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Abstract

Human brains flexibly combine the meanings of individual words to compose
structured thoughts. For example, by combining the meanings of ‘bite’, ‘dog’, and ‘man’, we
can think either of a dog biting a man, or the newsworthy case of a man biting a dog
(Pinker, 1997). Here, in three functional Magnetic Resonance Imaging (fMRI) experiments,
we identify a region of left-mid Superior Temporal Cortex (ImSTC) that represents the
current values of abstract semantic variables (“Who did it?” and “To whom was it done?”)
in anatomically distinct sub-regions. Experiment 1 first identifies a broad region of ImSTC
whose activity patterns (a) facilitate decoding of who did what to whom and (b) predict
affective amygdala responses that depend on this information (e.g. “the baby kicked the
grandfather” vs. “the grandfather kicked the baby”). Experiment 2 then identifies distinct,
but neighboring, sub-regions of ImSTC whose activity patterns carry information about the
identity of the current agent (“Who did it?”) and the current patient (“To whom was it
done?”). These neighboring sub-regions lie along the upper bank of the superior temporal
sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high-level,
these regions may function like topographically defined data registers, encoding the
fluctuating values of abstract semantic variables. Experiment 3 replicates the agent/patient
topography of Experiment 2, and further suggests that these variables do not represent the
grammatical relations of the sentence, but the semantic relations of the participants in the

event described. The code by which ImSTC encodes the values of these variables remains
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unclear, however. We find no positive evidence that it is either phonological or semantic,
leaving open the possibility that ImSTC prioritizes distinctiveness and efficiency by using a
compressed code. This functional architecture, which in key respects resembles that of a

classical computer, may play a critical role in enabling humans to flexibly generate complex

thoughts.
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Yesterday the world'’s tallest woman was serenaded by thirty pink elephants. The
previous sentence is false, but perfectly comprehensible, despite the improbability of the
situation it describes. It's comprehensible because the human mind can flexibly combine
the meanings of individual words (“woman”, “serenade”, “elephants”, etc.) to compose
structured thoughts, such as the meaning of the aforementioned sentence. Our minds make
sense of such complex expressions by adhering to an elegant principle: the meaning of a
complex expression is a function of the meaning of its parts and the way in which those
parts are combined. This is the principle of compositionality (Frege, 1892/1977). It is what
allows us to entertain new and complex thoughts. But how? The psychology of
compositionality introduces rich questions about the mind and its realization in the brain:
What are the basic components of our minds, such that we can draw ideas from a reusable
stock and nimbly assemble them to form new semantic structures? And how does the brain,
equipped with a finite number of neurons, implement these combinatorial operations to
encode the vast number of thinkable thoughts?

But while these issues are theoretically weighty, the empirical evidence is light,
particularly concerning the brain’s strategies for building complex thoughts. The present
thesis consists of three functional neuroimaging studies that address how the brain flexibly
encodes the meaning of simple sentences involving an agent (“who did it?”), an action
(“what was done?”), and a patient (“to whom was it done?”). Before describing this
empirical work, we review the relevance of compositionality to our understanding of the

mind’s architecture, as well as the various theoretical models for encoding complex,

structured meanings in computational systems.



Compositionality and Cognitive Architecture

Thinking is a mechanical process. But what are the basic parts of our mental
machinery? Important clues come from patterns in the thoughts we can entertain (Fodor &
Pylyshyn, 1988; Pinker, 1997; Fodor, 1998). Take, for example, the sentence “Drew Gilpin
Faust beat Larry Summers in an arm wrestling match”. Anyone who can understand the
previous sentence can also understand “Larry Summers beat Drew Gilpin Faust in an arm
wrestling match”. If that mind also has a concept of Joe Biden, then it will also understand
“Joe Biden beat Larry Summers in an arm wrestling match”, and, probably even “Joe Biden
beat a horse in a foot race”, if it also has the concepts horse and foot race.

Why do we not find minds that can understand “Faust defeated Summers”, but not
“Summers defeated Faust”? The classical view of the mind'’s architecture has a simple and
compelling answer. On the classical view, human intelligence consists in manipulating the
symbols in an inner language, or perhaps, languages (Newell, 1980; Fodor, 1975; Pinker,
1997). These symbols represent aspects of the actual or possible world, and can be
combined and recombined to form new, often more complex, symbol-structures. The
reason anyone who can understand “Faust defeated Summers”, can also understand
“Summers defeated Faust” is that the meanings of both sentences are mentally represented
by assigning the same reusable symbols (Faust, Summers) to the same reusable argument
positions (“who did the defeating?”/ “whom was defeated?”); just with the mapping
between symbols and positions reversed. If you have a stock of concepts and
combinatorial mechanisms for assembling them, you can churn out a vast number of
structured thoughts. Composing structured representations using the classicist inventory

of parts is thus straightforward. Indeed, Fodor & Pylyshyn (1988) take the possession of



complex representations with combinatorial structure to be partly definitional of classical
cognitive architecture. Part of what makes the classical view of the mind the classical view
just is that there are systematic procedures for combining and recombining symbols in a
mental language! .

This is not the only possible conception of the mind’s essential components,
however. An alternative view, known as connectionism, emerged in the 1980s amongst
neural network modelers (Rumelhart & McClelland, 1988). On this view, the basic parts of
the mind were not symbols and explicit procedures for manipulating them, but
interconnected nodes that can vary in activity level, modifiable connections between these
nodes, and a collection of learning algorithms that tweak the strength of those connections
to make the network smarter. In the hands of some researchers, these networks were not
merely intended to model how the brain implements classical architectures in neuron-like
networks; they were meant as an alternative conception of the computational
underpinnings of intelligence (Churchland, 1996; Clark, 1993). The essence of intelligence,
on the connectionist view, is the mind’s ability to learn statistical regularities and
contingencies from experience, and apply this learning to new contexts.

Neural network models have a number of desirable properties. They learn from
experience. They naturally treat similar things as similar, and generalize accordingly. And,
if you break them, they degrade in ways that sometimes mirror the cognitive degradation
accompanying neurological damage (Rogers & McClelland, 2004). These virtues do not,

however, necessarily make them adequate as a general cognitive architecture. They have

1 The second component of Fodor & Pylyshyn’s (1988) definition of classical architecture is a commitment to
structure-sensitive cognitive processes. These are operations that depend upon the form of a representation,
such as various types of logical inference (P&Q—>P).



trouble explaining a few basic cognitive functions, including an inability to model the
English past tense (Pinker & Prince, 1988;), and an inability to represent individuals as
such, distinct from categories (Pinker, 1997; Marcus, 2001). Prominent among these
limitations, however, is their inability to explain the compositionality of thought and
language (Fodor & Pylyshyn, 1988; Fodor & McLaughlin, 1988; Pinker, 1997; Marcus, 2001;
Hummel et al. 2000). In the simplest neural network models, called ‘perceptrons’, the
individual nodes in the network’s output layer of node represent features that can be
gleaned from the input. These may be concepts of who the participants in the event were
(Faust, Summers), or and what type of event it was (arm wrestling contest). But, of course,
simply activating the concept-nodes for ‘Faust’, ‘defeated’ and ‘Summers’ in response to an
event does not tell you who was the victor, and who was the vanquished. Perhaps, one
might think, the representational nodes could be pre-specified to represent higher-order
variable/value pairs (Faust-as-defeater), or even entire propositions (defeat(Faust,
Summers)). However, as we will see below, such models have difficulty explaining how we
can understand new combinations, and why the thoughts we can entertain cluster
systematically.

Since these early realizations, modelers have found clever and productive ways to
implement structured representations in neural networks (Smolensky, 1990; Ajjanagadde
& Shastri, 1991; Plate, 1995, Hummel & Holyoak, 1997; 2003, O’Reilly & Busby, 2002; and
most recently Kriete et al,, 2013). These models vary in their strengths and limitations,
which we will discuss below, but to the extent that they succeed, it is as implementations of
classical architecture, not as alternatives (Pinker & Prince, 1988; Marcus, 1998). A mental

toolbox of representational nodes, connection strengths, and learning rules doesn’t provide



an alternative means through which to systematically encode structured information, such
as who did what to whom in an event, without somehow implementing symbol structures.
This point is increasingly recognized in motivating theoretical models (Hummel et al.,
2000; Doumas et al., 2008; Kriete et al., 2013), and debates about compositionality and
cognitive architecture have quieted (Fodor & McLaughlin, 1990. Smolensky, 1991; Fodor,
1997).

Theorists interested in modeling the mental and neural bases of compositionality
are now, instead, largely concerned with one key question: how are simpler
representations glued together to form more complex ones? (Hummel & Holyoak, 1997;
2003; Hummel et al., 2000; O’Reilly & Busby, 2002; Doumas et al., 2008; Hayworth, 2012;
Van der Velde & de Kamps, 2007; Kriete, et al. 2013; Haysworth, 2012; Stewart et al,, 2011).
This question, which has its roots in the cognitive neuroscience of vision, is often referred
to as “the binding problem”. Writers refer to a number of related problems as “the binding
problem”, (Shadlen & Movshon, 1999). However, at root, these problems all concern how
neurons flexibly integrate the information carried by distinct neural populations to encode
a single complex stimulus. It is a problem because it’s implausible to think that the brain
devotes individual neurons, sometimes called “cardinal neurons” (Martin, 1994; Shadlen &
Movshon, 1999), to each and every combination of stimulus features we could encounter.
This binding problem recurs in many contexts throughout cognitive neuroscience. For
example, how does the brain signal that different visual features (color, shape, motion, etc.)
belong to one and the same object, despite the fact that the feature-information is
dispersed throughout visual cortex? Likewise, how are the various features of a conceptual

representation (shape, function, etc.), which are likely housed in different brain areas



(Patterson, Nestor, & Rogers, 2007), coordinated to represent one concept? And, of most
relevance here, how are representations of semantic variables and their values (often
called “roles” and “fillers”) bound to one another, and so as to represent a single
proposition? These neural binding problems arise whenever independent neural
representations need to be mixed and matched to form different complex representations.

[t is assumed that the problem of how the brain encodes who did what to whom is
identical, in key respects, to the other binding problems, for example, in vision (Hummel et
al,, 2000; Doumas et al., 2008; Stewart & Eliasmith, 2012; Van der Velde & de Kamps, 2006).
Notice, however, that the problem of role/filler binding is characterized abstractly in terms
of representational content, rather than in terms of known neural representations. This is
because we simply don’t know how information about semantic roles is encoded neurally.
We can’t say: “how is information about role, coded in the pineal gland, bound to the
symbolic representations distributed throughout cortex?” It may be the case that role
information is encoded in one part of the brain, and filler information elsewhere. But,
despite widespread assumption (Hummel et al., 2000; Doumas et al., 2008; Stewart &
Eliasmith, 2008; Van der Velde, 2006), we don’t know. Below, we review the main
theoretical models that have been proposed for encoding complex, structured meanings in
the brain, before presenting our empirical work targeting the neural representation of
these meanings.
Theoretical Models
Conjunctive Coding

We noted above that neural network models that only contain nodes for individual

concepts, without respect to the roles those concepts plays in a sentence or event, cannot



represent who did what to whom. The most direct way to extend this model is to add
individual nodes, or sets of nodes, that selectively encode the presence of concepts in
particular roles. This strategy is known as conjunctive coding. To encode “the man bit”, the
node or nodes for “man as biter” would be activated when and only when ‘man’ is present,
AND is the one in the event doing the biting. Such models might then attempt to encode an
entire proposition (e.g., “the man bit the dog”) using the simultaneous activation of the
nodes encoding “man as biter” and “dog as bitee”. Or, perhaps it might use yet higher-order
conjunctive nodes devoted to encoding the entire proposition ([(‘man’ & biter) & (‘dog’ &
bitee)]). In their simplest form, these models are analogous to models of object recognition
that proceed by activating neurons or groups of neurons tuned to successively higher-
order combinations of input features (Reisenhuber & Poggio, 1999).

Conjunctive representations can, in principle, exist at various levels of abstraction,
and across representational content. These could, for example, be predicate-specific (“man
as biter”) (cf. O’Reilly & Busby, 2002), or represent more general semantic role/filler
combinations (“man as agent”). (Doumas et al., 2008; Hummel & Holyoak, 1997; Hinton,
1986). It is worth noting, however, that any model of complex meanings represents
conjunctions. Whenever a variable is assigned a value, it represents a conjunction of
features. At issue is the strategy used to encode this combination. Models described as
“conjunctive” are typically those with physical units devoted to conjunctions, separate from
the physical units encoding the conjoined.

Researchers have established that simple conjunctive coding models that devote
one, or a few nodes to representing each conjunction are inadequate, however (Marcus,

2001; Pinker, 1997, Hummel & Holyoak, 2000; 2003). To their credit, most modelers that



deploy conjunctive coding also recognize it as insufficient for composition, using it instead
for a narrower function, such as long term memory storage of bindings (Hummel &
Holyoak, 1997; Doumas et al., 2008). Its shortcomings are nonetheless instructive, and
worth elaborating. For, even if simple conjunctive coding models are straw men, they are
straw men that can scare off crows hovering above better models.

First, simple conjunctive coding models have difficulty encoding new role-filler
combinations (Marcus, 2001). Humans do not. To encode a new combination, the model
needs a stock of unassigned neurons, and a procedure for using those neurons to encode
new combinations on the fly. Itis unclear how a conjunctive model could identify neurons
that are representationally unspoken for, and assign them to encode bindings as needed.
This is the problem of generalization for conjunctive models. However, to be fair to
conjunctive models, their neuron allocation problem is endemic to all of the cognitive
neuroscience of memory, including episodic memory. Computational solutions have
recently been proposed that may allow neurons in the hippocampus to be flexibly allocated
to encode new conjunctions (Valliant, 2012).

But, even if this particular problem is ultimately tractable, the situation is still dire
for simple conjunctive coding models. For, perhaps even more fundamentally, it's well
established that simple conjunctive models would require more neural resources than the
brain has available (Pinker, 1997; Marcus, 2001). In the simplest case, a neuron would be
needed for every unique sentence a person ever understood or produced, and every unique
thought one ever entertained. This is the problem of scale, and it recurs throughout our
consideration of alternative models of binding, given the math of combinatorics. This is a

fundamentally different type of problem than problems with (e.g.,) generalization. Itis a



problem in physical implementation, not cognitive adequacy. We hold models to both
standards throughout this review.

Researchers have attempted to mitigate both the issue of generalization and the
issue of scale by encoding conjunctions using coarse, distributed representations. Rather
than encoding each conjunction using one or a few nodes, models can instead use and reuse
the same nodes, encoding different conjunctions as unique activity patterns over the same
set. O’'Reilly and Busby (2002) propose such a model for encoding spatial relations (e.g.,
“the triangle is above the circle”), and show that this model can encode a large number of
conjunctions using relatively few nodes. The model has one large bank of nodes that
encodes conjunctions for all the various spatial relations. There is no internal
differentiation of the representation of the different variables, as such, separate from the
representation of their values. Using this scheme, the authors are able to encode 62,400
conjunctions using only 200 nodes. This is a meaningful step toward dealing with the
combinatorial explosion that accompanies conjunctive coding. Moreover, distributed
representations allow the network to represent new conjunctions on the fly, encoding
novel combinations as a function of their similarity to old combinations. This distributed
model is thus an improvement over simple, localist conjunctive models, with cardinal
neurons. [t mitigates the issue of scalability, and provides the network some ability to
generalize to new role/filler combinations. Nonetheless, it has major limitations.

Putting aside global concerns about connectionist models (biological implausibility
due to bidirectional activation flow, heavily supervised learning, requiring an impossible
amount of training experience (see e.g., Fodor & Pylyshyn, 1988;), there are a number of

problems with conjunctive models that are not remedied by the use of coarse, distributed



representations. The first is a minor, but overlooked, problem that is specific to the types of
representations O’Reilly and Busby use. The second two hamper all conjunctive coding
models, whatever their representational scheme.

O’Reilly and Busby’s scheme works because the same nodes are called upon
repeatedly, each time encoding one small piece of the information necessary to represent
the entire conjunction. But there are biophysical drawbacks to implementing this solution
in the brain. This is because, contrary to common assumption, theoretical work suggests
that coarse, distributed representations would impose steep metabolic costs on the brain’s
operation. It has been estimated that up to 80% of the brain’s energy is consumed by
neural signaling, with the remaining percentage going to processes required for building
and maintaining cells (Sibson et al., 1998; Rothman et al, 1999; Laughlin, 2001). Under such
a ratio of signaling to fixed energy costs, Laughlin (2001) estimates that the most
metabolically efficient codes are distributed, but sparse codes; codes that involve
numerous cells per bit of information encoded, but in which each cell fires only
infrequently. Very coarse, distributed representations, like the one’s used by O’Reilly and
Busby may thus be a drain on the brain’s metabolic resources, relative to other signaling
strategies (Lennie, 2003; Laughlin, 2001), given that they require a very large number of
active neurons to encode some piece of information. Of course, since O'Reilly & Busby’s
model is specified at the abstract level of nodes rather than neurons, we cannot properly
evaluate whether it’s plausible to implement. It’s unclear how exactly the activity of a node
in a neural network is mapped on to the firing rate of neurons at the neural level. But we
should nonetheless be wary of coarse, distributed models that require a large number of

active nodes to encode some content that could, in principle, be encoded by less neural
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signaling. Energy consumption considerations suggest that distributed representations are
useful, but only up to a point. Though using and reusing the same nodes may reduce the
number of nodes needed, it may not actually minimize energy consumption, all things
considered. It's not obvious that O’Reilly and Busby could simply reduce the number of
nodes per bit of information, and still maintain the network’s ability to generalize to novel
conjunctions. This, of course, is not to say the brain could not, in any circumstance,
implement such a model. But it appears to be a poor solution from the perspective of
minimizing energy consumption, relative to a fixed task goal. In assessing the feasibility of a
strategy, it is thus important to not only consider how many neurons are required to
implement it, but also how much activity is required of those neurons.

Even if a more suitably energy efficient coding solution were found, however, there
are deeper problems with conjunctive models. These are problems with their adequacy as
cognitive models, rather than the plausibility of implementing them. First, there is no
straightforward way for the network to signal which bindings are part of the same
proposition (Pinker, 1997; Jackendoff, 2002). This is especially clear when we consider
cases in which the same role occurs twice. Take as an example the sentence “John loves
Mary, but Mary loves Jesus”. Here, Mary is both a lover and a lovee, but in different
propositions. If the network simply encoded first-order conjunctions, it knows John is a
lover, Jesus is a lovee, and Mary is both lover and a lovee. Butit’s terribly unclear who
loves whom. Does John love Jesus? Does Mary love herself? These conjunctions need to be
brought together within propositions in order for the mind to know who loves whom. The
O’Reilly & Busby model does not take the extra step to encode entire propositions, and it’s

unclear if it could manage it in a computationally tractable way.
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Second, although the network can generalize, there is no guarantee that it will
generalize systematically (Fodor & Pylyshyn, 1988). That is, it's not a given that any
network that can represent “Faust defeated Summers” can thereby also represent
“Summers defeated Faust”. Conjunctive models therefore seem to miss an essential fact
about the mind. If the model happens to have encountered something similar to a square,
say a rectangle, in the left-of role, then it may generalize appropriately. But this seems to
lean too heavily on the model’s idiosyncratic experience with particular classes of things in
particular roles. We will see ways that rule-like binding procedures can be implemented in
a neural network below.

Finally, and perhaps most importantly, the patterns representing, for example, ‘dog’
in ‘dog bites man’ appear to have no relationship to the pattern representing ‘dog’ in ‘man
bites dog’. There is a pattern of activity for “dog as biter” and a different pattern of activity
for “dog as bitee”, but no systematic relationship between the two. It’s thus not clear how
the identity of the representation ‘dog’ is maintained, and hence can contribute the same
meaning to both complex expressions. Thus, compositionality is lost. Hummel et al. (2000)
make essentially the same point, calling for “role-filler independence” in the encoding of
bindings. The principle of “role-filler independence” simply holds that bindings must be
created in such a way as to maintain the identity of both the roles and fillers (variables and
values). This promotes compositionality, and also, they maintain, allows the network to
learn things about the roles and fillers, as such, across different combinations involving

them.
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Temporal Synchrony as a Binding Signal

To some, these concerns weigh decisively against any type of conjunctive model
(Hummel et al., 2000; Doumas et al., 2008), and more generally, against any model that
brings variable and value together in the same neuron or neural population (Hummel et al,,
2000). These writers and others favor a fundamentally different physical signal for binding:
temporal synchrony between disparate neural populations (von der Malsburg, 1994; 1999
Ajjanagadi & Shastri, 1991; Doumas et al, 2008; Holyoak & Hummel, 2000; Love, 1999;
Singer & Gray, 1995). Synchrony-based models signal the binding of a value to a variable
through the transient synchronization of the units encoding variables and those encoding
the values. Thus, to encode “man bites dog”, the “man” units would become transiently
phase-locked with the “biter” or “agent” units. Meanwhile, the units encoding “dog” are
entrained with the “bitee” or “patient” unit. The two couplings then fire in different phases
(“man” and “biter” in one phase, “dog” and “bittee” in another phase) distinguishing the two
bindings for any downstream neurons that are interested. Note, however, that synchrony is
only meant as a signal, or tag, for what is bound to what. It plays no role in the
computations determining the binding. The computations driving which representations
get synchronized are performed by an independent group of neurons.

At first glance, synchrony has a number of desirable properties as a representational
strategy. It appears to avoid the combinatorial explosion of neurons required to encode
conjunctions. A mind that binds through synchrony needs only as many units as is
necessary to represent the set of fillers and the set of roles. These can then be flexibly and
dynamically combined at no additional imposition on cortical space, dealing neatly with the

problem of scale that plagued conjunctive coding. Second, both fillers and roles contribute
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the same content whenever they are used. The representation of Joe Biden is the same in
“Joe Biden is the vice president of the United States”, “Joe Biden spent Tuesday morning
washing his Chevy Camero”, and “Joe Biden bit the dog”. Likewise for the content of the
roles. In this, temporal synchrony appears more promising as a means of achieving
compositionality than the conjunctive strategies discussed above.

But, on closer inspection, temporal synchrony may not actually reduce the number
of neurons required at all. The synchrony code is useful only if it can be read by other
neurons. Von der Malsburg (1999) argues that synchrony-based codes can be read by
“coincidence detector” neurons that receive input from both variable and value neurons.
Shadlen and Movshon (1999) point out that such coincidence detectors amount to little
more than the conjunctive neurons synchrony was supposed to abolish, however; they are
neurons that fire if and only if both constituent neurons are active at the same time, and in
the same phase. The brain therefore needs just as many coincidence detectors as is
necessary to represent all the possible coincidences that need to be detected; that is, as
many as necessary to encode the conjunctions of features.

If additional neurons first compute which neurons fire in synchrony, and further
neurons read out which neurons are currently synchronized, why not eliminate the middle
neuron? Synchrony is playing no obvious functional role. The coincidence detector neurons
could simply be connected to the neurons computing the bindings, with no loss in
information. The challenge, as before, is to set these up in a way that allows the network to
systematically encode new combinations, and do so within the constraints of the brain’s

physically available resources.

14



Classical Symbol Structures in Neural Networks

Given the ease with which classical cognitive architectures explain compositionality,
perhaps it should be no surprise that the cleanest architectural solutions to this problem
are inspired by the digital computer. In this spirit, Marcus (2001) proposes that the human
brain has registers, analogous in function to the registers of a digital computer, that
represent the values of particular variables. Different registers could represent different
variables (e.g., agent/patient), thus tying the identity of the variable to the identity of the
register. Symbols representing these values could be stored in these registers to encode a
variable/value binding. One important aspect of this model is that the same symbol, say a
string of bits, or even the address of a symbol in long-term memory, can be stored in
different registers. Thus, the symbol contributes the same content across tokens, and the
meaning of a complex expression is a function of the meaning of its parts. Both the fillers
and their roles maintain their independence, per Hummel et al.’s (2000) requirement,
preserving one advantage we saw for temporal synchrony models over simple and
distributed conjunctive coding models. However, there is no additional binding signal
needed over and above the assignment of a symbol to a register (value to a variable).

Although this model is specified at the representational level, it’s certainly logically
possible to implement this and related architectures in neural networks. But can it be
implemented without falling victim to the difficulties of the conjunctive models reviewed
above? To make a fair comparison to the other models, we should consider the plausible
ways in which to implement this in a neuron-like substrate.

A broadly similar, if limited, solution can actually be found in Hinton’s (1986) toy

neural network model for encoding family relations. This model dedicates separate banks
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of nodes to representing different variables: one bank encodes the first argument of the
relation, a second encodes the relation, and a third encodes the second argument of the
relation. Yet another layer encodes the entire proposition. The values of each of these
variables are encoded by distributed patterns of activity across these banks of nodes.
Despite their superficial differences, Hinton’s model is similar to Marcus’s suggestion in
that it uses spatially individuated sets of nodes to encode different variables (akin to
registers), and unique distributed codes within these registers to represent those variables’
values?. The same code can be used to represent a symbol’s identity across node-banks.
Hinton’s model is limited in the novelty of the bindings it can encode because it is trained
through back-propagation, and hence dependent on the similarity of a new combination to
previously experienced combinations. This problem can be remedied by simply
abandoning the unnecessary commitment to back-propagation, however.

For example, Smolensky’ s (1990) tensor product model provides a very general
procedure for combining two pieces of information, coded as vectors, into a single complex
representation, coded as a matrix. Here, variables and values are represented as patterns of
activity over different set of nodes. These patterns are thus distinct vectors. If one vector
codes for a variable (e.g., agent) and another codes for a value (e.g., man), their binding can
be represented as the element-by-element multiplication of the two vectors. The product of
this multiplication is called a “tensor product”, and this output is represented on a set of
nodes distinct from the nodes encoding the variables and values. The tensor product of an

m dimensional vector and an n dimensional vector is an mXn dimensional matrix, which

2 Strictly, Hinton’s would not qualify as a register model, per se, because it doesn’t have memory for the
patterns of activity instantiated across the role units. However, this seems like an inessential feature of the
model, as recurrent connections could be implemented to achieve this.
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encodes the binding. This circuitry implements a rule-based procedure that can take any
variable and any value and bind them, even if that combination has never been
encountered, thus dealing with the problem of generalization that accompanies models
trained with back-propagation. This binding is not limited to two vectors, however. First-
order bindings (e.g., “man bit” and “bit the dog”) can thus, in principle, be combined into a
proposition (“the man bit the dog”). These propositions can then be combined to form
increasingly higher-order propositions. There is therefore no principled problem in
encoding “John loves Mary, but Mary loves Jesus,” as there is in other conjunctive coding
models.3

Hummel et al. (2000) maintain (and others have echoed (Haysworth, 2012; Kriete et
al,, 2013)) that the tensor product violates the principle of role-filler independence. They
argue that once two vectors are multiplied to encode some complex meaning, there’s little
sense in which ‘dog’ contributes the same meaning to “man bites dog” as “dog bites man”.
The ‘dog’ pattern is now inextricably bound with different role-patterns, and represented
on separate physical units than the basic symbol ‘dog’, whose meaning is supposed to be
static. Whether this is a legitimate concern, however, depends on whether there are
procedures for faithfully recovering the constituent vectors (‘man’, ‘dog’, ‘bites’) from the
combined vectors (‘the man bit the dog’). Smolensky claims this unbinding is possible if the
patterns used to represent either the contents of the set of roles or the set of fillers are

linearly independent (i.e., uncorrelated). Linear independence is a strong requirement, but

3 There may, however, be a problem with scale (Plate, 2004; Marcus, 2001). As representational structures
get larger, (“I believe that John loves the book that Alice wrote”) the size of the network grows exponentially.
Smolensky argues that this may mirror human difficulty with complex structures, though whether there is
indeed such a model-mind correspondence is unclear. Plate (1994) introduces a circular convolution
procedure that can be used to keep the size of the network fixed across increasingly large bindings.
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it is not at all implausible if the number of roles is small. In the simplest case, one or a small
number of nodes could be uniquely devoted to each role, ensuring that they are
independent. For example the vector [1 0] could represent the agent and [0 1] the patient.
This would allow the constituent representations to be recovered from the complex
representations in a law-like way, mitigating Hummel et al.’s criticism.

Although dedicating separate neural populations to explicitly represent different
semantic variables is somewhat antithetical to the connectionist spirit of Smolensky’s
proposal, it emerges as an appealing solution. Here, it guarantees that the identity of the
roles and fillers are independently recoverable, and that the symbols that enter into
bindings maintain some semblance of their identity. Unbinding a tensor product would also
be possible if the vectors that encode the fillers, and not the roles, are linearly independent.
Given that there are many more possible values that can fill a given variable than there are
variables, this would be more difficult to implement and maintain linear independence.
However, there may be good reasons for the brain to adopt, or at least approximate, this
strategy. We begin to address this empirically in Experiment 3. Whether the tensor product
is compositional thus depends upon the particular representational scheme the brain uses
for encoding the variables and variables.

There is, however, one final solution that been proposed, again based on the
classical computer, that can clearly preserve compositionality. In order to ensure that a
symbol has the same identity across bindings, models can add an additional layer of
representation, mimicking the pointers of classical computers. Kriete et al. (2013) adopt
this approach, implementing variable/value binding in a neural network using a classical

pointer system. This neural network binds variables and values by temporarily storing the
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address of a symbol in a variable-specific memory register. The architecture is thus
functionally identical to the pointer systems used by digital computers, which represent
the address of a symbol in the system’s long-term memory. This “indirection”, as it's known
in computer science, preserves the identity of the symbol across roles, mitigating Hummel
et al.’s concerns about role-filler independence. In this, it effectively implements Marcus’s
(2001) suggestion in a neural network. These registers could, in principle, be
hierarchically organized in sets in order to encode multiple bindings, entire propositions,
and propositions within propositions. Kriete’s model does not take these additional steps,
but there seems to be no problem, in principle. We address the concern that such a model
would require too many neurons to implement in the General Discussion.

What is most important, for present purposes, is the general representational
architecture of Kriete et al."s model (and perhaps the modified tensor product described
above). To date, this is the best neural network model for encoding structured meaning.
Perhaps not coincidentally, it is also the most classical in its flavor. It explicitly represents
variables as such, and allows their values to be flexibly updated. It can bind new values to
variables. And, although Kriete et al. don’t emphasize this aspect, other cortical systems can
easily reference these variables in their operation, because the variable registers are
spatially individuated. Operations that need to know who the agent is need only be able to

decode the pattern of activity in that register. Is this how the brain actually does it?

Where in the brain might structured meanings be represented?
We saw above that many theoretical models encode structured meanings by

explicitly representing abstract variables that can take different values (“who did it?, “to
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whom was it done?”) (Marcus, 2001; Hinton, 1986; Smolensky, 1990; Kriete et al., 2013).
Moreover, the best of these models use different neural populations to separately encode
the values of each of these variables. Of course, how the brain actually accomplishes this is
not just a theoretical issue. We should, in principle, be able to identify these neural
representations, and test whether the brain represents these variables, and how. Fodor &
Pylyshyn (1988, pg. 13) write: “...the symbol structures in a Classical model are assumed to
correspond to real physical structures in the brain and the combinatorial structure of a
representation is supposed to have a counterpart in the structural relations among physical
properties of the brain”. Here, we ask, what and where are these physical properties?

Although there has been little direct work on how the brain represents complex,
structured meanings, the study of the neural basis of sentence comprehension, more
generally, has a rich history. This literature provides clues for which regions we might
expect to represent who did what to whom. Compositionality requires both combinatorial
mechanisms and basic symbolic content, and this literature has targeted the syntactic and
semantic combinatorial mechanisms. Neural systems that compute a representation of the
syntactic structure of sentence, and those that then map that representation to a structured
semantic representation are both relevant here.*

A reliable network of cortical regions surrounding the left sylvian fissure are

involved in building and interpreting structured linguistic representations, over and above

4+ We assume that both syntactic and semantic representations can be complex and structured. That is, they
can both have simpler representations as parts, and, in both cases, the way in which the parts are assembled
determines the identity of the complex representation. The theoretical issues outlined in the introduction
therefore apply to both. We assume that semantic composition proceeds from a representation of the
sentence’s syntax. Throughout, we are not always able to say where the representations we identify in fall
with respect to this division. For consistency and clarity, we consider them semantic, or more specifically
“structure-dependent semantic representations”: meanings that depend upon a structured syntactic
representation of the sentence.
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word-level linguistic representations. This sentence-processing network includes portions
of the inferior frontal cortex (Hagoort et al., 2004; Fedorenko et al.,, 2011; Pallier et al,,
2011; Meltzer et al,, 2009; Dapretto & Bookheimer, 1999; Bornkessel et al., 2007;
Grodzinsky & Friederici, 2006; Kuperberg et al., 2000; Hagoort & Indefrey, 2014), inferior
parietal lobe (Fedorenko et al.,, 2011; Pallier et al., 2011; Meltzer et al., 2009; Humphries et
al., 2006) much of the superior temporal sulcus and gyrus (Bornkessel et al., 2007;
Dronkers et al,, 2004; Fedorenko et al., 2011; Pallier et al., 2011; Meltzer et al.,, 2009;
Devauchelle et al.,, 2009; Vandenberghe et al., 2002; Humphries et al., 2006; Friederici et al.,
2003; Bornkessel et al., 2007), and the anterior temporal lobe (Meltzer et al., 2009; Bemis
& Pylkkanen, 2011; Baron & Osherson, 2011; Devauchelle et al., 2009; Rogalsky & Hickok,
2009).

Many neuroimaging studies have localized this network by contrasting the
magnitude of activation when reading or listening to meaningful sentences to the
magnitude of activation when processing unstructured word lists (Mazoyer et al., 1993;
Vandeberghe et al., 2002; Humphries et al., 2006; Fedorenko et al., 2011). It's not
surprising that this particular contrast would activate a large network, given that these
tasks differ in the presence of local and global syntactic structure, the assignment of
thematic roles, the construction of a semantic representation of an event, as well as any
inferences about that event. However, neuroimaging paradigms that have more tightly
controlled specific syntactic or semantic factors in order to precisely localize specific
functions have also met with varied results.

For example, rather than using a cognitive subtraction approach, Friederici et al.

(2003) import an anomaly-detection paradigm from the electroencephalogram literature
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(Kutas & Hillyard, 1980; Hahne & Friederici, 1999) hoping to differentially localize
structured semantic and syntactic processes. In this paradigm, subjects listen to sentences
fraught with either semantic or syntactic violations (“the thunderstorm was ironed” /"the
blouse was on ironed”). If a brain region responds more to semantic than syntactic
anomalies (or vice versa), it is inferred to encode semantic information (or vice versa,
syntactic information). Using this paradigm, Friederici et al. (2003) found regions of left
and right mid-superior temporal gyrus, as well as the bilateral insula to respond more to
semantic than syntactic anomalies. The left-posterior STG responded robustly to both
anomaly types relative to correct sentences, and the anterior STG responded more to
syntactic than semantic violations. This approach may therefore seem promising in
winnowing down the large number of perisylvian regions listed above that have been
identified by coarser contrasts. However, using very similar paradigms, Hagoort et al.,
(2004) and Kuperberg et al. (2003) also report increased activation to semantic anomalies
in the left inferior frontal cortex. Further, Kuperberg et al,, (2003) expand the list of
superior temporal regions that respond more to semantic than syntactic anomalies to
include the entire length of the superior temporal sulcus, from posterior superior temporal
sulcus to the temporal pole. Thus, the majority of the regions constituting the perisylvian
sentence-processing network appear to be modulated by the detection of phrase or
sentence-level semantic anomalies. These results thus converge with cognitive subtraction
contrasts regarding which brain regions sub-serve structure-dependent semantic
processing. But, when taken together, they do not reliably fractionate the perisylvian

network into specific representational sub-components.
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Rogalsky & Hickok (2009) worry that these anomaly-detection paradigms could
recruit specialized error-detection mechanisms, rather than simply reflecting normal
semantic and syntactic processing. To deal with this concern, they adopt a modified
anomaly detection paradigm. The authors had subjects selectively monitor visually
presented sentences either for semantic violations (“that nest in the robin was laying
eggs”) or syntactic violations (“those athlete in the gym was lifting some weights”).
However, instead of measuring and comparing activity to different types of anomalous
sentences, the authors only analyzed data from normal, non-anomalous, sentences. Any
differences in activity therefore reflect differences in top-down attention when attending to
alternate classes of representational content (semantic vs. syntactic). Using this paradigm,
they found a large area of the left anterior temporal lobe (ATL) that responded to the
sentences, and a very small sub-area of left ATL that was modulated only by attention to
semantic anomalies. The authors suggest that this region of left ATL is selective for
compositional semantics, given the intermingling of structured syntactic representation
and attention to structured meaning. However, one could voice a similar concern to that
Hickok & Rogalsky themselves voiced about anomaly-detection paradigms: it's not obvious
that the higher-order representations that encode whether one is monitoring for semantic
or syntactic anomalies are directly related to the actual semantic and syntactic
representations themselves. Monitoring for semantic errors and constructing the meaning
of a sentence are simply different processes.

Nonetheless, the conclusion that anterior left ATL is selectively involved in building
compositional semantic representations finds support in other studies that do not suffer

from this shortcoming. For example, Pallier et al (2011) developed a well-controlled
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paradigm in which they could vary the number of syntactic constituents in a sentence, and
these constituents could be syntactically well formed and meaningful, or syntactically well-
formed but meaningless jabberwocky. They found a large region of left ATL that
monotonically tracked the number of constituents in a sentence, but only when those
constituents were meaningful. The ATL was not the only such region, however. The authors
also found regions of left mid-STS and the left inferior parietal lobe that show the same
interaction. Areas of the posterior superior temporal sulcus and inferior frontal cortex
tracked the number of constituents in the sentences regardless of whether or not they were
meaningful. We thus again find clear evidence that regions of the perisylvian language
network are involved in building semantic representations, given syntactically structured
input. In this case, the ATL, mid-anterior STS, and inferior parietal lobe appear to integrate
semantic information over the sentence. However, we also find that numerous sub-regions
therein appear to play functionally similar roles.

This general pattern of broad coherence in the perisylvian network, with little
reliable internal differentiation is not merely attributable to functional neuroimaging.
Dronkers et al., (2004) report convergent results in a large study of patients with various
types of brain damage. These patients were asked to match sentences to pictures depicting
their meaning. They did so for many different sentence-types, ranging from simple
declaratives (e.g, “the girl is sitting”), to reversible active sentences (“the girl is pushing the
boy”), to a number of more syntactically complex construction types such as, for example,
those involving object clefting (“It is the boy that the girl chases”). The authors then
examined where brain damage predicts impairment on each sentence-type. The most

notable finding was that a region of the posterior left middle temporal gyrus strongly
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predicted comprehension deficits across all sentences types. The authors suggest that this
region is involved in word-level comprehension. Beyond this MTG region, the authors
report that damage to the anterior superior temporal gyrus and superior temporal sulcus,
posterior regions of the superior temporal sulcus and inferior parietal cortex, and regions
of the left inferior frontal cortex all predict broad impairments in sentence comprehension.
We review more specific findings of this study in the General Discussion. For now, we
merely note that this lesion study identifies the same perisylvian sentence processing
network as the neuroimaging work, and again finds little differentiation between the sub-
regions of this network. MTG is the one region that shows a unique pattern of deficits, and
its deficits appear to be at the word rather than phrase or sentence level.

As a result, the literature contains credible proposals that at least some semantic
representations with compositional structure are built in the left inferior frontal cortex
(Hagoort et al., 2004; Hagoort, 2007; Hagoort & Indefrey, 2014)), the left anterior temporal
lobe (Vandeberghe et al., 2002; Hickok & Poeppel, 2007; Westerlund et al., 2015), and the
left parietal lobe (Binder et al., 2009; Humphries et al., 2006). From this literature, one
might conclude that many regions around the sylvian fissure play the same role in building
structured linguistic representations. However, a tradition of neuropsychological work has
shown repeatedly that brain damage can cause remarkably specific functional deficits in
language comprehension (Caramazza & Zurif, 1976; Schwartz, Saffran, & Marin, 1980;
Linebarger et al,, 1983; Caramazza & Miceli, 1991). Caramazza & Micelli (1991) report a
patient with parietal lobe damage who has selective inability to assign thematic roles, but
intact morphosyntactic processing involving closed-class elements. Linebarger et al.

(1983) find that the ability to assign thematic roles can be impaired, while general
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judgments of the grammaticality of a sentence remain intact. Thus, there is a minor tension
between the functional modularity demonstrated in neuropsychology, and the relative lack
of functional specialization reported (in aggregate) in the perisylvian network, especially as
assessed in functional neuroimaging. It thus seems more likely that the difficulty in reliably
fractionating the perisylvian network lies in difficulty establishing reliable mappings
between structure and function across subjects. This may result from deficiencies in the
conventional ways of aggregating data across subjects (See Fedorenko et al., (2010; 2011)
for alternative strategies for identifying functional ROIs in individual subjects that may
prove fruitful in this regard), or perhaps from functional contrasts that have been too
coarse.
The present work

From this literature, we expect regions surrounding the left sylvian fissure to
construct meaning from syntactically structured input. But how? Here, instead of asking
where the magnitude of neural activity is modulated by the presence of syntactic and/or
semantic combinatorial operations, we ask simply: what brain regions carry information
about a sentence’s meaning? And then how is this meaning encoded? In this, we seek the
“physical counterpart” to the combinatorial structure that Fodor & Pylyshyn (1988)
suggest exists, if the mind has a classical architecture.

To do so, we use fMR], in conjunction with Multi-Voxel Pattern Analysis (MVPA).
The development of MVPA has dramatically improved researchers’ ability to identify the
representational content of brain states using fMRI (Haxby, 2001; Norman et al., 2005;
Mitchell et al., 2008). Rather than asking whether the mean amplitude of a brain region’s

response is modulated by an experimental contrast, researchers now routinely pool
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information across voxels to directly assess that region’s informational content. The brain,
as the seat of the mind, is an information-processing machine. Information isn’t just
contained in the peaks and valleys of neural activity, but in the undulations, however small,
of the entire landscape. Testing for differences in informational content, rather than
magnitude of activation, allows researchers to identify much subtler cognitive and
representational distinctions; distinctions that aren’t reflected in any aggregate difference
in response amplitude (Kamitani & Tong, 2005; Eger et al., 2008; Kriegeskorte et al., 2007).
If pattern classification algorithms can reliably identify the content of a representation
given a pattern of BOLD signal, then other brain regions can likely decode these
representations as well.

MVPA is thus particularly useful in the present context. There are clear differences
in the content of the propositions conveyed by “the truck hit the ball” and the “the ball hit
the truck”, respectively. Likewise for “Faust defeated Summers” and “Summers defeated
Faust” etc. However, this is not a difference that we would expect to be manifest in gross
differences in the response amplitude of an entire region. It isn’t as though the construction
of one of these propositions engages a cognitive process that the other doesn’t. The same
combinatorial mechanisms and same symbolic content should be engaged in both cases,
only with a different functional mapping between the roles and fillers.

In the remainder of the thesis, we describe three fMRI experiments aimed at
understanding how the brain (in the left perisylvian cortex or elsewhere) flexibly encodes
the meanings of sentences involving an agent (“Who did it?”), an event-type (“What was

done?”), and a patient (“To whom was it done?”).
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Experiment 1: Where is who did what to whom?
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In order to study how the brain represents structured meanings, we need to know
where in the brain these representations are located. Here, we look for regions that exhibit
different patterns of activity for different propositions assembled using the same concepts
(“the truck hit the ball” /”the ball hit the truck”). That is, we look for brain regions from
which we can decode who did what to whom?

In experiment 1, subjects undergoing fMRI read reversible sentences describing
simple events. Reversible sentences have a long and productive history in the
neuropsychology of language. They have been valuable tools in probing the various
patterns of functional deficits that can underlie so-called “agrammatic” aphasia (Caramazza
& Zurif, 1976; Schwartz, Saffran, & Marin, 1980; Ansell & Flowers, 1982; Caramazza &
Miceli, 1991; Berndt et al,, 1996). In the present work, we put reversible sentences to a
slightly different use. Each reversible sentence expressed a meaning, or proposition, that
could be conveyed in either the active or passive voice (e.g., “the ball hit the truck”/“the
truck was hit by the ball”). Each such sentence could be reversed to yield a mirror-image
proposition (e.g., “the truck hit the ball”/“the ball was hit by the truck”), which was also
included in the stimulus set. We call these “mirror-image proposition pairs”. The use of
mirror-image propositions ensures that basic lexico-semantic content, syntactic tree
structure, and summed word frequency are matched within pairs. Members of these pairs
contain the same words and have the same syntactic structure, but the words are
differentially assigned to the agent and patient roles to form different propositions.

A region encoding these meanings should have the following two properties. First,
patterns of activity in such a region should differentially encode members of mirror-image

propositions pairs. For example, the propositions conveyed by “the truck hit the ball” and
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“the ball hit the truck” should elicit distinct patterns of activity. Second, the instantiation of
such patterns should predict downstream neural responses that depend on understanding
who did what to whom. For example, patterns related to structure-dependent meaning
should predict differential affective responses to “the grandfather kicked the baby” and
“the baby kicked the grandfather”. Experiment 1 employed two key analyses,
corresponding to these two functional properties. First, we applied MVPA and a whole-
brain searchlight procedure (Kriegestkorte et al., 2005) to identify sets of contiguous
voxels that distinguish between members of mirror-image proposition pairs. Second, we
developed a pattern-based effective connectivity analysis (PBEC) to determine whether
patterns related to affectively salient sentences (e.g. “the grandfather kicked the baby”)
mediate the relationship between the sentence presented and affective responses
elsewhere in the brain. Jointly, these analyses establish candidate regions for encoding

structure-dependent meaning that can be further probed in Experiments 2 and 3.

Wholebrain Searchlight Analysis. First, using a linear classifier, we searched for regions
whose patterns of activity distinguished between members of mirror-image proposition-
pairs: for example, between the proposition conveyed by “the truck hit the ball” (as well as
“the ball was hit by the truck”) and the proposition conveyed by “the ball hit the truck” (as
well as “the truck was hit by the ball”). Active and passive forms of each proposition were
treated as identical in all analyses, targeting underlying semantic representations,
controlling for visual features of the stimuli and surface syntax. All propositions were
presented separately, and multiple times, to better estimate the pattern of activity evoked

by each proposition. For Experiment 1, classifiers were thus tested on their ability to
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discriminate between new tokens of the mirror-image propositions on which they were
trained.

For this initial searchlight analysis, we used four mirror-image propositions pairs,
two involving animate entities and two involving inanimate entities. For each subject
(N=16), we averaged classification accuracies across these four pair-wise classification
problems to yield a map of the mean classification accuracy by region. Group-level analysis
identified a region of left-mid superior temporal cortex (ImSTC, k=123, Talairach center: -
59, -25, 6) that reliably distinguished between mirror-image propositions (p<0.0001,
corrected. See left temporal region in Figure 1). We find fairly consistent levels of
classification accuracy in both ROIs, suggesting these regions are not driven by
idiosyncrasies of particular pairs, or only by the animate or inanimate proposition-pairs.
(See Table 1). A repeated-measures ANOVA revealed no significant differences in
classification accuracy across the six pairs for ImSTC (F(5, 75)=0.4, p=0.84), and all are
significantly above chance, or trending. The pattern of results is consistent with ImSTC

encoding domain-general information about who did what to whom for this class of events.

ImSTC | mirror-image pair Mean Accuracy t, one-tailed p

1 STRUCK (mother: boy) .566 t=1.8, p=0.046

2 KICKED (grandfather: baby) .602 t=3.83, p=0.0008
3 TOUCHED (grandmother: girl) .563 t=1.45, p=0.0843
4 PULLED (father: child) .565 t=1.89, p=0.039
5 HIT (truck: ball) .556 t=2.5,p=0.012

6 SMACKED (door: branch) .597 t=4.3, p=0.0003

Table 1. Post-hoc analysis delineating classification by mirror-image proposition pair. Note, the first two
propositions were not used in localizing the ROI, only in connectivity analyses.
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A second significant cluster was discovered along the right posterior insula/extreme
capsule region (p<0.001, corrected; -37, 9, 6)). However, this second region failed to meet
additional, minimal functional criteria for encoding sentence meaning. Specifically, if the
regions discovered in the searchlight analysis do represent structure-dependent meaning,
then they should facilitate classification of non-mirrored propositions as well. For example,
they should be able to distinguish “the truck hit the ball” from “the father pulled the child.”
Although these non-mirrored pairs are not well matched, and one would expect many
other brain regions to be able to perform this classification (e.g., regions that encode the
semantic/phonological content of the nouns and verbs), this analysis nevertheless serves
as a sanity check on the ROIs localized using the searchlight analysis. Of the two ROIs able
to discriminate within mirror-image proposition pairs, only the ImSTC ROI was able to
reliably discriminate non-reversed pairings as well, t(15) = 4.06, p=0.005. The right
extreme-capsule/insula ROI trended in this direction, but its results were not statistically
significant, t(15) = 1.45, p<0.09. This failure to robustly classify non-mirror-image
proposition pairs casts doubt on the possibility that the right posterior insula encodes

complex, structured semantic representations.

Pattern-Based Effective Connectivity Analysis. The foregoing searchlight analysis
suggests that ImSTC represents critical aspects of sentence-level meaning. If this
hypothesis is correct, then the particular pattern instantiated in ImSTC should also predict
downstream neural responses when those responses depend on an understanding of “who
did what to whom”. Our second analysis in Experiment 1 attempts to determine whether

the patterns of activity in ImSTC predict affective neural responses elsewhere in the brain.
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To test this hypothesis, we used, within the same experiment, an independent set of
mirror-image proposition pairs in which one proposition is more affectively salient than its
counterpart, as in “the grandfather kicked the baby” and “the baby kicked the grandfather”.
Differences in affective salience were verified with independent behavioral testing (See
Appendix). We predicted that patterns of activity in ImSTC (as delineated by the
independent searchlight analysis) would statistically mediate the relationship between the
sentence presented and the affective neural response, consistent with a causal relationship
(Baron & Kenny, 1986). To succeed, the mediating variable (here, the pattern of activity in
ImSTC) must explain unique variance in the downstream response over and above variance
in that response explained by the stimulus. This is because, to the extent that there is
variability or “error” in this causal process, the more proximate mediating variable (here,
the pattern of activity) should explain unique variance in the response, in virtue of being a
channel through which the direct effect (here, the effect of the proposition presented on the
amygdala’s activity level) is carried. This pattern-based effective connectivity (PBEC)
analysis proceeded in three steps.

First, we confirmed that patterns of activity in the region of ImSTC identified by the
searchlight analysis can discriminate between these new mirror-image propositions
(t(15)=3.2, p=0.005, mean accuracy = 58.3%), thus replicating the above findings with new
stimuli. Second, we identified brain regions that respond more strongly to affectively
salient propositions (e.g., “the grandfather kicked the baby” > “the baby kicked the
grandfather”). This univariate contrast yielded effects in two brain regions, the left
amygdala (28, 7, -18) and the right superior parietal lobe (40, 67, 44), (p<0.001, corrected).

Given its well-known role in affective processing (Phelps & LeDoux, 2005), we interpreted
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this amygdala response as an affective signal, and focused on this region in our subsequent
mediation analysis. Third, and most critically, we examined the relationship between
patterns of activity in ImSTC and the magnitude of the amygdala’s response. The first of the
above analyses shows that “the grandfather kicked the baby” produces a different pattern
in ImSTC than “the baby kicked the grandfather” (etc.). If these patterns actually reflect
structure-dependent meaning, then these patterns should mediate the relationship
between the sentence presented and the amygdala’s response on a trial-by-trial basis.

To quantify the pattern of activity in ImSTC on each trial, we used the signed
distance of each test pattern from the classifier’s decision boundary (See Appendix for
detailed description of how distance from the classification hyperplane is computed).
Intuitively, one may think of this distance as the classifier’s “confidence” in its decision
regarding the test pattern. According to our hypothesis, trials in which the pattern is most
confidently classified as, for example, “the grandfather kicked the baby” should be trials in
which the amygdala’s response is most robust.

As predicted, the pattern of activity instantiated in ImSTC predicted the amygdala’s
response (t(15) =3.96, p=0.0013), over and above both the mean signal in ImSTC and the
content of the stimulus. The pattern of activity in the ImSTC explains unique variance in the
amygdala’s response, consistent with a causal model whereby information flows from the
sentence on the screen, to a pattern of activity in the ImSTC, to the amygdala (Sobel Test, z
=2.47, p<0.013. See Figure 1) (Baron & Kenny, 1986). The alternative model reversing the
direction of causation between the ImSTC and amygdala was not significant (z=1.43,
p=0.15), further supporting the proposed model. Alternative non-parametric tests for

mediation yielded comparable results. (See Appendix). The above analyses were repeated
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with the right posterior insula/extreme capsule ROI as the mediator. In contrast to ImSTC,
all assessments of whether the pattern of activity in the right insula/extreme capsule ROI
mediated the relationship between the sentences presented and the amygdala were non-

significant (p>0.15), further suggesting that the right insula/extreme capsule ROI does not

represent structure-dependent meaning.
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Figure 1. Model of information flow from stimulus to ImSTC to amygdala in Experiment 1. (A) A pattern-
classifier determines which of two propositions was presented using activity in ImSTC. Distance from the
classification boundary indicates the extent to which a learned pattern was instantiated. The red region
corresponds to the emotionally evocative proposition (e.g. “the grandfather kicked baby”), while blue
corresponds to the less evocative proposition (“the baby kicked grandfather”). (B) For each trial, the
classifier’s signed distance from the classification boundary was transformed by a sigmoidal function and
used to predict the mean level of activity in the left amygdala. (C) Patterns in ImSTC mediate the relationship
between the proposition on the screen and the amygdala’s response, consistent with a model according to
which the ImSTC encodes the structured representations necessary to generate an emotional response.
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Thus, Experiment 1 shows that a region of ImSTC meets our two initial functional
criteria for a region encoding structure-dependent sentence meaning. First, its patterns of
activity differentiate between mirror-image propositions containing the same words and
syntactic structure. Second, these patterns statistically mediate the relationship between
the sentence presented and affective neural responses that depend on understanding “who
did what to whom”. Previous research has implicated the left-mid superior temporal cortex
in phrase and syntactic sentence-level semantic processing using both functional
neuroimaging and lesion data (Friederici et al.,, 2003; Fedorenko et al., 2011; Meltzer et al,,
2010; Pallier et al.,, 2011; Hagoort & Indefrey, 2014; Humphries et al.,, 2006; Vandeberghe
et al.,, 2002; Dronkers et al., 2004; Wu, Waller, & Chatterjee, 2008). We save detailed
discussion of the place of this finding within the literature until the general discussion,
when we have a better understanding of this region’s functioning. Critically, experiment 1
leaves unspecified how this region encodes such information. Experiment 2 aims to further
validate the results of Experiment 1 and to illuminate the mechanism by which this region

encodes the meaning of these propositions.
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Experiment 2: How does left-mid superior temporal
cortex represent structured meanings?
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We saw in the introduction that the most promising models of structure-dependent
meaning represent the values of abstract semantic variables, allowing for the composition
of complex meanings with constituent structure. In Experiment 2, we test the hypothesis
that ImSTC flexibly represents these meanings (at least in part) by representing the values
of the agent (“Who did it?”) and the patient (“To whom was it done?”). To evaluate this
possibility, we searched for sub-regions of InSTC whose patterns of activity reflect the
current value of these variables. We performed separate searches for each variable, looking
for sub-regions of ImSTC that encode “who did it” and “to whom it was done” across verb-
contexts. Thus, we aimed to identify regions that are specialized for representing the agent
and patient variables as such (Marcus, 2001).

Experiment 2 (N=25) employed a stimulus set in which four nouns (“man”, “girl”,
“dog”, and “cat”) were assigned to the agent and patient roles for each of five verbs
(“chased”, “scratched” etc.), in both active and passive forms (See Figure 2a). Thus, subjects
undergoing fMRI read sentences such as “the dog chased the man” and “the girl was
scratched by the cat,” exhausting all meaningful combinations, excluding combinations
assigning the same noun to both roles (e.g., “the man chased the man”).

We acquired partial-volume, high-resolution (1.5mm?3 isotropic voxels) functional
images covering the ImSTC. We used separate searchlight analyses within each subject to
identify sub-regions of ImSTC that represent the identity of the agent or patient. (See
Figure 2b-c). For our principal searchlight analyses, four-way classifiers were trained to
identify the agent or patient using data generated by four out of five verbs. The classifiers
were then tested on data from sentences containing the withheld verb. For example, the

classifiers were tested using patterns generated by “the dog chased the man,” having never
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previously encountered patterns generated by sentences involving ‘chased’, but having
been trained to identify ‘dog’ as the agent and ‘man’ as the patient in other verb-contexts.
This procedure was repeated holding each verb’s data out of the training set, and the
results were averaged across cross-validation iterations. Thus, this analysis targets regions
that instantiate consistent patterns of activity for (for example) ‘dog as agent’ across verb-
contexts, discriminable from ‘man as agent’. (And likewise for other nouns). A region that
carries this information therefore encodes “Who did it?” across the nouns and verb-

contexts tested. This same procedure was repeated to decode the identity of the patient.

A B C
agent patient training data
| dog/| chased |]\man the scratched the man
the dog scratched the girl
the scratched the cat

‘ ‘ ‘ whodidit? = to whom was it done? | the girl bumped the cat

man girl dog cat man girl dog cat the bumped the cat
man - chased) <m;n) . .O. Oe® .. the approached the man
9l scratched  girl 95375 N2, 2
Cdog> bumped dog A X NN S yz : \ test data
approached cat ﬁ ’ ’ ﬁ ’ the chased the man
blocked voxel, voxel; voxel; voxel

Figure 2. Experiment 2 design. (A) Subjects read sentences constructed from a menu of five verbs and four
nouns, with one noun in the agent role and another in the patient role. (B) For each trial, separate pattern
classifiers attempted to identify the agent and the patient based on activity within sub-regions of ImSTC. (C)
Classifiers were trained using data from four of five verbs and tested on data from the withheld verb. This
required the classifiers to identify agents and patients based on patterns that are reused across contexts.

These searchlight analyses revealed distinct sub-regions of ImSTC that reliably carry
information about the identity of the agent and the patient (See Figure 3a). Within the
anterior portion of ImSTC, a medial sub-region located on the upper bank of the superior

temporal sulcus (STS) carried information about the identity of the agent (p<0.01,
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corrected; -46, -18, 1). A spatially distinct lateral sub-region, encompassing part of the
upper bank of the STS, as well as the lateral superior temoral gyrus (STG) carried patient
information (p<0.0001, corrected, -57, -10, 2) across subjects. These anterior “agent” and
“patient” clusters are adjacent, but non-overlapping in this analysis, and are significantly
dissociable by their informational content (FrecionxroLe(1, 24)= 12.99, p=0.0014. (See Figure
3.) This searchlight analysis also revealed a second “agent” cluster, posterior and superior
to the clusters described above, located primarily within the posterior superior temporal
sulcus (p<0.02, corrected, -57,-37, 7). Post-hoc analyses found the classification accuracies
driving these results to be only modestly above chance levels of 25%, but statistically
reliable across our set of 25 subjects (mean accuracies across subjects: anterior agent =

27.1%); posterior agent = 28.1%); patient = 26.6%).
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Figure 3. (A) Searchlight analyses identified adjacent, but non-overlapping sub-regions of anterior ImSTC
that reliably encoded information about agent identity (medial, blue) and patient identity (lateral, red). (B)
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Decoding accuracies of these regions, localized within each subject using independent data from other
subjects, confirm that these adjacent regions differ significantly in the information they encode. (C) Across
subjects, medial slices of anterior ImSTC preferentially encode agent information while lateral regions of
anterior ImSTC preferentially encode patient information.

These findings provide preliminary evidence that these sub-regions of ImSTC
encode the values of the agent and patient variables. However, it remains open whether
and to what extent these sub-regions are specialized for representing agent and patient
information—that is, whether they tend to represent one kind of information and not the
other. To address this question, we conducted post-hoc analyses that separately defined
agent and patient regions within each subject using data from the remaining subjects (See
Appendix for detailed description of procedure). Within subjects’ independently localized
“patient” regions, patient identification accuracy was significantly greater than agent
identification accuracy across subjects (lateral ImSTC: t(24)=2.99, p=0.006). Within the two
“agent” regions, agent identification was above chance (t(24)=2.04, p=0.02: t(24) = 2.38,
p=0.01), and patient identification was not (t(24)=0.86, p=0.20; t(24)=-0.29, p=0.39), but
the direct comparison of accuracy levels for agent and patient identification was not
statistically significant (p=0.27 and p=0.15).

To further assess the role-specificity of these sub-regions, we localized a large
portion of the anterior ImSTC in a manner that was unbiased with respect to its role-
preference, and then quantified the average preferences of slices of voxels at each X-
coordinate (See Appendix). We found a clear trend in role-preference along the medial-
lateral axis, with medial portions preferentially encoding agent information and lateral
portions preferentially encoding patient information (Figure 3c).

We attribute the observed effects to differential representation of the values of
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abstract semantic role variables across this region. One might wonder, however: could
these effects simply be due to differences in motion representation between the agent and
patient roles? The superior temporal cortex is known to be involved in the representation
of biological motion (Blake & Shiffrar, 2007; Han et al., 2013), and our events were all
characterized by the movement of one event-participant with respect to another. However,
this seems unlikely for a number of reasons. First, it is unclear why a region that
represented motion information would carry information about the identity of the patient,
who is often motionless in the event (e.g., ‘approached the man’). Although there is a
difference in the amount of motion between the agent and patient variables, there is no
reason to expect a difference between different patients (e.g., “approached the man”,
“approached the dog”, “approached the cat”). Such a difference between patients would be
required if the observed effects were due to differences in motion representation, since we
localize the patient region by discriminating different values of that variable.

This only pertains to the patient region, however. Might it still apply to the agent
regions, in which differences in motion-content between the various agents are more
plausible? The posterior superior temporal sulcus is known to be involved in the
representation of biological motion (Blake & Shiffrar, 2007) close to the posterior agent
ROI we find here. Moreover, Han et al. (2013) recently reported a right hemispheric region
that is selective to motion that is caused by a human-agent, relative to other types of
biological motion. Although this human-agent motion region is in the contralateral (right)
hemisphere, it is in a similar anterior-posterior location in superior temporal cortex as our
anterior agent ROL If the ability to identify the agent specifically reflects differences in the

representation of the motion of different agents, rather than general role-filler bindings,
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then the nature of the motion involved in an event should affect the classifier’s ability to
generalize to that event. Specifically, it should be easier to generalize role/filler patterns to
events with similar manners of motion than it is to generalize these patterns to events with
very different manners of motion. However, post-hoc analysis show that the anterior agent
region is just as good at identifying the agent of the verb “blocked” in which the agent does
not move at all (p=0.013), as it is in identifying the agent of “chased” (p=0.02) (See Table 2).
Likewise, it can also generalize to the agent of “scratched”, (p=0.005). These events involve
different degrees and manners of motion, but the patterns are similar across verbs,
suggesting they do not reflect motion representations®. It is unclear why a region that
encoded motion-content would have the same patterns of activity for the propositions “the
man blocked the dog” as “the man chased the cat”, which are then different from the
propositions “the girl blocked the dog” and “the girl chased the cat”. The results are
therefore more consistent with the claim that these regions represent the values of abstract

semantic role variables.

5 However, it is also unlikely that the contralateral juxtaposition of our left anterior ROI and that of
Han et al’s. (2013) is a coincidence. Homotopic regions of the two cerebral hemispheres have long been
known to be strongly, and directly, connected through the corpus collosum (Arnold, 1838). The right
hemisphere region (rmSTC) would thus be expected to be strongly connected to ImSTC. If the medial ImSTC
selectively represents the value of the agent variable, as we suggest, the location of the human-agent motion
processing region could make sense: representing aspects of human-agent caused motion requires first
knowing who or what the agent is (the value of that variable). The right hemispheric human-agent motion
region would be situated in an anatomical location that allows it to easily read the identity of the agent from
its contralateral partner, through their direct collosal connections.
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Table 2.

(A). Generalization by verb-context

Verb Patient in Agent in Anterior Agent ROI Agent in Posterior Agent
Patient ROI ROI
‘Chase’ 2.12,p=0.022 2.04,p=0.026 1.59, p=0.063
‘Block’ 1.67,p=0.054 2.37,p=0.013 2.16,p=0.021
‘Bump’ 3.03,p=0.003 1.78, p=0.044 2.37,p=0.013
‘Approach’ 2.15,p=0.021 2.61,p=0.008 3.19, p=0.002
‘Scratch’ 4.31, p=0.0001 2.77,p=0.005 1.87,p=0.037

Table 2. Classification performance in the three ROIs identified by searchlight analysis. The statistics reflect
the ability of role-filler patterns to generalize to a given verb, from the remaining set of verbs, within each ROI.

In a separate search analysis, we found no regions of ImSTC to carry information

about the surface subject and surface object of the sentence. For example, no ImSTC region

encoded “the dog chased the man” and “the dog was chased by the man” as similar to each

other, but different from “the man chased the dog” and “the man was chased by the dog”.

Within ImSTC, the encoding appears, instead, to be of the underlying agent and patient of

the sentence, independent of which noun serves as the sentence’s surface grammatical

subject or object, consistent with Experiment 1. We were also interested in whether

classifiers trained to decode the agent or patient solely on one surface form can

automatically generalize to the alternate form. Our principal analysis trained on data from

both active and passive sentences, subsuming them under the same function. To assess this,

we (1) trained on active sentences and tested on passives, and (2) trained on passives, and

tested on actives. The results of these two procedures were then averaged and pooled

across subjects. We found that the neural representations in both the patient ROI and the

posterior agent ROI automatically generalize across active and passive sentence forms




(t(24) = 2.10, p=0.023, one-tailed: t(24)=1.83, p=0.039), but that the anterior agent ROI
patterns did not (¢(24)=1.10, p=0.14). While this difference may signal a functional
difference between the two agent ROIs, it is important to note that this training procedure
uses 50% of the data used by the searchlight analyses (288 trials vs. 144 trials) making it
difficult to interpret this null result conclusively.

A final searchlight analysis within ImSTC identified two additional sub-regions
supporting identification of a sentence’s verb (See Figure 4). Here, we simply trained the
classifier to identify the verb of a sentence on 5/6ths of the data, and tested its ability to
identify the verb on the remaining 1/6%, iteratively treating each 1/6t as test data, and
averaging across the six cross-validation folds. The anterior verb sub-region (p<0.025; -61,
-15, 2) was adjacent to patient sub-region. The posterior verb sub-region (p<0.0001; -55, -
49, 5) in the posterior STS partially overlapped with the posterior agent region. Post-hoc
analyses found that these results were not driven by information about a subset of the

verbs (See Appendix).
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Figure 4. Searchlight results for Experiment 2 for the three classification problems. Coronal slices show the
topography of the neighboring anterior verb, agent, and patient sub-regions.
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The foregoing analyses strongly suggest that a lateral sub-region of anterior ImSTC
selectively encodes information about the identity of the current patient, and somewhat
less strongly, that a medial portion of anterior ImSTC selectively encodes information about
the identity of the current agent. Together, these results indicate that distinct sub-regions
of ImSTC separately and dynamically represent the semantic information sufficient to
compose complex representations involving an agent, a patient, and an event-type.

The two experiments presented thus far begin to address an important unanswered
question in cognitive neuroscience: How does the brain flexibly compose structured
thoughts out of simpler ideas? We provide preliminary evidence for a longstanding
theoretical conjecture of cognitive science: that the brain, on some level, functions like a
classical computer, representing structured semantic combinations by explicitly encoding
the values of abstract variables (Fodor & Pylyshyn, 1988; Marcus, 2001). Moreover, we
find evidence that the “agent” and “patient” variables are topographically represented
across the upper bank of the left STS and lateral STG, such that adjacent cortical regions are
differentially involved in encoding the identity of the agent and patient. At a high-level,
these regions may be thought of as functioning like the data registers of a computer, in
which time-varying activity patterns temporarily represent the current values of these
variables. This functional architecture could support the composition of sentence meaning
involving an agent and a patient, as these representations can be simultaneously
instantiated in adjacent regions to form complex representations with explicit, constituent
structure. These structured representations may in turn be read by other neural systems

that enable reasoning, decision-making, and other high-level cognitive functions.
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Experiment 3: What variables does left-mid superior
temporal cortex represent, and what coding scheme
does it use?
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Experiment 2 provides evidence that ImSTC encodes the values of abstract
variables, consistent with classical symbolic models of cognitive architecture. However, we
do not know the precise content of these variables, or the code by which their values are
represented. In experiment 3 we address two key aspects of ImSTC’s representational
content.

First, we ask what coding scheme ImSTC uses to represent a variable’s value.
Experiment 2 demonstrates that there are reliable patterns of activity for particular
concepts in the agent or patient roles. But why does ‘dog’ have the pattern of activity it
does, as distinct from ‘man’, and ‘cat’? Nearby regions of ImSTC have been reported to
respond to both phonological (Vigneau et al., 2006; Poeppel et al., 2004; Belin et al., 2002)
and semantic (Vigneau et al., 2006; Rodd et al.,, 2015; Price et al., 1999) manipulations in
functional neuroimaging. In one meta-analysis (Vigneau et al., 2006), ImSTC was the only
region in which phonological, semantic, and syntactic contrasts overlapped significantly in
the imaging studies reviewed. Based on this literature, it is possible that ImSTC could
represent words, and do so using a phonological code that treated similar sounding words
as similar. Or, it could represent noun-meanings, using a semantic code that treated similar
objects as similar®. Failure to support either of these models leaves open an intriguing third
possibility: that ImSTC does not use similarity-based coding schemes, but instead uses an
effectively arbitrary coding scheme. An apparently arbitrary coding scheme maximizes

symbol-distinctiveness, and is a sign of an efficient, compressed code (Hopfield, 1982).

6 It is also possible that it could represent words using a non-phonological code, and concepts using a non-
similarity based code. Evidence for either representational format simultaneously provides evidence for the
content of the representation. A null effect provides no evidence for the content of the representation.
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Second, we ask whether these agent and patient regions are general-purpose slots
for encoding “who did it?” and to whom was it done?” across different semantic groups of
verbs, or whether these regions specifically represent the relations of participants in the
motion-based events of in Experiment 2. In addition to these motion verbs, participants
read a set of psychological verbs (e.g., “noticed”), whose core meaning conveys information
about the event participants’ mental states. First, we ask whether the agent and patient
regions also represent “who did it?” and “to whom was it done?” for these psych verbs’.
Moreover, psych verbs are unique in that they can vary in whether the entity in the
experiencer role is the subject (e.g., “noticed”) or the direct object (e.g., “surprised”) of the
sentence. Although it is not guaranteed that ImSTC will carry any information about these
psych verbs, if it does, we can ask whether it groups event participants based on their
grammatical role as subject or object, or their semantic role as experiencer or stimulus. The
motion verbs do not allow for this dissociation, as the agent is always the underlying
subject, and patient the underlying object of the sentence. Jointly, asking (1) what coding
scheme the agent and patient regions use and (2) how general the regions we have called
“agent” and “patient” are will promote our understanding of ImSTC’s representational
content.

To evaluate these possibilities, we scanned 40 participants while they read English
sentences. Sentences were constructed from a menu of 6 nouns and 8 transitive verbs, to

create every possible aRb proposition, excluding propositions in which the same noun

7 The phrases “who did it?” and “to whom was it done?”, which we have used throughout, are somewhat
unnatural when applied to psych verbs, as the verbs’ core meanings do not denote actions. In the sentence ‘A
noticed B’, nothing was done, narrowly construed. Rather, something just happened. We discuss related issues
in the final set of analyses for Experiment 3 below. When used here, we simply mean (e.g.,) “who X’ed?”,
where X is the verb, and the answer to the question would be realized as the subject of an active sentence
describing the event.
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occupied both roles (e.g., “the goose approached the goose”). Each participant thus read
6x8x5=240 unique propositions, each presented once. This differs from Experiments 1 and
2, in which each proposition was presented multiple times. Half of the sentences were in
the active voice, and half were in the passive voice.

These propositions were constructed from 6 monosyllabic English nouns that refer
to animals (‘moose’, ‘cow’, ‘hog’, ‘crow’, ‘goose’, ‘hawk). These nouns were chosen because
their phonological similarity relationships are distinct from their semantic similarity
relationships. Semantically, these nouns most naturally divide into a group of mammals
(‘moose’, ‘cow’, ‘hog’), and a group of birds (‘crow’, ‘goose’, ‘hawk’). Phonologically, each
noun in one semantic class (e.g., ‘hog’ in the mammal class) has a strong phonological
associate in the other semantic class (‘hawk’ in the bird class). We were guided by the
PSIMETRICA model of phonological similarity (Mueller et al. 2003) in determining the
phonological similarity of the nouns. To verify the relationships amongst our choices, we
also obtained ratings of phonological and semantic similarity from an independent sample
of subjects. See the Appendix for more information on stimuli and norming.

Four of the verbs conveyed some aspect of a mental state, which we will, following
others, refer to as “psych verbs”, and four verbs did not explicitly convey mental state
information, but were characterized partially by different patterns of movement of the
agent with respect to the patient in the event. These were 'bumped’, ‘approached’, ‘passed’,
and ‘attacked’. We chose four psych verbs whose two semantic roles were labeled
‘experiencer’ and ‘stimulus’ in the VerbNet database (Schuler, 2005). The four psych verbs
naturally grouped into two pairs, the members of which were similar both semantically

and syntactically: (‘surprised’, 'frightened’) in which the experiencer is the object, and
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(‘noticed’, ‘detected’) in which the experiencer is the subject. The experiencer-object verbs
refer to psychological states caused by the stimulus. The experiencer-subject verbs refer to
changes in perceptual state, without explicitly specifying causality. To the extent that there
are differences between the two groups of psych verbs, we cannot say whether those
differences are syntactic or semantic. However, we are principally interested in what is
shared between the experiencer-subject and experiencer-object verbs: that one event
participant has a particular type of experience, and the other participant is the cause or

object of that experience.

Replication of Experiment 2. We first sought to replicate the results of Experiment 2. To
do so, we focused exclusively on the data generated by the 4 motion verbs. There are a
number of important differences between this experiment and Experiment 2 that make a
replication non-trivial. First, experiment 3 uses only nouns that refer to animals, and not
nouns that refer to humans. Bilateral areas of the superior temporal gyrus are engaged
when subjects retrieve conceptual knowledge about humans, relative to animals (Zahn et
al., 2007). And we noted above that a right-hemispheric region in a similar anterior-
posterior location specifically represents human-caused motion, relative to other types of
biological motion (Han et al., 2013). Although the fact that we localize the region in
Experiment 1 using nouns referring to both animate and inanimate objects suggests the
current region is not specific to representations of humans, it is important to evaluate this
more directly. Second, each proposition was read just once by each participant. Third,
Experiment 3 has much less data with which to train the classifier, largely due to the

inclusion of the psychological verbs. In Experiment 2, each classifier was trained on 72
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instances of each of 4 concepts in each of the agent/patient roles, resulting in 288 total
training trials per cross-validation iteration. In experiment 3, there are only 15 instances of
each concept, for each of 6 concepts, resulting in 90 total training trials per cross validation
iteration.

Using the same training/testing procedure as Experiment 2, we searched the ImSTC
ROI for patterns of activity encoding the identity of the agent and patient variables. This
entailed training the classifier on data generated by 3 out of 4 verbs, and testing it on data
generated by the 4th verb. As in experiment 2, we cycled through the verbs, using each verb
as test data, and averaged the performance across cross-validation iterations. We used a
liberal voxelwise threshold (p<0.05) and corrected for multiple comparisons in a dilated
version of the anterior agent and patient regions in experiment 2. We again found a region
that carried information about the patient along the lateral bank of the STS/STG in the
same general anatomical location as Experiment 2 (p<0.001, corrected for multiple
comparison). As in Experiment 2, we also found a region that carried information about the
value of the agent variable, located medially and posterior to the patient region (p<0.005,
corrected for multiple comparisons). The topography of the agent/patient regions is very
similar to that found in Experiment 2, despite differences in stimuli and voxel size between
the two experiments. Figure 5 shows the location of these results in both Experiments 2
and 3. Agent information is once again preferentially represented medially and slightly
ventrally to patient information. As in Experiment 2, we found a highly significant region by
role interaction (F(1, 39)=20.94, p<0.001), demonstrating that these regions differ
significantly in the information they carry about the values of the agent and patient

variables. We therefore replicate the principal finding of Experiment 2 with new subjects,
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new stimuli, unique propositions that are read only once, less training data, and different

scanning parameters.

experiment 2 L R

P patient

Figure 5. Agent and patient searchlight results for Experiment 2 (p<0.005 voxelwise, p<0.05 clusterwise corrected) and 3
(p<0.05 voxelwise, p<0.005 clusterwise corrected). We see a similar medial-lateral topography, whereby medial regions
encode the identity of the agent, and lateral regions encode the patient.

Representational Similarity Analyses. We next asked whether the neural similarity of
representations in these ROIs correlates with the phonological and semantic similarity
models of the nouns. The semantic similarity model is a representation of how semantically
similar each pairwise combination of nouns (e.g., “moose/goose”, “moose/cow”, etc.) was
rated to be. See Figure 6a. Likewise, the phonological similarity model is a representation
of how phonologically similar each pairwise combination was rated to be. For each

participant, we correlated the patterns of activity for every possible pairwise combination
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of nouns creating a neural similarity matrix representing the similarity of the neural
patterns for each of the 15 (6*5/2) pairwise noun comparisons. We then carried out the
representational similarity analysis by correlating this neural similarity matrix with each of
the representational similarity models. This analysis is thus a correlation of correlations,
and is called a ‘Representational Similarity Analysis’ (RSA) (Kriegeskorte et al, 2008).
Across subjects, we found that the neither the phonological nor the semantic similarity
models predicted neural similarity in the agent region (semantic: t(39)=0.14, p=0.88;
phonological t(39) = -1.04, p=0.3), nor within the patient region, (semantic: t(39) = 0.51,
p=0.61, phonological t(39)=-1.98, p=0.055). Thus, the only comparison that approaches
significance is the phonological similarity model, within the patient region. However, this
trend actually goes against the direction predicted by the model: the more phonologically
dissimilar two words are, the more similar their neural representations tend to be. Given
that this effect is not statistically significant on its own, let alone correcting for the four
tests performed, this trend should not be taken too seriously. We interpret these as 4 null
effects. These null effects may yet be informative, however.

Whether it is a meaningful null result depends partly upon whether there are other
regions whose neural similarity structure correlates with the similarity structure of our
models. If there exist brain regions that exhibit the similarity structure predicted by the
models, then it suggests the models aren’t deficient, and the agent and patient regions
simply may not use these encoding schemes. To test this, we searched the left superior
temporal cortex for regions, perhaps outside the agent and patient regions, whose patterns

of activity were predicted by the representational similarity models.
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To do so, we first coded trials based on the nouns present on a given trial, without
respect to the roles those nouns occupied. This differs from previous analyses, in which we
coded for whether a word was present in a particular role. We thus looked for phonological
and semantic representations that were role-invariant. However, this coding scheme
produces 4 times as much data as the above similarity analysis, given that each word
appears as the agent, patient, stimulus, and experiencer an equal number of times. Thus, for
each of the six nouns, we randomly selected a subset of 20 trials, yielding 120 total trials
for the analysis in order to equate the number of trials to the similarity analysis in our
agent and patient ROIs. Different random subsets of trials were selected for each
participant.

We searched the ImSTC region used in Experiment 2, which encompassed a large
part of superior temporal gyrus, sulcus, and the middle temporal gyrus (See Figure 2a). We
found that phonological similarity correlated significantly with neural similarity in the left
posterior superior temporal sulcus ((-54, -8, -9), p<0.005, voxelwise, k=18, p<0.05,
corrected). See Figure 6. The posterior temporal sulcus is involved in speech processing
(Hickok & Poeppel, 2007), and, moreover, its activity is modulated specifically by
phonological variation (Chang et al., 2010; Vaden Jr. et al,, 2010). For example, it carries
information about vowel sounds (Formisano, 2008) and exhibits decreased responses to
repeated phonological content in a repetition-suppression paradigm (Vaden, Jr., 2010). The
regions reported in these previous studies are very close to the location of the present
effect. For example, the center of the region reported in Vaden Jr., et al. (2010) is -54, -12, -
12, while the current center is -54, -8, -9, just a few millimeters away. Our analysis

therefore appears to be sufficiently powered, and use an adequate model to detect regions
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that encode phonological similarity relationships. This finding increases our estimate of the
likelihood that the agent and patient regions do not encode these relationships.

Next, we performed the same analysis using the semantic similarity model. We
searched the left superior temporal cortex for regions whose neural similarity tracked the
semantic similarity of the nouns, without respect to the role they played in the sentence.
Using the same voxelwise threshold as the phonological similarity search (p<0.005), we
found no clusters that withstood correction for multiple comparisons. However, at a lower
voxelwise threshold (p<0.01, voxelwise), we found a trending, but non-significant, cluster
of interest. This cluster (k=8) was in the anterior left superior temporal sulcus, bordering
the middle temporal gyrus (-54, -8, -9). See Figure 6. This cluster, located in the anterior
STS, contained the peak voxel in ImSTC for this analysis (p<0.001). This region is of interest
because it has previously been found reflect semantic processing of verbal information,
over and above phonological and syntactic processing. For example, Vandenberghe et al.
(1996) report a nearby region (-40, -12, -10) that is activated for semantic relatedness
judgments. This is expected if this region encodes semantic similarity relationships, given
that semantic relatedness judgments need access to representations of semantic similarity.
In a subsequent study, Vandenberghe et al. (2002) found a nearby region of anterior STS to
covary with the meaningfulness of a sentence. Finally, Pallier et al. (2011) report a nearly
identical region (-54, -12, -12) in which the magnitude of activity in aSTS parametrically
tracks the number of meaningful constituents in a sentence, but not when those
constituents are meaningless, but syntactically well formed jabberwocky. These studies all
isolate semantic processing, over and above syntactic and phonological processing, and

find activity within a few millimeters of one another in aSTS. This suggests that this cluster,
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though non-significant when correcting for multiple comparisons, may truly reflect the
semantic similarity structure of the nouns. However, we cannot establish this conclusively.
There may, of course, be other brain regions that encode the semantic relatedness of the
stimuli, and perhaps do so more robustly. Past literature suggests these might be in the
ventral temporal cortices or the posterior middle temporal gyrus (Kriegeskorte et al., 2007;
Connolly et al,, 2012; Fairhall & Caramazza, 2013). However, in keeping with the other
analyses of Experiments 2 and 3, we restricted our search to the left superior temporal

cortex.
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Figure 6. (A). LEFT: Phonological and semantic similarity spaces for the stimuli, derived from participants’
pairwise similarity ratings, and RIGHT: regions in ImSTC in which neural similarity correlates with each of
these models. The region of posterior STS correlates with the phonological similarity model correcting for
multiple comparisons, while the semantic region in aSTS merely trends. (B). The observed neural similarity
structure of the agent and patient regions of ImSTC. There is no visually discernible similarity structure in

the stimuli used.
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These similarity-based search results thus uncover a region of the left superior
temporal cortex in which neural similarity structure correlates with the phonological
similarity structure of the nouns. There is a hint of a correlation in an appropriate region
for the semantic similarity model. But this does not withstand correction for multiple
comparisons. These results increase our estimate of the likelihood that the agent and
patient regions simply do not encode the phonological similarity of the nouns. Itis
doubtful that they encode the taxonomic distinction we test here (mammals vs. birds).
However, failure to support one particular semantic division (mammals vs. birds) does not
mean this region does not encode any semantic distinctions.

How ImSTC encodes the values of particular variables remains unanswered,
however. Inspecting the observed neural similarity matrices provides little guidance, as all
the correlations are low (See Figure 6). One possibility is that ImnSTC uses a non-similarity-
based code to represent each value. Such an apparently arbitrary code would allow the
values of these variables to be easily distinguished by other neural systems. Moreover,
data that has been compressed for efficient storage can also appear arbitrary to an outside
observer (Hopfield, 1982). We discuss the possibility of an arbitrary coding scheme in
more detail in the general discussion. For now, we can only say that we have no positive

evidence that the code is phonological or semantic.

How wide are the slots? Are these regions general slots that represent “who did it?” and
“to whom was it done?” across any type of sentence? Or does ImSTC represent fine-grained
information about nature of the event described? To evaluate the nature of the variables,

we first asked whether the agent and patient regions, as localized using the searchlight

59



analysis above, could also learn classification functions that group the entire set of
sentences by their deep subject and deep object. The deep subject and deep object here
would correspond to the “actor”/ “undergoer” roles in role and reference grammar (Van
Valin, 1997). By “deep subject”, or “actor” we mean the participant that is realized as the
subject in active voice constructions and the surface object in passive voice constructions.
By the “undergoer” or “deep object”, we mean the participant that is realized as the object
in active voice constructions, and the surface subject in passive voice constructions. If these
are general slots encoding the actor and undergoer across types of events, we should be
able to decode values of these variables from the agent and patient regions for
psychological events as well.

To evaluate this possibility, we first treated all sentences containing the same deep
subject or object of the sentence as identical. For example, “the moose bumped”, “the
moose noticed”, and “the moose surprised” were coded identically (along with their
corresponding passive versions). Using this procedure, we found that the agent and patient
region could not classify the deep subject (£t(39)=-0.58, p=0.56 ) or deep object (t(39) =
1.45, p=0.08), respectively, across all sentences. This is despite the fact that this paradigm
has twice as much training data as the agent/patient classification problems, and 50% of
the data is identical across the narrow (agent/patient) and broad (deep subject/deep
object) classifications tasks.

Some theories of the linguistic structure of psych verbs suggest that experiencer-
object, but not experiencer-subject, verbs require an additional movement operation,
internal to syntax, that relocates the experiencer from the subject to the object position

(which may perhaps be reversed in comprehension) (Belletti & Rizzi, 1988; See Baker,
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1997 for discussion). If true, one might think that this additional syntactic movement
operation, present in 25% of the stimuli, is disrupting the classifier’s performance. We thus
performed the same analysis as above, but with the experiencer-object verbs removed, and
again found that we could not decode the subject, as such, from the agent region
(t(39)=0.46, p=0.64), nor the object from the patient region (t(39)=-1.57, p=0.06, this trend
is toward significantly below-chance performance).

We next asked whether any regions, perhaps outside the agent and patient regions
in ImSTC, could reliably identify the deep subject or deep object, across motion and psych
verbs. This searchlight analysis revealed no regions that represent the deep subject (i.e.,
“who did it?”), as such, across all verbs. This was true regardless of whether the
experiencer-object verbs were included. However, this searchlight analysis did identify a
region of the superior temporal gyrus that carried information about the deep object (“to
whom was it done?”), (p<0.05, corrected, k=32, center: 47, 15, 1). This region was dorsal
and medial to the agent and patient regions, and almost completely non-overlapping with
the agent and patient regions. Only one voxel overlaps between the agent and deep object
clusters. No voxels overlapped between the patient and deep object clusters. (See Figure 7).

These results indicate that the agent and patient regions are not general slots for
representing the underlying subject or object of the sentence. Rather, at this stage, the
evidence suggests that they may be more narrowly implicated in encoding who did what to
whom in a class of motion events. However, these data provide no positive evidence
regarding how the semantic relations of psych verbs are represented. Given that all the
theoretical considerations that have motivated experiments 1 and 2 apply to psychological

verbs as well, this question is of considerable interest.
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Thus, we next asked whether we could find analogous regions in ImSTC that
represent the relations of psych verbs. There are a number of possible outcomes. First,
experiencer and stimulus could have unique and separable regions, like agent/patient.
These regions would not have to be in ImSTC, but, in this study, we focus on the same broad
region of the left superior temporal gyrus and sulcus. Second, it’s logically possible that
experiencer and stimulus could be mapped on to the agent and patient regions. Even
though the agent and patient regions do not encode the deep subject or object for psych
verbs, they could still represent the experiencer and stimulus of these stimuli, as these are
separate functions. It is unclear, however, how one would expect this mapping to proceed,
as the experiencer has both agent-like (mental state) and patient-like (affected, state-
changed) properties (Dowty, 1991). Nonetheless, it is possible that these semantic roles
could map directly to the agent/patient regions. Finally, InSTC could carry no information
about the roles of the psych verbs, which would further suggest that it is narrowly
concerned with the relations of participants in a class of motion events. On the one hand,
there is considerable cortical specialization in conceptual domains of object knowledge
(Mahon & Caramazza, 2009). It is possible that there could likewise be cortical
specialization for encoding event-types. On the other hand, the domain-general nature of
compositionality suggests that there is some explanation for why the same principles apply
across different types of events. This does not, however, require that all structured
semantic content is represented by the same cortical substrate.

To evaluate these possibilities, we first simply searched the ImSTC ROI, formed by
dilating the anterior agent/patient regions of Experiment 2 by 8 mm, for neighborhoods

that could identify the experiencer and stimulus, as such, across syntactic configurations.
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This analysis was structurally identical to the agent and patient searchlight analyses. But
instead of using the data generated by the motion verbs, we used only the data generated
by the psych verbs. We separately trained the classifiers to identity the experiencer or
stimulus on 3 out of 4 verbs, and tested them on the held-out verb. The experiencer
classification function would, for example, group “the moose noticed” with “surprised the
moose”, despite the fact that ‘moose’ occupies different syntactic positions in these
sentences. In both cases, the verb’s core meaning conveys information about the moose’s
mental state. Here, we found one anterior region that carried information about stimulus
(p<0.05 corrected, k=40, center= 49, -3, -2), and one lateral region that carried information
about the experiencer (p<0.05 corrected, k=45, center=60, 8, -3). The stimulus sub-region
is anterior to the agent and patient regions, occupying some of the medial portion of the
superior temporal gyrus. Post-hoc analysis revealed that this region could not successfully
classify the experiencer (t(39)=1.16, p=0.13), but also was not significantly better at
identifying the stimulus than identifying the experiencer (t(39)=0.88, p=0.38 ). Its
selectivity is therefore questionable. The experiencer region is nestled between the agent
and patient sub-regions, with some voxels overlapping each of the agent and patient sub-
regions. See Figure 7. Despite this overlap, we find that this ROI is unable to significantly
decode the agent (p=0.21) or patient (p=0.15) for the motion verbs. [t demonstrates a non-
significant trend toward identifying the stimulus (t(39)=1.53, p=0.067). However, in a
direct comparison, it is marginally better at identifying the experiencer than the stimulus
(t(39)=2.00, p=0.052). The interaction between the experiencer and stimulus regions
trends, but is not statistically significant F(1,39) = 2.89, p=0.09. Figure 7 shows these

search results alongside the agent and patient sub-regions.
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Figure 7. Searchlight analyses within ImSTC for different semantic and syntactic functions (p<0.05, small
volume corrected). Z=0. Deep object extends dorsally, and experiencer ventrally beyond what is shown.

We next performed an even stronger test to identify representations of these
semantic roles. We trained pattern classifiers to identify the stimulus and experiencer on
experiencer-subject verbs (e.g., noticed), and tested them on experiencer-object verbs (e.g.,
surprised), and vice versa. This requires the classifier to not only group active and passive
versions of the same deep syntactic structure together, but to generalize representations of
fillers automatically across deep syntactic structures, grouping instead by the role the

participant plays in the event. This is a stronger test than the previous analysis, but one
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that should produce convergent results if these regions encode abstract information about
participants’ roles in the event.

Here, we found one sub-region of ImSTC that reliably contained information about
the stimulus (p<0.01 corrected, k=59, center 49, -5, -6). This region overlaps substantially
with the stimulus region reported above. Again, it is anterior to the agent and patient
regions, and encompassed some of the medial part of the gyrus, internal to the middle
longitudinal fasciculus. This cluster is larger than the region identified in the previous
stimulus/experiencer analysis, subsuming the previous stimulus region. This is surprising,
given that requiring generalization to new syntactic contexts is a stronger test of
generalization, and uses less data. This searchlight analysis recovered no sub-regions
regions within ImSTC that could generalize across syntactic groups to identify the
experiencer. One the one hand, this might suggest that ‘experiencer’ in verbs of perception
is actually a different semantic role than ‘experiencer’ in verbs of caused-mental state, as
some have suggested (Pestsky, 1989; Dowty; 1991; Baker, 1997). If, however, we directly
test the experiencer ROI localized by the previous searchlight analysis (which grouped
particular role/filler patterns across experiencer-subject and experiencer-object, but did
not require generalizing role/filler patterns across them without further training), we find
that it can automatically generalize across experiencer-object and experiencer-subject
syntactic contexts (t(39)=2.59, p<0.007). This suggests that there is some representation
held constant for the experiencer in experiencer-subject and experiencer-object
constructions that can facilitate generalization of role/filler patterns across the two classes.
As expected, a targeted test of the stimulus ROI localized above can also automatically

generalize across syntactic contexts to identify the stimulus (t(39)=2.58, p<0.007). Taken
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together, these two groups of searchlight analyses suggest that an anterior region of ImSTC
may represent the identity of the stimulus, and a posterior and lateral region may
represent the identity of the experiencer. However, we also find that these sub-regions are
not as differentially selective as the agent/patient regions, given that we did not find a
significant role by region interaction. These results should therefore be taken as suggestive,
but perhaps not definitive, evidence that there are separate regions in ImSTC that
represent the experiencer and stimulus roles.

We explore one final set of analyses in Experiment 3. We previously tested the
hypothesis that InSTC represents broad roles, grouping narrow roles into the “actor” (or
subject) and “undergoer” (object) roles, and found no evidence for this idea. However,
these regions could, in principle, still represent alternative, coarsely individuated roles that
do not correspond to the subject/object of the sentence. For example, it's possible that the
agent regions could encode the function [agent or experiencer], where experiencer is
independent of subject/object position, and the patient region could encode [patient or
stimulus]. Or, alternatively, the patient region could encode [patient or experiencer], and
the agent region [agent or stimulus]. These groupings could derive from the underlying
semantic features of the events, shared across roles (Rozwadowska, 1988; Dowty, 1991).
Perhaps the agent and experiencer are grouped together based upon information about
their mental state. Or perhaps agent and stimulus are grouped together in virtue of causing
the event. Although the anatomical differentiation above, in which stimulus region is
located anterior to the agent/patient regions may suggest there is no such overlap, this
analysis uses twice as much data, and therefore could detect effects hidden from the

previous analysis.
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We first performed this analysis by simply treating the fillers of each broad, two-
role grouping identically. For example, to search for regions that treated the agent and
experiencer equivalently, we would code ‘moose’ as agent, and ‘moose’ as experiencer
identically and distinct from ‘goose’ as agent and ‘goose’ as experiencer, etc. These
classifiers identified the value (Moose? Goose? Hawk? Hog? Cow? Crow?) of these broad
role variables for each trial that contained the held-out verbs. This entailed training on 7/8
verbs, testing on the 8t, iterating this process holding each verb out as test data, and
averaging results across the eight cross-validation folds. We did so for all four inclusive
functions ([agent or experiencer], [agent or stimulus], [patient or experiencer], [patient or
stimulus]. This analysis targets regions in which the patterns of activity for particular
role/filler pairs generalize across narrow semantic roles, but in systematic ways. We found
a statistically significant cluster of voxels in medial ImSTC that grouped the agent and
stimulus together (p<0.01, corrected, k=48; center=49, 9, 0) and a statistically significant
lateral region that grouped the patient and experiencer together (p<0.001, corrected; k=83;
center=57, 3, -6). See Figure 8. This medial agent/stimulus region partially overlapped both
the agent and stimulus regions, localized previously. Likewise, for the patient/experiencer
region. No regions of ImSTC significantly grouped either the agent with the experiencer or
the patient with the stimulus. Decoding performance differed significantly between sub-
regions, across roles (Fregionxrole(1,39)=8.17, p=0.006)), demonstrating that they are

dissociable in their informational content.
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agent OR stimulus patient OR experiencer
agent patient

stimulus - experiencer

Figure 8. Spatial relationship between regions found to carry information about basic roles, and regions that
can successfully identify the value of alternative groupings of the role variables. The experiencer region
extends ventrally beyond what is shown here.

We next asked whether patterns learned for fillers in one role (e.g., ‘moose’ as
agent) automatically generalize to the other role (e.g., ‘moose’ as stimulus) without further
training. For example, we asked whether a classifier trained only to identify the agent can
thereby be exported to identify the stimulus, and vice versa. Indeed, the same general
portion of the medial STG that subsumed agent and stimulus under one category, medial to
the middle longitudinal fasciculus white matter pathway, can automatically generalize from
agent to stimulus, and vice versa (p<0.05, k=37, center=47, 10, 1). Likewise, a portion of the
lateral STG can reliably generalize from the patient to the experiencer, with no further
training (p<0.005, k=60, center=56, 11, 3). See Figure 9. This is a strong demonstration
that the same patterns of neural activity are instantiated in a region of medial STG for
different concepts when the agent or stimulus. And the same patterns of activity are

instantiated in lateral STG when a concept is the patient or experiencer. Within the
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patient/experiencer region, we find no information about the agent/stimulus (t(39)=-0.39,
p=0.35). Likewise, the agent/stimulus region can not reliably decode the identity of the
patient/experiencer across subjects, though there is a trend in this direction (t(39)=1.48,
p=0.075). We find no evidence of such generalization between patient and stimulus, nor
between agent and experiencer with these verbs. The topography of these regions is
related to, but distinct, from the narrow agent, patient, stimulus, and experiencer regions.
See Figure 8. These broad-role functions are represented more centrally in the STG, while

the narrower functions are represented on the more extreme portions of the gyrus, and in

STS.
A. role grouping B. role generalization
agent OR stimulus agent TO stimulus
patient OR experiencer patient TO experiencer
overlap overlap
no clusters agent OR experiencer no clusters agent TO experiencer

no clusters patient OR stimulus no clusters patient TO stimulus

Figure 9. Search within ImSTC for regions that can (A) learn a broad classification function for role-filler
patterns (e.g., (‘moose’ as agent) that subsumes particular narrow roles and (b) generalize decoding of role-
filler patterns from one role to another without further training. These are related tests, but (b) provides a
stronger test of generalization.
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But are these role generalizations meaningful? One possibility is that this
medial/lateral topography reflects the causal structure of the event. One might think that
both the agent and the stimulus are, in some sense, the causal force behind what happens,
while the patient and experiencer are the participants affected by what the agent/stimulus
does. However, despite our use of the terms “agent/patient” not all of the verbs are causal
agents and patients, in a strict sense. That is, in these verbs, the participant expressed as
the first argument does not necessarily bring about a change of state in the participant
expressed as the second argument (e.g, “approached”). Nonetheless, there is still a broader
sense in which the role we have called ‘agent’ is the one responsible for the event’s
happening (approached/ bumped/ passed /attacked), even if they do not bring about a
change in the patient. This fact also holds for the stimulus in experiencer-object verbs, in
which the stimulus is responsible for the change in psychological state of the experiencer
(surprised/frightened). It is less obvious that this analysis works for the experiencer-
subject verbs we use, (‘noticed’ and ‘detected’), however. These verbs are somewhat
ambiguous with respect to who is responsible for originating the event. To the extent that
they’re causal, it's unclear which direction causality runs. The sentence “the moose noticed
the crow”, could, of course, be interpreted such that the crow has done something that
caused the moose to notice it. This, however, does not seem to be part of the core meaning
of the verb ‘noticed’, but an inference that depends upon the particular entities in the
relationship.

If this general medial-lateral topography reflects the causal structure of the events,
one might expect the classifier’s generalization from agent/stimulus to be significantly

better for those verbs in which the stimulus is clearly causal. Here, these are the
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experiencer-object verbs (e.g., ‘surprised’). However, the patterns of activity in this
agent/stimulus region generalize from the agent to the stimulus in experiencer-subject
verbs (e.g, from “the moose bumped” to “noticed the moose”) (t(39)=2.37, p=0.011) just as
well as they generalize to the stimulus in experiencer-object verbs (e.g. “the moose bumped”
to “the moose surprised”) (t(39)=1.74, p=0.045). Although these considerations are not
definitive, they suggest that the topography may not reflect causal relationships, in a strict
sense. There may, however, still be a more a general notion of causation that is applicable:
one in which there is some asymmetric dependence of the relationship described amongst
the two participants in the event. For example, take ‘the moose noticed the hawk’. There
would have been nothing for the moose to notice, had the cow not had some pre-existing
note-worthy feature. Or in ‘the hawk approached the moose’, the moose would not have
been approached, had the hawk not approached it.

A related possibility is that this medial/lateral organization reflects the temporal,
but not the causal, structure of the events. Although the causal and temporal structure of an
event are highly correlated with one another, temporal precedence relations are a wider
class; at least when causal relations are construed narrowly. In all the sentences used here,
the event-relevant state of the agent and stimulus temporally precedes their entering into
that relationship with the patient/experiencer. This could explain the generalization
success on verbs like ‘noticed’ that aren'’t clearly causal. For, the state or action of the
stimulus pre-dated the noticing event, just as the movement of the agent pre-dated, or
instigated, the passing, bumping, attacking, and approaching event. Although this idea is
clearly distinct from a strict sense of causality in which the agent directly brings about

some change in the patient, it is less distinct from the more general notion of causality
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mentioned above, in which the property/state of the experiencer or patient that is denoted
by the verb would not exist without the property/state of the stimulus or agent.

A final possibility is that these reflect the motion relations in the events. Movement,
of course, is not a part of the core meaning of the verbs ‘noticed’ and ‘surprised’. One can
notice a typo, and be surprised by a scientific result. However, when the participants are
mammals and birds, the most natural interpretation of the events involves the movement
of the stimulus. It is unlikely that the moose surprised the hawk by its cavalier attitude
toward climate change. This idea finds a theoretical basis in Jackendoff’s (1990) theory of
semantic structures. Jackendoff decomposes verb meanings into a set of primitive
argument-taking semantic functions such as [GO(thing, place)] that recur across events.
Moreover, he holds that there is no principled distinction between the semantic
representation of a verb’s meaning, and the conceptual representation of an event
(Jackendoff, 1983; Jackendoff, 1990). This conflation makes it plausible that [GO(thing,
place)] could be re-used in interpreting the psych verbs here as well, even if one wouldn’t
consider the entity’s movement to be conveyed as part of the core meaning of the verb. On
this view, the medial agent/stimulus region may represent the first argument of GO, the
mover, and the patient/experiencer region might represent the second argument of the GO
function, which is the ‘place’ to which the entity moves. Ontologically, the event
participants are things, not places, but perhaps the content of the place could be ‘near thing’.

If this movement-based explanation is true, we might find that the patterns of
activity in the agent/stimulus region correlate with the semantic similarity model of the
nouns: mammals and birds have different types of movement, and if these patterns of

activity are specifically representing the movement of the agent/stimulus, this might be
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captured in its correlation with the semantic similarity model. We find no correlations
within the agent/stimulus region with the semantic similarity model, however. This is
certainly not decisive, given that these semantic functions need not encode the values of
their arguments using similarity-based codes.

It is also worth remembering the post-hoc results of Experiment 2. There, we found
the medial agent ROI to be invariant to the manner of motion of the event, generalizing as
well to the agent of ‘blocked’ as to ‘chased’ and ‘approached’ (See Experiment 2 above.
Table 2). Success on ‘blocked’ is more consistent with a quasi-causal explanation for the
medial-lateral topography than either the motion or temporal explanations: the agent
moves little to none, and the patient is moving or intending to move prior to the blocking
relation, reversing the temporal order. No verbs in Experiment 3 have this property.
However, it is important to remember that the agent and patient ROIs are not anatomically
identical to the agent/stimulus and patient/experiencer regions identified in Experiment 3,
despite having the same medial/lateral topography. The agent/stimulus region of
Experiment 3 is anterior to the agent region of both Experiments 2 and 3, falling medial to
the white matter in the STG. Given that we see fine differentiations in the representational
profiles of adjacent sub-regions, we should be wary of generalizing from the properties of
the agent ROI in Experiment 2 to, the agent/stimulus ROI of Experiment 3.

One possibility is that causal relations are represented posterior to the white matter
(explaining the patterning of “blocked” with “chased”, “scratched” etc.), while motion
relations are represented anterior and medial to the white matter (explaining the

patterning of the agent of ‘approached’, ‘bumped’, etc., with the stimulus of ‘noticed’). (See
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again Figure 7 for the relationship between the agent and agent/stimulus regions of
Experiment 3).

Unfortunately, the present experiment was not designed to differentiate these
subtly different explanations for the organization of ImSTC. It will be important for future
research to tightly manipulate the presence of motion, as well as the causal and temporal
structure of events in order to better understand ImSTC’s topographic organization. In
future studies, the causation and motion hypotheses could be fractionated by simply
including events with more abstract causal relations. For example: “John’s attitude
surprised Cheryl”. Here, there’s no literal motion of an entity that could be the causal force,
even in a general sense. Differentiating the temporal order of an event’s sub-parts from the
causal structure of those sub-parts is more challenging, though verbs like ‘blocked’,
‘obstructed’, and ‘tripped’ could prove useful heres.

Taken as a whole, these analyses reveal a number of interesting properties of ImSTC.
First, we find no evidence that the agent and patient regions are general slots for encoding
the underlying subject or object, (or “actor” or “undergoer”) of a sentence. This series of
searchlight analyses suggest a richer, and more complicated, representational topography.

The more extreme anterior, posterior, and lateral portions of the region represent aspects

8 If ImSTC represents events in general and not verb meaning more narrowly, then separating causation and
temporal relations becomes easier. One could then include complex events composed of a sequence of sub-
events, some of which are causally related and some are not. For example, “The basement of the Jones’ house
flooded. For days, they removed the water. The foundation was ruined and the house collapsed”. Here, there
is one event that causes two subsequent events. The temporally intermediate event, their removing water
with buckets, does not cause the third event, the collapse of the house. The temporal unfolding of events is
thus partly dissociated from the causal relations among events. A causes both B and C. But the temporal
ordering is A, then B, then C. Causal and temporal explanations of the medial-lateral topography would
therefore predict a subtle difference in the medial-lateral encoding B and C. Causally, they both owe equally to
A. But temporally, B precedes C. Of course, this scenario is much more complex than the two-place
predicates we have used in these studies. This is well outside the meaning of a single verb. It's unclear
whether ImSTC could simultaneously encode multiple events, or how it would do so. We again address how
multiple propositions could be represented in ImSTC in the general discussion.
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of the event that are not shared across the roles we use here, while the more intermediate
regions carry information that generalizes across roles (See Figure 6), but in a systematic
way. One could imagine a number of reasons for this general topography. First, itis
possible that there is some systematic functional differentiation between narrow and
broad roles. It is possible that the regions around the extremity first extract narrow
semantic role information that differs across different types of verbs, and the broad-role
regions interpret this information to represent aspects of the event itself. This latter
interpretation may consist in the application of simple semantic functions such as [GO
[thing,place] [STAY [thing, place]] [CAUSE [thing/event, event]] that allow for the observed
generalization across types of verbs. It is also possible that the reverse it true; the broad-
role regions first map from the syntax of the sentence to coarse categories that are then
differentiated to encode aspects unique to these classes of events, differentiating psych
from motion events moving outward from the white matter. Finally, it's possible that there
is no narrow/broad role differentiation, per se. Rather, these could all reflect semantic
functions at the same level of representation. The observed organization could simply
reflect which semantic functions happen to recur across the particular verbs we use.
There, are, however, a number of important caveats regarding the results of
Experiment 3. First, we have performed a large number of search analyses, and only
corrected for multiple comparisons within analyses, not for the number of search analyses
we performed in total. We believe this to be a worthy sacrifice in order to fully explore the
representational topography of the region. However, some of these effects would not
survive correction for multiple searchlight analyses. The basic experiencer and stimulus

searchlight results are particularly questionable, given that we do not see a significant
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interaction between region and role-representation in a direct test. Second, there are
statistical dependencies between searchlight analyses that are important to bear in mind
when interpreting the results. For example, knowing that the lateral region encodes
information about the patient increases the likelihood that it can learn a function that
groups the patient and experiencer together. It certainly does not guarantee it, however, as
we have seen that a region that can decode (e.g.,) the patient, cannot necessarily also
decode the object, even though the former is a subset of the latter. It will thus be important
to replicate these results in an independent experiment, as well as to tightly manipulate
semantic components of the event to better understand the principles governing the

region’s apparently nuanced topography.
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General Discussion
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The sentence comprehension literature and ImSTC

These three experiments provide important information about how the human
brain represents a class of sentence meanings. Experiment 1 demonstrates that a broad
region of left-mid superior temporal cortex (ImSTC) carries information about who did
what to whom in an event. Experiment 1 then develops a pattern-based effective
connectivity analysis to link these patterns of activity to affective responses in the
amygdala, consistent with a model whereby ImSTC enables the comprehension necessary
to produce an affective response to a morally salient sentence. Experiment 2 provides
insight into how the ImSTC encodes these meanings, namely by representing the values of
the agent and patient variables in spatially distinct neural populations. We find the medial
portion of ImSTC to carry information about the identity of the agent, and the lateral
portion to carry information about the patient. Experiment 3 replicates the agent/patient
topography of Experiment 2, and suggests that the semantic relations denoted by
psychological verbs may have a related, but distinct, topography within ImSTC. We find
regions that appear to narrowly represent basic semantic roles (agent/ patient / stimulus/
experiencer), and anatomically intermediate regions in which the patterns generalize
across these roles, but in systematic ways. The code by which ImSTC encodes the values of
these variables remains unclear, however. We find no positive evidence that it is
phonological or semantic, leaving open the possibility that ImSTC prioritizes
distinctiveness and efficiency in its representations.

These results are broadly consistent with previous research concerning the neural
loci of structure-dependent semantic processing while, at the same time, offering new

insight into how the meaning of simple sentences is represented. The left superior
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temporal cortex is one of the perisylvian regions routinely implicated in studies of phrase
and sentence-level semantic processing using both functional neuroimaging and lesion
data (Friederici et al.,, 2003; Fedorenko et al., 2011; Meltzer et al., 2010; Pallier et al., 2011;
Hagoort & Indefrey, 2014; Humphries et al., 2006; Vandeberghe et al., 2002; Dronkers et al,,
2004; Wu, Waller, & Chatterjee, 2008). For example, numerous studies report increased
activity in this region during the comprehension of meaningful sentences relative to
unstructured word lists (Mazoyer et al., 1993; Vandeberghe et al., 2002; Humphries et al.,
2006; Fedorenko et al,, 2010). However, ImSTC is by no means the only such region, as
anterior regions of the temporal lobe (Rogalsky & Hickok, 2009; Humphries et al., 2006;
Pallier et al.,, 2011) left inferior parietal lobe (Humphries et al., 2006; Pallier et al., 2011),
and left inferior frontal cortices (Hagoort & Indefrey, 2014) show a similar
representational profile. Moreover, it has been unclear what semantic and/or syntactic
information ImSTC represents (Grodzinksy & Friederici, 2005; Rogalsky & Hickok, 2009;
Friederici et al., 2003; Vigneau et al,, 2006). The three studies reported here suggest that
ImSTC is more narrowly involved in encoding the values of semantic role variables. This
narrower claim is consistent with multiple pieces of pre-existing experimental evidence.
First, Friederici et al.,, (2003) find that mid-left STG/STS responds more to
implausible noun-verb combinations (e.g., “the thunderstorm was ironed”) than to
syntactic anomalies (“the blouse was on ironed”). This suggests that left mid-superior
temporal cortex integrates lexico-semantic information about a verb and its arguments.
However, as we noted in the introduction, it is unclear how these error-detection signals
relate to the underlying compositional processes themselves (Rogalsky, & Hickok, 2009).

So although Friederici et al.’s finding is suggestive of a narrower role in role assignment or
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some downstream consequences thereof, it is not, in and of itself, strong evidence that
ImSTC represents the values of semantic roles variables. Moreover, other work using the
same paradigm has found different regions generating the same violation-of-expectation
signals (Kuperberg et al., 2003), and not ImSTC.

More directly, Devauchelle et al. (2009) found that the repetition of a sentence’s
meaning produces adaptation effects in ImSTC. This paradigm exploits the fact that a
neuron that codes for some stimulus-value will decrease its firing rate upon repeated
presentations of that value. Population-level neural activity, and consequently the BOLD
signal decrease accordingly. The authors report that the left superior temporal cortex
adapts to repetitions of sentence meaning, even when that meaning is expressed using
different surface syntactic forms, such as the active and passive voice. For example, the
superior temporal cortex responded less when a subject read the sentence “an architect
designed this palace” if he/she had just read the sentence “this palace was designed by an
architect”, than if he/she had just read “Some scientists invented a medicine”. These
semantic adaptation effects occur in mid-STG and mid-dorsal MTG/ventral STS when
sentences are presented aurally, and in mid-dorsal MTG/mid-ventral STS when presented
visually®. These regions correspond closely to those we report here. However, Devauchelle
et al. did not include a condition that matched basic lexico-semantic content, but varied
structured semantic content. As a result, it is unclear whether the adaptation effects owe to
the repetition of propositional content, or the repetition of basic lexico-semantic content,

regardless of how the constituent concepts were assembled. They did not, for example,

9 We note also that Devauchelle et al.’s (2009) effects are relatively weak, and do not withstand whole-brain correction for
multiple comparison.
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show that that this region adapts to (e.g.) “the truck hit the ball” after “the ball was hit by
the truck”, but not “the ball hit the truck”. We thus extend their findings in important ways.

Perhaps the strongest supporting evidence for our claim comes from a
neuropsychological study by Wu, Waller, & Chatterjee (2008). These authors report
patients with damage to the mid-portion of the superior temporal gyrus, sulcus, and middle
temporal gyrus who have specific deficits in determining who did what to whom in
response to both sentences and visual scenes representing actions. In this study, patients
were presented with simple agent/verb/patient sentences (e.g., “the circle kicks the
square”), or pictures depicting the same event. They were asked to perform a number of
tasks, including matching the sentence to a picture depicting the sentence denoted,
inferring the consequence of the sentence, or inferring the consequence of the picture.
Damage to ImSTC impaired patients’ performance on these three tasks, but not their ability
to judge the semantic similarity of triads of nouns or triads of verbs. The damage was thus
restricted to tasks requiring an understanding of who did what to whom in a sentence or
picture. This region appears to correspond very closely to the parts of ImSTC in which we
find semantic variables to be topographically represented, although the authors do not
provide anatomical coordinates.

In introducing Experiment 1, we noted that reversible sentences have had a long
and productive history of use in the neuropsychology of language (Caramazza & Zurif,
1976; Schwartz, Saffran, & Marin, 1980; Ansell & Flowers, 1982 Caramazza & Micelli, 1991;
Dronkers et al., 2004). Lesion-mapping and functional neuroimaging tend to converge on
important roles for the left inferior parietal lobe (Caramazza & Micelli, 1991; Richardson et

al, 2010; Meltzer et al.,, 2010; Thothathiri et al., 2012) and, to a lesser extent, the left
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inferior frontal cortex (Meltzer et al., 2010; but see Thothathiri et al. 2012) for
comprehending reversible relative to nonreversible sentences. (But see Meltzer for one
case implicating the STG as well). Given our use of reversible sentences, one might wonder
why we did not converge on the same regions. There are, however, important differences
between these studies and our own. First, it is important to remember that we did not
contrast reversible and non-reversible sentences, but instead looked for different patterns
of activity for different reversible sentences. The reversible/non-reversible contrast
specifically isolates syntactic processing, robbing one of the use of semantic heuristic
processes to assign thematic roles (Caramazza & Zurif, 1976). These syntactic operations
(or the mapping from syntax to thematic roles) isolated by the reversible/non-reversible
contrast were present in all the sentences we used, and equally so. Thus, what differs
between reversible and non-reversible sentences was held constant across the
propositions we classified in Experiment 1, so we would not necessarily expect these
approaches to converge on the same neural substrates.

However, given that these syntactic computations are necessary precursors to
representing the meaning of the sentence (e.g., analyzing word-order to produce the
appropriate syntactic tree), we would expect these parietal or frontal regions to be
anatomically and functionally connected to, and feed ImSTC. Indeed, Turken & Dronkers
(2011) find the mid-anterior STG to be anatomically connected to the inferior frontal
cortex through the uncinate fasciculus pathway, and to the inferior parietal lobe through
the middle longitudinal fasciculus. They analyze the functional correlations of these brain
regions during rest, and find that mid-anterior STG co-varies with the left inferior frontal

cortex and the extent of the superior temporal gyrus, but little with the parietal lobe.

82



However, it's unlikely that resting state functional connectivity is a good proxy for the
computational pathway sub-serving the comprehension of reversible sentences; parsing
the syntax of a sentence and using that syntax to assign thematic roles is a paradigmatic
analytic process, and a blank screen and the hum of a scanner during rest provide little to
analyze syntactically.

But, one might wonder, shouldn’t our pattern classifiers have also decoded these
syntactic computations, since these also differ systematically between “the truck hit the
ball” and “the ball hit the truck”? The particular computations executed differ between
active and passive sentences, because the function that maps from word order to meaning
is reversed. A region that takes, as input, information about (e.g.) word order and produces
a representation of the sentence’s syntax should have difficulty learning a classification
function that grouped “the truck hit the ball” and “the ball was hit by the truck” together. By
analogy, a classifier would not treat the computations, as implemented in a physical
system, used in the expression ‘2X4 = 8’ as equivalent to ‘4x2 = 8. Only the representation
of the output is identical.

Instead, we use reversible sentences as experimental tools because they are
matched in basic lexico-semantic content, syntactic tree structure, and summed-word
frequency. They are thus useful in isolating higher-order semantic representations. But
though we use only reversible sentences, our working model is not that ImSTC only
encodes the meaning of reversible sentences, but also non-reversible sentences that
require binding values to semantic variables. We do not test this here, and this assumption
may be wrong. There is limited evidence on whether this region is involved, more

generally, in other cases of variable/value binding. What evidence exists is equivocal, but
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highly relevant.

In the introduction, we noted a study by Dronkers et al. (2004) that detailed the
relationship between damage to various left perisylvian regions, and comprehension of
different sentences types. For patients with damage to the mid-anterior superior temporal
cortex, this comprehension impairment is most severe when the sentence contains some
“ambiguity”, as Dronkers et al. say, in role assignment'0. Of all the construction types
Dronkers et al. tested, only the comprehension of sentences describing possession relations
(e.g., “the girl has a baseball”) was spared upon ImSTC damage. Patients were moderately
impaired in interpreting simple declaratives (e.g, “the girl is sitting”), though these
difficulties were not as marked as those involving verbs with two or more arguments.
Notably, possession and the simple declarative were the only construction types that did
not denote relations between two or more event participants, each of whom could
plausibly occupy multiple roles in the sentence. Patients had marked deficits on all nine
sentence types that had required the assignment of multiple roles.

First, we should pause to note that these results are highly consistent with our own;
both implicate a region of the mid-anterior superior temporal cortex in the comprehension
of two-place predicates. However, despite their general consistency, Dronkers et al.’s
results also suggest important limits to the present findings. Given that possession was
spared upon ImSTC damage, it seems ImSTC is not involved in all types of semantic
composition. Whether this is due to a difference in the semantic content of the relation, the

number of arguments, or the particular composition algorithms applied is unclear.

10 Contrary to Dronkers et al.’s use of ‘ambiguity’, there’s little actual ambiguity in assigning thematic roles
based on the syntax of a reversible sentence; only an increased demand on syntactic analysis of the sentence,
per Caramazza & Zurif (1976).
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Dronkers et al. favor the multiple arguments explanation, suggesting that this region is
involved in resolving ambiguities in role assignment, such as those encountered in
reversible sentences. However, it is important to note that their patients with STG damage
were also significantly impaired on declarative sentences denoting states (“the girl is
sitting”), just less so than with verbs of two or more arguments. On the one hand, the fact
that patients’ comprehension of constructions with multiple arguments is worse than the
their comprehension of verbs with one argument might suggest that ImSTC is particularly
important for representing two-place predicates, or even more narrowly, to reversible
sentences. But on the other, these patients are also significantly impaired on simple one-
place predicates denoting states, like “the girl is sitting”, relative to controls, although
Dronkers et al. minimize this fact in their interpretation.

The Wu, Waller, & Chatterjee (2008) study described above also contains data that
bear on the scope of the relations represented by ImSTC, but instead of the number of
arguments, their data bear on the types of relations encoded. In addition to tests of
semantic role assignment in patients described above, the authors included sentences
describing spatial relations (“the circle is above the square”) in their battery. They found
that difficulty with spatial relations is largely predicted by damage to the left parietal lobe,
in contrast to difficulty with thematic relations, which is predicted by damage to the left
temporal region of present interest. The authors lean on this difference in their
interpretation of the results, contending that these are two separate neural systems, whose
relative anatomical location depends on their proximity to the spatial representations in
the parietal lobe, and motion representation in the temporal lobe, respectively. However,

they also find a small part of ImSTC in which damage significantly predicts difficulty with
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spatial relations, though this relationship is generally neglected in their interpretation. This
region of STG is small relative to the region that predicts difficulty with thematic relations,
and also relative to the region of the parietal lobe sub-serving comprehension of spatial
relations. Nonetheless, damage therein significantly predicts impairments in the
comprehension of spatial relations. Anatomically, this region falls near the sub-region in
which we find information about the stimulus-role to be represented.

A recent study by Miozzo et al. (2014) is also relevant here. The authors found two
patients with left frontal lesions that had difficulty understanding relations conveyed by
spatial prepositions (“the circle is on the square”) and adjectival comparisons (“the girl is
taller than the boy”), but not relations communicated by verbs (“the woman helps the
man”). This suggests that neural and cognitive systems for representing different types of
reversible relationships are dissociable. However, it does not show that they are doubly
dissociable, and hence that the converse pattern would hold. That is, damage to ImSTC
could, in principle, impair comprehension of spatial and adjectival relations, even if frontal
damage spares role assignment for verbs. This asymmetry is particularly plausible given
that Miozzo et al.,, contend that non-verbal lexical categories require special mechanisms
for linking thematic roles to the sentence’s syntax. It may be these linking mechanisms,
housed in the frontal cortex, that are damaged.

Thus, the scope of the relations represented in ImSTC is unclear. The present results,
in conjunction with the previous literature, demonstrate that ImSTC represents the values
of semantic role variables for two-place verbal predicates describing events. Whether it is
more generally involved in composing structured representations involving relations (e.g.,

spatial, stative) and composing the meaning of one-place predicates (e.g., “walked”) are
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important topics for future research. There is some evidence to suggest that ImSTC encodes
relational states as well events (Wu, Waller & Chatterjee, 2008; Dronkers et al., 2004), and
one one-place as well as two-place predicates (Dronkers et al., 2004). But this evidence is
weaker than that implicating it in the representation of two-place predicates denoting
events.

A number of recent studies by Pylkkanen and colleagues have implicated a region of
the left anterior temporal lobe in simple adjective-noun semantic composition; for example,
integrating the words ‘red’ and ‘boat’ to represent a red boat (Westerlund et al., 2015;
Pylkkanen et al., 2014; Bemis & Pylkkanen, 2011). Linguists consider adjective/noun
composition to be a different type of semantic composition than the composition required
to encode who did what to whom (Heim & Kratzer, 1998). The composition-type studied
by Pylkkanen et al., is known as “predicate modification”, while the latter, following Frege,
requires “function application”. These composition-types differ in the rules by which the
truth conditions of an expression are derived. Nonetheless, it is intriguing that both may
converge on areas of the left mid-anterior temporal lobe. Pylkannen et al. uses MEG, which
has considerably lower spatial resolution than fMRI, making it hard to locate their region in
relation to the region of present interest. It appears to be somewhat anterior, however.
This would be consistent with a recent study by Baron & Osherson (2012), who found a
region of left anterior superior temporal cortex to carry information about adjective/noun
conceptual combinations (But see Price et al,, 2015 for recent evidence implicating the left
parietal lobe in predicate modification). Although predicate-modification and function-
application may involve the application of different rules, it would not be surprising if they

were performed in nearby parts of cortex. Both should take as input lexico-semantic
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representations and syntactic information, and produce, as output, complex, semantic
structures. Regions that perform these operations need to receive input from many of the
same cortical regions, and their outputs should, one would think, be read by the same
cortical regions. Putting computations that have similar input and outputs constraints
together would be an energy efficient solution for the brain.

Although we believe these studies provide compelling evidence that ImSTC
represents semantic role variables, we do not assume that ImSTC is the only region
involved in representing the meaning of sentences involving an agent, event-type, and
patient. Of the three studies presented, Experiment 1 is the only to use a whole-brain
analysis, and hence provided the only opportunity to identify regions outside ImSTC.
Indeed, the dorsal-most part of this ROI entered the inferior-most part of the parietal lobe.
However, we found no specialization for agent, patient, or verb information in the parietal
portion of this region. We targeted regions with a very specific representational profile,
searching for regions in which the patterns of activity (1) carry information about the
different values of semantic variables, (2) allow active and passive versions of
variable/value combinations to be grouped together and (3) are invariant across classes of
semantically similar verbs. Any complex semantic representation that is contextually
dependent upon specific verbs, specific variable-value interactions, or specific syntactic
surface forms would not show up in this analysis.

Given that the present results were generated using only visually presented
sentences, the current data are silent as to whether these representations are part of a
general language of thought, or whether they are specifically linguistic. In particular, we

don’t know whether we would obtain similar results using alternative modes of
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presentation, such as pictures. We note that Wu, Waller, & Chatterjee (2008) report deficits
in comprehension of pictorial stimuli following damage to this region. However, linguistic
deficits could disrupt comprehension of pictures if pictorial information is normally
translated into words. Finding a phonological coding scheme in Experiment 3 would have
provided evidence that this system is specifically linguistic. We find no such evidence,
however, despite reports that nearby regions respond to phonological contrasts (Vigneau
et al.,, 2006). The patterns of activity could still represent words, however: just using a non-
phonological representational format.

We view the failure to find phonological or semantic similarity structure within
these regions as an intriguing null effect. We take seriously the possibility that ImSTC does,
in fact, use a code that might appear arbitrary to the observer. Such a code could have a
number of advantages. Random or pseudorandom coding schemes ensure that symbols are
easily discriminable from one another (Gallistel & King, 2011), which here, would make it
easy for other neural systems to decode who did what to whom. In the introduction, we
detailed how Smolensky’s (1990) tensor product model needs either the vectors encoding
the variables, or the vectors encoding the values to be statistically independent. Otherwise,
there is no procedure through which an outside system can faithfully recover the identity
of the constituent representations in a tensor product!!. Arbitrary codes are thus useful in
ensuring that the system exhibits compositionality, at least in the tensor product model.

Apparent randomness in the code is also a mark of efficient coding (Hopfield,

1982). In a conventional computer, data compression eliminates statistical redundancy,

11 However, we find evidence that the representation of the variables is linearly independent in virtue of
being represented using different populations of neurons (e.g., [111 000], for agent and [000 111] for patient.
So, strictly, it would not be necessary for the representation of the set of values to be linearly independent as
well.
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which entails eliminating the overlap between data structures. Data that has been
compressed for efficient storage can thus appear random to an outside observer, even if the
encoding owes to a deterministic process. Given the number of bindings that need to be
created, and the issue of scalability that hovers over models of binding, it would not be
surprising if natural selection has favored efficient, compressed codes for encoding
variable/value combinations. Similarity-based codes redundantly represent non-
distinguishing information across data structures to facilitate generalization between
representations. This is precisely the information that a compression algorithm could
remove for efficiency. A compressed code is therefore at odds with the similarity-based
coding ubiquitous in connectionist models.

If the representations in ImSTC are pointers to locations elsewhere in cortex (Kriete
et al.,, 2013), similarity-based generalization could be performed in the cortical regions
housing the symbols to which ImSTC points. The patterns of activity in ImSTC could be
succinctly written addresses to these locations, which house richer representations. If so,
we may be able to use pattern-based effective connective analysis to determine what brain
regions ImSTC reads from, and how particular patterns in ImSTC affect/are affected by the
patterns elsewhere representing this symbolic content. Posterior left middle temporal
gyrus is a region of particular interest. This area, broadly defined, is involved in lexical
access and word-level comprehension (Hickok & Poeppel, 2007; Dronkers et al., 2004),
represents the semantic similarity of both words and pictures (Fairhall & Camarazza,
2012), and may represent information about a verb’s arguments (Peelen et al,, 2012). It’s
thus possible that the basic symbolic content that needs to be combined and recombined in

ImSTC is housed in MTG. A functional relationship between these two regions is consistent
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with known anatomical and functional connections. Turken & Dronkers (2011) report
functional coupling between the mid-anterior superior temporal gyrus/sulcus and the
posterior middle temporal gyrus at rest (Turken & Dronkers, 2011), likely through the
middle longitudinal fasciculus. If ImnSTC represents pointers, posterior middle temporal
gyrus is a strong candidate region for where it points.

[t is important to bear in mind, however, that even if the encoding is apparently
arbitrary (which we do not have strong evidence for at the moment), our analyses
demonstrate that the symbols are stable across tokenings. That is, even if the mapping from
(e.g.,) anoun meaning to a pattern of activity is random across the entire domain, the
mapping from a noun meaning to a pattern of activity for a given symbol, across tokens is
stable. Functionally, this stability is a necessary precondition for the symbol having a
determinate meaning within the operation of the system, and for complex symbolic
expressions to be composed using the same parts. Statistically, this stability is a necessary
precondition for the classifiers to succeed in Experiments 2 and 3.

However, at this point, this is just an intriguing null result for the particular
similarity models we test. To truly understand the code, it will be important to test a much
wider range of stimuli with a much wider range of models, and with more statistical power.
For, in evaluating the significance of the present results, we note that the classification
accuracies observed here are rather modest, which weakens the null effect on the similarity
models. In general, we regard the effects observed in these three studies as significant, not
because of their size, but because they provide evidence for a distinctive theory of how the
brain represents sentence meaning. In multiple studies, we find evidence for a functional,

and corresponding anatomical, segregation based on semantic role, which may enable the
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composition of complex semantic representations. Such functional segregation need not
take the form of spatial segregation, but insofar as it does involve spatial segregation, it
becomes possible to provide evidence for functional segregation using fMRI, as done here.
The binding problem and ImSTC

In addition to providing evidence that the brain represents the values of abstract
semantic role variables, our results bear on how the brain solves this particular binding
problem. Given the temporal limitations of fMRI, the current design cannot provide direct
evidence for or against temporal synchrony models. Our data suggest that temporal
correlations are unnecessary, however. If semantic variables are represented by distinct
neural populations, and the values of these variables are signaled by patterns of activity
within each region, there is no need for a special mechanism to synchronize or integrate
this information from disparate populations!2. The brain maps these reusable variables,
and in doing so, avoids a neural binding problem at this level, contrary to common
assumption (Hummel et al., 2000; Doumas et al., 2008; Stewart & Eliasmith, 2008; Van der
Velde, 2006).

This representational strategy is not unique to semantic role variables. Analogous
solutions can be seen in other representational problems that the brain faces. For example,
early visual cortex has an analogous solution to representing the visual field. In striate
cortex, portions of the visual field (the variables!3) are represented by separate neural

populations. Cells that are sensitive to particular line orientations (the values), are

12 That is, there is no special problem of integration at this level of representation. Information about the agent
and patient must then be integrated to reason about the entire event. Our analyses in Experiments 2 and 3
targeted representations that are reused across propositions, rather than representations that are unique to
particular proposition-level content.

13 The application of the notion ‘variable’ is more apt for mid-high level cognition, where there is reason to
believe mental algorithms explicitly reference variables in their operation. I don’t know whether there are
algorithms that reference ‘upper-left hemifield’ as such, but I believe the comparison is still instructive.
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organized in columns and hypercolumns, and, critically, duplicated for each portion of
each visual field. Each orientation column represents the presence of a line orientation at
that particular position in the visual field, thus representing a conjunction of features. The
variables are mapped across the cortex, individuated by their anatomical location. The
feature-values (e.g., a particular line orientation) are duplicated for each variable-specific
sub-region. The content at different parts of the visual field can vary independently of the
content at another, and this architecture allows different variable/value pairs to be
simultaneously and independently represented.

Our data suggests that, at a high-level, it may be likewise for variable/value binding
in ImSTC. Many events have a common semantic structure, such that one can identify
abstract recurring variables, such as the agent or patient, whose values vary
independently of one another. These semantic variables are mapped across ImSTC, again
individuated by their anatomical location. Representations of the values (the specific
content of which is still unclear) appear to be duplicated for the different variables, just as
line-orientations are duplicated. Cast in this light, mapping can be seen as a general
strategy for flexibly representing reusable variables that can take different values,
separately and simultaneously!4. Other cortical systems that need to integrate
information about the identity of the agent and patient can read the values of these
variables at the same time. Of course, given that we see no similarity structure in ImSTC,
there may be a dis-analogy in the actual coding schemes used to represent variable/value

combinations. In early visual cortex, adjacent columns code for similar line orientations,

14 We do not assume, however, that every neural map arises from these particular demands; only that given this set of
demands, mapping and duplication emerge as a plausible solution. For example, the recently discovered map of
numerosity in the parietal lobe (Harvey et al., 2013) likely serves different purposes.
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meaning similar orientations are encoded by similar patterns of activity. Thus far, we have
seen no similarity structure in ImSTC.

Mapping variables is thus a general and elegant solution for the brain to take across
domains. But is it wasteful? Why would the brain redundantly encode the same symbol in
every role in which it can occur? It is one thing for the brain to duplicate representations of
line orientations, of which there is a relatively small number, but something quite different
to duplicate all the nouns or corresponding concepts one knows (or the addresses thereof).
Some have doubted that the brain would be organized in such an apparently wasteful way
(Hinton, 1986; Haysworth, 2012; Kriete et al,, 2013). Although it’s impossible to determine
the feasibility of the solution without knowing what the patterns in ImSTC represent, a few
simple estimates suggest that any cortical region the size of ImSTC is likely up to the
challenge.

Braitenberg & Schuz (1991) report that mouse cortex contain ~92,000 neurons per
mm3 in a generic region of cortex. Koch (unpublished) uses this infer that primate brains
have around ~100,000 neurons/ mm3. We have no reason to believe ImSTC is any
different, so we assume this holds here as well. Although we do not know what, exactly,
ImSTC represents, we will assume as a first pass it is words, or at least not so different from
the number of words we know. Pinker (1994) estimates that the average adult knows
around 60,000 words. Of these, Hudson (1994) takes the percentage of nouns in various
large corpora of English to be ~37%. Given an inefficient code in which the firing of one
and only one neuron represents one and only one filler, there is still, in principle, enough
information in the space sampled by one 1.5 mm3 voxel to encode all the nouns that the

average adult knows. In fact, using these estimates, there would be enough neurons in a
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single voxel to represent all the nouns 10 adults know. The group-level ROIs we identified
in Experiment 2 have not 1, but 60 and 180 voxels for the agent and patient regions,
respectively. And a distributed code increases the representational capacity of the region
exponentially. Ata maximum, the 100,000 neurons in 1 mm?3, treated as binary units, could
encode 2100000 symbols. This, of course, is just as implausible as the one symbol/one
neuron code; as we reviewed in the introduction, such coarse codes are wasteful, given the
high cost of signaling relative to the metabolic cost of maintaining a neuron (Laughlin et al,
2001). This is just to say, however, that some duplication and reduplication of the
representations of various symbols (or perhaps even more likely, addresses for those
symbols) is not as physically problematic as other authors have suggested (Hinton, 1986;
Haysworth, 2012; Kriete et al., 2013).

But the plausibility of this arrangement depends not just on the number of fillers,
but also on how many times they would need to be duplicated. How many semantic role
variables are there? This is particularly difficult to answer. Early work on semantic roles in
linguistics treated semantic roles as lists of unanalyzable primitives, with no internal or
external structure (see Levin & Rappaport-Hovav, 2005 for review). For example, the
online verb-lexicon VerbNet

(http://verbs.colorado.edu/~mpalmer/projects/verbnet.html) uses 23 distinct semantic

role labels, from the familiar agent and patient, to highly specific roles like “asset” used only
in alternations of a sum of money. Van Valin (2005) lists 39 such roles. If we were to repeat
our experiments with the 23 different semantic roles on VerbNet, it seems unlikely that we

would find a distinct sub-region in ImSTC for ‘asset’. Unfortunately, when semantic roles

are unstructured lists, there appears to be no principled way of telling just how many roles
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there are, or, more importantly for present purposes, why roles covary; for example, why
verbs that have a patient often have an agent, but not an experiencer (Levin & Rappaport-
Hovav, 2005). An unstructured list of semantic roles is also insufficient to explain the
empirical facts of our final analysis in which we see patterns of activity that generalize
across stimulus and agent, and patient and experiencer, but not other combinations.

At the other extreme, the barest conceptions of semantic roles posit two generalized
role-buckets (e.g. “actor/undergoer”), into which narrower roles can be sorted (Van Valin,
1997; 2005; Dowty, 1991). Although these representations might exist elsewhere, this is
not what ImSTC represents. We saw in Experiment 3 that there are no sub-regions that
group the various actors together, and there are topographic differences between agent
and patient, and stimulus and experiencer that need to be explained. So despite that fact
that it would be highly feasible to represent only two variables given the physical
constraints of ImSTC, this is not consistent with the evidence.

One appealing alternative is to decompose verb-meanings into simpler, recurring
semantic elements (Jackendoff, 1972; 1992; Pinker, 1989; Rappaport & Levin, 1988). These
primitive elements could themselves be argument-taking functions, such as (e.g., ([ x ACT])
and can be combined to form more complex structures (e.g., to represent a causal event [[ x
ACT] CAUSE [BECOME [ y STATE]]. On this approach, semantic roles are actually labels for
argument positions in a verb’s semantic decomposition. These basic functions then recur
across verbs. We mentioned this alternative in the discussion of Experiment 3, citing
Jackendoff's ‘GO(thing, place)’ function as one that could potentially explain our results, if
itis interpreted as referring to the conceptual structure of the event more broadly. The

particular constellation of semantic features that define verb-meanings then further
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depend upon which events can actually occur, and which can not (Levin & Rappaport-
Hovav, 2005). Grounding a theory of verb meaning in a theory of possible events provides a
principled basis for the set of semantic variables, though the best conceptualization of
event structure is a matter of debate (Levin & Rappaport-Hovav, 2005).

Levin & Rappaport-Hovav (2005) note that that number of semantic primitives in
predicate-decomposition models of verb meaning is typically smaller than the number of
semantic roles in role-lists. However, they appear to be roughly the same order of
magnitude. In one case, Van Valin (2005; pg 55, Table 2.4) reduces 39 distinct semantic
roles to ~30 primitive argument positions. A preference for predicate-decomposition
models thus owes more on their explanatory adequacy in linguistics than to their ability to
reduce the number of roles a theory needs to posit. In addition to providing a better
understanding of the regularities at the syntax-semantics interface, we see in Experiment 3
that predicate-decompositions are also, perhaps not coincidentally, more likely to explain
the pattern of results in ImSTC. Theories that specify basic, semantic building blocks with
function-argument structure (e.g., ACT, BE, GO, STAY, CAUSE) have the resources to explain
why we see certain semantic roles (e.g., agent/stimulus), but others not (patient/stimulus)
group together?>. Although, at present, we should be cautious about using ImSTC to test
linguistic theories, we can fruitfully do the converse: use different models of semantically
primitive functions to test what semantic groupings ImSTC respects. This is an exciting

direction for future work.

15 That is, they have the resources in principle, though we cannot say which are driving the results of
Experiment 3. This is a limitation of the stimuli used, and not the theoretical framework, however. See
Discussion in Experiment 3.
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But, to return to the issue of physical plausibility, how many variables could ImSTC
represent? Would 40 be too many, should there be that many semantically primitive
functions? What about 100, or 1000? The region we searched in Experiment 3 has ~600
voxels, each with a volume of 8mm3. This region of the left superior temporal gyrus and
sulcus thus has a volume of approximately 4,800mm3. Based on Koch’s estimate, this region
has ~480,000,000 neurons with which to represent different variable/value combinations.
Therefore, if every neuron represented one and only one noun, this region could still
represent ~12,000 variables. (((100,000 neurons/mm?3*4,800mm?3)/40,000nouns)=12,000
variables).

These particular quantities should not be taken seriously. We do not know what,
exactly ImSTC represents, or how neurons represent it. It's possible the representations
can be more complex than a single noun (e.g., ‘the small elephant with the blue eye patch
chased the dog’). This is only to emphasize that representing 10, 50, or even 500 variables,
each one duplicating representations for all the possible filler values is likely physically
possible, even if we assume an inefficient coding scheme. This is not intuitively obvious,
and has led writers to doubt such a solution for variable/value binding (Hinton, 1986;
Haysworth, 2012; Kriete et al., 2013). We should not rule out this solution due to concerns
about plausibility.

However, there are still a number of outstanding theoretical issues outlined in the
introduction that the present data do not speak to. The present studies provide no evidence
regarding what procedures are used to compute these bindings. This is not a principled
problem, however. This computation may be performed through rule-like matrix-

operations, such as the tensor product (Smolensky, 1991) or circular convolution models
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(Plate, 1994). Or they could be computed using a more complicated serial architecture with
short-term memory (Kriete et al., 2013). Our data suggest that once they are computed,
however, the outputs are represented as patterns of activity over variable-specific neural
populations. Such a map provides a physical basis through which the constituent structure
of a complex expression can be encoded. Second, the regions we discover are likely to be at
a very early stage of combinatorial semantic representation. Other cortical systems need to
integrate information from these variable-specific sub-regions in order to reason about an
event in its entirety. This architecture does not solve the problem of how the brain encodes
singular events. Thus, although the present data address one level at which there is an
alleged binding problem, they do not address the binding problem in its entirety. Third, our
data provide no evidence regarding how multiple bindings using the same predicates are
encoded simultaneously. We do not show how, to return to our earlier example, the brain
encodes “John loves Mary, but Mary loves Jesus”. Our data suggest that each variable is
individuated by its anatomical location. But the fact that we can understand who loves
whom in the above propositions suggests that there is not simply (e.g.,) one agent register
and one patient register. It's possible that InSTC has multiple registers per variable. There
need not be a one-to-one mapping. Based on the above estimate, the anatomical location of
each variable could be sufficiently large to allow for multiple variable-specific registers to
be arranged within it. Of course, it would still then remain to be seen how the
representations in these separate registers would be differentially conjoined within
propositions. If these regions contain sets of registers, it is possible that particular

registers in, for example, the agent region are directly linked to particular registers in the
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patient region, mirroring the structure we see at a high-level. This is an important question
for future research, and one the present data do not speak to.

Finally, our data provide no evidence for how bindings are stored in long-term
memory (Marcus, 2001; Hummel & Holyoak, 1997; Doumas et al., 2008). While it is
possible, in principle, for registers to store data in long-term memory (Marcus, 2001), it’s
less clear how this should work in our current model. Some models rely on two-systems:
one for binding in short-term memory and one for long-term storage of conjunctions. For
example, Hummel et al.’s model (Hummel & Holyoak, 1997; Doumas et al., 2008) uses
temporal synchrony to transiently encode bindings in short-term memory, and then a
conjunctive coding scheme to store them in long-term memory. Although this is not the
most parsimonious explanation, such a two-system approach may ultimately be the right
one (although we disagree with the specifics of the binding-construction system). The field
of cognitive neuroscience generally assumes that the medial temporal lobes must bind
disparate information into conjunctive representations to support long-term memory: for
example, of particular sights, smells, and sounds. To a first approximation, the problem
appears no different in storing details about who did what to whom than it does in storing
these other conjunctive details. It merely conjoins a different class of inputs. Given that our
working model of the brain suggests that the medial temporal lobe stores conjunctive
representations from other inputs, it imposes no additional (principled) burden to assume
it does so for representations of who did what whom. How the medial temporal lobes store
this information in physical form is, of course, a mystery (See Gallistel & King, 2011). We

suggest that the ImSTC is critically involved in constructing the initial representations of
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who did what to whom in an event, however higher-order representations of the event are
ultimately stored.

Although the present work concerns only one type of structured semantic
representation (simple two-place representations of events) and one mode of presentation
(visually presented sentences), it supports an intriguing possibility: that the representation
of abstract semantic variables in distinct neural circuits plays a critical role in enabling

human brains to compose complex ideas out of simpler ones.
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Appendix: Detailed Experimental Methods, and Supporting Information.

Experiment 1 Supporting Information

Subjects. Eighteen self-reported right-handed subjects, 10 male, from the Harvard
University community participated in Experiment 1 for payment (aged 19-34). All
subjects were native English speakers, had normal or corrected-to-normal vision, and
gave written informed consent in accordance with Harvard University’s IRB. Data from
two subjects were not analyzed due to failure to properly complete the experiment. No
subjects exhibited excessive head motion. Experiment 1 analyses used the remaining
sixteen subjects.

Data Acquisition and Preprocessing. The experiment was conducted usinga 3.0 T
Siemens Magnetom Tim Trio scanner with a 32-channel head coil at the Harvard Brain
Sciences Center in Cambridge, MA. A high-resolution structural scan (1.2 mm’ isotropic
voxel MPRAGE) was collected prior to functional data acquisition. The echo-planar
imaging (EPI) pulse sequence for functional scans employed a 2500 ms TR, a TE of 30
ms, and flip angle of 85°. Each volume consisted of 39 3-mm slices parallel to the AC-PC
plane. Stimuli were presented using Psychtoolbox software
(http://www.psychtoolbox.org) for Matlab (http://www.mathworks.com).

Image preprocessing was performed using a combination of AFNI functions
and custom scripts. Each subject’s EPI images were spatially registered to the first
volume of the first experimental run. Motion parameters, global signal across the
brain, and first, second, and third order temporal trends were removed from each
voxel’s time course.

The data used in pattern-based effective connectivity analyses (PBEC)
underwent several further preprocessing operations. For both predictor and
criterion data, the mean signal level at each TR in the lateral ventricles and a white
matter ROI were regressed out of the entire volume. This was done to remove
interregional dependencies attributable to non-cognitive, physiological coupling, as
is common in functional connectivity analyses (36). Additionally, the criterion, but
not predictor data were smoothed with a Guassian kernel at 6mm FWHM. This
served to enhance the signal-to-noise ratio in those regions in which we were
interested in mean signal level across the entire region, while preserving finer
spatial patterns in predictor regions. Thus, we used unsmoothed data in ImSTC to
predict smoothed data in the left amygdala ROI.

Experiment 1 Experimental Procedure. The sentences employed in Experiment 1 are
listed in Supporting Tables 1a and 1b. All sentences contained transitive verbs, and
described contact events (e.g., hit) involving two entities. Four of the mirror-image
proposition pairs described situations low in negative emotional valence and moral
wrongness, as rated by an independent group of subjects (n=33) recruited through
Amazon Mechanical Turk (http://www.mturk.com). Two of these four pairs involved
inanimate entities (e.g., “the truck hit the ball”/”the ball hit the truck”), and two involved
animate entities (e.g., “the girl touched the grandmother”/”’the grandmother touched the
girl”). Both animate and inanimate entities were included in order to better localize
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regions encoding domain-general structure-dependent meaning. Information regarding
the frequency of occurrence of the employed sentences is provided in the section titled
“stimulus frequency and ImSTC” in the SI. The second set of mirror-image proposition
pairs were judged to be asymmetrically emotionally evocative and asymmetrically
morally wrong, depending on which entity was described as performing the action. (e.g.,
“the grandfather kicked the baby” worse than “the baby kicked the grandfather”) (p<0.01,
for all analyses). For these two items, one proposition was therefore expected to produce
a downstream affective response that its mirror image would not produce, either in kind
or magnitude, and, hence were used in our pattern-based effective connectivity analysis.

Experiment 1 - Supporting Materials, Methods, and Results

Use in Exp 1.

The grandfather kicked the baby The baby kicked the grandfather | connectivity

The mother struck the boy The boy struck the mother connectivity

The father pulled the child The child pulled the father ROI
localization

The grandmother touched the girl The girl touched the grandmother ROI
localization

The truck hit the ball The ball hit the truck ROI
localization

The door smacked the branch The branch smacked the door ROI
localization

Use in Exp. 1

The baby was kicked The grandfather was connectivity

by the grandfather kicked by the baby

The boy was struck The mother was connectivity

by the mother struck by the boy

The child was pulled The father was pulled ROI

by the father by the child localization

The girl touched the The grandmother ROI

grandmother touched the girl localization

The ball was hit by the The truck was hit by ROI

truck the ball localization

The branch was The door was smacked ROI

smacked by the door by the branch localization

Table S1. Active and passive versions of the sentences employed in Experiment 1.

We used a slow event-related design in which sentences were presented visually
for 2.5 seconds, followed by 7.5 seconds of fixation. Pseudorandom stimulus presentation
lists were generated according to the following constraints: each proposition was
presented twice within each run, and neither the same proposition, nor a proposition and
its mirror-image could be presented successively, in order to avoid any overlap of the
hemodynamic response for the to-be-discriminated items. The experimental session
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consisted of thirteen scan runs, resulting in twenty-six presentations of a given
proposition over the course of the experiment. For one participant, only nine of the
thirteen runs were available for analysis due to technical problems.

Whether the proposition was presented in the active or passive voice on a given
trial was randomly determined. Active and passive versions of the same proposition were
treated identically for all analyses. Three strings of non-words were also presented to
subjects in each run, but were not analyzed. On one third of the trials, questions were
presented following the fixation period. These consisted of questions about the agent of
the immediately preceding proposition (e.g., “did the ball hit something?”), questions
about the patient (“did the ball get hit by something?”), or prompts to rate “how morally
bad” the event was on a scale of 1-5, with one being “not bad at all” and 5 being “very
bad.” 50% of the comprehension questions had affirmative answers. The subjects’
responses were signaled using a right-hand button box. Which question was presented on
a given trial was randomly determined, as were the particular trials that were followed by
comprehension questions. These were included simply to promote subject engagement,
and were not analyzed.

Whole-Brain Searchlight Mapping. We used a whole-brain searchlight procedure
(26) to determine whether any brain regions reliably contained information about
the meaning of the presented sentences across subjects. Following the approach of
Mitchell et al. (24), we averaged over the temporal interval from 2.5 to 10 seconds
following stimulus onset to create a single image for each trial. The two
presentations of each proposition for a given run were then averaged to create a
single image per proposition, per run. All Experiment 1 analyses were performed on
these averaged images.

We conducted our searchlight analyses using the Searchmight Toolbox (33).
A cube with a 2-voxel (6mm) radius was centered at each voxel, and a linear
discriminant classifier with a shrinkage estimate (35) of the shared population
covariance matrix was used to probe the surrounding region for informational
content. Non-edge neighborhoods contained 124 voxels. Pair-wise classifiers were
separately trained for each of the four mirror-image proposition pairs. For every
pair, performance at a given location was assessed by iteratively holding out each
run as test data, training the pair-wise classifier on 12/13 runs, testing on the held-
out run, and averaging performance across the 13 cross-validation folds. This
resulted in a single whole-brain accuracy map per mirror-image proposition pair.
These four pair-level maps were then averaged to create one map across pairs for
each subject, with the aim of identifying regions that consistently contained
information across the four mirror-image pairs.

These maps were then spatially normalized to Talairach space for group-
level statistical analyses. Given that all comparisons were pair-wise, we assume a
mean of 0.5 for the null distribution, and test the directional hypothesis that a given
region contains information across subjects by performing a one-tailed t-test against
0.5 on the set of accuracy maps (36). Control of the whole-brain family-wise error
rate was obtained through a combination of voxel-wise thresholding and cluster
extent. These corrected p values were obtained through Monte Carlo simulations in
AFNI. Such simulations empirically estimate the probability of obtaining clusters of
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statistically significant values, given that the data contain only noise. To estimate the
smoothness of the noise, we conducted an analysis that randomly permuted the
sentence-labels for each subject, and mimicked the individual and group procedures
above to obtain a group “noise-only” map. We thus used the actual data with the
same analytic operations to estimate the smoothness of the noise. The resulting
spatial smoothness of this noise-only map was found to be X=6.2, Y=6.34 Z=6.3 mm.
These dimensions were thus used in the Monte Carlo simulations to estimate the
probability of obtaining significant clusters across the whole-brain volume, given
only noise.

We first chose a voxelwise threshold of p<0.005 and a corrected threshold of
p<0.05, but no statistically significant clusters survived this threshold. Given that
our chief aim was to simply localize candidate regions for Experiment 2, we
therefore lowered the voxelwise threshold to p<0.02. At this threshold, two ROIs
were found to be highly statistically significant, even when correcting for testing
multiple voxelwise thresholds (ImSTC, 123 voxels, clusterwise p<0.0001: right EC,
108 voxels, p<0.001 clusterwise). The principal drawback to using this liberal
voxelwise threshold is that the statistical significance of these regions owes largely
to the size of the ROIs. This makes it unlikely that the discovered regions constitute
homogenous functional units. Experiment 2 addresses this concern by probing the
informational content of one of these two regions.

The first discovered ROI was located in the left mid superior temporal cortex
(ImSTC). It begins in the inferior-most part of the parietal cortex, extends through
the mid portion of the superior temporal gyrus and superior temporal sulcus and
terminates in the middle temporal gyrus (See Supplementary Figure 1A). The
second ROI is centered on the right posterior insula/extreme capsule fiber bundle. It
encompasses parts of the posterior insula, claustrum, putamen, and medial-superior
temporal lobe, (p<0.001, 108 voxels) (See Supplementary Figure 1B).

Experiment 1 Whole-Brain Searchlight Results
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Figure S1 (continued). (A) left-mid superior temporal cortex (ImSTC) and (B) right insula/extreme
capsule region discovered by Experiment 1 searchlight analysis distinguishing mirror-image
propositions (e.g., “the truck hit the ball”/”the ball the truck”).

Post-hoc ROI analyses. As our principal searchlight results from Experiment 1
were obtained by averaging classification accuracy across four pairs, it is possible
that the significance of the results owes to high accuracy on some subset of the pairs,
with chance performance on the remaining pairs. To evaluate this possibility, we
trained and tested linear discriminant classifiers with a shrinkage estimate of the
covariance matrix separately on each pair in ImSTC to evaluate post-hoc which
mirror-image proposition-pairs were driving our results. Supplementary Tables 2A
and 2B show the results of these classifications by mirror-image proposition pair
and ROL. A repeated-measures ANOVA revealed no significant differences in
classification accuracy across the six pairs for either ImSTC (F(5, 75)=0.4, p=0.84)
or the right insula/extreme capsule ROI ((F(5, 75)=0.15, p=0.98). We find fairly
consistent levels of classification accuracy in both ROIs, suggesting these regions are
not driven by idiosyncracies of the particular pairs, or only by the animate or
inanimate proposition-pairs. Instead, the pattern of results is consistent with both
ImSTC and the right posterior insula/extreme capsule encoding domain-general
information about “who did what to whom.”

If the regions discovered in the searchlight analysis do represent structure-
dependent meaning, then they should facilitate classification of non-mirrored
propositions as well. For example, they should be able to distinguish “the truck hit
the ball” from “the father pulled the child.” Although these non-mirrored pairs are
not well matched, and one would expect many other brain regions to be able to
perform this classification (e.g., regions that encode the semantic/phonological
content of the nouns and verbs), this analysis nevertheless serves as a “sanity check”
on the ROIs localized using the searchlight analysis. To ensure that our ROIs could
also discriminate non-mirrored pairs, pair-wise classifiers were separately used for
the 24 non-mirrored comparisons that could be generated from the four mirror-
image proposition pairs. This analysis was performed using data from the ImSTC
ROI and the right posterior insula/extreme capsule ROI separately. These 24
classification accuracy statistics were then averaged for each ROI and submitted to a
one tailed t-test against 0.5. Of the two ROIs able to discriminate within mirror-
image proposition pairs, only the ImSTC ROI was able to reliably discriminate non-
reversed pairings as well, t(15) = 4.06, p=0.005. The right extreme-capsule/insula
ROI trended in this direction, but its results were not statistically significant, t(15) =
1.45, p<0.09. This failure to robustly classify non-mirror-image proposition pairs
casts doubt on the possibility that the right posterior insula encodes complex,
structured semantic representations. Taken in conjunction with other null results
pertaining to this ROI, described in the “Pattern-Based Effective Connectivity”
section below, we chose to focus on ImSTC in Experiments 2 and 3.
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Right Insula | Mirror-image pair mean Accuracy t, one-tailed p
STRUCK (mother: boy) .562

1 t=2.17,p=0.023
2 KICKED (grandfather: baby) .557

t=2.13, p=0.025
3 TOUCHED (grandmother: girl) | .583

t=2.30,p=0.018
4 PULLED (father: child) .546

t=1.17,p=0.13
5 HIT (truck: ball) .565

t=2.43,p=0.014
6 SMACKED (door: branch) .562

t=3.43,p=0.0019

Table S2. Post-hoc analysis of right posterior insula ROIs discovered by the wholebrain searchlight
analysis. Classification performance is broken down by mirror-image proposition-pair.

Stimulus frequency and ImSTC. The sentences used were chosen partly because of
their relative infrequency in English, ensuring that subjects would not recognize the
sentences as familiar units, and would not have strong expectations about which
entity is most likely to be assigned to which role. (We did not use the familiar
sentences “Dog bites man” and “Man bites dog” in our experiments for these
reasons). See ((14, 15, 37)) for literature on such violation of expectations, and the
resulting N400 response in electrophysiology. For the employed sentences, no
active-voice construction was present in the Google 5-gram text corpus,
(http://www.ldc.upenn.edu/Catalog/), or the Google Books ngram corpus
(http://books.google.com/ngrams) as of August 2011. This strongly suggests that
frequency differences within pairs were not responsible for the observed
classification performance. Moreover, as both propositions within a pair were
comprised of the same words, the pair-wise summed word frequency was
necessarily identical.

[t remains possible, however, that the frequency of various higher-order
parts of the sentences could differ, even if the entire sentences that contain these
parts are matched. For example, the construction “the father pulled” may be more
frequent than the construction “the child pulled,” which could facilitate pair-wise
discrimination of “the father pulled the child” and “the child pulled the father.” If
frequency statistics were driving differences in the observed patterns of activity,
then we would expect the region to carry information about these statistics across
propositions. To address this possibility we attempted to predict various frequency
statistics of the sentences from ImSTC'’s patterns of activity.

We trained separate regression models to predict various frequency
statistics pulled from the Google Ngram corpus
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(http://www.ldc.upenn.edu/Catalog) and simple Google web search
(http://www.google.com). These statistics included the frequency of the
agent/verb combinations in the active voice (e.g., “the father pulled” and “father
pulled”), verb/patient combinations (e.g., “pulled the child), and the mean, minimum,
and maximum of these statistics for a given proposition. Each proposition was first
described by a log transformation of the relevant frequency statistic, and a Support
Vector Regression (SVR) model was trained to predict the continuous value of that
statistic from the pattern of activity in ImSTC.

To evaluate the models, we trained the SVR model on N-2 trials, and
attempted to predict the frequencies of two held-out observations. The absolute
value of the difference between the target frequencies and those predicted by the
SVR model was compared for both the correct mapping and the incorrect mapping.
[f the sum of the two correct mappings had a lower absolute difference than the sum
of the two incorrect mappings, the model was determined to have been correct. This
procedure was repeated using different frequency metrics, and the results are
shown in Supplementary Figure 2. We consistently found no information about any
frequency statistics to be available in ImSTC. It is therefore unlikely that our results
owe to systematic frequency differences between pairs: rather they appear to reflect
the structured, semantic content of sentences.

- Google web search statistics

Google ngram corpus statistics
0.60 7

T

mean(“the max(“the min(“the
“the truck hit” “hit the ball” “truck hit” truck hit”,”hit truck hit”.”hit  truck hit”,"hit
the ball”) the ball”) the ball”)
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frequency model

Figure S2 . As a control, we attempted to use ImSTC patterns of activity to predict frequency statistics for
NOUN/VERB and VERB/NOUN combinations (e.g., “the truck hit”, or “hit the ball”). The patterns of activity
did not encode information about any of the frequency statistics tested.
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Pattern-Based Effective Connectivity (PBEC) analyses

Background and Motivation. The identification of representational content in the
human brain has benefited in recent years from the development of Multi-Voxel
Pattern Analysis (MVPA) (25, 38-40). Rather than asking if the magnitude of the
BOLD response in a single-voxel or brain region is predicted by the presence or
absence of a psychological operation, researchers now routinely pool information
across sets of voxels to ask whether and where distributed patterns of activity track
variation in psychological content.

MVPA has been productively applied to domains lacking the differential
engagement of psychological processes expected to generate uniformly greater
neural activity over a brain region (when sampled at the spatial resolution available
to contemporary neuroimaging), but in which some representational content
nevertheless varies over time (40-42). While this ability makes MVPA particularly
well-suited to our current aims, its increased power is not completely without cost
(43), as its heightened detection sensitivity makes it more susceptible to subtle
confounds. It is therefore particularly important to establish that information
detected by the pattern classifier actually reflects the psychological processes or
representations of interest.

To address this potential concern, we employed the following reasoning: if
the patterns identified reflect neural representations of psychological content, then
one would expect the pattern instantiated on a given trial to modulate downstream
responses that depend on that content. Given that this logic is broadly consistent
with the logic underlying traditional effective connectivity analyses (44, 45), we call
the present analysis a pattern-based effective connectivity (PBEC) analysis. As with
conventional effective connectivity analyses, the aim is to establish the functional
influence of one neuronal population on another.

Several groups have recently integrated MVPA and functional connectivity
analyses, devising ways to determine whether various neural structures share
similar representational profiles (46), and whether patterns in one region correlate
with univariate responses (47) and patterns (48) elsewhere in the brain. The
present analysis extends this integration of MVPA and connectivity analyses to
model cases in which the patterns of activity in one region are thought to drive the
functional state of another using mediation analyses (27). Such tests are widely used
in the social sciences (27) and have been previously applied to fMRI data (49, 50).
Tests for mediation assess whether the effect of a predictor variable on an outcome
variable is either partly or wholly carried by an intervening, or mediating, variable.

In the present context, if (a) the pattern of activity instantiated across a
region reflects the neural representations of interest, and (b) those representations
are hypothesized to drive an independent response, then (c) that pattern may
mediate the effect of the stimulus on this downstream response. Here, we used
mirror-image propositions that differ in their affective significance, such as “the
grandfather kicked the baby” and “the baby kicked the grandfather,” and sought to
determine whether their associated patterns, instantiated across ImSTC, mediate
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the relationship between the sentences presented and the consequent affective
responses to these sentence’s meaning. Such a finding would provide evidence that
the identified patterns do indeed reflect neural representations of these sentences’
meaning.

To succeed, the mediating variable (here, the pattern of activity in ImSTC)
must explain unique variance in the downstream response over and above variance
in that response explained by the stimulus. This is because, to the extent that there
is variability or “error” in this causal process, the more proximate mediating
variable (here, the pattern of activity) should explain unique variance in the
response, in virtue of being a channel through which the direct effect (here, the
effect of the proposition presented on the amygdala’s activity level) is carried. The
detailed procedure for quantifying the pattern of activity in ImSTC and testing the
mediation hypothesis is specified in the Appendix.

PBEC Procedure. For a binary classification problem, such as discriminating
patterns evoked by “the grandfather kicked the baby” and “the baby kicked the
grandfather,” the training procedure establishes a hyperplane that divides the
feature space (in this case, a voxel-activity space) into two regions. Here, one region
is associated with the characteristic pattern of one proposition and one with the
characteristic pattern of the other (See Figure 1 in the main text). Each trial’s multi-
voxel BOLD response then lies at some distance and direction from this
classification hyperplane in one of the two regions of the space.

We used these trial-by-trial “signed distances” as measures of the
representational content of ImSTC on a given trial, as they carry information both
about the classifier’s decision (the sign, corresponding to the side of the hyperplane
and region of the space) and, roughly, it’s “confidence” (the absolute value of the
distance). This effectively reduces the dimensionality of the region from the number
of voxels in the ROI to one. Here, that one variable summarizes the informational
content of psychological interest contained by the entire region. In the current
coding scheme, good instances of the affectively salient proposition (“the
grandfather kicked the baby”) will have large positive distances, good instances of
the affectively neutral proposition (“the baby kicked the grandfather”) will have
large negative distances, and ambiguous instances will have distances near zero.
We can then ask whether these distance variables predict responses elsewhere in
the brain. These signed distance variables were obtained and used as follows.

First, linear classification functions were learned separately for the two
mirror-image proposition pairs using a leave-one out procedure.

The classification function for each novel test exemplar is then given by
T
gx)=wx+w,
where X is the vector of voxel intensities for the current test trial and T denotes

vector transposition. The voxel-weight vector w for each cross-validation iteration
was obtained as
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w=23"(m, - m,)

where m; and m; are the vectors of class-specific mean voxel intensities across
ImSTC. m; is the affectively salient (“the grandfather kicked the baby”) mean vector
and m; the affectively neutral (“the baby kicked the grandfather”) mean vector. =-1
was a shrinkage estimate of the population covariance matrix shared between all
stimulus classes. This shrinkage estimate has been shown to be a better estimator of
the population statistic than the sample covariance in cases where the ratio of
observations to predictors is unfavorable (35, 51, 52), and to perform well with
classification of fmri data (33).

The constant term was determined as

1

WO = _E(ml(group) - mZ(group))

The weight vector w determines the direction through the feature space, while the
constant term determines the location of the hyperplane relative to the origin (56).
Here, the m; and m; terms for each subject were the means of the respective class
along the projection for the remaining 15 subjects. We found these group-level
mean estimates to yield more reliable predictions in the connectivity analysis than
using an individual subject’s data (t(24)=3.93, p=0.001 vs. t(24)=1.28, p=0.22).
These results survive correction for multiple comparisons for these two ways of
obtaining wy.

Finally, the signed distance of an observation from the hyperplane was computed as
in (32):

de w'x + W)

w1l

where ||w|| is the Euclidean norm of the weight vector, representing the distance
from the origin to w.

This distance provides a trial-by-trial measure of the representational
content of ImSTC, which can be used as a predictor variable in subsequent
connectivity analyses. In the present case, given that the affectively significant
propositions occupied the positive region of the space, and the affectively neutral
regions occupied the negative region of the space, we predict a positive statistical
relationship between trial-by-trial signed distance in ImSTC and the magnitude of
the mean signal level across the left amygdala ROI (See Figure 1 of the main text).

We expect the magnitude of the distance variable to explain unique variance
over and above the sign of the distance variable because the probability that the
classifier is correct should increase with an increase in distance. This assumption
was borne out empirically. Across all pairs, the absolute value of distance from the

123



hyperplane predicts classifier performance (p<0.001). For example, those trials in
which the classifier is relatively confident that the content of the stimulus is “the
grandfather kicked the baby” relative to “the baby kicked the grandfather,” are in
fact more likely to be correct (and vice versa).

We did not, however, expect to find a perfectly linear relationship between
the signed distance from the classification boundary and the amygdala response for
a number of reasons: First, we do not expect meaningful variation in the prediction
of the amygdala response as a function of distance on the “the baby kicked the
grandfather” side of the hyperplane. We see no reason that “good” instances of the
affectively neutral class should be less likely to elicit an amygdala response than bad
instances of that class, as a linear model would predict. Further, while we would
expect good instances of the affectively salient proposition to be more likely to elicit
an amygdala response than affectively neutral trials, or trials about which the
classifier is uncertain, it is not obvious that this relationship should continue
indefinitely in a linear manner, without saturation. We therefore sought a way to
incorporate the continuous information provided by an observation’s distance from
the classification boundary, without confining ourselves to a simple linear
predictive model. We thus chose transform the signed distance from the hyperplane
with a sigmoidal function, which (conceptually) applies both a threshold (a point
below which we would not expect and amygdala response) and a point of saturation
(a point above which we not expect increasing distance to predict an increased
likelihood of amygdala response).

The precise shape of the sigmoid is controlled by two free parameters: one
affecting the center of the function (p2 below), and the other (p1) affecting its slope.

1
5= 14 " P2-4)
Given that we did not have a priori quantitative predictions for the precise shape of
the function, we allowed the value of the two parameters to be determined
empirically through cross-validation. For each subject, the two-dimensional
parameter space (center X slope) was searched with that subject’s data removed.
Coefficients for the regression of amygdala activity on the transformed ImSTC
signed distance variable were obtained for each combination of the center and slope
parameters. The parameter combination yielding the best prediction, defined as the
greatest mean beta value, on the remaining subjects was then used for the held-out
subject. The parameter combination selected was stable across cross-validation
iterations.

The heat map in Supplementary Figure 3 visualizes the average regression
performance for various sigmoids by averaging the search results across 16 cross-
validation iterations (one holding each subject out). These search results provide
information about the relationship between the pattern in ImSTC and the
amygdala’s response. For simplicity, if we conceptualize the amygdala response as a
binary variable, the center parameter of the sigmoid defines the point at which the
probability of a response is equally likely to the probability of a nonresponse. We
see from the heat map in Supplementary Figure 3 that the optimal center of the
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sigmoid is shifted to the right of the classification boundary, in the positive region of
the space. The observed positive shift of the center parameter relative to the
hyperplane is explicable under the assumption that the probability of the
amygdala’s not responding given that the stimulus is “the grandfather kicked the
baby,” is greater than the probability of the amygdala’s responding given that the
stimulus was “the baby kicked the grandfather.” This assumption is reasonable
given that each proposition is encountered repeatedly over the course of the
experiment, potentially attenuating the subject’s affective responses over repeated
presentations. This would make failures to respond to the affectively salient
proposition more likely than “false positives” of the amygdala to the affectively
neutral proposition, leading to a positive shift of the optimal center (as the point of
equi-probability) for the sigmoid relative to the classification hyperplane. This
method may hold more general promise for testing different quantitative models of
the functional dependence between brain regions.

classification boundary
- +

>

0.1

sigmoid |
slope |/
parameter

0.05

0.0

sigmoid center parameter

Figure S3. Heat map visualizing variation in the prediction of amygdala activity as a function of different
sigmoidal transformations of the signed distance of an observation from the ImSTC classification boundary.
Colors correspond to different beta values for this regression averaged across 16 cross-validation
iterations. The X-axis represents different values of the sigmoid’s “center.” The Y-axis represents different
slopes, with steeper slopes located at the top of the graph. Together, these two parameters yield different
shapes, three of which are shown at the appropriate locations in the space for reference. Vertical bars
through the reference sigmoids correspond to the location of the classification boundary, as does the bar
at the top along the X-axis. The ‘+’ signifies the positive side of the classification hyperplane (the
‘grandfather kicked the baby’ side), while the ‘-* signifies that negative side of the hyperplane. We see
better prediction when the sigmoid is centered at or to the right of the hyperplane. The best prediction is
obtained by a function with a steep slope, centered slightly to the right of the hyperplane. (See Figure 1B of
the main text.) This demonstrates that patterns corresponding to “the grandfather kicked the baby” are
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more likely to elicit an amygdala response than their mirror-image, as explained in the main text. However,
the rightward-shift of the best sigmoid, past the classification boundary, also suggests that the likelihood

of no amygdala response, given the “grandfather kicked the baby” pattern in ImSTC was greater than the
likelihood of an amygdala response, given the “baby kicked the grandfather” pattern. More generally, this
demonstrates that the point of indifference for classification need not coincide with the point of
indifference for predicting a response elsewhere in the brain. This approach may be useful for empirically
testing subtly different quantitative functions relating information in one brain area to information or
activation in other.

Finally, we asked whether the signed-distance of an observation from the
classification hyperplane in ImSTC mediates the relationship between the stimulus
and the mean level of activity in the amygdala. To satisfy conventional criteria for
mediation, it is necessary that the pattern of activity in ImSTC explain variance in
the amygdala’s response over and above the variance explained by the identity of
the stimulus presented (here, which proposition the subject read). We therefore
included a binary regressor coding the content of the presented proposition as a
covariate of no interest. We also included a regressor for the mean signal level
across the entire InSTC ROI as a second co-variate of no-interest, to preclude the
possibility that any observed mediation was due solely to aggregate functional
coupling between the regions. We obtained standardized coefficients for the
regression of amygdala signal on signed-distance separately for all subjects, and we
used a one-sample t-test to evaluate whether this coefficient was reliably non-zero
across subjects. Finally, we performed a Sobel test of the significance of the indirect
effect a*b on the dependent variable.

The statistic is computed as
ab

Z=
2712 2 2 2 2
\/sab +s,°a"+5,7s,

In the present experiment a is the ordinary least squares regression
coefficient of distance from the hyperplane on the category label, and b is the
regression of mean left amygdala on this distance, controlling for the category label
of the stimulus, and the mean signal level across the ROI. The s terms in the
denominator are the standard errors for the a and b coefficients, respectively.

As reported in the main text, we found this indirect effect to be statistically
significant (z=2.47, p=0.013). Alternative nonparametric techniques for estimating
confidence intervals for the indirect effect, including bootstrapping (53) and Monte
Carlo simulation (54) yielded results comparable to the classic, parametric Sobel
test (all p<0.05 for the indirect effect). The above analyses were repeated with the
right posterior insula/extreme capsule ROI as the mediator. In contrast to ImSTC, all
assessments of the pattern of activity in the right insula ROI as the mediating
variable were non-significant (p>0.15).

Experiment 2: Supporting Information
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Subjects. Thirty-four self-reported right-handed members of the Harvard community
participated for payment (aged 18-35). We employed the same subject inclusion criteria
as Experiment 1. One subject’s data were not analyzed to due to failure to properly
complete the experiment. Six subjects’ data were excluded prior to analysis due to
answering less than 75% of the comprehension questions correctly. Two subjects were
excluded for exhibiting excessive head motion, defined as greater than three standard
deviations above the mean. Data from the remaining 25 subjects were included in all
Experiment 2 analyses.

Data Acquisition and Preprocessing. Experiment 2 was conducted using the same
facilities and equipment as Experiment 1. However, for Experiment 2, we acquired
partial-coverage functional data at higher spatial resolution, using 1.5 mm3 voxels
(FOV =192mm,TR = 2500 ms, TE=32 ms, 6/8 partial Fourier encoding, Flip Angle =
90°). We acquired 26 slices parallel to the anterior commissure, centered on the
superior temporal lobes. While the exact area varied from subject to subject, this
ensured that the superior temporal gyri, superior temporal sulci, and mid-portion
along the anterior-posterior axis of the middle temporal gyri were covered,
bilaterally. A mask generated by the searchlight results of Experiment 1 was then
applied to ImSTC prior to analyses, as described below. Experiment 2 employed the
same preprocessing operations as Experiment 1, with the additional application of a
1.5mm FHWM smoothing kernel prior to classification analyses.

Experimental Procedure. The sentences for Experiment 2 were generated using four
nouns (“man”, “girl”, “dog”, “cat”) and five transitive verbs (‘“chased”, “scratched”,
“blocked”, “approached”, “bumped”) to create every possible agent-verb-patient
combination, with the exception of combinations using the same noun twice (e.g. “the
dog chased the dog”) yielding 60 (4x5x3) unique propositions. These particular verbs
were chosen because they permit plausible agent-verb-patient combinations using the
above nouns, and are comparable in their frequency of occurrence.

Experiment 2 consisted of six scan runs. Each proposition was presented once per
run, and six times in total. Whether a proposition was presented in the active or passive
voice on a given trial was randomly determined. As in Experiment 1, sentences were
visually presented for 2.5 seconds followed by 7.5 seconds of fixation. A comprehension
question was presented following the fixation period on 1/3 of the trials. These questions
were of the form “did the dog chase something?” or “was the dog chased by something?”
and 50% had affirmative answers.

General Searchlight Procedure. All searchlight analyses for Experiment 2 were
confined to the ImSTC. The searched area was formed by dilating the group-level
ImSTC ROI discovered in Experiment 1 6mm so as to encompass all of the mid and
posterior regions of the left superior temporal gyrus, superior temporal sulcus, and
middle temporal gyrus. The resulting ROI contained 6882 1.5 mm?3 voxels, (center, -
54, 23, 3). Figure 2b of the main text shows the extent of the searched region for
Experiment 2. This mask was warped from Talairach space to each subject’s native
space, and all classification analyses were conducted in the subject’s native space. As
in Experiment 1, all searchlight analyses were implemented in the Searchmight
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Toolbox (33) and used a linear classifier with a shrinkage estimate of the covariance
matrix. Local voxel-neighborhoods were defined using a 3mm (two voxel) radius
within the ImSTC mask, entailing that non-edge neighborhoods again contained 124
voxels.

Agent and Patient Decoding Procedure. For our principal analyses, we searched
ImSTC for patterns of activity encoding information about the identity of the agent
and patient that generalizes across verbs. Agent and patient classifications were
performed using separate classifiers, iteratively using data from local voxel-
neighborhoods to make four-way decisions regarding the noun occupying the agent
or patient role on a given trial (man? girl? dog? cat?). As in Experiment 1, active and
passive versions of the same proposition were considered identical for the purposes
of these analyses. To train and test the classifier, we used a five-fold cross-validation
procedure defined over the five verbs (“chased”, “scratched”, “blocked”,
“approached”, “bumped”). For a given iteration, all data generated by one of the five
verbs was removed, and classifiers were trained to identify the noun occupying the
agent or patient role on that trial, using the data from the remaining four verbs. The
classifiers were then tested using the patterns generated by the held-out verb.
Classification accuracies for each subject were averaged across cross-
validation folds, and the mean accuracy was assigned to the center voxel of the
search volume. These individual-level accuracy maps were then smoothed with a
3mm FWHM kernel, warped to Talairach space, and the group of subjects’ maps was
submitted to a directional one-sample t-test against 0.25 to determine whether any
regions reliably encoded information about the identity of the agent or patient
across subjects. We used Monte Carlo simulation to determine the probability of
obtaining significant clusters given that the data contained only noise. We used a
voxelwise threshold of p<0.005, and a corrected threshold of p<0.05 to identify
regions exhibiting statistically significant effects. As in Experiment 1, we estimated
the smoothness of the data by conducting the same classification and aggregation
procedures with randomly permuted labels. The obtained smoothness parameters
for each analysis, as well as information about the voxel clusters found to be
significant by the Monte Carlo simulation are presented in Supplementary Table 3.

Verb Decoding Procedure. We performed an additional searchlight analysis
probing ImSTC for sub-regions that contained information about the trial-by-trial
identity of the sentence’s verb. This task required a five-way decision regarding the
identity of the verb (“chased”, “scratched”, “blocked”, “approached”, “bumped”).
Here the cross-validation folds were defined over the 6 scanning runs. The
classifiers were trained using data from 5/6 runs, and were then asked to identify
the verb present for trials from the remaining run. The verb classifiers were thus
only required to generalize to new tokens of previously encountered combinations,
rather than wholly new combinations. Individual accuracy maps were averaged as
in prior analyses, smoothed with a 3mm FWHM kernel, warped to Talairach space,
and submitted to a one-tailed t-test against 0.2, as chance performance for the five-
way verb classification was 20%. Corrected p values were obtained in the same
manner as in the above searchlight analyses. Results are visualized in Figure S4., and
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more information is provided about the analysis and results in Supplementary Table
3.

Experiment 2 searchlight results.

identification cen'ter Volume smO(?thness of corrected
roblem coordinates # voxels (mm°) noise map P(Data|Noise)
P (Talairach) (XYZ, mm)
-46, -18, 1 67 100.5 p<0.01
Agent 4.27,5.72,4.93
sen 57,37,7 61 91.5 £<0.02
Patient -57,-10,2 181 271.5 | 5.13,5.6,5.47 2<0.0001
-61,-15,2 60 90 459 6.17 p<0.025
Verb ’ ’
-55,-49,5 433 649.5 5.08 2<0.0001

Table S3. Searchlight results for Experiment 2 listing significant clusters within ImSTC. All searchlight
analyses used a voxelwise threshold of p<0.005, and a corrected threshold of p<0.05 to identify
significant clusters.

Post-Hoc ROI Analyses

Representational Specificity of Sub-Regions. For all post-hoc analyses, we used a
leave-one-subject-out cross-validation procedure to localize regions of interest
without biasing the analyses. Specifically, we iteratively conducted group-level t-
tests on the search maps for 24 /25 subjects to identify statistically significant
clusters of informative voxels with each subject’s data removed. All such regions
were localized using a voxelwise threshold of p<0.005 and a minimum cluster size of
50 voxels, unless otherwise specified. These significant voxel-clusters defined the
exact ROI for the held-out subject for the post-hoc test of interest. For any post-hoc
analysis, the exact ROI queried could thus vary slightly from subject to subject,
though the number and general location of ROIs was stable across all cross-
validation iterations of all analyses.

We first assessed the representational specificity of the agent and patient
sub-regions identified by the searchlight analysis, as described in the main text.
After localizing significant clusters using the leave-one-subject-out cross-validation
method described above, we averaged the held-out subject’s agent and patient
search results across the voxels contained by the sub-regions. This produced one
average accuracy statistic for each of the agent and patient identification problems,
in each of the three sub-regions (two agent, one patient), for each subject. We
performed repeated-measures ANOVAs to test for a sub-region by content
interaction for the anterior agent and patient regions, and paired t-tests to test for
simple effects of identification accuracy within each of these three ROIs. Results of
these analyses are reported and plotted in the main text (See Figure 3). The average
classification accuracies for the voxels comprising these ROIS were small, but
reliably above chance.

Next, because we failed to find a significant difference between agent
identification accuracy and patient identification accuracy within the agent sub-
regions, we asked whether these regions might simply be encoding information
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about the semantic content of the nouns without respect to semantic role. (We
emphasize that the agent identification accuracy in the agent sub-regions was above
chance and that the patient identification accuracy in these regions was at chance.
Our negative finding is simply that the difference between these two levels of
accuracy did not achieve significance). To evaluate this possibility, we performed
another searchlight analysis within ImSTC in which classifiers were trained to
determine whether a given noun was present in the sentence, regardless of whether
it was the agent or patient. For example, “The dog chased the man” and “The cat
scratched the dog” were coded identically, given that they both contain an
occurrence of “dog”. The classifier’s task was to determine whether or not “dog”
was present in the sentence. This procedure was repeated for each of the four nouns,
and the results were averaged to obtain one classification accuracy statistic for each
voxel-neighborhood.

To directly compare such “role-neutral” detection functions to the “role-
based” identification functions described throughout, we first converted the
accuracies obtained by the searchlight procedure to probabilities using a binomial
distribution. Unlike previous comparisons, this conversion was necessary given that
“chance” levels differed between the two classification functions: chance
performance for “role-neutral” classifiers was 50%, whereas chance performance
for “role-based” classifiers was 25%. We localized the agent and patient regions
using the leave-one-subject-out method described above, and averaged the “role-
neutral” and “role-based” p values across the regions. We then compared these two
sets of average p values by region using a t-test.

Averaging across the two agent regions, we found them to be significantly
better at identifying the agent than determining whether a particular noun was
present (t(2.57), p=.017). When these two agent regions were treated separately,
accuracy in agent identification was significantly better than noun detection in the
posterior agent region (t(24) = 2.20, p=0.037), and was marginally better in the
anterior agent region t(24)=1.92, p=0.066), As expected, the patient region was
significantly better at identifying the patient than at role-neutral noun detection
(t(24) =2.65, p=0.014).

These findings indicate that our principal verb-general searchlight results
are not simply detecting the semantic content of the nouns without respect to role.
Instead, they encode information about the identity of the agent and patient across
verbs.

Medial-Lateral Agent/Patient Topography of anterior ImSTC. Figure 3c in the
main text visualizes the representational content of anterior ImSTC moving along
the medial-lateral axis. Other researchers have used similar analyses to assess the
representational topography of objects in the ventral temporal cortices (Mahon et
al., 2009; Connolly et al. 2012) . In performing these analyses, it was important to
first localize the anterior ImSTC in a way that is unbiased with respect to its role
preferences. To do this, we asked where in ImSTC a classifier could reliably tell, for a
given noun (e.g. MAN), whether that concept was the agent or patient across trials.
We conducted four such analyses, one for each noun, each time focusing only on
trials in which the target noun was either the agent or patient. This analysis jointly
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localizes the set of sub-regions that encode the identity of the agent along with those
that encode the identity of the patient. Because, for a given noun, being the agent is
perfectly correlated with not being the patient and vice versa (in this analysis,
though not in the experiment more broadly), both agent and patient regions should
be identified by this analysis. Critically, this analysis reveals nothing about which
type of information (agent/patient) is encoded in a particular sub-region, making it
a suitably unbiased localizer for present purposes.

For each of the four nouns, we again used an across-verb cross-validation
procedure in which the classifier was trained on four of five verb-contexts, and
tested on the fifth, forcing it to generalize to data generated by new verb contexts.
This was repeated for all four nouns, and the results were averaged. Given our goal
of localizing a relatively large region, we used a liberal voxelwise threshold of
p<0.05 and cluster size of 250 voxels, which resulted in a significant cluster
occupying a relatively large portion of the anterior ImSTC.

Within this ROI, we separately averaged the agent identification performance
and the patient identification performance. We then computed the difference
between the two performance levels at each Talairach X coordinate (this ranged
from X=46-64), averaging over the anterior-posterior and superior-inferior axes. In
other words, we examined performance levels in a series of slices, running along the
medial-lateral axis. We then performed separate group-level t-tests for agent
identification accuracy, patient identification accuracy (Figure 3c.), and the
difference between the two (Figure 3c.) at each X coordinate. These analyses show
that medial regions of anterior ImSTC contain information about the identity of the
agent, but not the patient. Lateral regions of anterior ImSTC contain information
about the identity of patient, but not the agent. This relative selectively is reflected
in the direct comparison of the two plotted in Figure 3c.

“Deep” Structure vs. Linear Order in ImSTC. To further confirm that the ROIs
discovered by the searchlight analysis are indeed encoding the agent and patient of
the propositions, we directly compared the performance of classification functions
grouping sentences by their deep (agent/patient) structure to the performance of
classifiers trained to group sentences by their linear order. When classifying based
on deep structure, “the dog chased the man” and “the man was chased by the dog”
were coded identically, as in our standard analyses. When classifying based on
linear order, “the dog chased the man” and “the dog was chased by the man” were
coded identically, given that the linear order of the words, and moreover the
“surface subject” and “surface object” are the same across the sentences.

Using the leave-one-subject-out localization procedure described above, we
found that classifiers trained to identify the underlying agent and patient performed
significantly better in their respective sub-regions than classifiers trained to decode
the surface subject (agent > surface subject: t(24) = 3.27, p=0.003) and surface
object (patient>surface object: t(24) = 2.16, p=0.046), respectively. In fact, a
subsequent search of ImSTC revealed no sub-regions that encoded information
about the surface subject and surface object, as such.

131



Generalization Between Active and Passive Forms. The foregoing searchlight
results demonstrate that there exist consistent patterns of activity for active and
passive versions of the same proposition that classifiers can learn under supervision.
We were also interested in whether classifiers trained to decode the agent or patient
solely on one surface form can automatically generalize to the alternate form. We
focused on the anterior agent, posterior agent, and patient ROIs identified by the
across-verb searchlight procedure, and trained classifiers to make the same four-
way decision (man? dog? cat? girl?) for each trial. In this case, the classifiers were
trained only on active sentences, and tested on passive sentences, and then trained
only on passive sentences and tested on active sentences. The results of these two
procedures were then averaged and pooled across subjects.

We found that the neural representations in both the patient ROI and the
posterior agent ROI automatically generalize across active and passive sentence
forms (t(24) = 2.10, p=0.023, one-tailed: £(24)=1.83, p=0.039), but that the anterior
agent ROI patterns did not (¢(24)=1.10, p=0.14). While this difference may signal a
functional difference between the two agent ROIs, it is important to note that this
training procedure uses 50% of the data used by the searchlight analyses (288 trials
vs. 144 trials) making it difficult to interpret this null result conclusively.

Classification Performance by Verb-Context and Noun. The foregoing searchlight
analyses averaged classification performance across the four nouns to-be-identified
and generalization ability to patterns generated by the five verb-contexts. It thus
remains possible that the results owe to particularly strong performance on a subset
of nouns and/or verb-contexts, with no information about the others. Whether the
results are driven by a subset of nouns and verb-contexts is of considerable interest
to the interpretation of the results: do these regions house domain-general
mechanisms for encoding structured semantic content, used across nouns and verb-
contexts? Or do the regions specialize in particular semantic content, either in the
semantic content of the nouns they represent or the verb-contexts in which they
appear? We were therefore interested in whether the classifiers performed
consistently when separately analyzed for each noun and each verb-context.

To determine whether the neural representations generalize to all verbs
used, we performed a searchlight analysis in which local classifiers were (1) trained
to make the same four-way agent/patient identification decisions described above
using data generated by the target verb (20% of the data) and asked to generalize to
the remaining four verbs (80 % of the data), and (2) trained using the remaining
four verbs (80% of the data) and asked to generalize to the target verb (20% of the
data). The results of (1) and (2) were then averaged to provide a measure of how
well the patterns of activity corresponding to noun/role combinations in that verb-
context generalize to the other four verb-contexts. This analysis produced 5
separate search maps of ImSTC for agent/patient identification in generalizing to
each of the five verbs. We iteratively localized clusters containing information for
4 /5 verbs using these search maps and a liberal threshold (p<0.05 voxelwise, k=50),
and asked whether the average classification accuracy in generalizing to the fifth
verb in the identified region was significantly greater than chance. Supplementary
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Table 4 shows the results of these analyses for the three ROIs, by generalization to

each verb.

We then performed a similar analysis examining classification performance,
broken down by the nouns occupying these roles. Here, we performed separate
searchlight analyses for each of the 6 possible pair-wise noun discriminations (e.g.,
discriminating “man as agent” vs. “girl as agent”), for both the agent and patient
roles. The ROIs were again iteratively localized using the results of 5/6 pair-wise
classifications and a liberal threshold (p<0.05 voxelwise, k=50), and the searchlight
results of 6t pair were averaged across the resulting ROI. The results are presented
for each pair-wise comparison in Supplementary Table 4.

(B). Generalization by noun pair

Noun Pair patient Ant-agent Post-
Discrimination agent
Man/Girl 1.85, p=0.039 2.68, p=0.0065 3.21,p=0.0019
Man/Dog 1.23,p=0.115 1.47,p=0.077 2.10, p=0.023
Man/Cat 2.90, p=0.004 2.22,p=0.018 2.02,p=0.027
Girl/Dog 1.20,p=0.121 1.08, p=0.145 2.62,p=0.0075
Girl/Cat 3.53, 3.2,p=0.0019 1.56, p=0.066
p=0.0009
Dog/Cat 1.71, p=0.05 1.20,p=0.121 1.06, p=0.15

Supplementary Table 4. Post-hoc analyses of agent and patient identification performance within
their corresponding ROIs when generalizing to (a) each verb context and (b) new pair-wise noun
discriminations. Values are t-statistics, with one-tailed p values against chance.

Experiment 3 Supporting Information

Data Acquisition and Preprocessing. Experiment 3 was conducted using the same
facilities and equipment as Experiments 1 and 2. A high-resolution structural scan
(Imm3isotropic voxel MPRAGE) was collected prior to functional data acquisition.
Each functional EPI volume consisted of 58 slices parallel to the anterior
commissure (FOV = 192mm,TR = 3500 ms, TE=28 ms, Flip Angle = 90°). We used
parallel imaging (iPAT 2) to obtain whole-brain coverage with 2x2x2 mm voxels. We
obtained whole-brain data in order to assess ImSTC’s functional connectivity to
various cortical regions. Those analyses are not presented in this thesis. For the
analysis presented here, we applied a mask generated by the dilating the anterior
agent and patient searchlight regions from Experiment 2 by 8 mm prior to analysis.
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Experiment 2 employed the same preprocessing operations as Experiments 1 and 2.
The data were not smoothed prior to classification analyses.

Experimental Procedure. Sentences were constructed from a menu of 6 nouns and
8 transitive verbs, to create every possible aRb proposition, excluding propositions
in which the same noun occupied both roles (e.g., “the goose approached the goose”).
Participants thus read 6x8x5=240 unique propositions, each presented once. This
contrasts with Experiments 1 and 2, in which each proposition was presented
multiple times. Whether a proposition was presented in the active or passive voice
was randomly determined, and 50% of the propositions were presented in each
voice.

We used 6 monosyllabic English nouns that refer to animals (‘moose’, ‘cow’,
‘hog’, ‘crow’, ‘goose’, ‘hawk). These nouns were chosen because their phonological
similarity relationships are distinct from their semantic similarity relationships.
Semantically, these nouns most naturally divide into a group of mammals (‘moose’,
‘cow’, ‘hog’), and a group of birds (‘crow’, ‘goose’, ‘hawk’). Phonologically, each noun
in one semantic class (e.g., ‘hog’ in the mammal class) has a strong phonological
associate in the other semantic class (‘hawk’ in the bird class). We were guided by
Mueller et al.’s (2003) PSIMETRICA model of phonological similarity in choosing
nouns with systematic phonological similarity relationships. On this
characterization, the phonetic constitution of a syllable can consist of three
sequential parts: an “onset” ((0-3 phonemes), a “nucleus” (1-2 vowel phonemes)
and a “coda” (0-5 consonant phonemes). The nucleus and coda jointly constitute the
“rhyme”, which determines our intuitive sense for whether two syllables rhyme. Our
stimuli consist of three pairs of phonologically similar nouns. Each phonologically
similar pair is similar along 2/3 of Mueller et al.’s, dimensions: similar onset and
nucleus {'hog’,’hawk’}, similar onset and coda {‘crow’,’cow’}, or similar nucleus and
coda {'goose’, moose’}.

To verify that participants indeed treated the expected stimuli as simiarl, and
independent group of participants (n=50) on Amazon Mechanical Turk performed
pairwise similarity ratings on these items, rating both how similar the words sound
and how similar the animals are. They rated each pair using a sliding scale that
ranged from 0-100. Qualitatively, zero was labeled to indicate “not similar at all”, 50
to indicate “somewhat similar”, and 100 to indicate “very similar”. All participants
performed both the semantic and phonological ratings; the order of which was
randomized. These ratings confirmed that the stimuli had the similarity structure
we expected (See Figure 5). We used these participants’ ratings to define the
similarity spaces with which we would model the similarity structure of other
participants’ brain responses.

We used 4 verbs that conveyed some aspect of a mental state, which we will,
following others, refer to as “psych verbs”, and 4 verbs that did not explicitly convey
mental state information, but were characterized primarily by different manners of
motion of the agent with respect to the patient/theme. These were 'chased’,
‘approached’, ‘passed’, and ‘attacked’. The four psych verbs broke down into two
pairs, the members of which were similar both semantically and syntactically:
(‘surprised’, 'frightened’), and ('noticed’, ‘detected’).
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For the first 4 scan runs, participants read these nouns sequentially, each
presented by itself independent of any sentence context. On a given trial, one noun
would be presented visually to the subject for 3.5 seconds, followed by 7 seconds of
fixation. After 7 seconds, participants could be asked a simple general knowledge
question about the animal (e.g., (“does it lay eggs?”), or a simple question about the
word’s phonology (“does it rhyme with ‘loose’?”). These questions were asked on %
of the trials. 50% of the questions were general knowledge questions, and 50%
were questions about phonology. On trials in which there was no question, the
stimulus presentation simply advanced to the next noun following the 7-second
fixation period. Each noun was presented 6 times per run, and 24 times total over
the course of the four runs.

For the last 6 scan runs, participants read the seconds generated by
combining the nouns and verbs in the manner described above. On a given trial, one
sentence would be presented visually to the subject for 3.5 seconds, followed by 7
seconds of fixation. After 7 seconds, participants could be asked a question about
who did what to whom in the sentence they had just read. These questions were
asked on % of the trials. 50% of the questions targeted the underlying subject (e.g.,
“did the moose approach something?”), and 50% targeted the underlying object
(“was the moose approached by something?”). On trials in which no question was
asked, stimulus presentation simply advanced to the next noun following the 7-
second fixation period.

Searchlight analyses.

All searchlight analyses for Experiment 3 were confined to the ImSTC. The searched
area was formed by dilating the group-level agent and patient ROIs discovered in
Experiment 2 8mm so as to encompass all of the mid and posterior regions of the
left superior temporal gyrus, superior temporal sulcus, and middle temporal gyrus.
The resulting ROI contained 599 2mm?3 voxels. This mask was warped from
Talairach space to each subject’s native space, and all classification analyses were
conducted in the subject’s native space. As in Experiment 1, all searchlight analyses
were implemented in the Searchmight Toolbox (Pereira & Botvinick, 2011) and
used a linear classifier with a shrinkage estimate of the covariance matrix. Local
voxel-neighborhoods were defined using a 2Zmm (one voxel) radius within the
ImSTC mask, entailing that non-edge neighborhoods again contained 27 voxels.

For all classification analyses, searchlights iteratively selected data from local
voxel-neighborhoods to make six-way decisions regarding the noun occupying the
agent or patient role on a given trial (moose? goose? cow? crow? hog? hawk?). As in
Experiments 1 and 2, active and passive versions of the same proposition were
considered identical for the purposes of these analyses. We performed two types of
classification analyses. The first mirrored the principal analyses of Experiment 2.
Here, we established a target function (e.g., the agent across motion verbs), trained
on N-1 verbs using that function, and tested the classifier’s ability to identify the
value of that variable for the held-out verb. We performed this analysis for the
following functions: agent, the patient, the stimulus, the experiencer, [agent OR
stimulus], [patient OR stimulus], [agent OR experiencer], [patient OR experiencer].
The second type of classification required the classifier to generalize automatically
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to a new variable. For example, we trained the classifier to identify the value of the
experiencer variable using only experiencer-subject verbs, and tested its ability to
identify experiencer-object verbs, vice versa, and then averaged the two results. We
performed this cross-training/testing method for the experiencer across syntactic
constructions, the stimulus across syntactic constructions, agent TO stimulus, agent
TO experiencer, patient TO stimulus, patient TO experiencer (and vice versa for
these cross-role classifications). For these cross-training analyses, we trained on
one category and tested on the second, then trained on the second and tested on the
first. We then averaged these two iterations to obtain the final classification
accuracy.

For all analyses, classification accuracies for each subject were averaged
across cross-validation folds, and the mean accuracy was assigned to the center
voxel of the search volume. These individual-level accuracy maps were then
smoothed with a 2mm FWHM kernel, warped to Talairach space, and the group of
subjects’ maps was submitted to a directional one-sample t-test against 0.16667 to
determine whether any regions reliably encoded information about the identity of
the agent or patient across subjects. We used Monte Carlo simulation to determine
the probability of obtaining significant clusters given that the data contained only
noise. We used a voxelwise threshold of p<0.05, k=30, and a corrected threshold of
p<0.05 to identify regions exhibiting statistically significant effects. Statistical
correction was performed within searchlight analyses, correcting for multiple
search neighborhoods, but not across multiple searchlights. As in Experiment 1, we
estimated the smoothness of the data by conducting the same classification and
aggregation procedures with randomly permuted labels. Post-hoc analysis were
done as described within group-level ROlIs.

Post-hoc Analyses

For all post-hoc analyses, we used a leave-one-subject-out cross-validation
procedure to localize regions of interest without biasing the analyses, as in
Experiment 2. Specifically, we iteratively conducted group-level t-tests on the search
maps for 39/40 subjects to identify statistically significant clusters of informative
voxels with each subject’s data removed. All such regions were localized using a
voxelwise threshold of p<0.05 and a minimum cluster size of 25 voxels. These
significant voxel-clusters defined the exact ROI for the held-out subject for the post-
hoc test of interest. For any post-hoc analysis, the exact ROI queried could thus vary
slightly from subject to subject, though the number and general location of ROIs was
stable across all cross-validation iterations of all analyses. We performed repeated-
measures ANOVAs to test for a sub-region by role interaction for the anterior agent
and patient regions, the stimulus and experiencer sub-regions, and the
agent/stimulus and patient/experiencer sub-regions.
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