Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1073/pnas.1304913110</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:17985226</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Recapitulating Maladaptive, Multi-Scale Remodeling of Failing Myocardium on a Chip

Megan L. McCaina, Sean P. Sheehya, Anna Grosberga, b, Josue A. Gossa, Kevin Kit Parkera

aDisease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and the School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA

bCurrent address: The Edwards Lifesciences Center for Advanced Cardiovascular Technology, 2418 Engineering Hall, University of California, Irvine, Irvine, CA 92697 USA

Corresponding Author:

Kevin Kit Parker
Harvard School of Engineering and Applied Sciences
29 Oxford St, Pierce Hall 321
Cambridge, MA 02138
Phone: 617-495-2850
Fax: 617-496-1793
Email: kkparker@seas.harvard.edu

Running title: Failing Myocardium on a Chip

Classification: major: biological sciences, minor: biophysics and computational biology
Abstract

The lack of a robust pipeline of medical therapeutics for the treatment of heart disease may be partially attributed to the lack of *in vitro* models that recapitulate the essential structure-function relationships of healthy and diseased myocardium. We designed and built a system to mimic mechanical overload *in vitro* by applying cyclic stretch to laminar ventricular tissue on a stretchable chip. To test our model, we quantified changes in gene expression, myocyte architecture, calcium handling, and contractile function and compared our results against several decades of animal studies and clinical observations. Cyclic stretch activated gene expression profiles characteristic of pathological remodeling, including decreased α- to β-myosin heavy chain ratios, and induced maladaptive changes to myocyte shape and sarcomere alignment. In stretched tissues, calcium transients resembled those reported in failing myocytes and peak systolic stress was significantly reduced. Our results suggest that failing myocardium, as defined genetically, structurally, and functionally, can be replicated in an *in vitro* microsystem by faithfully recapitulating the structural and mechanical microenvironment of the diseased heart.
Introduction

Maladaptive cardiac hypertrophy occurs in response to a variety of stimuli, including myocardial infarction, genetic mutations, or hypertension (1). Initially, hypertrophic remodeling is compensatory, as myocytes counteract losses in cardiac output by adding myofibrils in parallel (2-3). Over time, remodeling transitions from adaptive to maladaptive, which is characterized structurally by sarcomere disarray (4), fibrosis (5), myocyte elongation (2, 6-7), and ventricular dilation (3). Gene expression reverts to an immature state, including down regulation of α-myosin heavy chain concurrent with up regulation of β-myosin heavy chain, reminiscent of the relative expression levels of these motor proteins in the embryonic heart (8-9). Functionally, myocytes isolated from failing hearts show defective excitation-contraction coupling (10), including reduced calcium uptake into the sarcoplasmic reticulum (11). Contractile function is also reduced, as shown by decreased cardiac output in dogs subjected to chronic rapid pacing (12) and decreased tension in left ventricular strips isolated from failing human myocardium (13-14). Thus, dilated and failing hearts are characterized by multi-scale maladaptive remodeling, best studied in an experimental system capable of replicating and quantifying a broad range of these effects.

Drug discovery, safety pharmacology, and mechanistic studies have traditionally been performed in animal models. For example, cardiac hypertrophy and heart failure are reproduced in the rat by ligating coronary arteries or by utilizing the spontaneously hypertensive rat strain (15). In vitro, heart disease has been modeled by exposing primary cardiac myocytes to chemical (16) or exogenous mechanical stimuli (17-21), which increases cell size, activates pathological gene expression, and remolds ion channel currents. However, cell culture systems often fail to
predict the efficacy or toxicity of therapeutic candidates, potentially because they do not replicate the complex structure-function relationships of native cardiac tissue (22). Traditional cell culture systems also fail to quantify pathological changes in contractile function, instead focusing on endpoints such as gene expression or electrophysiology, which are difficult to justify as direct indicators of reduced cardiac output.

We reasoned that we could reproduce years of published animal studies on dilated and failing myocardium with a carefully designed in vitro microsystem. Our goal was to build dilated ventricular tissue “on a chip” by engineering arrays of laminar ventricular muscle on a substrate amenable to cyclic stretch to mimic mechanical overload. To test our system, we measured genetic, structural, and functional responses, including contractile stress generation. Cyclic stretch activated markers of pathological cardiac hypertrophy, disrupted myocyte shape and sarcomere alignment with directional specificity, remodeled calcium transients, and decreased stress generation in a manner similar to animal studies and clinical observations. These data suggest that we can recapitulate failing myocardium on a chip, which has potential value as a new in vitro platform for early stage drug discovery.

Results

Chip design

Cardiac myocytes are traditionally cultured on rigid substrates that prohibit mechanical intervention and contractility measurements and are limited to electrophysiology or gene expression studies of chemically-induced pathologies. We reasoned that we could build a stretchable substrate amenable to microcontact printing and contractility studies in tissue constructs that mimic the aligned, laminar structure of ventricular tissue. To these aims, we fabricated stretchable muscular thin film (MTF) substrates by selectively coating silicone
membranes with a temperature-sensitive polymer and a thin layer of polydimethylsiloxane (PDMS) (Fig. 1A) (23-25), building on previous efforts of Kléber and Saffitz (26-27). Substrates micropatterned with fibronectin (FN) in a “brick wall” pattern (Fig. 1B) and seeded with neonatal rat ventricular myocytes promoted assembly of anisotropic cardiac monolayers (Fig. 1C) that recapitulate the laminar muscle architecture observed in the native ventricle (Fig. 1A) (28). Selective substrates were uniaxially and cyclically stretched at 10% strain and a frequency of 3 Hz using a custom-built multi-well system (Movie S1) (23, 26). After conditioning the tissues, arrays of MTFs were cut from the PDMS layer so that, after the temperature-sensitive layer released, MTFs freely deflected away from the silicone membrane with each paced contraction while remaining fixed at one edge (Fig. 1A, Movie S2) (24). MTF deformation during systole could be tracked and translated to measurements of stress generation while diastolic tension was measured by the resting MTF curvature (24, 29). Silicone membranes could also be micropatterned directly and seeded with myocytes for optical measurements of calcium transients, staining of tissue structure, and collection of lysates for gene expression analysis, similar to our previous work with healthy tissues (24). Thus, our chip recapitulates native tissue architecture, asynchronous mechanical stretch in the ventricular wall, and is amenable to measurements of contractile stress generation, calcium transients, cytoskeletal structures, and gene expression.

Because many cardiomyopathies are associated with mechanical overload (4), we reasoned that cyclic mechanical stretch would induce pathological subcellular, cellular, and tissue remodeling. We seeded neonatal rat ventricular myocytes onto silicone membranes coated with isotropic FN and initiated cyclic stretch one hour after seeding, when myocytes were adhered to the substrate but not yet formed a tissue (Fig. 1D). Myocytes seeded on isotropic FN
spontaneously aligned during stretch in the direction parallel to the axis of stretch (Fig. 1E).

Myocytes seeded on micropatterned FN maintained uniaxial alignment when cyclic stretch was parallel to the direction of patterning (Fig. 1F). However, transverse stretch of patterned tissues disrupted tissue architecture observed in isolated regions where myocytes realigned with the exogenous stretch, creating a “parquet floor” pattern (Fig. 1G). This is reminiscent of clinical reports where tissue sections taken from human hearts with hypertrophic cardiomyopathy displayed similar misalignment (4). Thus, our heart failure chip appears to recapitulate the form of laminar ventricular tissue in the healthy and diseased heart.

Cyclic stretch potentiates pathological gene expression

We asked if cyclic stretch of our tissues would trigger known genetic indicators of pathological remodeling. We measured gene expression in our conditioned tissues because it is a well-characterized phenotype of many cardiomyopathies (30). We collected and amplified mRNA from conditioned tissues after 6, 24, and 96 hours in culture and used Affymetrix whole transcript microarrays to determine gene expression values. To visualize the dynamics of global gene expression, we used Gene Expression Dynamics Inspector (GEDI) bioinformatics software, which clusters genes with similar expression profiles and organizes the clusters into color-coded maps (31-32). GEDI maps revealed that cyclic stretch-induced changes in gene expression became more prominent with time in culture (over 96 h) (Fig. 2A). The microarray data has been deposited in NCBI's Gene Expression Omnibus (33) and are accessible through GEO Series accession number GSE43846 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43846). Genes with significant differences at each time point are listed in Datasets S1-S3. Gene expression was relatively insensitive to the direction of stretch relative to tissue alignment, suggesting that stretch induces changes to gene expression that are not directionally dependent.
We asked if stretch-induced changes in tissue gene expression matched markers of pathological hypertrophy and/or heart failure. As shown in Fig. 2A, the region near the lower left corner of the mosaics (dashed black outline) was comprised of genes most significantly up-regulated with stretch at 96 hours. In this region, we found increased expression of T-type calcium channel α1G subunit, myocardin, and transient receptor potential cation (Trpc) channel 1 in stretched tissues (Fig. 2B). Each of these genes has been reported to be up-regulated in pathological cardiac hypertrophy in several animal models (including rat) and human heart failure, except for Trpc1 channels, where instead Trpc5 and Trpc6 channels are up-regulated in human (34-38). We also observed stretch-dependent up-regulation of cytoskeletal genes (Fig. S1), such as integrin α6 and PDZ and LIM domain 1, and ECM proteins, such as laminin α5 and fibulin 5 (Fig. 2B). These changes are also consistent with pathological remodeling, where cytoskeletal reorganization and increased ECM production are commonly reported in hypertrophy and failure in both human and rat (39-40). Thus, cyclic stretch activates expression of several genetic markers of pathological remodeling, including ion channels and components of the ECM and the cytoskeleton.

Focal adhesions are transmembrane, mechanosensitive protein complexes that couple the ECM to the cytoskeleton (41) and are commonly over-expressed in pathological hypertrophy (39, 42-44). Our microarray analysis revealed stretch-mediated up-regulation of integrin α6 at 96 hours, so we asked if other focal adhesion genes were up-regulated with mechanical loading (Fig. S1). Integrins α5 and α6 were up-regulated as early as 24 hours and integrin β1 was up-regulated at 96 hours after initiation of stretch. Paxillin, zyxin, talin 1, and α-actinin 1, which are each involved in linking integrins to the actin cytoskeleton, were up-regulated beginning at 24 hours of stretch (Fig. 2C). Focal adhesion kinase 1 and integrin-linked kinase, which activate
signaling in response to mechanical loads propagated through integrins, were also up-regulated in stretched tissues (Fig. 2C). RT-PCR results also indicated up-regulation of integrin α5, integrin α6, and focal adhesion kinase at 96 hours in stretched relative to static tissues (Fig. 2D). Together, these results suggest that cyclic stretch up-regulates the expression of several genes essential to the structure and function of focal adhesions, analogous to pathological hypertrophy.

Heart failure is associated with increased expression of the slow myosin heavy chain (MHC) isoform β-MHC relative to the expression of the fast MHC isoform α-MHC, conserving energy but reducing contractility in rodents (8). We used RT-PCR to determine the ratio of α-/β-MHC expression at 96 hours and found that this ratio was lowest for all stretched tissues (Fig. 2D). Interestingly, we also observed increased α-/β-MHC expression in patterned tissues relative to isotropic tissues, indicating that alignment alone potentially induces maturation of MHC expression, but cyclic stretch potentiates pathological MHC expression.

Cyclic stretch induces orientation-dependent structural remodeling

Remodeling of myocyte shape, specifically the length to width aspect ratio (AR), is a hallmark of cardiomyopathies across many species, including human and rat (2, 6-7). Healthy ventricular myocytes have an average AR of 7:1 and myocytes isolated from hearts with eccentric and concentric hypertrophy have a higher (11:1) and lower (5:1) AR, respectively (3). We asked if cyclic stretch induces myocyte shape changes that correlate to pathological cellular remodeling. We stained cell membranes with di-8-ANEPPS, manually measured myocyte dimensions, and found that AR was higher in patterned tissues (7:1) compared to isotropic tissues (4:5:1) due to myocyte elongation on the FN pattern (Fig. 3A-B, Fig. S2), which has been reported previously (45). Cyclic stretch elongated myocytes beyond 7:1, which was most prominent in patterned tissues stretched longitudinally (10:1) (Fig. 3C, Fig. S2). Myocytes
stretched transversely were both longer and wider (Fig. S2), and thus did not have a change in overall AR relative to static, patterned tissues (Fig. 3D). Thus, longitudinal stretch increases the cellular AR of healthy tissues to values typically observed in dilated cardiomyopathy (2).

In mature cardiac tissue, ECM fibers are oriented parallel to the long axis of the cell and the direction of contraction (46). However, pathological hypertrophy is associated with fibrosis and ECM reorganization (47), which potentially disrupts the cooperative relationship between ECM alignment and the myocyte cytoskeleton (4). We asked how different orientations of cyclic stretch relative to ECM alignment alter sarcomere alignment. We immunostained sarcomeric α-actinin in the z-discs in stretched and un-stretched tissues, collected epifluorescent images, and used image processing techniques to threshold the immunosignal, detect pixel orientation angles (48), and calculate the orientational order parameter (OOP). The OOP ranges from zero for isotropic systems to one for perfectly aligned systems (24). Compared to isotropic tissues (Fig. 3E), tissues that were patterned (Fig. 3F), stretched on isotropic FN, or longitudinally stretched on patterned FN had higher OOPs. For transversely stretched tissues (Fig. 3G), the OOP was lower than other aligned tissues (Fig. 3H) because ECM patterning and cyclic stretch competed for tissue alignment and induced the parquet floor architecture described earlier (Fig. 1G). Together, these results demonstrate that sarcomere alignment is compromised when ECM is not aligned coincident to the direction of mechanical loading.

Cyclic stretch reduces contractile function

The contractile strength of muscle is dependent on intracellular calcium levels (49). We asked if stretch alters calcium transient morphology, which could signify contractile dysfunction. Fluo-4 calcium transients in conditioned tissues paced at 2 Hz were imaged (Fig. 4A) and analyzed to determine peak fluorescence (F) relative to baseline fluorescence (F₀) and time to
peak. In all stretched tissues, transients showed decreased F/F₀ (Fig. 4B) and increased time to peak (Fig. 4C), independent of the direction of stretch. These changes are reminiscent of those reported for hypertrophic and failing rat (10) and human (11) hearts. Thus, cyclic stretch induces remodeling of calcium transients that matches reports for failing myocytes.

We reasoned that if our microsystem faithfully reproduced cardiac pathophysiology, we would measure contractile dysfunction in the stretched tissues. Thus, we measured stresses generated by conditioned MTFs paced at 2 Hz (Fig. 4D) (24, 29). Diastolic stresses were not statistically different between tissues, except between patterned tissues (Fig. 4E) and transversely stretched tissues (Fig. 4F-G). As shown previously, patterned tissues generated more systolic and active stress than isotropic tissues (24, 48). However, all stretched tissues had lower systolic and twitch stress than patterned tissues, independent of the direction of stretch (Fig. 4H), indicating that cyclic stretch reduces stress generation even if sarcomeres are highly aligned. Our results are similar to measurements made from myocytes isolated from failing and non-failing human hearts, where, at physiological frequencies, percent shortening in failing myocytes was approximately half that in non-failing myocytes (13-14). These data suggest that it is possible to recapitulate failing myocardium on a 2-D chip that is amenable to comparison with animal and clinical studies.

Discussion

In this study, we modeled failing myocardium on a chip by applying cyclic stretch to engineered, anisotropic cardiac tissues. Gene expression in stretched tissues was consistent with pathological remodeling, including up-regulation of focal adhesion genes and a switch to the immature myosin isoform. Sarcomere alignment and cell shape were uniquely sensitive to the direction of stretch and matched clinical reports of pathological structural remodeling. Stretch-
induced changes in calcium cycling and systolic stress generation were also comparable to measurements from patients with heart failure. Together, these results suggest that our in vitro microsystem can be utilized to study the genetic, structural, and functional aspects of failing myocardium.

Maladaptive gene expression is a commonly used test for experimental models of heart disease because it can be easily compared to clinical studies. Similarly, in our model, we observed a lower ratio of α- to β-MHC in stretched tissues, a commonly accepted indicator of heart disease (8-9). We measured increased expression of several focal adhesion genes, such as focal adhesion kinase and integrin α5, in response to stretch, which matches in vivo studies demonstrating up-regulation of focal adhesion expression and signaling during the hypertrophic response to mechanical overload (39, 42-44). Thus, our chip meets the genetic criteria of a valid model of failing myocardium.

Heart failure is also characterized by significant remodeling of tissue architecture. Because disease progression often affects both the distribution of biomechanical forces and the organization of the ECM, we took advantage of our in vitro microsystem to address how these two extracellular cues co-regulate structural remodeling. With transverse cyclic stretch, local regions of sarcomere misalignment resulted in disorganized tissue reminiscent of hypertrophic cardiomyopathy (4). Myocyte AR was also sensitive to the direction of stretch, as myocytes stretched longitudinally had an AR of 10:1, compared to patterned myocytes with an AR of 7:1. These values are similar to those reported for myocytes isolated from dilated and healthy hearts, respectively (2). Interestingly, transverse stretch did not affect AR, suggesting that structural remodeling is sensitive to the direction of stretch, similar to previous in vitro reports (18, 50).
These data suggest that our *in vitro* microsystem replicates the maladaptive remodeling of the diseased heart.

Because heart failure is a broadly defined disease, it has been associated with both diastolic and systolic dysfunction (51). Our stretched tissues exhibited reduced systolic stress, suggesting that excessive stretch affects myocyte shortening, but not relaxation. One potential explanation is that pathological hypertrophy and heart failure are also associated with increased fibrosis, which stiffens the cellular microenvironment (52). These pathological changes in compliance likely impede myocyte relaxation and could be essential to diastolic dysfunction. Thus, our system recapitulates the systolic dysfunction of failing myocardium, but does not reveal a mechanism for diastolic dysfunction in the heart.

Organs on chips have promising potential as substitutes for *in vivo* animal studies with improved predictability compared to current *in vitro* systems (53-54). In this study, we used neonatal rat myocytes because the rat is the pharmaceutical and biotechnology industry standard for the study of heart disease *in vitro* and *in vivo*. The model we described here could be developed as failing myocardium on a chip technology with applications for testing therapeutics against specific diseases and patient populations in combination with *in vitro* models that focus on other cardiac diseases (55). The uniqueness of our model lies in its ability to recapitulate native tissue architecture and its capacity to quantify not only genetic and structural remodeling, but also functional remodeling, including contractile force generation. Further development of organs on chips with specific physiological and pathological phenotypes has the potential to significantly reduce drug development costs while also improving the fidelity and predictability of efficacy and toxicity studies.
Methods

Experimental methods are described in detail in the SI Materials and Methods; a brief description is included here.

Chip fabrication

Elastic silicone membranes (Specialty Manufacturing Inc.) were clamped into stainless steel brackets (23, 26) and 25 mm-diameter rings of silicon tubing were affixed to the center. Membranes treated in a UV-ozone cleaner (Jelight Company, Inc.) were micropatterned with PDMS stamps coated with 50 ug/mL FN (BD Biosciences). Separate membranes were coated uniformly with 50 ug/mL FN for 20 minutes.

To fabricate stretchable MTFs (23-24), silicone membranes secured into brackets were temporarily cured to glass platforms with 100% ethanol to maintain baseline tension and provide rigid surfaces for spin-coating. Membranes were removed from brackets and two pieces of tape were applied across the length or width of the membrane separated by 8 mm. Poly(N-isopropylacrylamide) (PIPAAm) (Polysciences) was spin-coated onto membranes followed by tape removal. PDMS cured at RT for 4-5 hours was spin-coated onto membranes and fully cured. Membranes were re-clamped into brackets and micropatterned. Membranes with PIPAAm strips along short axes were used only for transverse stretch.

Cell culture

All animal protocols were approved by the Harvard University Animal Care and Use Committee. Cardiac myocytes were isolated by harvesting and enzymatically digesting ventricles from two day old Sprague-Dawley rats using previously published protocols (56-57).
Cyclic stretch bioreactor

A custom bioreactor based on a previous design (26) was built to apply 10% cyclic strain at 3 Hz to tissues cultured on silicone membranes (23). A linear motor (LinMot) was implemented to stretch up to ten samples simultaneously inside an incubator.

Gene expression analysis

RNA was isolated using Stratagene Absolutely RNA Miniprep Kit (Agilent Technologies). mRNA was amplified and hybridized to Affymetrix GeneChip Rat Gene 1.0 ST Arrays following manufacturer’s instructions, which were scanned with Affymetrix GeneChip Scanner 3000 7G. Probe cell intensity data files were loaded into Affymetrix Expression Console Software and normalized using the robust multichip average (RMA) method (58). Signal values were log2-transformed and analyzed with Bioconductor open source software and the limma package in R (59). Expression values for each condition were averaged, fit to a linear model, and compared using Bayes statistics. Gene expression values were analyzed with Gene Expression Dynamics Inspector (GEDI) bioinformatics software package (31-32). Differentially regulated genes were categorized by selected gene ontology terms by inputting filtered probe set IDs into the AmiGO! Slimmer from the Gene Ontology project (http://amigo.geneontology.org/cgi-bin/amigo/slimmer).

Sarcomere alignment quantification

Tissues were fixed, immunostained for sarcomeric α-actinin (A7811, Sigma-Aldrich), and imaged on an inverted fluorescent microscope (Leica DMI 6000B). Custom MATLAB software (MathWorks) was used to calculate the sarcomere orientational order parameter (OOP) of each tissue (24). OOPs for each condition were averaged and statistically compared using student’s t-test.
Cell shape measurements

Tissues were incubated with 10 µM di-8-ANEPPS (Invitrogen) for ten minutes at 37°C, rinsed with Tyrode’s solution (1.8 mM CaCl₂, 5 mM glucose, 5 mM HEPES, 1 mM MgCl₂, 5.4 mM KCl, 135 mM NaCl, 0.33 mM NaH₂PO₄, pH 7.4), moved to a confocal microscope maintained at 37°C (Zeiss LSM 510), and imaged with a 40x objective. Custom MATLAB software (MathWorks) was used to manually outline the cell borders of multiple cells per tissue, which were fit to an ellipse. The major (cell length) and minor (cell width) axes of the fitted ellipses and their aspect ratios for each condition were statistically compared using student’s t-test.

Calcium transient measurements

Tissues were incubated with 10 µg/mL Fluo-4 AM calcium indicator (Invitrogen) for 30 minutes at 37°C, rinsed with Tyrode’s solution, and transferred to a confocal microscope maintained at 37°C (Zeiss LSM 510). Tissues were paced with a point stimulation electrode operating at 2-5 V and 2 Hz for at least 5 minutes before acquiring 2.5 second image sequences with a 40x objective. For each field of view, 10x10 µm² regions of interest (ROIs) were selected in the cytoplasm of a cell, distant from the nucleus. The change in fluorescence (F) over time for four beats per ROI were averaged to determine F over baseline F (F₀) and time to peak (60). F/F₀ and time to peak for each condition were averaged and statistically compared using student’s t-test.

Contractile stress measurements

Tissues on stretchable MTFs were incubated in Tyrode’s solution and moved to a stereomicroscope (Leica Microsystems). Cuts were made through the PDMS layer to release arrays of MTFs that remained tethered to the substrate at one longitudinal end. PIPAAm
transitioned to the aqueous phase as the temperature dropped below 32°C, allowing MTF release (24). The temperature was restored to 37°C and films were paced with a field stimulation electrode operating at 5-10 V and 2 Hz. Movies of contracting films were acquired at 120-150 Hz. A profilometer (P-16+ Contact Stylus Profiler, KLA-Tencor) was used to measure PDMS film thickness in un-cultured regions of the membrane. MATLAB software (MathWorks) was used to calculate stress generation based on the projection of the radius of curvature and film thickness (24, 29). Diastolic, systolic, and twitch stresses for each condition were averaged and statistically compared using student’s t-test.

Acknowledgements

We thank André G. Kléber for design of the initial cyclic stretch system and the Harvard Center for Nanoscale Systems for use of cleanroom facilities. This work was funded by American Heart Association Predoctoral Fellowship (0815729D), National Institutes of Health (1 R01 HL079126, 1 UH2 TR000522-01), Harvard Materials Research Science and Engineering Center supported by the National Science Foundation (DMR-0213805), the Harvard Stem Cell Institute and GlaxoSmithKline, and Harvard School of Engineering and Applied Sciences.
References

Figure Legends

Fig. 1. Failing myocardium on a chip design. (A) (i) Schematic of the heart with right atrium (RA), left atrium (LA), right ventricle (RV), and left ventricle (LV) labeled. (ii) Ventricular myocardium consists of aligned, elongated cardiac myocytes. (iii) Schematic of the heart failure on a chip system adapted for the muscular thin film (MTF) assay. PIPAAm and PDMS were spin-coated on top of the silicone membranes and cardiac myocytes were cultured inside the affixed chamber ring. To measure contractile stress, MTFs were cut with a razor blade and, as the PIPAAm layer dissolved, MTFs freely contracted. (iv) Stretchable muscular thin films.
(MTFs) were paced to regulate contraction frequency and imaged from above. (B) Elastomeric silicone membranes were micropatterned with fibronectin (FN) in a “brick wall” pattern (white: FN, scale bar: 10 µm) and (C) seeded with neonatal rat ventricular myocytes to form anisotropic cardiac monolayers. (D) Myocytes were also seeded onto membranes coated with isotropic FN, cultured for one hour, and (E) cyclically stretched, which induced alignment parallel to the loading direction (scale bars: 50 µm). (F) Myocytes patterned and stretched in the longitudinal direction aligned parallel to the direction of patterning and stretch (scale bar: 50 µm). (G) Myocytes patterned and stretched in the transverse direction aligned primarily with the patterning, but small clusters of myocytes aligned with the stretch (scale bar: 50 µm).
Fig. 2. Cyclic stretch promotes pathological gene expression. (A) Time-course GEDI maps of microarray data filtered to include any gene that showed a significant fold change (FC) at any time point in any condition after one hour plus the indicated hours in culture. After 96 hours, GEDI maps demonstrate differences in global gene expression between static and stretched tissues. Color bar indicates fold change differences in gene expression relative to samples collected one hour after seeding. n=3. (B) Heat maps of microarray data for indicated genes, which are located in the dashed boxes in (A). Color bar indicates FC differences in gene expression relative to static, isotropic tissues at the same time point. n=3. (C) Heat maps of microarray data for indicated genes. Color bar indicates FC differences in gene expression relative to static, isotropic tissues at the same time point. n=3. (D) Normalized mRNA
expression, as measured by RT-PCR, for indicated genes. Mean +/- standard error, n=3 tissues, *p<0.05 relative to static, isotropic tissues, #p<0.05 relative to static, patterned tissues.

Fig. 3. Cyclic stretch induces orientation-dependent structural remodeling. Cell membranes in (A) isotropic, (B) patterned, and (C) longitudinally stretched tissues stained with di-8-ANEPPS to measure cellular dimensions, as shown for representative cells outlined in yellow. Scale bars: 10 µm. (D) Average cell aspect ratio (length/width) for each condition. Mean +/- standard error, n≥4 tissues, *p<0.05 relative to I, #p<0.05 relative to P. (E) Isotopic, (F) patterned, and (G) transversely stretched cardiac tissues immunostained for α-actinin to detect sarcomeres. (H) The average sarcomere orientational order parameter (OOP) is plotted for each condition. Mean +/- standard error, n=5 tissues for each condition, *p<0.05 relative to static, isotropic tissues, #p<0.05 relative to static, patterned tissues.
Fig. 4. Cyclic stretch reduces contractile function. (A) For each condition, the average fluorescence intensity (F) of Fluo-4 was normalized to baseline fluorescence (F₀) and plotted for a cardiac cycle. (B) Peak F/F₀ decreased with cyclic stretch and (C) time to peak increased with cyclic stretch, independent of direction. Mean +/- standard error, n≥5, *p<0.05 relative to static, isotropic tissues, #p<0.05 relative to static, patterned tissues. (D) Schematic of stretchable muscular thin films (MTFs) at diastole and systole. Contraction of the films was recorded from above, as shown for representative (E) patterned and (F) transversely stretched films transitioning from (i) diastole to (ii) systole. Bars = 1 mm. (G) Displacement of films was used to determine stress generation over time, as shown for the films in panels (E) and (F). (H) Average diastolic, systolic, and active stress for each condition. Mean +/- standard error, n≥16, *p<0.05 relative to static, isotropic tissues, #p<0.05 relative to static, patterned tissues.