
0

, p
1

, �) = p(S
i

(0) = s
i0

|Y
i

(0))

⇥ p(S
i

(1) = s
i1

|Y
i

(1))

=
�

⇡si0(1� ⇡)(1�si0)

�

1

[

Yi(0)=0
]

⇥ �

⇡si1(1� ⇡)(1�si1)

�

1

[

Yi(1)=0
]

(A.23)

A.2.2 Choice of priors

Priors were chosen in accordance with parameter simulation settings. We posit:

� ⇠ Beta(2, 2) (A.24)

p
0

⇠ Beta
⇣1

3
, 5

⌘

(A.25)

p
1

⇠ Beta
⇣1

3
, 5

⌘

(A.26)

A.2.3 Simulation study

The following procedure is implemented:

1. Set parameter values {N, p
0

, p
1

, �,⇡}, as specified in Table A.1.

2. Repeat, x 1000:

• Given parameter values, generate population cohort data.

• Obtain sample cohort data from population cohort data.
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• Get posterior draws given observed data, using Bayesian model above and

Gibbs sampling. (Note: starting points are sampled from an over-dispersed

distribution. The Gelman-Rubin (G-R) statistic is computed to verify

convergence.) Obtain super-population point estimates of ⌧ and ! and

the corresponding credible intervals by taking the mean and (0.025, 0.975)

quantiles, respectively, of the parameters’ posterior distributions.

• Multiply impute missing data via draws from the posterior predictive dis-

tribution of missing data given observed data. From imputed datasets,

calculate the risk di↵erences and odds ratios. Obtain finite-population

point estimates of ⌧ and ! and the corresponding intervals by taking the

mean and (0.025, 0.975) quantiles, respectively of the two sets of calculated

estimands.

• Compute odds ratio estimates and 95% confidence intervals using Woolf’s

(1955) method for those datasets for which Woolf’s estimates exists (i.e.,

datasets for which all observed data counts n
ij

are nonzero).

3. Assess frequentist properties of above procedures. Namely, for those datasets

to which Woolf’s method applies, compute, for all methods:

• mean coverage (nominal coverage level used: 95%)

• mean absolute percent bias

• mean interval width
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A.2.4 Simulation results

Table A.1: Sample cohort data sample size n̄, % of datasets invalid for comparison,
and G-R statistic (Gibbs).
1‘draw’ refers to drawing from the prior distribution of the parameters.

Parameter values

N p

0

p

1

! � ⇡

% of

n datasets invalid G-R statistic

for comparison

10,000 .01 .01 1 .5 .01 198 0 1.01

10,000 .005 .005 1 .5 .01 149 0 1.01

10,000 .01 .005 .50 .5 .01 174 0 1.01

10,000 .01 .005 .50 .3 .01 184 0 1.01

10,000 .001 .0005 .50 .5 .01 107 10 1.01

10,000 .001 .0005 .50 .5 .1 1,004 8 1.00

10,000 .1 .01 .09 .5 .01 644 0 1.01

10,000 .01 .009 .90 .5 .01 194 0 1.01

10,000 .005 .01 2.01 .5 .01 173 0 1.01

10,000 .005 .01 2.01 .3 .01 164 0 1.01

10,000 .0005 .001 2.00 .5 .01 107 9 1.01

10,000 .0005 .001 2.00 .5 .1 1,006 9 1.00

10,000 .01 .1 11 .5 .01 645 0 1.01

10,000 .009 .01 1.11 .5 .01 194 0 1.01

10,000 .001 .01 10.1 .5 .01 154 0 1.01

10,000 .0005 .01 20.2 .5 .01 151 8 1.01

10,000 .00005 .001 20.2 .5 .01 106 77 1.01

10,000 draw

1

draw draw draw 0.01 731 –
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Table A.2: Mean coverage of nominal 95% intervals: Bayesian Multiple Imputation
vs Woolf ’s method.
1‘draw’ refers to drawing from the prior distribution of the parameters.

parameter values coverage

N p

0

p

1

! � ⇡

Bayesian MI

finite pop. super-pop. Woolf’s (!)

⌧ ! ⌧ !

10,000 .01 .01 1 .5 .01 .95 .95 .94 .94 .95

10,000 .005 .005 1 .5 .01 .94 .94 .94 .94 .94

10,000 .01 .005 .50 .5 .01 .96 .97 .96 .97 .96

10,000 .01 .005 .50 .3 .01 .95 .95 .95 .95 .96

10,000 .001 .0005 .50 .5 .01 .97 .96 .96 .97 .98

10,000 .001 .0005 .50 .5 .1 .95 .95 .96 .96 .98

10,000 .1 .01 .09 .5 .01 .95 .95 .95 .95 .95

10,000 .01 .009 .90 .5 .01 .95 .94 .94 .94 .95

10,000 .005 .01 2.01 .5 .01 .95 .95 .94 .94 .94

10,000 .005 .01 2.01 .3 .01 .94 .94 .95 .95 .95

10,000 .0005 .001 2.00 .5 .01 .96 .96 .95 .97 .98

10,000 .0005 .001 2.00 .5 .1 .95 .96 .96 .96 .98

10,000 .01 .1 11 .5 .01 .95 .95 .95 .95 .95

10,000 .009 .01 1.11 .5 .01 .96 .96 .96 .95 .96

10,000 .001 .01 11 .5 .01 .96 .96 .94 .96 .97

10,000 .0005 .01 20.2 .5 .01 .96 .95 .95 .98 .97

10,000 .00005 .001 20.2 .5 .01 .96 .96 .93 .88 .83

10,000 draw

1

draw draw draw 0.01 .95 .95 .95 .95 –
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Table A.3: Mean absolute percent bias: Bayesian Multiple Imputation vs Woolf ’s
method.
⇤Mean absolute percent bias is ill-defined because ⌧ = 0.

parameter values mean abs. % bias

N p

0

p

1

! � ⇡

Bayesian MI

finite pop. super-pop. Woolf’s (!)

⌧ ! ⌧ !

10,000 .01 .01 1 .5 .01 –⇤ 23.6 –⇤ 24.3 23.4

10,000 .005 .005 1 .5 .01 –⇤ 30.3 –⇤ 32.7 30

10,000 .01 .005 .50 .5 .01 36.5 26.0 36.5 26.9 25.7

10,000 .01 .005 .50 .3 .01 36.6 29.3 35.9 30.2 29.8

10,000 .001 .0005 .50 .5 .01 120.9 88.0 115.1 167.4 86.0

10,000 .001 .0005 .50 .5 .1 130.1 76.7 272 148.3 76.7

10,000 .1 .01 .09 .5 .01 10.0 21.5 10.0 21.6 21.2

10,000 .01 .009 .90 .5 .01 254.1 24.7 99.2 1127.6 1079.1

10,000 .005 .01 2.01 .5 .01 38.5 28.1 38.6 29.9 28.0

10,000 .005 .01 2.01 .3 .01 46.1 29.2 46.0 30.5 29.9

10,000 .0005 .001 2.00 .5 .01 117.7 73.2 116.2 211.6 70.5

10,000 .0005 .001 2.00 .5 .1 112.2 70.7 111.9 206.4 69.1

10,000 .01 .1 11 .5 .01 10.3 21.3 10.3 21.9 21.5

10,000 .009 .01 1.11 .5 .01 221.1 23.7 212.3 23.7 22.8

10,000 .001 .01 11 .5 .01 16.3 60.7 16.2 118.3 58.4

10,000 .0005 .01 20.2 .5 .01 15.7 64.3 15.6 190.1 59.8

10,000 .00005 .001 20.2 .5 .01 51.5 39.5 43.6 41.8 76.3
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Table A.4: Mean width of nominal 95% intervals: Bayesian Multiple Imputation vs
Woolf ’s method.

parameter values mean interval width

N p

0

p

1

! � ⇡

Bayesian MI

finite pop. super-pop. Woolf’s (!)

⌧ ! ⌧ !

10,000 .01 .01 1 .5 .01 .01 1.04 .01 1.23 1.24

10,000 .01 .01 1 .5 .01 .01 1.26 .01 1.62 1.62

10,000 .01 .005 .50 .5 .01 .01 .56 .01 .68 .69

10,000 .01 .005 .50 .3 .01 .01 .67 .01 .77 .81

10,000 .001 .0005 .50 .5 .01 .00 2.05 .00 4.66 4.13

10,000 .001 .0005 .50 .5 .1 .00 1.81 .00 4.21 3.72

10,000 .1 .01 .09 .5 .01 .04 .09 .05 .10 .10

10,000 .01 .009 .90 .5 .01 .01 .97 .01 1.15 1.16

10,000 .005 .01 2.01 .5 .01 .01 2.31 .01 2.91 2.89

10,000 .005 .01 2.01 .3 .01 .01 2.46 .01 2.98 3.08

10,000 .0005 .001 2.00 .5 .01 .00 7.05 .00 24.95 16.65

10,000 .0005 .001 2.00 .5 .1 .00 6.40 .00 23.57 15.47

10,000 .01 .1 11 .5 .01 .04 10.64 .05 12.01 12.25

10,000 .009 .01 1.11 .5 .01 .01 1.15 .01 1.36 1.37

10,000 .001 .01 11 .5 .01 .01 23.92 .01 63.7 45.75

10,000 .0005 .01 20.2 .5 .01 .01 52.36 .01 220.6 133.12

10,000 .00005 .001 20.2 .5 .01 .00 14.37 .00 68.34 40.45

103



Appendix A: Supplement to Chapter 2

A.3 Example prior specification, and posterior pre-

dictive draws for MVN extension model

A.3.1 Prior specification on ✓

p ⇠ Beta(2, 2) (A.27)

µ

0

⇠ MVN
k

(µ⇤,⌃⇤) (A.28)

⌃
0

⇠ Inv-Wishart(k + 1,⌃�) (A.29)

µ

1

⇠ MVN (µ⇤,⌃⇤) (A.30)

⌃
1

⇠ Inv-Wishart(k + 1,⌃�) (A.31)

�

(0) ⇠ MVN
(k+1)

(µ†,⌃†) (A.32)

�

(1) ⇠ MVN
(k+1)

(µ†,⌃†) (A.33)

(A.34)
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where

µ

⇤ = (0, · · · , 0)T (A.35)
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µ

† = (0, · · · , 0)T (A.38)

⌃† =
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(A.39)

(A.40)

The Inverse Wishart prior above induces uniform marginal distributions for all

individual correlations (Barnard et al., 2000).

A.3.2 Imputation of Ỹ

mis
: drawing from f(Ỹ

mis|Ỹ obs
, ✓)

• For those units for which Sr, ·
i

= 1:
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1. If W ·, inc

i

= 0:

Pr(Y mis, inc

i

= 1|Ỹ obs

, ✓) = Pr(Y mis, inc

i

= 1|Y r, inc

i

, W ·, inc

i

= 0,x·, inc

i
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i
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i
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• For those units for which Sr, ·
i

= 0:

Given ✓, independently for each i, draw sequentially from conditional distribu-

tions using the following:

1.

Pr(W ·, exc

i = 1|Ỹ obs

,✓) = Pr(W ·, exc

i = 1|Sr,·
i = 0,✓)

=
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(A.43)
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2.

Pr(x·, exc
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We sample from the above two distributions via STAN.

3 . Let

P
(i)

(j,k)|w := Pr((Y
i

(0), Y
i

(1))mis, exc = (j, k)|x
i

, W
i

= w, Ỹ
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Then

P
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i
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P
(i)

(0,1)|1 = P
(i)

(1,0)|0 = P
(i)

(1,1)|0 = P
(i)

(1,1)|1 = 0 (A.51)
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B.1 Di↵erence in covariate means between control

and active treatment subgroups

Table B.1: T-test for di↵erence in covariate means between the two treatment groups,
post-matching (Section 3.2 analysis)
But for the variable prev.surg, t-tests suggest non-significant di↵erences in covariate
means between the two treatment groups, at the 0.05 significance level, post-matching.

Covariate t statistic p-value
type.surg -1.15 0.25
act.endoc 0.87 0.39
pre.HB -1.62 0.10

elective.surg 0.50 0.62
age -0.23 0.82
sex -0.22 0.83
area 0.06 0.95

plt.count 1.03 0.30
prev.surg 2.94 0.00
clinical 0.87 0.38
cad.risk 0.35 0.73
asst.dis 0.12 0.90
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B.2 Additional histograms
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Figure B.1: Histograms of selected covariates for control treatment group units, dis-
played by dataset.
Covariate distributions generally di↵er between population cohort units and sample
cohort units, as expected.
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Figure B.2: Histograms of selected covariates for active treatment group units, dis-
played by dataset.
Covariate distributions generally di↵er between population cohort units and sample
cohort units, as expected.
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B.3 Zoomed plot of SDM for covariates for 20 im-

puted datasets
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Figure B.3: Standardized di↵erence in means, initial and after matching, for covari-
ates, for 20 imputed datasets.
Note that, to ensure fair before-after comparison, we standardize di↵erences in means
after matching, using the estimate of the variance of di↵erences in means before
matching. As such, displayed after matching statistics are not t-statistics in the con-
ventional sense.
Vertical lines appear at standardized di↵erences in means of -2, 0 and 2, respectively.
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B.4 PrepDA, step 1: computational details

We exploit the fact that, within the confines of our study, population cohort data

is known. We thus approximate Pr(Ỹ
mis|Ỹ obs

) with the empirical distribution of

Pr(Ỹ
mis|Ỹ r, +

), where Ỹ

r, +

= (Sr, ·, Y r, ·, W , X) is the realized population cohort

data matrix, supplemented with the vector of realized sampling indicators, S

r, ·. To

sample from Pr(Ỹ
mis|Ỹ obs

), we sample, with replacement, N � n
inc

rows

R

�
i

:= (Y r, ·
i

, W ·, inc

i

, x
i

)
�

�

Y

r, inc
i =0

, i 2 1, · · · , N,

from the realized population cohort data matrix.

A singly imputed realized population cohort dataset is obtained by appending the

set of sampled rows to the realized sample cohort dataset.
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B.5 Specification of logistic regression models

Model 1 was obtained by adding plt.count2, asst.dis2 and prev.surg2 to the model

resulting from backward model selection, starting with a model with all main e↵ects

and 2-way interaction terms, and using the BIC selection criteria. Its equation is as

follows:

Y ⇠ W + type.surg + pre.HB + age + sex area + plt.count

+ prev.surg + clinical + cad.risk + asst.dis + type.surg : area

+ pre.HB : age + pre.HB : sex + pre.HB : asst.dis + age : area

+ sex : area + area : plt.count + area : prev.surg + area : clinical

Model 2 was obtained by adding clinical2, type.surg2, prev.surg2, log(age) and age2

to the model resulting from backward model selection, starting with a model with all

main e↵ects and 2-way interaction terms, and using the AIC selection criteria. Its

equation is as follows:
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Y ⇠ W + type.surg + act.endoc + pre.HB + elective.surg + age + sex

+ area + plt.count + prev.surg + clinical + cad.risk + asst.dis

+ type.surg : elective.surg + type.surg : sex + type.surg : area

+ type.surg : prev.surg + type.surg : cad.risk + type.surg : asst.dis

+ act.endoc : age + act.endoc : plt.count + act.endoc : asst.dis

+ pre.HB : age + pre.HB : sex + pre.HB : cad.risk + pre.HB : asst.dis

+ elective.surg : prev.surg + elective.surg : asst.dis + age : area

+ age : prev.surg + age : cad.risk + sex : area + sex : cad.risk

+ area : plt.count + area : prev.surg

+ area : clinical + plt.count : clinical + prev.surg : asst.dis

+ cad.risk : asst.dis (B.1)
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