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Abstract
Height has an extremely polygenic pattern of inheritance. Genome-wide association studies

(GWAS) have revealed hundreds of common variants that are associated with human

height at genome-wide levels of significance. However, only a small fraction of phenotypic

variation can be explained by the aggregate of these common variants. In a large study of

African-American men and women (n = 14,419), we genotyped and analyzed 966,578 auto-

somal SNPs across the entire genome using a linear mixed model variance components

approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated

an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unre-

lated individuals. While this estimated value is similar to that given by Yang et al in their

analyses, we remain concerned about two related issues: (1) whether in the complete

absence of hidden relatedness, variance components methods have adequate power to

estimate heritability when a very large number of SNPs are used in the analysis; and (2)

whether estimation of heritability may be biased, in real studies, by low levels of residual hid-

den relatedness. We addressed the first question in a semi-analytic fashion by directly simu-

lating the distribution of the score statistic for a test of zero heritability with and without low

levels of relatedness. The second question was addressed by a very careful comparison of

the behavior of estimated heritability for both observed (self-reported) height and simulated

phenotypes compared to imputation R2 as a function of the number of SNPs used in the

analysis. These simulations help to address the important question about whether today's

GWAS SNPs will remain useful for imputing causal variants that are discovered using very

large sample sizes in future studies of height, or whether the causal variants themselves will

need to be genotyped de novo in order to build a prediction model that ultimately captures a

large fraction of the variability of height, and by implication other complex phenotypes. Our

overall conclusions are that when study sizes are quite large (5,000 or so) the additive heri-

tability estimate for height is not apparently biased upwards using the linear mixed model;

however there is evidence in our simulation that a very large number of causal variants

(many thousands) each with very small effect on phenotypic variance will need to be discov-

ered to fill the gap between the heritability explained by known versus unknown causal vari-

ants. We conclude that today's GWAS data will remain useful in the future for causal variant

prediction, but that finding the causal variants that need to be predicted may be extremely

laborious.

Introduction
Hundreds of genome-wide association studies (GWAS) since 2005 have reported over 5,000
common genetic variants that were found to be associated with over 200 diseases and traits

Heritability of Height

PLOS ONE | DOI:10.1371/journal.pone.0131106 June 30, 2015 2 / 17

Scholar Award (to CAH), Department of Defense
Breast Cancer Research Program; 5U19CA148537
Elucidating Loci Involved in Prostate Cancer
Susceptibility (ELLIPSE), NCI; U01HG004802-04 and
1U01HG007397-01, Population Architecture using
Genomics and Epidemiology (PAGE), NHGRI; 15UB-
8402, New Methods for Genomic Studies in African
American Women, California Breast Cancer
Research Program; RC2CA148085, Expanding
resources for understanding the genetic basis for
prostate cancer in African Americans.

Competing Interests: The authors have declared
that no competing interests exist.



(http://www.genome.gov/gwastudies/) [1]. Nevertheless the proportion of phenotype variance
or disease risk that common variants can possibly contribute to is controversial. For example,
two research groups, Lango Allen et al (2010) and Yang et al (2010) estimated the heritability
of height that is explained by common variants and drew somewhat different conclusions [2,
3]. We investigated several issues regarding the interpretation of height heritability using the
linear mixed model approach described by Yang et al [3]. These issues are

1. The degree to which estimates of heritability obtained using the LMM approach are depen-
dent upon the existence of subtle population structure (i.e. hidden relatedness) in order to
ensure that variance components are identifiable (see below).

2. As described in [4] we are also interested in whether or not the additive heritability of height
estimated in the linear mixed model method (LMM) applied to GWAS data can be attrib-
uted to

a. dissection of distant relatedness encompassing the complete additive phenotypic effects
of all potential variants whether measured or unmeasured or

b. the additive phenotypic effects of only those SNPs that are measured in GWAS studies
plus the variants in high linkage disequilibrium (LD) with these SNPs (i.e. which are
highly imputable using these SNPs.)

Several authors have raised concerns about the behavior of the LMM applied to GWAS data
in the presence of population structure either due to gross population stratification or more
subtle relatedness [5, 6]. We undertook a more thorough analysis of the issue of the effect of
small amounts of residual relatedness in GWAS data on heritability estimation using the LMM
than has been described before.

If (2b) holds then this implies that currently used GWAS data will retain their value far lon-
ger than if only (2a) is true, i.e. while identifying which variants are causal may require very
large sample sizes and detailed functional analysis in future work, once the causal variants are
identified they may be imputed using today's existing genotyping technology. Here we say that
the measured SNPs are good surrogates for the causal variants and a good predictor variable
(highly correlated with height in unrelated samples) can be made up from the surrogates. On
the other hand, if (2a) is driving the results of the LMM, then it will likely be necessary to
greatly expand the number of variants (or surrogates) that need to be directly genotyped in
order to capture the estimated height heritability in a prediction equation made up of the geno-
typed SNPs.

In order to address this question of the effect of low levels of hidden relatedness we under-
take an extensive analysis of imputation behavior within a large GWAS. We assembled a large
sample of men and women of African ancestry from 21 studies in order to explore how much
of the heritable component of height is attributable to common variants in this population, and
we conduct analyses of the observed height data and of simulated phenotype data (keeping the
genotypes and simulating a continuous phenotype in place of observed height according to
known polygenic models).

A related question concerns the expected performance of the method in the absence of pop-
ulation stratification and relatedness. Our concern is that the model for the variance of the out-
come (i.e. height) may become unidentifiable if enough independent SNPs are used in the
analysis. Here we are taking note of the fact that the genetic similarity matrix G used by Yang
et al can be expected to approach (as the number of SNPs increase) an estimate of twice the
kinship matrix and this is equal to the identity matrix if there is no population stratification or
relatedness. As described below, the variance components model used to estimate heritability is
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unidentifiable if G is exactly equal to the identity matrix. Therefore it is possible that GWAS
that rely upon many hundreds of thousands of markers may require some level of hidden
structure or relatedness to estimate heritability precisely. We studied the behavior of the esti-
mate of heritability as sample size increases and as the number of independent SNP predictors
increases.

Methods

Statistical Models
There are a few different approaches used in polygenic analysis. Commonly used approaches
include the omnibus (global) analysis, the score statistics approach, and kernel machine meth-
ods [2, 7–11]. The variance components approach used in Yang et al is one special case of ker-
nel machine methods, which projects the similarity in height on a genetic similarity matrix (G)
equivalent to the Balding-Nichols matrix [3, 12].

The method features a mixed model

y ¼ μþXaþ Zuþ ε ð1Þ
where α is a vector of fixed effects, Z is a genotype matrix of common variants, and is column-
standardized to zero mean and unit variance. The risk coefficients associated with these vari-
ants are treated as random effects with effect size u, u ~ N(0, σu

2I). The residual terms are dis-
tributed as multivariate normal N(0, σe

2I). The polygene term Zu, with the jth element equal to
XM
i¼1

zijui, where M is the number of markers in the model, has variance σg
2 = Mσu

2 as genotypes

are standardized and assumed to be independent. Therefore we have

VarðyÞ ¼ su
2ZZ0 þ se

2I ¼ sg
2Gþ se

2I ð2Þ

where G = ZZ’/M, or

Gij ¼
1

M

XM
k¼1

ðzik � 2fkÞðzjk � 2fkÞ
2fkð1� fkÞ

and fk is the allele frequency of the k
th marker. Here M is generally very large, i.e. correspond-

ing to the hundreds of thousands of SNPs on a typical GWAS array Note that the Gmatrix is 2
times the Balding-Nichols matrix which is used as an estimator of kinship coefficients between
individuals based upon SNP data [12].

The Gmatrix is commonly used for correcting association studies for population stratifica-
tion, admixture and/or relatedness [12], such as in the principal components analysis (PCA)
described by Price et al (2006) [13] and the Efficient Mixed-Model Association eXpedited
(EMMAX) method described by Kang et al (2010) [14], both of which are widely employed by
researchers to control for hidden population structure and relatedness. Because of the identity
of the methods used by Yang et al to estimate height heritability (which they attribute to the
specific SNPs genotyped plus variants for which the SNPs are good surrogates) and the method
of Kang et al to control for hidden structure and relatedness, it is natural to wonder whether
weak hidden relatedness still evident in nominally unrelated people may be influencing the
heritability estimates. More precisely, if there are only very close relatives in the sample then
we would expect that a relatively small number of SNPs would be able to estimate kinship
between the relatives and hence provide an estimate of additive heritability by relating similar-
ity in phenotype to similarity in kinship. It would be wrong to think, however, that any predic-
tor equation made up of only those SNPs could be expected to provide good estimation of the
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phenotype of interest in another sample, whether the new sample consists of (a different set of)
close relatives, or of unrelated individuals. That is, we would not want to misattribute the addi-
tive heritability estimate based on kinship to the effects of the measured SNPs themselves. A
primary concern in this paper is whether this kind of misattribution of effect may be happening
when nominally unrelated individuals are used, given that no set of individuals can possibly be
truly unrelated.

As a motivation of these concerns consider the model for multivariate normal outcome Y
with mean and variance defined as

EðYÞ ¼ Xb

and

VarðYÞ ¼ sg
2Gþ se

2I

ð3Þ

From Anderson [15] it can readily be shown that the score statistic for testing for nonzero
s2
g in (3) can be written as

T2 ¼ N

ðY�Xb̂Þ0GðY�Xb̂Þ
ŝ2 � trðGÞ

h i

NtrðGGÞ � trðGÞ2

2

ð4Þ

Where N is sample size and b̂ and σ2 are the maximum likelihood estimates of the slope and
variance parameters for fitting model (3) under the null model with s2

g ¼ 0. Notice that if the

genetic matrix G is equal to the identity matrix then this quantity is 0/0, or undefined. Under
an assumption that all individuals are unrelated it may be expected that as the number of SNPs
increases, the estimate of G, namely 1

M
ZZ0, will tend towards the identity matrix I (since all col-

umns of matrix Z have mean zero, variance 1, and the different elements are independent). If
the score test is undefined with G = I then we expect that there will be loss of power to detect a
non-zero s2

g as G! I. On the other hand, if G is bounded away from I, this should avoid the

power problem although it may complicate the interpretation of the results of the test. This
suggests to us that some population stratification or relatedness may actually be needed in
order to achieve well-behaved estimates, at least in certain circumstances.

Our first simulation is based on this score test statistic. For N individuals each with M SNPs
we generate outcomes Y from model (3) by randomly sampling the columns, Zj for j = 1,. . ., M,
of Z (the normalized SNPs) either from a distribution with mean E(Z) = 0 and Var(Z) = I or
from a distribution with mean E(Z) = 0 and Var(Z) = K, with K having ones on the diagonal
and off diagonal elements uniformly distributed between 0 and 0.05, corresponding to a mod-
est amount of hidden relatedness. Finally outcome Y is generated as multivariate normal with
mean 0 and Var(Y) = σg

2G + σe
2I, with G = 1

M
ZZ0. In the simulations we keep σg

2 = σe
2 so that

true underlying heritability is set to ½. This simulation approach allows us to directly investi-
gate the distribution of T2 in (4) as a function of N, M, and Var(Z), as well as other related
issues discussed below.

In addition to the analysis of purely simulated data we further investigate our primary con-
cerns by conducting the simulation experiment described below using both real and simulated
phenotypes and/or genotypes, with the source of actual phenotype and genotype data being a
combination of two large GWAS studies, conducted among men and women of African ances-
try. There are some minor complications in our use of African ancestry samples in these exper-
iments, due to recent admixture, since pairs of individuals with higher non-African ancestry
(e.g. European) will have kinship coefficients that are exaggerated by the similarity in ancestry,
and are not interpretable as estimates of identity by descent (IBD) sharing [16]. We minimize
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this aspect of the data in several ways, first by removing individuals who are the most “similar”
to other individuals from our primary dataset (see below) and second by always including lead-
ing principal components as adjustment variables in our statistical analyses when estimating
heritability for either observed or simulated outcomes. Moreover we note that non-African
admixture proportion (as captured by leading eigenvectors) was not significantly related to
height in our data.

Our simulation experiment was as follows

1. We estimated relatedness using the full set of SNP data and removed individuals who were
related to one or more others with relationship coefficient (equal to twice the kinship coeffi-
cient)> 0.025

2. We estimated height heritability using the self-reported height data available from the
GWAS study using all SNPs (nearly 1 million were measured).

3. We randomly divided the combined study into two sets of equal size, we labeled one set the
"reference panel" and the second set the "main study"

4. Using a pruned set of SNPs (about 453,000 SNPs chosen as described below) we then
masked 1,000 SNPs so that they were available in the reference panel but not in the main
study.

5. We then simulated phenotype data using the 1,000 SNPs as causal SNPs with heritability set
to 50% of phenotype variance, for both reference panel and main study participants

6. Using the pruned SNPs we phased both reference panel and the main study data using
SHAPEIT [17]

7. Using the haplotypes in the reference panel we then

a. Imputed the 1,000 masked causal SNPs in the main study using IMPUTE2 [18] using the
non-masked (measured) data. We computed an average imputation R2 by comparing the
imputations for the masked SNPs with the true genotypes for the same SNPs in the main
study

b. In the main study we estimated heritability of true height using the measured SNPs using
the LMM described above

c. In the main study we also estimated heritability of simulated phenotypes using the mea-
sured SNPs

We then randomly removed from consideration half the measured SNPs and repeated step
7, and then repeated step 7 again after removing 3/4 of the measured SNPs and finally once
again after removing 7/8 of the measured SNPs. In each case we are interested in how the heri-
tability estimates and the imputation R2 estimates varied with the number of measured SNPs.
More precisely we expected that heritability will decline approximately with the average impu-
tation R2. If, as the number of SNPs used in the analyses and simulations is reduced, the herita-
bility estimates using either the simulated or true phenotypes remained higher than expected
given the corresponding imputation R2, then we may interpret the results of the heritability
estimation in the real data as reflecting residual relatedness and therefore a misattribution of
effect from unmeasured to measured SNPs.

In addition to seeing how well the various subsets of SNPs predicted the unmeasured SNPs
in the reference panel we also estimated the ability of each subset to impute the common
(MAF> 1%) SNPs in the 1,000 Genomes Study. We used the combination of SHAPEIT and
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IMPUTE2 to impute these SNP panels for all unrelated individuals described above with the
March 2012 1,000 Genomes Study serving as a cosmopolitan reference panel.

Ethics Statement
The Institutional Review Board at the University of Southern California approved the study
protocol.

Study Population
This study includes women and men of African ancestry from 9 epidemiological studies of
breast cancer and 12 epidemiological studies of prostate cancer, which comprise a total sample
size of 15,032 (5,984 women and 9,048 men). Please refer to S1 File for a brief description of
each of the studies.

Genotyping and Quality Control
Genotyping was conducted on Illumina 1M-Duo BeadChip. Of 15,032 DNA samples avail-
able we excluded 613 with either low DNA concentrations, unexpected sex chromosome
heterozygosity (i.e. conflicting or ambiguous sex based on the X chromosome genotypes
when compared to reported sex), call rates < 95%, or < 5% African ancestry. The resulting
dataset included genotypes for a total of 14,419 participants. Starting with 1,153,397 SNPs,
we removed SNPs on sex chromosomes (n = 34,504), with <95% call rate, MAFs <1%, or
P value for Hardy-Weinberg equilibrium (HWE) <1×10−7(n = 142,339). Randomly selected
SNPs that are not located within the known risk loci of height were used to infer the principal
components (PCs) (n = 9,976) and excluded from analysis. (We have previously found that
including even 2,500 randomly selected SNPs in PC analysis, is more than sufficient to cor-
rect for admixture and other gross stratification in a study of multiethnic samples, including
African American, see [19]). The final analysis included 966,578 autosomal SNPs among
14,419 subjects.

Analysis of African Ancestry GWAS
In the analysis of the observed genotypes and either simulated or observed phenotypes for the
African ancestry GWAS we used the principal components approach to control for the effects
of admixture or other gross population substructure in analyses of both real and simulated
data. We used 9,976 SNPs randomly selected from the genome, excluding known risk loci for
height to infer PCs. Known risk loci for height were identified from a catalog of published
GWAS (http://www.genome.gov/gwastudies/) listed on the webpage of the National Human
Genome Research Institute, including GWAS scan results from Lango Allen et al (2010), and a
GWAS scan in individuals of African ancestry by N’Daiye et al (2011) [2, 20]. We included the
first 10 PCs in all models to control population structure.

Further Simulation Details
Distribution of T2. For the first set of simulations we directly simulated the score test sta-

tistic. Here we report the mean value of T2 and its standard error over the simulations, as well
as the fraction of simulations for which T2 was greater than an empirically determined 95 per-
cent critical value, obtained by simulation under the null hypothesis. We performed this addi-
tional null simulation because, while typically score tests such as used here are asymptotically
distributed as a chi-square random variable with 1 degree of freedom, the asymptotics may not
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apply in the case when the genetic matrix G approaches the identity matrix because of the lack
of model identifiability described above.

Estimating heritability explained by common variants. We employed a variance compo-
nents approach above to estimate the heritability explained by common SNPs from an additive
polygenic model [3].

We fit several LMMs using the Genome-wide Complex Trait Analysis (GCTA) tool. Fixed
effects included age, sex, study site and the first 10 PCs.

Estimating additive and epistatic components of variance. We used the—genome com-
mand in PLINK [21] (http://pngu.mgh.harvard.edu/purcell/plink/) to estimate the probability
of pair-wise IBD (Pr(IBD = 0), or z0; Pr(IBD = 1), or z1; Pr(IBD = 2), or z2) for all pairs in the
sample using genotype information from all the SNPs. Following that we constructed an “unre-
lated” (only distantly related) sample by dropping one of each pair of related individuals (rela-
tionship coefficient k = 1/2 z1 + z2> 0.025). This left 12,488 individuals remaining. On the
other hand, by considering higher IBD sharing pairs, we constructed two related samples (z1>
= 0.3, n = 1,415 and z1> = 0.4, n = 575) and again estimated heritability of height using the var-
iance components approach. We argue that the resulting estimate may include both additive
and epistatic components as well as the effects of shared environment, the latter two compo-
nents are assumed to be less important for distant than for close relationships, and to die off
more quickly than the additive component h2 as relationships become more distant. Of course
the estimate using closely-related individuals will also reflect the effects of any variants (such as
rare causal SNPs) that are not in strong LD with the GWAS SNPs but which nevertheless are
more similar within sets of close relatives than between them.

Pruning of SNPs. We pruned SNPs from the whole genome and kept only those with
multiple-tagging correlation coefficient (R2) less than 0.25 using PLINK [21] using a 50 SNP
window (http://pngu.mgh.harvard.edu/purcell/plink/). Following that, we randomly selected
1,000 SNPs from the pruned SNP set and treated them as causal SNPs.

Simulated Phenotypes. A random effects model was assumed where the effect size u was
sampled from N(0,1). Upon calculating the polygenic genetic score g, a residual effect e was
sampled from N(0, σg

2 (1-h2)/h2) to set the heritability of the phenotype to h2. Phenotype data
were then generated by summing the additive genetic effects and residual effects.

Results

Distribution of T2

Table 1 shows the estimated mean values of the score test T2 as a function of the sample size N,
the number of causal SNPs,M, and whether the simulated normalized SNP variables Zj,
j = 1. . .M are distributed with variance covariance matrix I or covariance matrix K with K
being the model of moderate sample relatedness described above. In these simulations the true
heritability of the trait h2 was set to ½, therefore the heritability per SNP varies inversely with
the number of markers. In order to compute power without relying too strictly on the asymp-
totic chi-square distribution of the test, we simulated its null behavior under the two different
null hypotheses (i.e. h2 = 0 with either K or I providing the alternative).

With a sample size of N = 1,000 and when normalized SNP variables Z have variance matrix
I and number of markers, M, making up the heritability is either 120 or 6000, the simulated
distribution of T2 is very far away from the empirically obtained test criteria and there is good
power available to reject the null hypothesis that s2

g ¼ 0 and by implication also to estimate

this quantity with reasonable accuracy. However for M = 50,000 or above the mean value of T2

falls markedly and very poor power for rejecting the null hypothesis is present with this sample
size. When there is moderate relatedness between individuals in the study, for 50,000 markers
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or above the power of rejecting the null hypothesis that s2
g > 0, is considerably larger than

when all markers are independent; from M = 50,000–300,000 markers the power of detecting
s2
g > 0 is quite flat presumably indicating that the similarity matrix 1/M ZZ’ has nearly con-

verged to the true relationship matrix used in the simulation.
For the larger sample size of 4,000 there still is good power to reject the null hypothesis up

to 100,000 markers irrespective of whether there is or is not mild population relatedness pres-
ent. However when there is no hidden relatedness (K = I) there still remains a marked reduc-
tion in the average magnitude of the simulated T2 as M increases and at 300,000 markers the
estimated power falls to 69%.

We also notice some interesting behavior when examining the empirical type 1 error criteria
in the various simulation conditions. For example with N = 1000 individuals under the null
hypothesis of zero heritability and complete lack of relatedness the empirical criteria is larger
(7.08) than the critical value (3.84) for a chi-square distribution with 1 degree of freedom even
for M = 120 markers, and the empirical criteria gets larger as M increases. We interpret this as
a failure of the score test to be completely reliable under the null because of a near lack of iden-
tifiability (due to the similarity between the matrix I and the matrix G), with G converging

Table 1. Tabulations of the score test T2, empirical critical value and power to detect a 50% heritability over 2000 simulations for varying number
of SNPs (M), numbers of observations (N) and relatednessmatrix K.

N = 1000

Unrelated (K = I) M = 120 M = 6,000 M = 50,000 M = 100,000 M = 300,000

Mean 2,069.0 42.7 5.8 3.6 2.2

(SD) (434.9) (19.5) (6.2) (4.5) (3.1)

Empirical Critical+ Value+ 7.07 7.54 7.94 8.11 8.53

Empirical Power++ 1 0.992 0.270 0.130 0.05

95% CI of Power (1–1) (0.990–0.994) (0.257–0.283) (0.120–0.140) (0.044–0.056)

Moderately related Off diag(K)~unif(0,.05)

Mean 1,765. 0 26.7 9.7 8.7 8.2

(SD) (413.0) (9.9) (4.5) (4.1) (3.9)

Empirical Critical Value 6.57 4.85 4.27 4.50 4.29

Empirical Power 1 0.998 0.903 0.860 0.846

95% CI of Power (1–1) (0.997–1) (0.894–0.912) (0.850–0.870) (0.834–0.857)

N = 4000

Unrelated (K = I) M = 120 M = 6,000 M = 50,000 M = 100,000 M = 300,000

Mean 33,080.0 666.8 80.7 41.0 15.1

(SD) (5011.0) (90.5) (25.8) (17.9) (13.1)

Empirical Critical Value 7.74 7.44 7.88 7.47 7.72

Empirical Power 1 1 1 0.996 0.693

95% CI of Power (1–1) (1–1) (1–1) (0.994–0.998) (0.679–0.706)

Moderately related Off diag(K)~unif(0,.05)

Mean 31,520.0 441.5 146.9 131.2 121.7

(SD) (5098.3) (55.1) (18.4) (16.4) (15.0)

Empirical Critical Value 6.89 4.81 4.00 3.96 3.88

Empirical Power 1 1 1 1 1

95% CI of Power (1–1) (1–1) (1–1) (1–1) (1–1)

+ The empirical upper 5 percent critical value was computed under the null (h2 = 0) from 3,000 simulations
++ Power was computed as the fraction of simulations for which T2 was greater than the empirical critical value.

doi:10.1371/journal.pone.0131106.t001
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closer to I as the number of markers increase. With 4,000 individuals under the same condi-
tions the empirical criteria are all elevated compared to the 3.84 nominal criteria, but no clear
trend is evident as the number of markers increase. We expect that if many more markers were
to be considered, that we would also see an increase in the empirical criteria, but we have not
performed this experiment. For the moderately related individuals an opposite trend in the
empirical type 1 error criteria with the number of markers is seen for both 1,000 individuals
and 4,000 individuals. Now as the number of markers increases and hence G approaches the
matrix K the empirical type 1 error criteria decreases and approaches the nominal criteria. We
interpret this as due to better and better identifiability of the model as G becomes consistently
closer to K than to I. Further details about the distribution of T2 under the null hypothesis are
given in S1 Table.

Heritability Estimation Among Unrelated and Related Individuals
While we did not identify any monozygotic (MZ) twins or duplicate samples (z2 = 1), we
found evidence of first-degree relatives (parent-offspring pairs and siblings) in the sample
(Fig 1). Our independent sample (k<0.025) should have excluded possible parent-offspring
pairs (z1 = 1), siblings or half siblings (z1 = 0.5) and cousins (z1 = 0.25). In the independent
sample the 966,578 SNPs as a whole explain 44.7% (se: 3.7%, p<10−16) of the total variance
of height, which is close to the fraction that Yang et al (2010) reported as being explained by
294, 831 common SNPs in a sample of Australian adolescents (44.9%; se: 8.4%; N = 3,925,
p< 10−7) [3].

A significant increase in the estimation of genetic variance component was noted, however,
when considering closely related subjects. In the sample consisting of pairs of subjects with
pair-wise z1> = 0.3, we found that 76.5% (se: 11.7%, p<10−10) of total phenotypic variance
could be explained by the set of 966,578 SNPs, while in the sample where pair-wise z1> = 0.4,
the fraction was 75.1% (se: 13.3%, p<10−7) (Fig 2). This is close to the 80% heritability of height
estimated from twin studies [22–24]. Of course with highly related individuals it does not
require 966,578 SNPs to estimate heritability. When we sampled 100,000 SNPs at random we
estimated a heritability of 74.0%, which was statistically very consistent with the 75.1% esti-
mated using all SNPs.

Results of SNP Removal on Imputation R2

Table 2 shows the distribution of the IMPUTE2 info score, an estimate of the squared correla-
tion between imputed and true SNPs for the SNPs in the 1000 Genomes Study with minor
allele frequency greater than 1% in the 1000 Genomes Study African ancestry samples.

Table 3 gives the main results of the second simulation. The ability of the pruned SNPs, and
subsets of the pruned SNPs, to predict the masked causal SNPs using the imputation methods
described is characterized by the observed mean squared correlation between imputation dos-
age of causal SNPs and true genotypes in the main study panel. The mean value of observed R2

(mean R2 for imputation) was equal to 0.89 when all pruned SNPs were included, and steadily
declined to 0.21 when only 12.5% of the pruned SNPs were used in the imputation basis. The
0.89 was higher than the target R2 (.25 over a 50 SNP window) used in the PLINK pruning by a
large margin, which appears to show that the haplotype-based methods used by IMPUTE2 a
re not greatly affected by the removal of nearby SNPs even when multivariate pruning is
attempted. It is interesting to note when comparing Table 2 to Table 3, that the info scores for
imputing the 1000 Genomes Study SNPs were considerably higher for the smaller SNP sets
than the R2 seen for the masked SNPs. While starting out very similarly, the drop in R2 was
much greater than the drop in info scores as SNPs were removed. This is likely a reflection of
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the pruning that we performed prior to picking the causal SNPs, i.e. our pruned SNPs were less
predictable (on the basis of the observed SNPs) than typical SNPs in the 1000 Genomes Study.
It is unclear however, why this is not also seen for the larger sets of SNPs (first two lines of
Tables 2 and 3).

Fig 1. Relatedness in the African Ancestry Sample. A plot of the probability of sharing 1 allele identical by descent against probability of sharing zero
alleles.

doi:10.1371/journal.pone.0131106.g001
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Results of SNP Removal on Heritability Estimation of Simulated
Phenotypes
As expected when using the LMM on the simulated phenotypes we were able to recover most of
the simulated heritability (set at 50%) using the actual genotypes for the unmasked causal SNPs
(h2 = 46.7%, se = 1.4%, first line of Table 4). However we noticed a marginally significant drop in
the estimated heritability (to h2 = 33.9%, se = 6.5%) when all 966,578 SNPs including the 1,000
causal SNPs were used simultaneously in the LMM, indicating that some of the signal from the
causal SNPs was being swamped by the remaining SNPs. Since the causal SNPs were sampled
randomly from the pruned SNPs we also ran the LMM using only the pruned (including causal)
SNPs, the heritability was estimated to be only slightly higher (34.3% se = 7.8%) again indicating
that the addition of non-causal SNPs seems to have partly swamped the LMM's dissection of sig-
nal from noise. When only the non-causal SNPs were used the estimated heritability dropped

Fig 2. A comparison of phenotypic variation explained by different numbers of SNPs in close relatives. Variation of height explained by 10%, 30%,
50%, 80% and 100% of the nearly one million autosomal SNPs. Results are shown for two samples of related (z1> = 0.3, blue line and z1> = 0.4, red line)
individuals.

doi:10.1371/journal.pone.0131106.g002

Table 2. Effects of SNP removal on prediction of 1000 genomes SNPs using imputation based upon subsets of the 452,696 pruned SNPs.

1000 GenomesImputation Min. 1st Qu. Median Mean 3rd Qu. Max.

All SNPs 0 0.83 0.91 0.87 0.96 1.00

50% SNPs 0 0.70 0.80 0.78 0.86 1.00

25% SNPs 0 0.54 0.64 0.64 0.75 1.00

12% SNPs 0 0.49 0.48 0.51 0.57 1.00

Shown are the mean and quartiles of the distribution of estimated R2 values (IMPUTE2 info scores) for imputation of all variants found in the 1000

Genomes Study with frequency > 1% in African populations. The imputation basis consists of all (pruned) non-causal SNPs and randomly chosen

subsets.

doi:10.1371/journal.pone.0131106.t002

Heritability of Height

PLOS ONE | DOI:10.1371/journal.pone.0131106 June 30, 2015 12 / 17



even further to 23.4% (se 7.3%) and further drops were seen as more SNPs were removed. The
final estimate, using only 12.5% of the pruned SNPs was 6.8% (se = 4.3%).

Results of SNP Removal on Heritability Estimation of Self-reported
Height
We next consider the results for the actual self-reported height data (last 2 columns of Table 4).
As given above, using all SNPs and all 12,488 unrelated participants (i.e. ignoring the split into
"reference panel" versus "main study") the heritability (as reported above) of the self-reported
height data was estimated to be equal to 44.7%. Here however we focus (for the sake of compa-
rability with Table 3) on the results from the 6,244 participants assigned to the main study for
the purpose of the analysis. When heritability of height is estimated for these participants using
all 966,578 SNPs a slightly higher h2 is estimated 53.2% (se. 6.8%) than in all the participants
but this clearly may be just a random fluctuation. Interestingly when only the pruned SNPs are
used the heritability increased from 53.2% to 62.3% (se. 8.3%) Thereafter (as additional pruned
SNPs were removed) h2 decreased but not nearly as rapidly as for the simulated phenotype
staying at 24.2% (se 4.7%) when only 12.5% (a total of 56,587 SNPs total) of the SNPs were
used in the heritability analysis. We also noticed a similar pattern when all 12,488 individuals
were included, with, for example, an increase to 52.3% (from 44.7%) observed with only the
pruned SNPs.

Table 3. Effects of SNP removal on prediction of masked causal SNPs using imputation based upon subsets of the 452,696 pruned SNPs.

Causal SNPs imputation Min. 1st Qu. Median Mean 3rd Qu. Max.

All non-causal SNPs 0.32 0.87 0.91 0.89 0.94 0.99

50% non-causal SNPs 0.11 0.70 0.80 0.76 0.86 0.97

25% non-causal SNPs 0.02 0.39 0.52 0.51 0.64 0.94

12% non-causal SNPs 0.00 0.11 0.19 0.21 0.29 0.89

Shown are the mean and quartiles of the distribution of estimated R2 values for imputation of the 1000 causal SNPs masked in the main study compared

to actual unmasked genotypes. The imputation basis consists of all (pruned) non-causal SNPs and randomly chosen subsets.

doi:10.1371/journal.pone.0131106.t003

Table 4. Effects of SNP removal on the estimated heritability of simulated phenotypes and actual self-
reported height, using LMM.

Simulated Phenotype Observed Height

SNP Set considered h2 (%) se(h2) h2(%) se(h2)

1000 causal SNPs 46.7 1.4

All (Un-pruned) including Causal 33.9 6.5 53.2 6.8

All (Pruned) including Causal 34.3 7.8 62.3 8.3

All (Pruned) non-causal SNPs 23.4 7.3 62.6 8.3

50% non-causal SNPs 20.7 6.5 47.4 7.2

25% non-causal SNPs 13.2 5.4 33.6 5.9

12% non-causal SNPs 6.8 4.3 24.2 4.7

All analyses corrected for age, sex, study site, and 10 principal components. The un-pruned SNPs were

those 966,578 passing quality control measures and the 452,696 pruned SNPs were selected by PLINK to

reduce local LD. The 1000 causal SNPs were those used in the simulation of phenotype and were selected

from among the pruned SNPs. The results are shown for the 6,244 individuals in the main study portion of

the simulations for comparability to Table 3.

doi:10.1371/journal.pone.0131106.t004
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Discussion
Our first concern in this paper is whether the linear mixed model variance components
approach to estimating heritability from GWAS data requires low levels of relatedness between
individuals which would lead to a misattribution of overall additive heritability onto measured
SNPs. Our simulations in Table 1 (of the score test in the presence or absence of hidden relat-
edness) indicate that this is in certain instances a well-founded concern since (1) even low lev-
els of hidden relatedness can have an impact on the distribution of the score test and (2) that
one cannot go on adding independent variables into the heritability analysis forever without
seeing some loss of power. This is particularly the case for relatively small studies (N = 1,000 in
Table 1) which appear to have very little power to estimate heritability using the LMM for large
numbers of markers. However for larger studies of traits of strong heritability (as in the analysis
of height presented here) this may not be an overriding issue.

Our analysis of the most closely related individuals in the study (Fig 2) provides further
motivation of these concerns, as we find virtually the same estimate of additive heritability
using 100,000 SNPs as for 996,578 SNPs. Clearly these SNPs simply need to estimate kinship
coefficients between the highly related people and do not have to be in close LD with any phe-
notypically causal variants. Considering the 100,000 SNPs used as anything but delineators of
overall relatedness would likely be a misattribution of the effects of unmeasured variants (and
perhaps the effects of shared exposures, epistatic effects, etc.) onto the measured ones. We were
concerned that the much lower levels of relatedness among individuals in GWAS studies may
still be causing this kind of misattribution of effect from measured to unmeasured variants.

Our simulation experiment (simulated continuous phenotypes) did not however produce
visible signs of misattribution of effect. In fact the heritability of the simulated phenotype,
while well-captured (h2 = 46.7% versus the simulated 50%) using only the 1000 simulated
causal SNPs, was estimated to be considerably lower when either all the remaining SNPs (h2 =
33.9%), or only the pruned SNPs (h2 = 34.3%) were included in the model along with the 1000
causal SNPs (Table 4). When only the non-causal pruned SNPs were included heritability
dropped by an additional factor of 31.8% (from 34.3% to 23.4%) which was much larger than
the change in average imputation R2 which went from 100% when the causal SNPs are included
(i.e. the causal SNPs impute themselves perfectly) to 89% when only the non-causal pruned
SNPs are used. Further relative drops in h2 of 11.5% (23.4% to 20.7%), 36.4%, (20.7% to 13.2%)
and 48.0% (13.2% to 0.68) respectively were seen as all but 50%, 25%, and 12% of SNPs were
removed. These further relative drops in h2 were only slightly less than the further relative
drops in imputation R2 (14.6%, 32.8%, 58.5%) as the same SNPs were removed. Comparing
these later drops in R2 versus h2 do not imply strong evidence for misattribution in the sense
that we see with close relatives (where the estimate of heritability is shown to be very similar
over a wide range in SNP number).

Using the LMM, we estimated the heritability of human height in a sample of 14,419 sub-
jects of African ancestry. We estimated that 44.7% of phenotypic variance of height was attrib-
utable to the additive effect of genetic variants in populations of African ancestry. In related
samples, our results showed that the genetic component of variance explained about 75% of
phenotypic variation. This estimate of h2 would seem to imply that about 30% of height herita-
bility may be due possibly to epistatic components or environmental sharing that should be
less important among less closely related individuals than among close relatives or to the addi-
tive effect of other variants not in high LD with the markers, e.g. rare variants or common vari-
ants in poorly covered genetic regions.

When we focus on the results of our main experiment, some notable questions are raised
about how to interpret the h2 estimates from the LMMmethod. It appears to be naïve to take
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the estimate of h2 coming from the method literally as the amount of variability that can be
explained by the measured SNPs themselves. However, counter to our worries described above,
in the simulation these estimates seem to be under-estimates rather than over-estimates of the
portion of heritability that would be captured if all the causal SNPs are identified. In our simu-
lation experiment the heritability estimate dropped from 46.7% (se 1.3%) to 34.3% (se 7.8%)
simply by including the remaining pruned SNPs in the model and much further to 27.8% (se
7.3%) when the causal SNPs were removed even though the average R2 for imputing the causal
SNPs from the remainder of the pruned SNPs was equal to 0.89. This second drop is discrepant
with the high R2, it may have to do with the fact that in imputing causal SNPs the imputation
methodology is making use of haplotype information rather than simple linear relationships
between measured and unmeasured SNPs. Since the LMMmethod as implemented here and
in many other papers is using a strictly linear kernel function, it may be missing the haplotype
effects needed to impute the causal SNPs and hence to capture heritability. After this initial
drop in h2 further declines in h2 and R2 are somewhat more similar to each other comparing
Table 3 to Table 4 although the significance of this is not very clear since they seem to be mea-
suring different things.

For the actual self-reported height data the pattern of response of h2 to SNP removal is strik-
ingly different than for the simulated data. When only pruned SNPs are used estimated h2

increases from 53.2% (in the main study using all SNPs) to 62.6% and then declines, but
remains far higher than the analogous values of h2 seen in the simulation. It is possible that the
initial increase in heritability seen is explainable by the arguments of Speed et al [25] who
found that increases in estimated h2 resulted when regions which were rich in high LD SNPs
were down weighted in the similarity matrix used for the LMM, which we can expect to be a
result of pruning. However, this also was not reflected in our simulations; even though we
selected causal SNPs from only pruned SNPs and not the full set of 966,578 SNPs, in the simu-
lation heritability was only very slightly higher (34.3%, se 7.8%) when it was the pruned SNPs
that were added to the causal SNPs than when it was the full set of SNPs added (33.9% se
6.5%), see Table 4.

The analysis of the actual self-reported height data is therefore quite far out of agreement
with the simulation experiment, the drop off in heritability of the actual data is far slower than
the drop off in heritability of the simulated data. One possible explanation for this is that the
polygenic model that we simulated may not be polygenic enough, i.e. that there are far more
than 1000 causal variants affecting height. If polygene contributions involve common causal
variants lying nearly everywhere in the genome (each of course with very small effect), then we
can expect that the G matrix for the causal variants would very much mimic the G matrix
using all measured SNPs and even more so perhaps after pruning many SNPs out of regions
with especially high LD (explaining the jump in h2 after pruning).

Such an infinitesimal polygene [26] model implies that those contemplating functional work
to better understand this phenotype, and by implication other phenotypes for which there is
similar degree of heritability estimated in GWAS studies, may soon have a truly enormous
number of candidates to sort through as large scale consortia continue on the path towards
ever large sample sizes.

Putting aside this issue our simulations using the true genotypes available indicate that our
GWAS-based estimates of heritability of height are not obviously biased upwards by subtle
relatedness between the GWAS participants. Therefore concerning the central question, about
whether today's GWAS data will need to be supplemented with additional variants in order to
fully capture the additive heritability being estimated from LMM-based analyses, our results
seem to support the idea that GWAS data collected today will have considerable future value as
surrogates for as yet undiscovered causal variants, with the caveat that this value can be realized
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only if enough of causal variants can be identified and their effect sizes estimated. The concern
about the necessity of a nearly infinitesimal model to explain our GWAS heritability results is
that there may be so many causal variants and their effect sizes so small that characterizing
enough of them to form a useful predictor of complex phenotypes may require unattainable
levels of costs and resources.
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