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Abstract

Background

Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Neverthe-

less, the development of specific therapies against CSCs is hindered by the scarcity of

these cells in prostate tissues. Suspension culture systems have been reported to enrich

CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying

this phenomenon have not been fully explored.

Methodology/Principal Findings

We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial

PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined

by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and

invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene

expression profiling was then carried out using the Cancer Reference panel and the nCoun-

ter system from NanoString Technologies. This analysis revealed several upregulated tran-

scripts that can be further explored as potential diagnostic markers or therapeutic targets.

Furthermore, functional annotation analysis suggests that ΔNp63αmodulates the activation

of developmental pathways responsible for the increased stem identity of cells growing in

suspension cultures.

Conclusions/Significance

We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us

to better understand the molecular pathways that underlie CSC pathophysiology. This
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platform can be readily adapted to enrich and assay actual patient samples, in order to

design patient-specific therapies that are aimed particularly against CSCs.

Introduction
Prostate cancer (PCa) is the second most common malignancy in man worldwide, and yet its
etiology is still largely unresolved. As is the case in other epithelial tissues, cellular homeostasis
in the adult prostate is maintained through hierarchically organized cells with different prolif-
erative potentials [1]. Somatic SCs located at the apex of this hierarchy exhibit some unique
characteristics, including: the ability to self-renew and differentiate along several cell lineages,
localized growth in specialized physiological microenvironments (niches), and although they
are normally quiescent, they display a remarkable proliferative potential [2]. The hierarchical
stem cell (SC) model of carcinogenesis holds that PCa originates through alterations of genetic
and epigenetic factors that regulate the proliferation of normal SCs [3]. These aberrantly
expressed pathways ultimately lead to the transformation of normal SCs into malignant cancer
stem cells (CSCs). CSCs retain some of the characteristics associated with their non-malignant
counterparts, and are thought to be responsible for tumor initiation, progression and relapse,
as well as metastatic disease.

CSCs are also thought to be responsible for the development of resistance to conventional
therapies [4,5]. Traditional radio- and chemo-therapeutic agents are conceived under the
notion that all cells within a tumor are phenotypically equal. However, CSCs rely on intrinsic
mechanisms that render them comparatively more resilient than terminally differentiated cells,
including their slowly proliferating nature, high expression of ATP-binding cassette (ABC)
membrane transporters, and resistance to DNA damage and oxidative stress [6]. Therefore,
CSC-specific therapies have the potential to eradicate the disease at its origin, and to spare
non-tumorigenic SCs, thereby minimizing the adverse effects associated with otherwise non-
discriminating treatments.

Current methodologies for the isolation and study of CSCs are based on the expression of
surface markers first identified in normal prostate SCs (CD44+/α2β1

hi/CD133+) [7]. CD133 in
particular, has been widely utilized as a biomarker for the isolation of cells that exhibit a
stem-like phenotype in a variety of normal and malignant tissues [8,9]. The isolated study of
CSCs allows the analysis of molecular mechanisms responsible for malignant cell survival, sep-
arately from those occurring in terminally differentiated tumor cells or in non-tumorigenic SC
populations. Nevertheless, the development of therapeutic strategies based on CSC-targeting
has been limited due to the lack of suitable experimental models.

Human primary tumor samples (PTS) are considered to be the most accurate representation
of the tumor in vivo. However, the complexity of the physiological context often influences the
interpretation of the results. In contrast, human cancer cell lines (CCLs) are more dynamic
tools that can be used to dissect the many different molecular processes involved in carcinogen-
esis. Although PTS are still favored over CCLs, their highly restricted access makes in vitro
models the “go-to” choice for many research groups worldwide.

Recent studies have demonstrated that CCLs are similar to in vivo malignant tumors, as
they also consist of organizational hierarchies with different degrees of differentiation [10–12].
Flow cytometry analysis of PCa cell lines indicates that even after being propagated for years,
they still contain detectable numbers of stem-like cells, albeit often at extremely low percent-
ages. Pfeiffer et al. reported that CD133+ cells within the DU145 cell line account for
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approximately 0.01% of the total population, whereas DuCaP, LAPC-4, LNCaP, PC3, and
22Rv1 yield no detectable CD133 expression when analyzed via fluorescence activated cell sort-
ing (FACS) [13]. Thus, although CCLs represent a highly accessible and practical alternative to
PTSs, isolation of CSCs from this source remains difficult due to the small numbers of undiffer-
entiated cells contained in commercial cell lines.

Suspension culture systems are increasingly being used to enrich undifferentiated cell popu-
lations in PTSs and CCLs. Cells propagated using non-adherent substrates and serum-free
media grow as three-dimensional spheroid cell clusters (tumorspheres) that promote the pro-
liferation of progenitor cell phenotypes [14,15]. This is a complex phenomenon in which rare
undifferentiated cells are stimulated to engage in symmetrical division to expand the SC com-
partment. Although several variations of the tumorsphere assay have been reported, the genetic
mechanisms that trigger stem cell proliferation in spheroid cultures have not been fully
explored.

Modern gene expression analysis tools allow the study of transcriptional alterations with
increased sensitivity and specificity, compared to conventional microarray-based approaches
that are limited by major technological challenges [16]. For example, the nCounter Nanostring
system delivers digital readouts of each molecule of a target mRNA, using minimum amounts
of starting material, and without the need for cDNA synthesis [17]. Briefly, this system makes
use of pairs of capture and reporter probes that are tailored to each mRNA target sequence.
After hybridization, the transcript/probe complexes are immobilized, aligned in an electrical
field, identified, and enumerated based on color-coded tags that are coupled to the reporter
probe.

Coupling the dynamics of in vitro models with high-throughput gene expression profiling
could aid in the development of more effective CSC-targeted therapeutic strategies. Here, we
have adapted a tumorsphere culture protocol for the effective enrichment of CD133+ CSCs in
four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. All cell lines were able to
form highly proliferating and self-renewing spheres when plated in the serum-free, anchorage-
independent conditions that we used. We demonstrate that CSC-associated features (e.g.,
CD133 expression, as well as increased proliferative, invasive, and chemoresistant potential)
were significantly enriched in all prostasphere cultures. Gene expression profiling of parental
and enriched cultures using the nCounter NanoString system revealed several upregulated
transcripts that participate in the establishment of the malignant stem phenotype. Further-
more, functional annotation suggests that the CSC-enrichment observed in prostasphere cul-
tures occurs via the activation of developmental pathways modulated in part by the
transcriptional regulator ΔNp63α.

Materials and Methods

Cell lines and culture protocols
All cell lines were purchased directly from ATCC. Cells were used at the following passage num-
bers: 22Rv1, passage 11; DU145, passage 16; LNCaP, passage 13; PC3, passage 18. For gene
expression profiling experiments, PC3 cells were grown in 6-well ultra-low attachment culture
plates with EpiGRO human Prostate Complete Media Kit (hPCM,Millipore). For the rest of the
experiments, the four cell lines were propagated using three different culture protocols: a)
DMEM-FBS: monolayer cultures in DMEM-F12 (Gibco) supplemented with 5% fetal bovine
serum (FBS, Invitrogen) and 100 U/100 μg/ml penicillin-streptomycin (Gibco); b) DMEM-
PLUS: non-adherent sphere (prostasphere, PS) cultures grown in 6-well ultra-low attachment
culture plates (Corning) with DMEM-F12 supplemented with 20 ng/μl hEGF (Gibco), 20 ng/μl
bFGF (Gibco), 1x B27 without vitamin A (Invitrogen), 1x Insulin-Transferrin-Selenium A
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(Invitrogen) and 100 U/100 μg/ml penicillin-streptomycin; and c) hPCM-PLUS: sphere cultures
in hPCM, further supplemented with 20 ng/μl hEGF and 20 ng/μl bFGF. Monolayer cultures
were maintained at a maximum confluence level of 80% and culture medium was replaced every
48 hours. Prostasphere cultures were seeded at a density of 2x104 cells/ml and culture media was
fully replaced every 96 hours on day 4, and 8. Parental and prostasphere cultures were propa-
gated for 12 days at 37°C at 95% relative humidity in a 5% CO2 and 95% air atmosphere. At the
end of the culture protocol, cells growing in monolayer and suspension cultures were enzymati-
cally dissociated using 0.05% trypsin-EDTA solution (Gibco) and StemPro Accutase (Gibco),
respectively, according to instructions from the manufacturer.

Immunofluorescent labeling, cell sorting, and flow cytometry analysis
Dissociated cells were fluorescently labeled according to the manufacturer’s instructions using
two monoclonal antibodies: Anti-Human CD133/2 (293C3)-PE (Miltenyi Biotec) and Anti-
Human CD44 PE-Cyanine5 (eBioscience). Magnetic-activated cell sorting (MACS) was per-
formed using Anti-Phycoerythrin microbeads (Miltenyi Biotec) and the CD133/2 (293C3)-PE
monoclonal antibody according to the manufacturer’s instructions. Flow cytometry analysis
was performed with a FACSCanto II flow cytometer with a 488-nm laser. A minimum of 104

events was recorded for each reading. Anti-Mouse IgG2b-PE isotype control (Miltenyi) and
unstained cells were used as controls. Experiments were carried out in triplicate and repeated
three times.

nCounter NanoString gene expression profiling. Total RNA was extracted from PC3
prostaspheres and purified using the RNeasy Mini or Micro kits depending on the amount of
starting material (Qiagen) according to the manufacturer’s instructions. The integrity of puri-
fied RNA samples was evaluated using a NanoDrop ND-1000 spectrophotometer at 260/280
nm. Detection of mRNA transcripts was then carried out in multiplexed hybridization reac-
tions using the NanoString nCounter Analysis System. Two different nCounter Gene Expres-
sion CodeSets were used for the analysis: the GX Human Cancer Reference Kit consisting of
230 cancer-related genes, and the custom-made ITESM CodeSet consisting of 14 PCa-related
genes (NanoString Technologies). Data acquisition and normalization was carried out using
the nSolver Analysis software version 2.0 (NanoString Technologies). Average fold changes
(ratios, n = 3) of each gene were calculated from normalized data and ranked using Microsoft
Excel. Genes with a fold change> 1.5 were selected for further analysis (Table 1). General defi-
nitions for each gene were retrieved from the GeneCards encyclopedia webpage (www.
genecards.org) [18].

Prostasphere self-renewal assay
The percentage of cells in enriched cultures capable of generating new prostaspheres was deter-
mined by plating cells at a density of 1x103 cells/ml in the hPCM-PLUS media. On day 10 of
culture, the spheres (>100 μm) were scored, dissociated, and sub-cultured under the same con-
ditions. This process was repeated twice in order to obtain 2nd and 3rd generation prostaspheres
at day 20 and 30, respectively. Sphere formation efficiency (SFE) was calculated as the number
of prostaspheres generated by the number of cells seeded, multiplied by 100. Experiments were
carried out in triplicate and repeated three times. Subsequent experiments were performed
using first generation spheres only.

Colony forming cell (CFC) assays
Suspension CFC assays were carried out using StemXVivo methylcellulose concentrate (R&D
Systems) combined with DMEM-FBS without phenol red or hPCM-PLUS media. Briefly,

Enrichment of Prostate CSC

PLOSONE | DOI:10.1371/journal.pone.0130118 June 25, 2015 4 / 23

http://www.genecards.org
http://www.genecards.org


1x103 cells were seeded in 35-mm petri dishes with semisolid culture medium. After 14 days,
cultures were visualized under an inverted microscope and colonies larger than 100 μmwere
manually scored from an average of 5 random fields per dish. For adherent CFC assays, 1x103

cells were plated in 35-mm tissue culture treated dishes with DMEM-FBS or hPCM-PLUS.
After 14 days, cultures were fixed using 3.7% formaldehyde in PBS (1X) and stained with crys-
tal violet stain solution (Fisher Scientific). Colonies consisting approximately of more than 50
cells were scored. Image analysis was performed using the ImageJ software (rsbweb.nih.gov/ij).
Colony-forming efficiencies were calculated as the percentage of plated cells that were able to

Table 1. Upregulated genes in CD133+ sorted and unsorted prostasphere cells.

Prostasphere vs. Parental CD133+ vs. CD133- CD133+ vs. Parental

Symbol Ratio Symbol Ratio Symbol Ratio Symbol Ratio Symbol Ratio

GAS1 5.36 CCND3 1.64 CSF3 20.13 CDK6 1.93 IGFBP3 11.30

IGFBP3 5.24 IFNGR1 1.63 TERT 7.76 WFDC2 1.93 CSF3 9.01

FGFR2 3.91 ERBB2 1.61 KLK3 7.23 GATA1 1.93 IL1A 6.03

IL1A 3.46 ITGB1 1.61 IL1A 5.10 MUC1 1.90 BCL2A1 4.11

MMP9 3.13 ABCB1 1.58 IGFBP3 4.64 PTPRG 1.87 EGR1 4.00

CASP10 2.81 MMP14 1.58 CCND2 3.99 BCL3 1.87 NOTCH3 3.49

CTGF 2.66 NOTCH3 1.57 BCL2A1 3.64 TOP2A 1.86 TIMP3 3.34

FOLR1 2.66 MPL 1.55 FRZB 3.64 E2F1 1.86 SHH 3.25

MYCL1 2.43 MCL1 1.54 PDGFRA 3.49 NUMA1 1.83 CTGF 2.80

STAT1 2.25 CAV1 1.53 PDGFRB 3.07 NF1 1.83 NANOG 2.59

BCL2 2.16 PIM1 1.51 IL6 2.83 MST1R 1.82 PDGFRA 2.49

FAS 2.14 MAPK10 1.51 KDR 2.70 ABL1 1.79 MMP9 2.48

SOX2 2.13 NANOG 2.56 HMMR 1.79 PDGFRB 2.48

PDGFRB 2.12 PTK7 2.55 LAMB1 1.79 PTPRG 2.43

CXCL9 2.07 MMP2 2.51 PROM1 1.77 KLK3 2.18

TIMP3 2.05 LMO1 2.47 CYP1A1 1.74 FRZB 2.15

LYN 2.04 NOTCH3 2.39 RARA 1.72 ATM 2.07

FRZB 2.04 NOTCH1 2.38 MLL 1.70 WFDC2 2.07

MYCN 1.98 FGFR4 2.33 FANCG 1.68 ERBB2 1.91

STAT3 1.97 MYCL1 2.33 RAD54L 1.67 PTK7 1.91

PLA2G2A 1.97 REL 2.32 PIM1 1.66 PLA2G2A 1.83

ESR1 1.96 ATM 2.27 ESR1 1.65 KDR 1.77

CDKN1A 1.94 WNT10B 2.23 BRCA2 1.61 TERT 1.75

ERBB4 1.90 FGFR1 2.21 BCR 1.61 SERPINE1 1.66

CD34 1.88 FAT1 2.17 PTGS2 1.60 PIM1 1.65

MUC1 1.86 COL1A1 2.15 EGFR 1.59 EGFR 1.63

BCL2L1 1.86 MAP3K8 2.15 LIF 1.59 TP73L 1.59

TP73L 1.85 SHH 2.13 MET 1.58 WNT4 1.58

WT1 1.82 PLAT 2.02 ERBB3 1.55 COL1A1 1.57

TNFSF10 1.80 L1CAM 2.00 SOX2 1.53 MUC1 1.55

PDGFA 1.76 MYBL2 1.97 WT1 1.52 CD34 1.50

NGFR 1.74 SIAH1 1.96 ERBB2 1.51

EGFR 1.71 CDH11 1.95 TP73L 1.51

MMP2 1.70 CEBPA 1.95 AKT2 1.50

FYN 1.64 TYRO3 1.94

doi:10.1371/journal.pone.0130118.t001
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form clones. Suspension CFC experiments were performed in duplicate and repeated three
times. Adherent CFC experiments were performed in triplicate and repeated three times.

In vitro chemoresistance assay
Cell viability in response to the chemotherapeutic drug Docetaxel was assessed using the Cell-
Titer 96 AQueous One Solution Reagent (Promega). The basal drug sensitivity of reference cul-
tures was established by plating 1x104 cells from all four adherent PCa cell lines in each well of
a 96-well plate in 100 μl DMEM-F12. After 24 hours, cells were incubated with 100 μl
DMEM-F12 at a final concentration of 10, 5, 2.5, 1.25, and 0.625 μg/ml Docetaxel (Sigma-
Aldrich). Subsequently, and based on the behavior of reference cultures exposed to increasing
concentrations of Docetaxel, prostasphere cultures were assayed in a similar way. Briefly, 1x104

monolayer cells, as well as CD133+-sorted and unsorted prostasphere cells were plated in
96-well plates at a final concentration of 5 and 10 μg/ml Docetaxel in 100 μl culture media. Cell
viability was determined according to the manufacturer’s instructions. Each treatment was run
in triplicate, and the experiment was repeated three times.

In vitro basement membrane matrix invasion assay
The invasive potential of reference and enriched PCa cell lines was assessed using the Transwell
assay. Briefly, 12 day-old cultures were dissociated and maintained in serum-free DMEM-F12
(for monolayer cultures) and serum-free DMEM-F12 without phenol red (for prostasphere
cultures) for 24 hours. Starved cultures were then seeded in 200 μl serum-free media on 6.5
mm Transwell inserts with an 8-μm pore size PET membrane (Corning), coated with 50 μl Gel-
trex LDEV-free reduced growth factor basement membrane matrix (Gibco) at a density of
1x105 cells per insert. A 650 μl volume of DMEM-FBS was added to the lower chamber as a
chemoattractant. Cells were incubated at 37°C and allowed to invade through the matrix for
24 hours. Non-invading cells were carefully removed from the upper chamber using a cotton
swab. Invading cells were fixed and stained using crystal violet stain solution. The number of
migrated cells was calculated from images of five random x10 fields of view acquired with an
Axiovert 200 inverted microscope. Images were analyzed using ImageJ software. The experi-
ments were carried out in duplicate and repeated twice.

Functional annotation clustering and Gene Ontology (GO) analysis
The DAVID Functional Annotation Tool [19] and the overrepresentation analysis tool of Con-
sensusPathDB [20] were used to identify over-represented signaling pathways using data from
upregulated genes (fold change> 1.5) through functional enrichment analysis.

Statistical Analysis
Results for continuous variables are expressed as means ± standard deviation (StdDev). Pair-
wise multiple comparisons were performed using a one-way analysis of variance (ANOVA)
followed by Tukey’s HSD test (�P< 0.05). All analyses were performed using JMP version 9.0.

Results

22Rv1, DU145, LNCaP, and PC3 are able to grow as self-renewing
spheres that can be serially passaged in vitro
Tumorsphere forming ability was evaluated using a seeding density of 2x104 cells/ml in 6-well
ultra-low attachment plates containing 2 mL hPCM-PLUS medium. All four PCa cell lines
formed spherical colonies by day 4 of culture. Parental adherent cultures were propagated
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simultaneously at a maximum confluence level of 80%. Day 12 tumorspheres and monolayers
(Fig 1A) were dissociated and analyzed for the expression of the CSC-associated biomarkers
CD133 and CD44. Expression of CD44 was detected heterogeneously at high levels in PC3 and
DU145 cells, whereas minimum to no detectable expression was observed in 22Rv1 and
LNCaP cells (S1A Fig). Fig 1B shows that CD133 was observed consistently at extremely low
levels (< 0.5%) in all cell lines. The panel also shows that in contrast to parental cultures, the
percentage of CD133+ events increased significantly (p< 0.05) in all prostasphere cultures of
22Rv1 (0.067%±0.058% to 4.267%±1.419%), DU145 (0.433%±0.252% to 2.433%±0.709%),
LNCaP (0.033%±0.058% to 4.033%±1.966%), and PC3 (0.133%±0.058% to 4.467%±1.358%)
cells. Prostaspheres quickly reached diameters> 100 μm by day 12 of culture (Fig 2A). The
22Rv1 and DU145 cells formed compact and round-shaped spheres with well delimited

Fig 1. Culture conditions promote the enrichment of CD133+ CSCs in prostasphere cultures of PCa cell lines. A) Microscopic examination of parental
monolayers (ADH) next to prostasphere-enriched (SUS) cultures. ADH cultures in DMEM-FBS exhibit characteristic epithelial morphology, and are in close
contact with one another. SUS cultures in hPCM-PLUS display heterogeneous morphologies, ranging from tight, round-shaped spheres (22Rv1 and DU145)
to larger more irregular structures (LNCaP and PC3). Images are representative of 12-day old monolayer and primary sphere cultures. Scale
bar = 200 μm. B) Flow cytometric analysis of freshly isolated parental (ADH) and prostasphere (SUS) cells for the identification of CD133+ subpopulations.
Representative dot plots of PE-labeled CD133+ (293C3) cells. Percentages shown correspond to the average of three independent experiments.

doi:10.1371/journal.pone.0130118.g001
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Fig 2. Morphology and Sphere-forming efficiency are cell line dependent. A) Morphological
characterization of primary prostaspheres grown in hPCM-PLUS. All PCa cell lines formed discernable
spheres by day 4 of culture. 22Rv1 and DU145 spheres consist of smaller and more tightly packed together
cells. LNCaP and PC3 cells appear larger and more loosely organized. Scale bar = 100 μm. B) Sphere-
forming efficiency (SFE) of prostasphere cultures. PCa cells were seeded at a density of 1x103 cells/ml in
6-well ultra-low attachment plates in hPCM-PLUS and incubated for 10 days. The resulting prostaspheres
could be serially passaged in vitro for up to three generations (G1-G3). SFE of spheres increased
consistently in all PCa cell lines with each generation. No further amplification was attempted at this point.
Three independent experiments were carried out, each one in triplicate. Scale bar = 100 μm. (*p < 0.05).

doi:10.1371/journal.pone.0130118.g002
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borders, whereas the LNCaP and particularly the PC3 cells formed more irregular structures
consisting of larger individual cells. The sphere-forming efficiency (SFE) was evaluated for
first- (Day 10), second- (Day 20), and third- (Day 30) generation spheres. SFE invariably
increased (p< 0.05) with each new generation in all cell lines (Fig 2B). Interestingly, direct
observation of PC3 and DU145 cells grown in suspension revealed further budding from pros-
taspheres at this point (S1B Fig). This observation suggests the potential formation of branch-
ing structures from established spheres.

CD133+ prostasphere cells exhibit increased clonogenicity in both
adherent and semisolid colony-forming cell (CFC) assays
The colony forming efficiency (CFE) of the parental cultures as well as the prostasphere-
derived cells were assayed in parallel in semisolid (Fig 3A) and adherent (Fig 3C) CFC assays.
CFE values for monolayer and prostasphere cultures were similar between assays but we
observed a consistently higher number of individual colonies in semisolid (Fig 3B) compared
to adherent conditions (Fig 3D). All four prostasphere-enriched cell lines displayed higher clo-
nogenicity in both assays compared to their non-enriched counterparts (p< 0.05). PC3 cells
exhibited the highest clonogenicity for the adherent and semisolid assays. CFE values were con-
sistently higher in CD133+ cells (p< 0.05) when compared to parental and unsorted prosta-
sphere cells for all cell lines, except for the LNCaP cell line. We were not able to observe a
statistically significant difference between CD133+ cells and unsorted prostaspheres (p< 0.05)
in the adherent CFC assay. However, CD133+ LNCaP cells did appear to be more clonogenic
than unsorted prostaspheres when using the suspension variant of the assay.

Prostasphere cultures are more resistant to the chemotherapeutic drug
Docetaxel
CSCs are hypothesized to be responsible for PCa resistance to chemotherapeutic drugs. We
assessed the basal chemoresistance of the parental monolayer cells by incubating all cell lines
with increasing concentrations of Docetaxel (0.625–10 μg/ml) for 24 hours (Fig 4A). Cell via-
bility decreased consistently, but 22Rv1 and LNCaP cells exhibited a higher sensitivity to the
drug. We observed a differential response at 5 and 10 μg/ml Docetaxel; therefore, we used these
concentrations for further assessment of the chemoresistance of prostaspheres. Chemoresis-
tance to both concentrations of Docetaxel increased significantly (p< 0.05) from that observed
in the parental cell lines in all tumorsphere cultures (Fig 4B). Prostasphere-derived DU145
cells, in particular, showed the highest cell viability at both concentrations: 85.58%±7.32% at
10 μg/ml, and 91.35%±8.74% at 5 μg/ml. No statistically significant differences were found
between CD133-sorted and unsorted prostasphere cultures.

CD133+ prostasphere cells exhibit an increased invasive potential
compared to parental monolayer cultures in vitro
Advanced PCa has a tendency to spread to bone and lymph nodes. Hence, we performed a
Transwell invasion assay to determine the metastatic potential of parental and enriched cul-
tures. Following incubation for 48 hours, the numbers of cells that invaded through the Trans-
well insert were significantly higher for the prostaspheres than for the parental monolayer cells
(p< 0.05) (Fig 5A). Next, we further examined the role of CD133+ cells in the migration of
PCa cells and consequently, the establishment of metastatic lesions. The CD133+ cells in all cell
lines were significantly more invasive than the unsorted prostaspheres (p< 0.05). Interestingly,
CD133+ DU145 cells exhibited the highest invasive potential (416.55±40.161/field). Fig 5B
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shows representative photomicrographs of random fields with invading cells from adherent,
prostasphere, and CD133+ cells.

Identification of overexpressed genes in prostasphere-enriched cultures
and CD133+ cells
Gene expression profiling of cancer tissues has the potential to improve current diagnostic and
prognostic classifications, and to reveal insight into the underlying CSC pathophysiology.

Fig 3. Prostasphere-derived cells become increasingly more clonogenic due to CD133+ cells. A) Representative micrographs of suspension colonies
from parental (ADH) and CD133+ cells. B) Semisolid colony-forming cell (CFC) assay. Parental (ADH) and prostasphere (SUS) cultures were dissociated at
day 12 of culture. CD133+ cells were isolated via MACS using the 293C3 antibody. 1x103 cells from each condition were seeded in 35-mm petri dishes with
StemXVivo methylcellulose concentrate mixed with DMEM-FBS or hPCM-PLUS. Results are expressed as means ± StdDev. (*p < 0.05). C) Representative
micrographs of adherent colonies from parental (ADH) and CD133+ cells. D) Adherent colony-forming cell (CFC) assay. Cells were processed as described
before for semisolid CFC assay. Then, 1x103 cells were seeded in 35-mm petri dishes with DMEM-FBS or hPCM-PLUS. Results are expressed as
means ± StdDev. (*p < 0.05).

doi:10.1371/journal.pone.0130118.g003
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Fig 4. Prostasphere-derived cells are more resistant to the chemotherapeutic drug Docetaxel. A)
Establishment of basal sensibility of parental cultures to Docetaxel. 1x104 cells from 12-day old monolayer
cultures were incubated with 100 μl DMEM-FBS at a final concentration of 10, 5, 2.5, 1.25, and 0.625 μg/ml
Docetaxel. 22Rv1 and LNCaP cells cluster together and exhibit a higher sensibility to the drug compared to
DU145 and PC3 cells. Results are expressed as means ± StdDev. B) Evaluation of the chemoresistance of
parental and prostasphere cells. 1x104 cells from adherent (A) and prostasphere (S) cultures were incubated
with 100 μl DMEM-FBS or hPCM-PLUSmedia, at a final concentration of 5 and 10 μg/ml Docetaxel.
Prostasphere cells display significantly increased chemoresistance to Docetaxel. The figure shows the
proportion of viable cells relative to the non-treated control. Results are expressed as means ± StdDev
(*p < 0.05).

doi:10.1371/journal.pone.0130118.g004
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Here, we aimed to identify overexpressed genes in magnetically sorted and unsorted PC3 pros-
tasphere cells, compared to parental monolayer cultures. Gene expression data was submitted
to the Gene Expression Omnibus repository from NCBI and can be accessed at the GEO web-
site (http://www.ncbi.nlm.nih.gov/geo/) under the GSE67248 accession number. Table 1 lists
upregulated transcripts (ratio> 1.5) in CD133+ sorted and unsorted prostasphere cells (See
Table A in S1 File for the full set of data). Fig 6A shows the hierarchical clustering of the rela-
tive fold changes in the 244 genes analyzed, throughout the 12 days of culture. This graphical

Fig 5. CD133+ cells are responsible for the enhanced invasive potential of prostasphere-derived cells.
A) Transwell invasion assay. 1x105 parental (ADH), prostasphere (SUS), and CD133+ cells were seeded in
200 μl serum-free DMEM-F12 without phenol red on Transwell inserts coated with 50 μl Geltrex LDEV-free
reduced growth factor basement membrane matrix. Cells were allowed to invade through the matrix for 24
hours. Results are expressed as means ± StdDev. (*p < 0.05). B) Representative images of Transwell inserts
showing invading cells stained with crystal violet solution.

doi:10.1371/journal.pone.0130118.g005
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Fig 6. Gene expression profiling and functional annotation analysis: Activation of developmental pathwaysmodulated by ΔNp63α drives the CSC-
enrichment observed in prostasphere cultures. A) Heat map showing fold changes in gene expression from prostaspheres at day 4 (P2), day 8 (P3), day
12 (P4), and isolated CD133- (P4_N) and CD133+ (P4_P) fractions relative to parental cultures on day 0. Values correspond to the Log2 transformed ratios of
the means (n = 3). The figure shows the behavior of the 244 genes assayed throughout the time the cells are kept in culture. B) Gene Ontology (GO) analysis
of upregulated transcripts in CD133+ cells. GO Biological processes enriched in CD133+ cells are all related to developmental pathways (p* < 0.01). The
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representation shows how culture conditions induce global changes in gene expression through
time. Functional annotation clustering of upregulated genes with similar biological function
included: proteins containing predicted glycosylation sites and sequences targeting them to the
secretory pathway, membrane-associated proteins, proteins that participate in cell adhesion
and cell surface structure organization, and proteins with tyrosine kinase activity.

Table 2 lists annotation clusters with enrichment factors> 1.3. We also observed evidence
for processes such as: response to hormone stimulus, ion homeostasis, protein post-transla-
tional modification, positive regulation of cell motility and migration, proteolytic activity, and
negative regulation of apoptosis, as well as immunoglobulin-like domains and several proteins
related to embryonic organ morphogenesis (See Table A in S2 File for the full list). Overrepre-
sentation analysis of upregulated genes in CD133+ cells yielded six enriched gene ontology
(GO)-based sets: genitalia development, single organism reproductive process, cell develop-
ment, development of primary sexual characteristics, artery development, and respiratory sys-
tem development (p< 0.01, Fig 6B). Lastly, our analysis revealed one enriched pathway-based
set corresponding to the validated transcriptional targets of the transcriptional regulator
ΔNp63α (p< 0.05, Fig 6C).

Discussion
PCa has been postulated to involve alterations in the balance between epithelial cell division
and differentiation, resulting from aberrant SC growth [21]. Similar to normal adult SCs,
malignant CSCs are able to self-renew and generate further differentiated cells that constitute
the bulk of the tumor. These CSCs are known to exhibit increased chemoresistance, invasive-
ness, and clonogenicity, as well as specific gene signatures that distinguish them from the rest
of the cells in a tumor. Understanding the molecular pathways that drive CSC survival will
help elucidate the mechanisms underlying PCa physiopathology. Therefore, there is an urgent
need for experimental platforms that take into account the critical role of CSCs in PCa. Previ-
ous findings have demonstrated that stem-like populations persist in commercial PCa cell lines
such as, 22Rv1, DU145 [12], LNCaP, and PC3 [22]. However, these cells are often present at
extremely low levels, which diminishes their experimental potential.

Culture conditions induce CSC-enrichment and determine cellular fate in
prostasphere cultures
We demonstrated the enrichment of a CD133+ CSC-like subpopulation in four commercial
PCa cell lines (22Rv1, DU145, LNCaP, and PC3) (Fig 1). The heterogeneous expression of the
CD44 marker led us to use CD133/2 (293C3) as the only selection criterion to denote CSC-like
populations. Although tumorsphere culture has been demonstrated to be an effective strategy
for progenitor enrichment in cell lines, the optimization of culture conditions that could be
applied to various cell lines is still a work in progress. Fan et al. demonstrated efficient forma-
tion of PC3 tumorspheres using serum-free DMEM-F12 supplemented with 20 ng/ml EGF
[22]. The PC3 cells formed spheres that could be serially subcultured, but the LNCaP cells were
unable to do so. Wang et al. were also unable to obtain viable spheres from LNCaP cells when
using a similar DMEM-F12 formulation, further supplemented with human leukemia

edge width reflects the relative overlap between the nodes (% shared genes). The edge color encodes the number of shared members between the whole
GO category and the user-defined background (CodeSets). Sphere size is relative to the number of genes associated with that category. C) Molecular
interactions of the transcriptional regulator ΔNp63α with upregulated genes detected in CD133+ cells. ATM, TP63, IGFBP3, NOTCH1, BRCA2, IL1A and
TOP2 genes are upregulated in CD133+ cells and appear to mediate the downstream activation of developmental molecular pathways. The ΔNp63α tetramer
shown at the center of the figure is known to physically interact with these genes. Pathway source: Pathway interaction database (http://pid.nci.nih.gov).

doi:10.1371/journal.pone.0130118.g006
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inhibitory factor [23]. Concordant to this, LNCaP as well as 22vR1 cells were unable to form
spheres when cultured in our DMEM-PLUS formulation (S1C Fig), whereas PC3 and DU145
cells readily formed spheres. In contrast, Duhagon et al. were able to grow LNCaP spheres
using a similar serum-free DMEM-F12 formulation further supplemented with KnockOut
Serum Replacement (Invitrogen), and 10 ng/mL bFGF [24]. In this contribution we were able
to obtain highly proliferative spheres from all four PCa cell lines using our hPCM-PLUS for-
mulation. The numbers of generated spheres and sphere morphology were cell-line dependent
(Fig 2A), but the self-renewing capacity of prostaspheres increased in all cases with each suc-
cessive generation (Fig 2B)—a distinct hallmark of CSC self-renewal. These contrasting results

Table 2. Functional annotation clustering of upregulated genes in CD133+ sorted and unsorted prostasphere cells.

Term p-
value

Genes

Prostasphere cells vs. parental cells

Enrichment Score: 2

Transmembrane 0.0076 EGFR, ERBB2, ERBB4, FGFR2, IFNGR1, FAS, ITGB1, MCL1, MMP14, MPL, MUC1, NGFR, NOTCH3, PDGFRB,
ABCB1, BCL2, CAV1, TNFSF10, CD34

Enrichment Score: 1.63

Signal 0.0208 CTGF, EGFR, ERBB2, ERBB4, FGFR2, FOLR1, FRZB, GAS1, IFNGR1, IGFBP3, FAS, ITGB1, CXCL9, MMP2, MMP9,
MMP14, MPL, MUC1, NGFR, NOTCH3, PDGFA, PDGFRB, PLA2G2A, TIMP3, CD34

Disulfide bond 0.0279 CTGF, EGFR, ERBB2, ERBB4, FGFR2, FOLR1, FRZB, IFNGR1, IGFBP3, FAS, ITGB1, CXCL9, MMP2, MMP9, MMP14,
MPL, NGFR, NOTCH3, PDGFA, PDGFRB, PLA2G2A, TIMP3,

CD133+ vs. CD133- prostasphere cells

Enrichment Score: 2.4

Glycoprotein 0.0016 CDH11, WFDC2, COL1A1, CSF3, EGFR, ERBB2, ERBB3, ESR1, FAT1, FGFR1, FGFR4, FRZB, HMMR, IGFBP3, KLK3,
IL1A, IL6, KDR, L1CAM, LAMB1, LIF, MET, MMP2, MSTR1, MUC1, NOTCH1, NOTCH3, SERPINE1, PDGFRA,
PDGFRB, PLAT, PTGS2, PTK7, PTPRG, SHH, TYR03, WNT10B, PROM1

Signal 0.0157 CDH11, WFDC2, COL1A1, CSF3, EGFR, ERBB2, ERBB3, FAT1, FGFR1, FGFR4, FRZB, IGFBP3, KLK3, IL6, KDR,
L1CAM, LAMB1, LIF, MET, MMP2, MSTR1, MUC1, NOTCH1, NOTCH3, SERPINE1, PDGFRA, PDGFRB, PLAT,
PTGS2, PTK7, PTPRG, SHH, TYR03, WNT10B, PROM1

CD133+ prostasphere cells vs. parental cells

Enrichment Score: 2.47

Glycoprotein 0.0028 CDH11, COL1A1, CTGF, EGF, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FAT1, FGFR1, FGFR2, FGFR4, FOLR1, GAS1,
GNAS, IGFBP2, IGFBP3, FAS, ITGB1, KDR, L1CAM, LAMB1, MET, MMP9, MSTR1, MUC1, NOTCH1, NOTCH3,
SERPINE1, PDGFRA, PDGFRB, PLAT, WNT4, PTK7, PTPRG, TGFBR2, TYR03, WNT10B, CD34, CDH1

Signal 0.0049 CDH11, COL1A1, CTGF, EGF, EGFR, ERBB2, ERBB3, ERBB4, FAT1, FGFR1, FGFR2, FGFR4, FOLR1, GAS1,
IGFBP2, IGFBP3, FAS, ITGB1, KDR, L1CAM, LAMB1, MET, CXCL9, MMP9, MSTR1, MUC1, NOTCH1, NOTCH3,
SERPINE1, PDGFRA, PDGFRB, PLA2G2A, PLAT, WNT4, PTK7, PTPRG, TGFBR2, TYR03, WNT10B, CD34

Enrichment Score: 2.09

Transmembrane 0.0040 CDH11, EGF, EGFR, ERBB2, ERBB3, ERBB4, FAT1, FGFR1, FGFR2, FGFR4, FAS, ITGB1, KDR, L1CAM, MCL1, MET,
MST1R, MUC1, NOTCH1, NOTCH3, PDGFRA, PDGFRB, PTK7, PTPRG, BCL2, TGFBR2, TYR03, CD34, CDH1

Enrichment Score: 1.75

Cell adhesion 0.0054 CDH11, CTGF, CTNNB1, FAT1, ABL1, ITGB1, L1CAM, LAMB1, PTK7, TYR03, CD34, CDH1

Enrichment Score: 1.42

Tyrosine-protein
kinase

0.0756 CSK, EGFR, ERBB2, ERBB3, ERBB4, FGFR1, FGFR2, FGFR4, ABL1, FYN, KDR, MET, MSTR1, PDGFRA, PDGFRB,
TYR03

Functional annotation was carried out using the Swiss-Prot and Protein Information Resource Keywords (SP_PIR_Keywords) database from DAVID

Bioresources. Background was defined as the 244 genes contained in both CodeSets. Clusters with an enrichment score > 1.3 are shown. The total

number of clusters identified was: 61 (prostasphere vs. parental), 60 (CD133+ vs. CD133-), and 34 (CD133+ vs. parental) (Shown in Table A in S1 File).

doi:10.1371/journal.pone.0130118.t002
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demonstrate the substantial impact of seemingly subtle changes in culture conditions on the
final fate of cells propagated in vitro.

The enriched progenitor identity of prostasphere-derived cells was also supported by their
increased proliferative, chemoresistant, and invasive potential. We observed a higher number
of colony-forming cells in both monolayer and suspension CFCs, compared to parental cul-
tures (Fig 3). Magnetically sorted CD133+ cells were consistently more clonogenic in all cases,
which demonstrates the critical role of these cells driving malignant cell proliferation and
tumor growth. Prostasphere cells were also more resistant to the chemotherapeutic drug Doce-
taxel (Fig 4) and were more invasive (Fig 5) than parental cultures. These results agree with
previous literature indicating that Docetaxel-resistant DU145 and PC3 cells express molecular
markers associated with stem-like populations [25]. Moreover, similar to what we observed in
our CFCs assays, CD133+ cells exhibited a significantly higher chemoresistant and invasive
potential, when compared to parental monolayer cultures. Taken together, these findings sug-
gest that the enriched subpopulation, represented by the CD133/2 (293C3) antigen, is directly
involved in the establishment of the phenotypic determinants of CS-like cells within these cell
lines.

Gene expression profiling of prostaspheres reveals the upregulation of
genes that contribute to the CSC phenotype
Previous groups have described the implementation of different technologies for profiling gene
expression patterns related to PCa [26–29]. Currently, the use of new high-throughput meth-
ods of gene expression analysis is improving our understanding of PCa physiopathology. Here,
we used the nCounter system from NanoString Technologies to analyze the expression of 244
cancer-related genes in PC3 prostaspheres, as well as isolated CD133+ fractions. Gene expres-
sion profiling of enriched cultures revealed several significantly upregulated genes in CD133+-
-sorted and unsorted prostasphere cells (Table 1). The most highly overexpressed genes (fold
change> 4) are discussed individually since they represent the most promising targets for
CSC-specific intervention revealed in this particular study. First, we compared the upregulated
transcripts in the CD133+ fraction relative to the CD133- and focused on CSF3, TERT, KLK3,
and IL1A:

CSF3 (20.16 fold change): Colony-stimulating factor 3, also known as granulocyte colony-
stimulating factor (G-CSF), is a glycoprotein that modulates the production, differentiation,
and function of granulocytes, as well as the mobilization of hematopoietic progenitor cells
from the bone marrow [18]. Recent evidence suggest that G-CSF also has a role in promoting
tumor neurogenesis and PCa progression, making it an attractive target for therapy [30].

TERT (7.77 fold change): The telomerase reverse transcriptase constitutes the catalytic com-
ponent of the telomerase holoenzyme complex that is essential for the replication of eukaryotic
chromosome termini [18]. Erosion of telomeric sequences constitutes the basis of the cellular
clock that eventually instructs the cell to undergo senescence. Mutations leading to overexpres-
sion of TERT enhance the invasiveness of tumor cells, are more prevalent in older patients with
invasive diseases and advanced tumor stages, and are associated with significantly shorter
patient survival time [31].

KLK3 (7.23 fold change): Kallikrein 3, also known as prostatic specific antigen (PSA), has
been used traditionally as a biomarker for the diagnosis and monitoring of PCa [18]. Neverthe-
less, the precise role of its serine-type peptidase activity in the pathophysiology of PCa remains
unclear. Interestingly, PC3 cells are known to lack expression of PSA [32]; nevertheless, emerg-
ing evidence suggests a critical role for prostate-specific kallikreins (human kallikrein 2 and
PSA) in the promotion of cancer cell growth through pro-angiogenic stimulation [33].
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Furthermore, expression of KLK3 and KLK4 leads to changes that appear similar to the epithe-
lial-to-mesenchymal transition (EMT) when expressed in PC3 cells [34]. Taken together, these
findings suggest that PSA may play a role in CSCs from prostate tumors that exhibit a similar
phenotype to the PC3 cell line.

IL1A (5.1 fold change): Inflammation has been traditionally considered an important etio-
logical factor in PCa. An involvement of interleukin-1 α, one of the major pro-inflammatory
cytokines, is also postulated in the development of metastatic PCa. Metastasis to the bone is
observed in more than 80% of PCa cases [35]. Recently, IL-1 alpha was demonstrated to induce
an immunosuppressive response in mesenchymal SCs, which in turn promoted the growth of
PCa cells [36]. The production of IL-1 alpha by tumor-associated macrophages also promotes
angiogenesis and tumor growth in murine animal models [37].

Next, we compared the upregulated transcripts in CD133+ cells relative to parental cultures
and focused on IGFBP3, CSF3, IL1A, BCL2A1 and EGR1 (IGFBP3, CSF3 and IL1A were also
upregulated relative to CD133- cells and are already discussed in the previous section).

BCL2A1 (4.11 fold-change): B-cell lymphoma 2 (BCL2) proteins are important cell death
regulators [18]. Many of these proteins act as cellular oncogenes that not only promote tumori-
genesis but also contribute to resistance to chemotherapeutic drugs and failure of anti-cancer
treatments [38]. Bcl-2-related protein A1 is considered a potential therapeutic target in B-cell
malignancies. Brien et al. demonstrated that the expression of certain peptide aptamers of the
Bcl-2 related protein A1 sensitize B-cell lines to apoptosis induced by chemotherapeutic agents
[39]. Particularly in prostate tissues, overexpression of the transcription factor C/EBP in
DU145 and PC3 cells significantly upregulated promoter activities of metastatic and anti-
apoptotic genes, including BCL2A1 [40]. Despite this evidence, the role of BCL2A1 in prostate
CSCs has not been fully explored.

EGR1 (4 fold change): The early growth response gene is a transcriptional regulator that is
frequently overexpressed inPCa [18]. The gene expression pattern of EGR1 suggests that it
could potentially regulate a number of steps involved in the initiation and progression of pros-
tate cancer, such as mitogenesis, invasiveness, angiogenesis, and metastasis [41]. RT-PCR and
western blot analysis have demonstrated that EGR-1 exhibits higher expression levels in PCa
cells with an androgen independent phenotype, such as PC3 [42]. Concordant to this, small
interfering RNA (siRNA) silencing of EGR1 is able to induce apoptosis and inhibit growth of
PC3 cells [43]. The induction of EGR1 by external stimuli is generally transient but appears to
be sustained in PCa [44]. Moreover, expression levels of EGR-1 increase with the degree of
malignancy, as measured by the Gleason score of the tumor.

Finally, we compared the upregulated transcripts in prostaspheres relative to parental cells
and focused on GAS1 and IGFBP3:

GAS1 (5.36 fold change): Growth arrest-specific 1 is a putative tumor suppressor protein
that blocks entry to S phase and prevents cycling of normal and malignant cells [18]. Recent
studies have demonstrated that a soluble form of GAS-1 reduces the vascularization of xeno-
transplanted tumors by preventing the migration of endothelial cells [45].

IGFBP3 (5.24 fold change): is a member of the insulin-like growth factor (IGF) binding pro-
tein family, a group of proteins that is known to prolong the half-life of IGFs and to alter
their interaction with their respective cell surface receptors [18]. Similarly to GAS-1, IBP-3 (the
protein coded by the IGFBP3 gene) behaves as a pro-apoptotic, anti-metastatic, and anti-
angiogenic protein [46].

Despite the anti-cancer roles reported for both of these proteins, it is important to note that
their molecular function may vary depending on their cellular context [47]. Spagnuolo et al.
reported that GAS-1 does not inhibit the growth of vascular endothelial cells but that its expres-
sion strongly protects the cells from apoptosis [47]. Other groups have also demonstrated
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different roles for GAS-1 in modulating chondrocyte differentiation [48] and promoting cell
proliferation in the central nervous system [49]. Similar to what has been reported for GAS-1,
immunohistochemical analysis has revealed elevated levels of IBP-3 in the hyperplastic fibro-
muscular stroma of benign prostatic hyperplasia (BPH) specimens and in the tumor-adjacent
stroma of high-grade PCa [50]. This means that IBP-3 may also play a role in fibroblast-to-
myofibroblast differentiation, a hallmark of stromal remodeling associated with PCa and BPH.

Functional annotation analysis reveals molecular pathways that could
be responsible for the increased CSC identity of prostasphere cultures
Although individual analysis of top upregulated genes could pinpoint specific targets for thera-
peutic intervention, this approach fails to take into consideration the intricate molecular net-
works underlying complex cellular processes such as proliferation, chemoresistance and
invasion. Therefore, we analyzed our gene expression data using the functional annotation tool
from DAVID Bioinformatics resources [19]. Functional annotation revealed several overrepre-
sented gene clusters that could be responsible for the phenotypic behavior of our prostasphere
cultures. The top functional categories identified by DAVID in CD133+ cells were related to
membrane-associated proteins participating in cell adhesion or exhibiting protein tyrosine-
kinase activity (Table 2, full list in Table A in S2 File).

Based on our results we conclude that the increased proliferative and clonogenic potential
observed in vitro could be driven by positive regulators of epithelial cell proliferation, such as
ERBB4, ERBB2, GAS1, and EGFR, through EGF signaling. Increased expression of EGFR is
associated with disease relapse and transformation to an androgen independent state [51].
Negative regulation of apoptosis is also an important feature of CSCs. BCL2 proteins are cen-
tral regulators of caspase activation, and play a key role in cell death by regulating the integrity
of the mitochondrial and endoplasmic reticulum membranes [52]. Our results suggest that
these cells could evade apoptosis through signaling that involves the BCL2 family of proteins,
such as Bcl-2 (coded by the BCL2 gene), Bcl-2 related protein A1 (coded by the BCL2A1 gene),
and Mcl-1 (Coded by the MCL1 gene). BCL2A1 in particular was upregulated in CD133+ cells
relative to CD133- and parental cells (Table 1). This observation suggests a direct involvement
of BCL2A1 in the survival of malignant prostate CSCs.

Increased tumor cell migration and invasion were also observed in vitro. Positive regulators
of cell migration that were upregulated in these cells included: EGFR, ERBB4, FGF2, KDR,
LAMB1,MMP9, PDGFA, PDGFRA, PDGFRB, and BCL2. Interestingly, Petz et al. have demon-
strated that PDGF enhances translation of the LAMB1 gene, a known regulator of tumor cell
migration and invasion [53]. Similar to BCL2A1, PDGFRA was also upregulated in CD133+

cells and is heavily associated with skeletal metastases [18]. Recent evidence suggests an impor-
tant role for the PDGF subunit A in facilitating the initial lodging and subsequent progression
of PCa cells within the bone microenvironment [35]. Furthermore, it has been demonstrated
that antibody blockage of the PDGF subunit A reduces the size of established skeletal metasta-
ses [54]. These observations suggest that PDGFRA signaling is directly involved in the ability
of prostate CSCs to establish metastatic lesions. Moreover, expression of the matrix metallo-
proteinases coded by theMMP2,MMP9, andMMP14 genes confers these cells the ability to
degrade extracellular matrix proteins, an important step in various stages of cancer progres-
sion, including angiogenesis, invasiveness, and metastasis [55].

These results demonstrate that patient-specific and multi-targeted therapies that are
directed specifically against CSCs could be designed using in vitro culture systems coupled
with high-throughput gene expression profiling tools.
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CSC enrichment in prostasphere cultures correlates with activation of
development-related molecular pathways
Gene ontology analysis was carried out using ConsensusPathDB and the upregulated genes in
CD133+ cells, relative to the CD133- fraction. Interestingly, overrepresentation analysis yielded
six enriched gene ontology-based sets related to cell development. Furthermore, our analysis
revealed an overrepresentation of the enriched pathway-based set corresponding to the vali-
dated transcriptional targets of ΔNp63α isoforms (p = 0.005). ΔNp63α is an epithelial progeni-
tor cell marker that maintains epidermal stem cell self-renewal capacity [56]. Previous reports
have demonstrated that ΔNP63α induces EMT in primary human keratinocytes [57], and that
increases the percentage of CSCs in MCF7 cells can increase, which leads to increased cancer
cell proliferation, clonogenicity, anchorage-independent growth, drug resistance, and incidence
of xenografted tumors in vivo [58]. More recently, Pignon et al. reported that ΔNp63α+ cells of
the urogenital sinus are able to generate all epithelial lineages of the prostate and bladder [59],
further confirming the role of ΔNp63α+ cells as the stem/progenitor population in these type
of epithelia during development. Taken together, our results suggest that the CSC enrichment
observed in our prostasphere cultures occurs through ΔNp63α-mediated activation of stem/
development-related genes. Interestingly, this radical shift in gene expression patterns towards
a more “stem-like” state is achieved simply by modifying culture conditions, without the need
for exogenous DNA insertion or direct manipulation of the genome.

Conclusion
Biopsy samples obtained from different patients, and even from different zones within the same
tumor can vary significantly in terms of their genetic and phenotypic characteristics. We propose
that the wide selection of CCLs available can be used to circumvent this type of issues, since they
can be representative of tumors of diverse clinico-pathological origins. Furthermore, in vitro
enrichment strategies can be used to increase the number of stem/progenitor cells contained in
CCLs, making them an efficient alternative to the highly restricted human biopsy samples.

In this contribution, we selected four different and widely used PCa cell lines (22Rv1,
DU145, LNCaP, and PC3) of various tissue origins as experimental models. These CCLs are
representative of prostate tumors that correspond to various clinical stages of the disease. For
example, LNCaP cells are androgen-dependent and show a relatively indolent behavior, similar
to the vast majority of prostate tumors encountered clinically. On the other hand, PC3 cells are
androgen-independent and exhibit a highly aggressive behavior concordant with that of hor-
mone-refractory PCa. All of these cell lines became significantly more clonogenic, chemoresis-
tant, and invasive when propagated in our culture protocol, phenotypic characteristics
associated with CSCs in vivo. Therefore, the intrinsic differences in these cell lines allow the
extrapolation of our findings to different clinical scenarios.

We propose that culture systems with the ability to maintain, restore, or even enrich the
cancer stem-like compartment from tissues with extremely scarce progenitor populations
could be implemented clinically in order to assay actual samples from patients undergoing
treatment. Genetic and phenotypic characteristics could then be analyzed and readily inter-
preted in order to present the patient with a more accurate diagnostic and/or prognostic
scenario.

Supporting Information
S1 Fig. Expression of the CD44 biomarker and morphology of 12-day-old PC3 and DU145
prostasphere cultures. A) Flow cytometric analysis of freshly isolated PC3 and DU145
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prostaspheres for the identification of CD44+ subpopulations. The figure shows representative
dot plots of PE/CY7-labeled CD44+ cells in PC3 and DU145 cells. Expression of the CD44 bio-
marker was observed at high levels in these cells. No measurable expression of CD44 was
detected in LNCaP or 22Rv1 in our experiments. B) Microscopic examination of 12-day-old
PC3 and DU145 prostasphere cultures. PC3 and DU145 cells exhibit further budding from
established spheres (white arrows). Complex branching structures become apparent at this
point in culture. Scale bar = 100 μm.
(TIFF)

S1 File. Table A. Gene expression profiling of PC3 cells grown as prostaspheres in
hPCM-PLUS culture medium. Cultures were sampled on day 0 (EPI_1), day 4 (EPI_2), day 8
(EPI_3), and day 12 (EPI_4). Day 12 spheres were also dissociated and separated using MACS
and the Anti-CD133/2 (293C3)-PE into CD133+ (EPI_P) and CD133- (EPI_N) fractions.
Total RNA was extracted and purified from these fractions, as well as from magnetically. Gene
expression profiling was carried out using the Cancer Reference and ITESM panels from Nano-
String Technologies. Results are shown as normalized counts from three independent experi-
ments.
(XLSX)

S2 File. Table A. Functional annotation clustering of upregulated genes in prostasphere
and CD133+ cells. Table lists the complete set of enriched clusters identified using the func-
tional annotation tool from DAVID. Stringency was set as “high”. %: Percentage of gene over-
lapping between user’s input and the whole category; P: p-value for the significance of gene-
term enrichment calculated with a modified Fisher's Exact Test (EASE Score). Fold: Fold
enrichment relative to the background, defined as the 244 genes contained in both CodeSets.
(XLSX)
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