
Semantic-head-driven generation

Citation
Shieber, Stuart M., Gertjan van Noord, Fernando C. N. Pereira, and Robert C. Moore. Semantic-
head-driven generation. Computational Linguistics, 16(1):30-41, 1990.

Published Version
http://www.aclweb.org/anthology-new/J/J90/J90-1004.pdf

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2027199

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2027199
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Semantic-head-driven%20generation&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=f3544ba77b8d80eb4892400b01a626b3&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

SEMANTIC-HEAD-DRIVEN GENERATION

Stuart M. Shieber

Aiken Computation Laboratory
Division of Applied Sciences

Harvard University
Cambridge, MA 02138

Gertjan van Noord

Department of Linguistics
Rijksuniversiteit Utrecht
Utrecht, The Netherlands

Fernando C. N. Pereira
AT & T Bell Laboratories
Murray Hill, NJ 07974

Robert C. Moore

Artificial Intelligence Center
SRI International

Menlo Park, CA 94025

We present an algorithm for generating strings from logical form encodings that improves upon previous
algorithms in that it places fewer restrictions on the class of grammars to which it is applicable. In particular,
unlike a previous bottom-up generator, it allows use of semlantically nonmonotonic grammars, yet unlike
top-down methods, it also permits left-recursion. The enabling design feature of the algorithm is its implicit
traversal of the analysis tree for the string being generated in a semantic-head-driven fashion.

1 INTRODUCTION

The problem of generating a well-formed natural language
expression from an encoding of its meaning possesses prop-
erties that distinguish it from the converse problem of
recovering a meaning encoding from a given natural lan-
guage expression. This much is axiomatic. In previous work
(Shieber 1988), however, one of us attempted to character-
ize these differing properties in such a way that a single
uniform architecture, appropriately parameterized, might
be used for both natural language processes. In particular,
we developed an architecture inspired by the Earley deduc-
tion work of Pereira and Warren (1983), but which gener-
alized that work allowing for its use in both a parsing and
generation mode merely by setting the values of a small
number of parameters.

As a method for generating natural language expres-
sions, the Earley deduction method is reasonably successful
along certain dimensions. It is quite simple, general in its
applicability to a range of unification-based and logic gram-
mar formalisms, and uniform, in that it places only one
restriction (discussed below) on the form of the linguistic
analyses allowed by the grammars used in generation. In
particular, generation from grammars with recursions whose
well-foundedness relies on lexical information will termi-
nate; top-down generation regimes such as those of Wede-
kind (1988) or Dymetman and Isabelle (1988) lack this
property; further discussion can be found in Section 2.1.

Unfortunately, the bottom-up, left-to-right processing
regime of Earley generation--as it might be called---has its

own inherent frailties. Efficiency considerations require
that only grammars possessing a property of semantic
monotonicity can be effectively used, and even for those
grammars, processing can become overly nondeterministic.

Tile algorithm described in this paper is an attempt to
resolve these problems in a satisfactory manner. Although
we believe that this algorithm could be seen as an instance
of a uniform architecture for parsing and generation--just
as tile extended Earley parser (Shieber, 1985b) and the
bottom-up generator were instances of the generalized
Earley deduction architecture--our efforts to date have
been aimed foremost toward the development of the algo-
rithm for generation alone. We will mention efforts toward
this end in Section 5.

1.1 APPLICABILITY OF THE ALGORITHM

As does the Earley-based generator, the new algorithm
assumes that the grammar is a unification-based or logic
grammar with a phrase structure backbone and complex
nonterminals. Furthermore, and again consistent with pre-
vious work, we assume that the nonterminals associate to
the phrases they describe logical expressions encoding their
possible meanings. Beyond these requirements common to
logic-based formalisms, the methods are generally applica-
ble.

A variant of our method is used in Van Noord's BUG
(Bottom-Up Generator) system, part of MiMo2, an experi-
mental machine translation system for translating interna-
tional news items of Teletext, which uses a Prolog version of

30 Computational Linguistics Volume 16, Number 1, March 1990

Shieber et al. Semantic Head-Driven Grammar

PATR-II similar to that of Hirsh (1987). According to
Martin Kay (personal communication), the STREP ma-
chine translation project at the Center for the Study of
Language and Information uses a version of our algorithm
to generate with respect to grammars based on head-driven
phrase structure grammar (HPSG). Finally, Calder et al.
(1989) report on a generation algorithm for unification
categorial grammar that appears to be a special case of
our s .

1.2 PRELIMINARIES

Despite the general applicability of the algorithm, we will,
for the sake of concreteness, describe it and other genera-
tion algorithms in terms of their implementation for definite-
clause grammars (DCG). For ease of exposition, the encod-
ing will be a bit more cumbersome than is typically found in
Prolog DCG interpreters. The standard DCG encoding in
Prolog uses the notation

(cat o) --> (cat I) (cat,) .

where the (cat i) are terms representing the grammatical
category of an expression and its subconstituents. Terminal
symbols are introduced into rules by enclosing them in list
brackets, for example

sbar/S --> [that], s/S.

Such rules can be translated into Prolog directly using a
difference list encoding of string positions; we assume
readers are familiar with this technique (Pereira and Shie-
ber, 1985).

Because we concentrate on the relationship between
expressions in a language and their logical forms, we will
assume that the category terms have both a syntactic and a
semantic component. In particular, the infix function sym-
bol / will be used to form categories of the form Syn/Sem
where Syn is the syntactic category of the expression and
Sere is an encoding of its semantics as a logical form; the
previous rule uses this notation, for example. From a DCG
perspective, all the rules involve the single nonterminal/ ,
with the given intended interpretation. Furthermore, the
representation of grammars that we will postulate includes
the threading of string positions explicitly, so that a node
description will be of the form node (Syn/Sem, PO-P).
The first argument of the node functor is the category,
divided into its syntactic and semantic components; the
second argument is the difference list encoding of the
substring it covers. In summary, a DCG grammar rule will
be encoded as the clause

node((syno) / (semo), PO-P)--->

[node((syn I) / (semi). PO-P 1) ,

node((syn.) / (sem.)), Pn-I-P].

We use the functor '--->' to distinguish this node encoding
from the standard one. The right-hand-side elements are
kept as a Prolog list for easier manipulation by the interpret-
ers we will build.

We turn now to the issue of terminal symbols on the
right-hand sides of rules in the node encoding. During the
compilation process from the standard encoding to the node
encoding, the right-hand side of a rule is converted from a
list of categories and terminal strings to a list of nodes
connected together by the difference-list threading tech-
nique used for standard DCG compilation. At that point,
terminal strings can be introduced into the string threading
and need never be considered further. For instance, the
previous rule becomes

node(sbar/S, [that[P0]-P) ---> node(s/S, P0-P).

Throughout, we will alternate between the two encod-
ings, using the standard one for readability and the node
encoding as the actual data for grammar interpretation. As
the latter, more cumbersome, representation is algorithmi-
cally generable from the former, no loss of generality
ensues from using both.

2 PROBLEMS WITH EXISTING GENERATORS

Existing generation algorithms have efficiency or termina-
tion problems with respect to certain classes of grammars.
We review the problems of both top-down and bottom-up
regimes in this section.

2.1 PROBLEMS WITH TOP-DOWN GENERATORS

Consider a naive top-down generation mechanism that
takes as input the semantics to generate from and a corre-
sponding syntactic category and builds a complete tree,
top-down, left-to-right by applying rules of the grammar
nondeterministically to the fringe of the expanding tree.
This control regime is realized, for instance, when running
a DCG "backwards" as a generator.

Concretely, the following DCG interpreter--written in
Prolog and taking as its data the grammar in encoded
form--implements such a generation method.

gen(LF, Sentence) :- generate(node~s/LF, Sentence-[])).
generate(Node) :-

(Node - -> Children),
generate _ children(Children).

generate_ children([]).
generate_ children([ChildlRest]) :-

generate(Child),
generate_ children(Rest).

Clearly, such a generator may not terminate. For exam-
ple, consider a grammar that includes the rules

s /S --> np/NP, vp(NP)/S.

np/NP --> det(N)/NP, n/N.
det(N)/NP - > np/NP0, poss(NP0,N)/NP.
np/john --> [john].
poss(NP0,N)/mod(N,NP0)--> Is].
n/father --> [father].
vp(NP)/left(NP) --> [left].

Computational Linguistics Volume 16, Number 1, March 1990 31

Shieber et al. Semantic Head-Driven Grammar

This grammar admits sentences like "John left" and "John's
father left" with logical form encodings left(john) and
left(mod(father, john)), respectively. The technique used
here to build the logical forms is well-known in logic
grammars.l

Generation with the goal gen(left(john), Sent) using the
generator above will result in application of the first rule to
the node node(s/left(john), Sent-[]). A subgoal for the
generation of a node node(np/NP, Sent-P) will result. To
this subgoal, the second rule will apply, leading to a subgoal
for generation of the node node(det(N)/NP, Sent-Pl),
which itself, by virtue of the third rule, leads to another
instance of the NP node generation subgoal. Of course, the
loop may now be repeated an arbitrary number of times.
Graphing the tree being constructed by the traversal of this
algorithm, as in Figure 1, immediately exhibits the poten-
tial for nontermination in the control structure. (The re-
peated goals along the left branch are presented in boldface
in the figure. Dashed lines indicate portions of the tree yet
to be generated.)

This is an instance of the general problem familiar from
logic programming that a logic program may not terminate
when called with a goal less instantiated than what was
intended by the program's designer. Several researchers
have noted that a different ordering of the branches in the
top-down traversal would, in the case at hand, remedy the
nontermination problem. For the example above, the solu-
tion is to generate the VP first--using the goal generate
(node(vp(NP)/left(john), PI-[]))--in the course of which
the variable NP will become bound so that the generation
from node(np/NP, Sent-P 1) will terminate.

We might allow for reordering of the traversal of the
children by sorting the nodes before generating them. This
can be simply done, by modifying the first clause of gener -
ate.

generate(Node) :-

(Node - - > Children),

sort_ children(Children, SortedChildren),

generate_ children(SortedChildren).

s/left (john)

np/NP vp (NP)/le ft (j ohn)

• •s •••

det (N)/NP n/N
SM %

S S %%

np/NP0 poss (NP0,N)/NP

• • •# •%

Figure 1 Tree Constructed Top-Down by
Left-Recursive Grammar.

Here, we have introduced a predicate sor t_chi ldren to
reorder the child nodes before generating. Dymetman and
Isabelle (1988) propose a node-ordering solution to the
top-down nontermination problem; they allow the gram-
mar writer to specify a separate goal ordering for parsing
and for generation by annotating the rules by hand.
Strzalkowski (1989) develops an algorithm for generating
such annotations automatically. In both of these cases, the
node ordering is known a priori, and can be thought of as
applying to the rules at compile time.

Wedekind (1988) achieves the reordering by first gener-
ating nodes that are connected, that is, whose semantics is
instantiated. Since the NP is not connected in this sense,
but the VP is, the latter will be expanded first. In essence,
the technique is a kind of goal freezing (Colmerauer 1982)
or implicit wait declaration (Naish 1986). This method is
more general, as the reordering is dynamic; the ordering of
child nodes can, in principle at least, be different for
different uses of the same rule. The generality seems neces-
sary; for cases in which the a priori ordering of goals is
insufficient, Dymetman and Isabelle also introduce goal
freezing to control expansion.

Although vastly superior to the naive top-down algo-
rithm, even this sort of amended top-down approach to
generation based on goal freezing under one guise or an-
other is insufficient with respect to certain linguistically
plausible analyses. The symptom is an ordering paradox in
the sorting. For example, the "complements" rule given by
Shieber (1985a) in the PATR-II formalism

VP 1 --* VP 2 X
(VPl head) = (VP2 head)
(VP2 syncat first) = (X)
<VP2 syncat rest) = (VPI syncat)

can be encoded as the DCG rule:

vp(Head, Syncat)/VP ->
,~(Head, [Compl/LFlSyncat])/VP, Compl/LF.

Top-down generation using this rule will be forced to
expand the lower VP before its complement, since LF is
uninstantiated initially. Any of the reordering methods
must choose to expand the child VP node first. But in that
case, application of the rule can recur indefinitely, leading
to nontermination. Thus, no matter what ordering of sub-
goals is chosen, nontermination results.

Of course, if one knew ahead of time that the subcatego-
rization list being built up as the value for Syncat was
bounded in size, then an ad hoc solution would be to limit
recursive use of this rule when that limit had been reached.
But even this ad hoc solution is problematic, as there may
be no principled bound on the size of the subcategorization
list. For instance, in analyses of Dutch cross-serial verb
constructions (Evers 1975; Huybrechts 1984), subcategori-
zation lists may be concatenated by syntactic rules (Moort-

32 Computational Linguistics Volume 16, Number 1, March 1990

Shieber et al. Semantic Head-Driven Grammar

gat 1984; Fodor et al. 1985; Pollard 1988), resulting in
arbitrarily long lists. Consider the Dutch sentence

dat [Jan [Marie [de oppasser [de olifanten [zag helpen
that John Mary the keeper the elephants saw help

voeren]]]]
feed

that John saw Mary help the keeper feed the elephants

The string of verbs is analyzed by appending their subcate-
gorization lists as in Figure 2. Subcategorization lists under
this analysis can have any length, and it is impossible to
predict from a semantic structure the size of its correspond-
ing subcategorization list merely by examining the lexicon.

Strzalkowski refers to this problem quite aptly as consti-
tuting a deadlock situation. He notes that by combining
deadlock-prone rules (using a technique akin to partial
execution 2) many deadlock-prone rules can be replaced by
rules that allow reordering; however, he states that "the
general solution to this normalization problem is still under
investigation." We think that such a general solution is
unlikely because of cases like the one above in which no
finite amount of partial execution can necessarily bring
sufficient information to bear on the rule to allow ordering.
The rule would have to be partially executed with respect to
itself and all verbs so as to bring the lexical information
that well-founds the ordering to bear on the ordering
problem. In general, this is not a finite process, as the
previous Dutch example reveals. This does not deny that
compilation methods may be able to convert a grammar
into a program that generates without termination prob-
lems. In fact, the partial execution techniques described by
two of us (Pereira and Shieber 1985) could form the basis
of a compiler built by partial execution of the new algo-
rithm we propose below relative to a grammar. However,
the compiler will not generate a program that generates
top-down, as Strzalkowski's does.

v [c,k,mj]

V [mj]

I
zag V [k,m] V [e,k]
saw [

helpen voeren
help feed

Figure 2 Schematic of Verb Subeategorization
Lists for Dutch Example.

V [c,k,m]

In summary, top-down generation algorithms, even if
controlled by the instantiation status of goals, can fail to
terminate on certain grammars. The critical property of the
example given above is that the well-foundedness of the
generation process resides in lexical information unavail-
able to top-down regimes. This property is the hallmark of
several linguistically reasonable analyses based on lexical
encoding of grammatical information such as are found in
categorial grammar and its unification-based and combina-
torial variants, in head-driven phrase-structure grammar,
and in lexical-functional grammar.

2.2 PROBLEMS WITH BOTTOM-UP GENERATORS

The bottom-up Earley-deduction generator does not fall
prey to these problems of nontermination in the face of
recursion, because lexical information is available immedi-
ately. However, several important frailties of the Earley
generation method were noted, even in the earlier work.

For efficiency, generation using this Earley deduction
method requires an incomplete search strategy, filtering
the search space using semantic information. The semantic
filter makes generation from a logical form computation-
ally feasible, but preserves completeness of the generation
process only in the case of semantically monotonic gram-
mars--those grammars in which the semantic component
of each right-hand-side nonterminal subsumes some por-
tion of the semantic component of the left-hand-side. The
semantic monotonicity constraint itself is quite restrictive.
As stated in the original Earley generation paper (Shieber
1988), "perhaps the most immediate problem raised by
[Earley generation] is the strong requirement of semantic
monotonicity Finding a weaker constraint on gram-
mars that still allows efficient processing is thus an impor-
tant research objective." Although it is intuitively plausible
that the semantic content of subconstituents ought to play a
role in the semantics of their combination--this is just a
kind of compositionality claim--there are certain cases in
which reasonable linguistic analyses might violate this
intuition. In general, these cases arise when a particular
lexical item is stipulated to occur, the stipulation being
either lexical (as in the case of particles or idioms) or
grammatical (as in the case of expletive expressions).

Second, the left-to-right scheduling of Earley parsing,
geared as it is toward the structure of the string rather than
that of its meaning, is inherently more appropriate for
parsing than generation. 3 This manifests itself in an overly
high degree of nondeterminism in the generation process.
For instance, various nondeterministic possibilities for gen-
erating a noun phrase (using different cases, say) might be
entertained merely because the NP occurs before the verb
which would more fully specify, and therefore limit, the
options. This nondeterminism has been observed in prac-
tice.

2.3 SOURCE OF THE PROBLEMS

We can think of a parsing or generation process as discover-
ing an analysis tree, 4 one admitted by the grammar and

Computational Linguistics Volume 16, Number 1, March 1990 33

Shieber et ai. Semantic Head-Driven Grammar

satisfying certain syntactic or semantic conditions, by tra-
versing a virtual tree and constructing the actual tree
during the traversal. The conditions to be satisfied--
possessing a given yield in the parsing case, or having a root
node labeled with given semantic information in the case of
generation--reflect the different premises of the two types
of problems. This perspective purposely abstracts issues of
nondeterminism in the parsing or generation process, as it
assumes an oracle to provide traversal steps that happen to
match the ethereal virtual tree being constructed. It is this
abstraction that makes it a useful expository device, but
should not be taken literally as a description of an algo-
rithm.

From this point of view, a naive top-down parser or
generator performs a depth-first, left-to-right traversal of
the tree. Completion steps in Earley's algorithm, whether
used for parsing or generation, correspond to a post-order
traversal (with prediction acting as a pre-order filter). The
left-to-right traversal order of both of these methods is
geared towards the given information in a parsing problem,
the string, rather than that of a generation problem, the
goal logical form. It is exactly this mismatch between
structure of the traversal and structure of the problem
premise that accounts for the profligacy of these ap-
proaches when used for generation.

Thus, for generation, we want a traversal order geared to
the premise of the generation problem, that is, to the
semantic structure of the sentence. The new algorithm is
designed to reflect such a traversal strategy respecting the
semantic structure of the string being generated, rather
than the string itself.

3 THE NEW ALGORITHM

Given an analysis tree for a sentence, we define the pivot
node as the lowest node in the tree such that it and all
higher nodes up to the root have the same semantics.
Intuitively speaking, the pivot serves as the semantic head
of the root node. Our traversal will proceed both top-down
and bottom-up from the pivot, a sort of semantic-head-
driven traversal of the tree. The choice of this traversal
allows a great reduction in the search for rules used to build
the analysis tree.

To be able to identify possible pivots, we distinguish a
subset of the rules of the grammar, the chain rules, in
which the semantics of some right-hand-side element is
identical to the semantics of the left-hand-side. The right-
hand-side element will be called the rule's semantic head.
The traversal, then, will work top-down from the pivot
using a nonchain rule, for if a chain rule were used, the
pivot would not be the lowest node sharing semantics with
the root. Instead, the pivot's semantic head would be. After
the nonchain rule is chosen, each of its children must be
generated recursively.

The bottom-up steps to connect the pivot to the root of
the analysis tree can be restricted to chain rules only, as the
pivot (along with all intermediate nodes) has the same

semantics as the root and must therefore be the semantic
head. Again, after a chain rule is chosen to move up one
node in the tree being constructed, the remaining (non-
semantic-head) children must be generated recursively.

The top-down base case occurs when the nonchain rule
has no nonterminal children; that is, it introduces lexical
material only. The bottom-up base case occurs when the
pivot and root are trivially connected because they are one
and the; same node.

An :interesting side issue arises when there are two
right-hand-side elements that are semantically identical to
the left-hand-side. This provides some freedom in choosing
the semantic head, although the choice is not without
ramifications. For instance, in some analyses of NP struc-
ture, a rule such as

np/NP --> det/NP, nbar/NP.

is postulated. In general, a chain rule is used bottom-up
from its semantic head and top-down on the non-semantic-
head siblings. Thus, if a non-semantic-head subconstituent
has the same semantics as the left-hand-side, a recursive
top-down generation with the same semantics will be in-
voked. In theory, this can lead to nontermination, unless
syntactic factors eliminate the recursion, as they would in
the rule above regardless of which element is chosen as
semantic head. In a rule for relative clause introduction
such a,; the following (in highly abbreviated form)

nbar/N--> nbar/N, sbar/N.

we can (and must) choose the nominal as semantic head to
effect 'termination. However, there are other problematic
cases, such as verb-movement analyses of verb-second lan-
guages. We discuss this topic further in Section 4.3.

3.1 A DCG IMPLEMENTATION

To make the description more explicit, we will develop a
Prolog implementation of the algorithm for DCGs, along
the way introducing some niceties of the algorithm previ-
ously glossed over.

As before, a term of the form node(Cat, P0-P) represents
a phrase with the syntactic and semantic information given
by Cat starting at position P0 and ending at position P in
the string being generated. As usual for DCGs, a string
position is represented by the list of string elements after
the position. The generation process starts with a goal
category and attempts to generate an appropriate node, in
the process instantiating the generated string.

gen(Cat, String) :- generate(node(Cat, String.-[])).

To generate from a node, we nondeterministically choose
a nonchain rule whose left-hand-side will serve as the pivot.
For each right-hand-side element, we recursively generate,
and then connect the pivot to the root.

34 Computational Linguistics Volume 16, Number 1, March 1990

Shieber et al. Semantic Head-Driven Grammar

generate(Root) :-
% choose nonchain rule

applicable _ non _ chain _ rule(Root, Pivot, RHS),
% generate all subconstituents

generate_ rhs(RHS),
% generate material on path to root

connect(Pivot, Root).

The processing within genera te_ rhs is a simple iteration.

generate_ rhs([]).

generate_ rhs([First [Rest]) :-
generate(First),
generate_ rhs(Rest).

The connection of a pivot to the root, as noted before,
requires choice of a chain rule whose semantic head matches
the pivot, and the recursive generation of the remainder of
its right-hand side. We assume a predicate appl ica-
b le_ cha in_ rule(SemHead, LHS, Root, RHS) that holds
if there is a chain rule admitting a node LHS as the
left-hand side, SoreHead as its semantic head, and RHS as
the remaining right-hand-side nodes, such that the left-
hand-side node and the root node Root can themselves be
connected.

connect(Pivot, Root) :-
% choose chain ruJe

applicable_ chain_ rule(Pivot, LHS, Root, RHS),
% generate remaining siblings

generate _ rhs(RHS),
% connect the newperent to the root

oonnect(LHS, Root).

The base case occurs when the root and the pivot are the
same. To implement the generator correctly, identity checks
like this one must use a sound unification algorithm with
the occurs check. (The default unification in most Prolog
systems is unsound in this respect.) The reason is simple.
Consider, for example, a grammar with a gap-threading
treatment of wh-movement (Pereira 1981; Pereira and
Shieber 1985), which might include the rule

np(Affr, [np(Agr)/SemJX]-X)/Sem - - > [].

stating that an NP with agreement Agr and semantics Sere
can be empty provided that the list of gaps in the NP can be
represented as the difference list [np(Agr)/SemlX]-X, that
is, the list containing an NP gap with the same agreement
features Agr. Because the above rule is a nonchain rule, it
will be considered when trying to generate any nongap NP,
such as the proper noun np(3-sing, G-G)/ john. The base
case of connect will try to unify that term with the head of
the rule above, leading to the attempted unification of X
with [np(Agr)/SemlX], an occurs-check failure that would
not be caught by the default Prolog unification algorithm.
The base case, incorporating the explicit call to a sound
unification algorithm, is therefore as follows:

connect(Pivot, Root) :-
% trivially connect pivot to root

unify(Pivot, Root).

Now, we need only define the notion of an applicable
chain or nonchain rule. A nonchain rule is applicable if the
semantics of the left-hand side of the rule (which is to
become the pivot) matches that of the root. Further, we
require a top-down check that syntactically the pivot can
serve as the semantic head of the root. For this purpose, we
assume a predicate cha ined_ nodes that codifies the tran-
sitive closure of the semantic head relation over categories.
This is the correlate of the link relation used in left-corner
parsers with top-down filtering; we direct the reader to the
discussion by Matsumoto et al. (1983) or Pereira and
Shieber (1985) for further information.

a p p l i c a b l e _ non _ c h a i n _ rule(Root, Pivot, RHS) :-

% s e m a n t i c s o f r o o t a n d p i v o t e re serae

n o d e _ semantics(Root , Sem),

node_ semantics(Pivot, Sere),
% choose a nonchain ru]e

non _ chain _ rulo(LHS, RHS),
% . . . whose lhs matches the pivot

unify(Pivot, LHS),
% make s t tre tile categories can connect

chained_ nodes(Pivot, Root).

A chain rule is applicable to connect a pivot to a root if the
pivot can serve as the semantic head of the rule and the
left-hand side of the rule is appropriate for linking to the
root.

applicable_ chain_ rule(Pivot, Parent, Root, RHS) :-
% choose a chain rule

chain_ rule(Parent, RHS, SemHead),
% . . . whose sere. headmatchespivot

unify(Pivot, SemHead),
% make sure the categories can connect

chained_ nodes(Parent, Root).

The information needed to guide the generation (given
as the predicates cha in_ rule, non_ cha in_ rule, and
cha ined_ nodes) can be computed automatically from the
grammar. A program to compile a DCG into these tables
has in fact been implemented. The details of the process
will not be discussed further; interested readers may write
to the first author for the required Prolog code.

3.2 A S I M P L E E X A M P L E

We turn now to a simple example to give a sense of the
order of processing pursued by this generation algorithm.
As in previous examples, the grammar fragment in Figure
3 uses the infix operator / to separate syntactic and seman-
tic category information, and subcategorization for comple-
ments is performed lexically.

Consider the generation from the category s e n t e n c e /
decl(call_ up(john,friends)). The analysis tree that we will
be implicitly traversing in the course of generation is given

Computational Linguistics Volume 16, Number 1, March 1990 35

Shieber et al. Semantic Head-Driven Grammar

sentence/decl(S)---> s(finite)/S. (1)
sentence/imp(S) --> vp(nonfinite,[np(_)/you])/S.
s(form)/S ---> Subj, vp(Form,[Subj])/S. (2)

vp(Forrn, Subcat)/S --->
vp(Form,[CompllSubcat])/S, Compl. (3)

vp(Form,[Subj])/S ---> vp(Form,[Subj])/VP,
adv(VP)/S.

vp(finite,[np(_)/O, np(3-sing)/S])/love(S,O)---> [loves].

vp(finite,[np(_)/O,p/up,np(3-sing)/Sl)/call-up(S,O) --->
[callsl. (4)

vp(finite,[np(3-sing)/S])/leave(S) --> [leaves].

np(3-sinq)/john---> [john]. (5)
np(3-pl)/friends ---> [friends]. (6)

adv(VP)/often(VP)---> [often].

det(3-sinq,X,P)/qterrn(every, X,P)---> [every].

n(3-sing, X)/friend(X)--> [friend].

Figure 3 Grammar Fragment for Simple Example•

in Figure 4. The rule numbers are keyed to the grammar.
The pivots chosen during generation and the branches
corresponding to the semantic head relation are shown in
boldface.

We begin by attempting to find a nonchain rule that will
define the pivot. This is a rule whose left-hand-side seman-
tics matches the root semantics dec l (ca l l_up(john ,

s e n t e n c e
[a] /dacl (call__up (John, friends))

S (finite)
~] /call_up(John,friends)

n p (3 - s £ n g)
[c] / J o h n

John

vp(finite,[np(3-sing)/John])
[d] /call_up(John, friends)

vp(finite,[p/up, np(3-sing)/John])
[¢] /call_up(John, friends)

vp (f i n i t e , [np (3 - p Z) / f z i e n d s , np (3 - p l)
p / u p , np (3 - s i n g) / J o h n]) / f c£ends

/ c a l l _ u p (J ohn, f f i e n d s)

p / u p

<7)

[g] up

Figure 4 Analysis Tree for Simple Example.

friends)) (although its syntax may differ). In fact, the only
suc, h nonchain rule is

sentence/decl(S)---> s(finite)/S. (1)

We conjecture that the pivot is labeled sen tence /
decl(call_ up(j ohn, friends)). In terms of the tree traversal,
we arc: implicitly choosing the root node [a] as the pivot.
We recursively generate from the child's node [b], whose
category is s(finite)/call_up(john, friends). For this cate-
gory, the pivot (which will turn out to be node [f]) will be
defined by the nonchain rule

vp(finite,[np(_)/O,p/up, np(3-sinq)/S]/call_up(S,O) ---> [caUs].(4)

(If there were other forms of the verb, these would be
potential candidates, but most would be eliminated by the
cha ined_nodes check, as the semantic head relation re-
quires identity of the verb form of a sentence and its VP
head. See Section 4.2 for a technique for further reducing
the nondeterminism in lexical item selection.) Again, we
recursively generate for all the nonterminal elements of the
right-hand side of this rule, of which there are none.

We must therefore connect the pivot [f] to the root [b]. A
chain rule whose semantic head matches the pivot must be
chosen. The only choice is the rule

vp(Form,Subcat)/S ---> vp(Form,[Cornpl[Subcat])/S, Cornpl. (3)

Unifying the pivot in, we find that we must recursively
generate the remaining RHS element np(_)/fr iends, and
then connect the left-hand-side node [e] with category

vp(finite,[lex/up, np(3-sinq}/john])/call_up(john, friends)

tO the same root [b]. The recursive generation yields a node
covering the string "friends" following the previously gen-
erated string "calls". The recursive connection will use the
same chain rule, generating the particle "up", and the new
node to be connected [d]. This node requires the chain rule

s(Form)/S ---> Subj, vp(Form,[Subj])/S. (2)

for connection. Again, the recursive generation for the
subject yields the string "John", and the new node to be
connected s(finite)/call_up(john, friends). This last node
connects to the root [b] by virtue of identity.

This completes the process of generating top-down from
the original pivot sentence/decl(call_up(john,friends)).
All that remains is to connect this pivot to the original root.
Again., the process is trivial, by virtue of the base case for
connection. The generation process is thus completed, yield-
ing the string "John calls friends up". The drawing in
Figure 4 summarizes the generation process by showing
which steps were performed top-down or bottom-up by
arrows on the analysis tree branches.

3.3 IMPORTANT PROPERTIES OF THE ALGORITHM

The grammar presented here was forced for expository
reasons to be trivial. (We have developed more extensive
exper!imental grammars that can generate relative clauses
with gaps and sentences with quantified NPs from quanti-

36 Computational Linguistics Volume 16, Number 1, March 1990

Shieber et al. Semantic Head-Drlven Grammar

fled logical forms by using a version of Cooper storage
[Cooper, 1983]. An outline of our treatment of quantifica-
tion is provided in Section 3.4.) Nonetheless, several impor-
tant properties of the algorithm are exhibited even in the
preceding simple example.

First, the order of processing is not left-to-right. The verb
was generated before any of its complements. Because of
this, full information about the subject, including agree-
ment information, was available before it was generated.
Thus, the nondeterminism that is an artifact of left-to-right
processing, and a source of inefficiency in the Earley gener-
ator, is eliminated. Indeed, the example here was com-
pletely deterministic; all rule choices were forced.

In addition, the semantic information about the particle
"up" was available, even though this information appears
nowhere in the goal semantics. That is, the generator
operated appropriately despite a semantically nonmono-
tonic grammar.

Finally, even though much of the processing is top-down,
left-recursive rules, even deadlock-prone rules (e.g. rule
(3)), are handled in a constrained manner by the algo-
rithm.

For these reasons, we feel that the semantic-head-driven
algorithm is a significant improvement over top-down meth-
ods and the previous bottom-up method based on Earley
deduction.

3.4 A MORE COMPLEX EXAMPLE: QUANTIFIER
STORAGE

We will outline here how the new algorithm can generate,
from a quantified logical form, sentences with quantified
NPs one of whose readings is the original logical form; that
is, how it performs quantifier lowering automatically. For
this, we will associate a quantifier store with certain catego-
ries and add to the grammar suitable store manipulation
rules.

Each category whose constituents may create store ele-
ments will have a store feature. Furthermore, for each such
category whose semantics can be the scope of a quantifier,
there will be an optional nonchain rule to take the top
element of an ordered store and apply it to the semantics of
the category. For example, here is the rule for sentences:

s(Form, GO-G, Store)/quani(O,X,R,S) ---> (8)
s(Form, GO-G, [qterm(Q,X,R)lStore])/S.

The term quant(Q,X,R,S) represents a quantified formula
with quantifier Q, bound variable X, restriction R, and
scope S; qterm(Q,X,R) is the corresponding store element.

In addition, some mechanism is needed to combine the
stores of the immediate constituents of a phrase into a store
for the phrase. For example, the combination of subject and
complement stores for a verb into a clause store is done in
one of our test grammars by lexical rules such as

vp(finite, [np(_, SO)/O, np(3-sing, SS)/S], SC)/gen(S,O) --> (9)
[generates], Ishuffle(SS, SO, SC)}.

which states that the store SC of a clause with main verb

"love" and the stores SS and SO of the subject and object
the verb subcategorizes for satisfy the constraint shuffle
(SS, SO, SC), meaning that SC is an interleaving of ele-
ments of SS and SO in their original order : Constraints in
grammar rules such as the one above are handled in the
generator by the clause

generate(lGoals}) :- call(Goals).

which passes the conditions to Prolog for execution. This
extension must be used with great care, because it is in
general difficult to know the instantion state of such goals
when they are called from the generator, and as noted
before underinstantiated goals may lead to nontermination.
A safer scheme would rely on delaying the execution of
goals until their required instantiation patterns are satisfied
(Naish 1986).

Finally, it is necessary to deal with the noun phrases that
create store elements. Ignoring the issue of how to treat
quantifiers from within complex noun phrases, we need
lexical rules for determiners, of the form

det(3-sing, X,P,[qterra(every, X,P)D/X -->[every]. (10)

stating that the semantics of a quantified NP is simply the
variable bound by the store element arising from the NP.
For rules of this form to work properly, it is essential that
distinct bound logical-form variables be represented as
distinct constants in the terms encoding the logical forms.
This is an instance of the problem of coherence discussed in
Section 4.1.

Figure 5 shows the analysis tree traversal for generating
the sentence "No program generates every sentence" from
the logical form

decl(quant(no,p,prog(p),

quant(every, s,sent(s),gen(p,s))))

The numbers labeling nodes in the figure correspond to
tree traversal order. We will only discuss the aspects of the
traversal involving the new grammer rules given above. The
remaining rules are like the ones in Figure 3, except that
nonterminals have an additional store argument where
necessary.

Pivot nodes [b] and [c] result from the application of rule
(8) to reverse the unstoring of the quantifiers in the goal
logical form. The next pivot node is node [j], where rule (9)
is applied. For the application of this rule to terminate, it is
necessary that at least either the first two or the last
argument of the shuffle condition be instantiated. The
pivot node must obtain the required store instantiation
from the goal node being generated. This happens automat-
ically in the rule applicability check that identified the
pivot, since the table cha ined_nodes identifies the store
variables for the goal and pivot nodes. Given the sentence
store, the shuffle predicate nondeterministically generates

Computational Linguistics Volume 16, Number 1, March 1990 37

Shieber et al. Semantic Head-Driven Grammar

s e n t e n c e /
[a] des1 (quant (no, p, prog (p),

quant (eve~, s, sent (s), gen (p, s} }) }

T
S (finite, [] } /

[b] quant (no, p, prog (p),
q~ant (eve~y, s, sent (s), gen (p, s)))

~1 (8)

[el s (f i n i t e , [~e rm (no, p, pro~ (p))]) 1
quant (evQ~, •, sent (s), gln (p, s))

~1 (s)

[d] s (finite, [qterm (no, p, prog (p)) ,
c/term (every, s, sent (s} }])/gen 1[p, s}

[c] np(3-sing, [q t e r m ~

[qt|no, p, prog (p) T ~ (finite, [np(3-sing, [qtermlno,p,prog (p))])/p],

Y [h] n (3-sing, p)/prog (s} [i] [qterm (no, p, prog (p) },
no ~ qterm (every, s, sent (s))])/gen (p, s)

~1 vPlfinite, [npl3-slng, (qtemlevtry, s,stnt(sl) If/s, ~] npl3-sing, [qterm(every,s, sent (el)])/s
np (3-sing, (qterm (no, p, pzog (p))]) /P l ,
(qterm (no, p, prog (p)),
q ~ (ev?ry, s, s ~ (=))])/gs~ (p, e)

~ (9) [l] det(3-slng, s,sent(s), [m] nbar(3-sing, s)/sent(s)
[qtem(*v.*~/,., .*at (.))]) I= t

gen~es ~ (10) [n] n (3-s,:l.ng, 8)/Bast (.)

evcry

Figure 5 Analysis Tree for Sentence with Quantifiers.

the substores for the constituents subcategorized for by the
verb.

The next interesting event occurs at pivot node [1], where
rule (10) is used to absorb the store for the object quantified
noun phrase. The bound variable for the stored quantifier,
in this case s, must be the same as the meaning of the noun
phrase and determiner. 6 This condition was already used to
filter out inappropriate shuffle results when node [1] was
selected as pivot for a noun phrase goal, again through the
nonterminal argument identifications included in the
cha ined_ nodes table.

The rules outlined here are less efficient than they might
be because during the distribution of store elements among
the subject and complements of a verb no check is per-
formed as to whether the variable bound by a store element
actually appears in the semantics of the phrase to which it
is being assigned, leading to many dead ends in the genera-
tion process. Also, the rules are sound for generation but
not for analysis, because they do not enforce the constraint
that every occurrence of a variable in logical form be
outscoped by the variable's binder. Adding appropriate side
conditions to the rules, following the constraints discussed
by Hobbs and Shieber (1987) would not be difficult.

4 EXTENSIONS

Tile basic semantic-head-driven generation algorithm can
be augmented in various ways so as to encompass some
important analyses and constraints. In particular, we dis-
cuss the incorporation of

• completeness and coherence constraints,
• the postponing of lexical choice, and
• the ability to handle certain problematic empty-headed

phrases

4.1 COMPLETENESS AND COHERENCE

Wedckind (1988) defines completeness and coherence of a
generation algorithm as follows. Suppose a generator de-
rives a string w from a logical form s, and the grammar
assigns to w the logical form a. The generator is complete if
s always subsumes a and coherent if a always subsumes s.
The generator defined in Section 3.1 is not coherent or
complete in this sense; it requires only that a and s be
compatible, that is, unifiable.

If the logical-form language and semantic interpretation
system provide a sound treatment of variable binding and

38 Computational Linguistics Volume 16, Number 1, March 1990

Shieber et al. Semantic Head-Driven Grammar

scope, abstraction and application, then completeness and
coherence will be irrelevant because the logical form of any
phrase will not contain free variables. However, neither
semantic projections in lexical-functional grammar (LFG;
Halvorsen and Kaplan 1988) nor definite-clause grammars
provide the means for such a sound treatment: logical-form
variables or missing arguments of predicates are both
encoded as unbound variables (attributes with unspecified
values in the LFG semantic projection) at the description
level. Under such conditions, completeness and coherence
become important. For example, suppose a grammar asso-
ciated the following strings and logical forms.

eat(john, X)
'John ate'
eat(john, banana)
'John ate a banana'
eat(john, nice(yellow(banana)))
'John ate a nice yellow banana'

The generator of Section 3.1 would generate any of these
sentences for the logical form eat(john, X) (because of its
incoherence) and would generate "John ate" for the logical
form eat(john, banana) (because of its incompleteness).

Coherence can be achieved by removing the confusion
between object-level and metalevel variables mentioned
above; that is, by treating logical-form variables as con-
stants at the description level. In practice, this can be
achieved by replacing each variable in the semantics from
which we are generating by a new distinct constant (for
instance with the numbervars predicate built into some
implementations of Prolog). These new constants will not
unify with any augmentations to the semantics. A suitable
modification of our generator would be

gen(Cat, String) :-
cat _ semantics(Cat, Sere),
numbervars(Sem,O, _),
generate(node(Cat,String,[])).

This leaves us with the completeness problem. This
problem arises when there are phrases whose semantics are
not ground at the description level, but instead subsume the
goal logical form or generation. For instance, in our hypo-
thetical example, the string "John eats" will be generated
for semantics eat(john, banana). The solution is to test at
the end of the generation procedure whether the feature
structure that is found is complete with respect to the
original feature structure. However, because of the way in
which top-down information is used, it is unclear what
semantic information is derived by the rules themselves,
and what semantic information is available because of
unifcations with the original semantics. For this reason,
"shadow" variables are added to the generator that repre-
sent the feature structure derived by the grammar itself.
Furthermore, a copy of the semantics of the original fea-
ture structure is made at the start of the generation process.
Completeness is achieved by testing whether the semantics
of the shadow is subsumed by the copy.

4.2 POSTPONING LEXICAL CHOICE

As it stands, the generation algorithm chooses particular
lcxical forms on-line. This approach can lead to a certain
amount of unnecessary nondetcrminism. The choice of a
particular form depends on the available semantic and
syntactic information. Sometimes there is not enough infor-
mation available to choose a form deterministically. For
instance, the choice of verb form might depend on syntactic
features of the verb's subject available only after the sub-
ject has been generated. This nondeterminism can be elim-
inated by deferring lexical choice to a postprocess. Inflec-
tional and orthographical rules arc only applied when the
generation process is finished and all syntactic features are
known. In short, the generator will yield a list of lexical
items instead of a list of words. To this list the inflectional
and orthographical rules are applied.

The MiMe2 system incorporates such a mechanism into
the previous generation algorithm quite successfully. Exper-
iments with particular grammars of Dutch, Spanish, and
English have shown that the delay mechanism results in a
generator that is faster by a factor of two or three on short
sentences. Of course, the same mechanism could be added
to any of the other generation techniques discussed in this
paper; it is independent of the traversal order.

The particular approach to delaying lcxical choice found
in the MiMe2 system relies on the structure of the system's
morphological component as presented in Figure 6. The
figure shows how inflectional rules, orthographical rules,
morphology and syntax are related: orthographical rules
are applied to the results of inflectional rules. These infec-
tional rules are applied to the results of the morphological
rules. The result of the orthographical part are then input
for the syntax.

I Grammar of syntax and semantics

.'/.:::..:.$$

I I °°°
Two-level orthography :.~i~

I I N?g4
Paradigmatic inflection N ~

..:.~.::'-:.:.

~::i:~:~:t.~.

I Morphological unification grammar for I
derivations, compounds and lexical roles I

!

Lexicon of stems [
I

Figure 6 Relation between Morphological
Components for Lexical Choice Delaying.

Computational Linguistics Volume 16, Number 1, March 1990 39

Shieber et al. Semantic Head-Driven Grammar

However, in the lexical-delayed scheme the inflectional
and orthographical rules are delayed. During the genera-
tion process the results of the morphological grammar are
used directly. We emphasize that this is possible only
because the inflectional and orthographical rules are mono-
tonic, in the sense that they only further instantiate the
feature structure of a lexical item but do not change it. This
implies, for example, that a rule that relates an active and a
passive variant of a verb will not be an inflectional rule but
rather a rule in the morphological grammar, although the
rule that builds a participle from a stem may in fact be an
inflectional rule if it only instantiates the feature vform.
When the generation process proper is finished the delayed
rules are applied and the correct forms can be chosen
deterministically.

The delay mechanism is useful in the following two
general cases:

First, the mechanism is useful if an inflectional variant
depends on syntatic features that are not yet available. The
particular choice of whether a verb has singular or plural
inflection depends on the syntactic agreement features of
its subject; these are only available after the subject has
been generated. Other examples may include the particular
choice of personal and relative pronouns, and so forth.

Second, delaying lexical choice is useful when there are
several variants for some word that are equally possible
because they are semantically and syntactically identical.
For example, a word may have several spelling variants. If
we delay orthography then the generation process com-
putes with only one "abstract" variant. After the genera-
tion process is completed, several variants can be filled in
for this abstract one. Examples from English include words
that take both regular and irregular tense forms (e.g.
"burned/burnt"); and variants such as "traveller/traveler,"
realize/realise," etc.

4.3 EMPTY HEADS

The success of the generation algorithm presented here
comes about because lexical information is available as
soon as possible. Returning to the Dutch examples in
Section 2. l, the list of subcategorization elements is usually
known in time. Semantic heads can then deterministically
pick out their arguments.

An example in which this is not the case is an analysis of
German and Dutch, where the position of the verb in root
sentences (the second position) is different from its position
in subordinates (the last position). In most traditional
analyses it is assumed that the verb in root sentences has
been "moved" from the final position to the second position.
Koster (1975) argues for this analysis of Dutch. Thus, a
simple root sentence in German and Dutch is analyzed as in
the following examples:

Vandaag kusti de man de vrouw, 6
Today kisses the man the woman

Vandaag heefti de man de vrouw ¢i gekust
Today has the man the woman kissed

Vandaag [ziet en hoort]ide man de vrouw ~i
Today sees and hears the man the woman

In DCG such an analysis can easily be defined by unifying
tile information on the verb in second position to some
empty verb in final position, as exemplified by the simple
grammar for a Dutch fragment in Figure 7. In this gram-
mar, a special empty element is defined corresponding to
tile missing verb. All information on the verb in second
position is percolated through the rules to this empty verb.
Therefore the definition of the several VP rules is valid for
both root and subordinate clauses. 7 The problem comes
about because the generator can (and must) at some point
predict the empty verb as the pivot of the construction.
However, in the definition of this empty verb no informa-
tion (such as the list of complements) will get instantiated.
Therefore, the VP complement rule (11) can be applied an
unbounded number of times. The length of the lists of
complements now is not known in advance, and the genera-
tor will not terminate.

Van Noord (1989a) proposes an ad hoc solution that
assumes that the empty verb is an inflectional variant of a
verb. As inflection rules are delayed, the generation process
acts as if the empty verb is an ordinary verb, thereby
circumventing the problem. However, this solution only
works if the head that is displaced is always lexical. This is
not the case in general. In Dutch the verb second position
can not only be filled by lexical verbs but also by a conjunc-
tion of verbs. Similarly, Spanish clause structure can be
analyzed by assuming the "movement" of complex verbal
constructions to the second position. Finally, in German it
is possible to topicalize a verbal head.

s2/Sem - - - > adv(Arg) /Sem, e l / A r g .

s l / S e m - - - > v (A , B , n i l) / V , sO(v (A,B) /V) /Sem.

sO(V)/Sem - - - > np/Np, vp(np /Np , [] ,V)/Sem.

vp (S u b j , T, V)/LF - - ->

np/H, vp(Subj,[np/HlT],V)/LF.

vp(A,B.C)/D ---> v(A,B.C)/D.

vp(A.B.C)/Sem ---> adv(Arg)/Sem, vp(A.B.C)/Arg.

v(A,B.v(A.B)/Sem)/Sem---> [].

np/john---> [john].

np/mary---> [mary].

adv(Ar g)/today(Ar E) ---> [vandaag] .

v(np/S,[np/O],nil)/kisses(S,O) ---> [kust].

Figure 7 Dutch Grammar Fragment.

(11)

(12)

40 Computational Linguistics Volume 16, Number 1, March 1990

Shieber et al. Semantic Head-Driven Grammar

Note that in these problematic cases the head that lacks
sufficient information (the empty verb anaphor) is overtly
realized in a position where there is enough information
(the antecedent). Thus it appears that the problem might
be solved if the antecedent is generated before the anaphor.
This is the case if the antecedent is the semantic head of the
clause; the anaphor will then be instantiated via top-down
information through the cha ined_nodes predicate. How-
ever, in the example grammar the antecedent is not neces-
sarily the semantic head of the clause because of the VP
modifier rule (12).

Typically, there is a relation between the empty anaphor
and some antecedent expressed implicitly in the grammar;
in the case at hand, it comes about by percolating the
information through different rules from the antecedent to
the anaphor. We propose to make this relation explicit by
defining an empty head with a Prolog clause using the
predicate head_ gap.

head_gap(v(A,B, nil)/Sem,
v(A,B,v(A,B)/Sem)/Sem).

Such a definition can intuitively be understood as follows:
once there is some node X (the first argument of head-
_gap), then there could just as well have been the empty
node Y (the second argument of head_gap) . Note that a
lot of information is shared between the two nodes, thereby
making the relation between anaphor and antecedent ex-
plicit. Such rules can be incorporated in the generator by
adding the following clause for connect:

connect(Pivot, Root) :-
head- gap(Pivot, Gap), connect(Gap, Boot).

Note that the problem is now solved because the gap will
only be selected after its antecedent has been built. Some
parts of this antecedent are then unified with some parts of
the gap. The subcategorization list, for example, will thus
be instantiated in time.

5 FURTHER RESEARCH

We mentioned earlier that, although the algorithm as
stated is applicable specifically to generation, we expect
that it could be thought of as an instance of a uniform
architecture for parsing and generation, as the Earley
generation algorithm was. Two pieces of evidence point this
way.

First, Martin Kay (1990) has developed a parsing algo-
rithm that seems to be the parsing correlate to the genera-
tion algorithm presented here. Its existence might point the
way toward a uniform architecture.

Second, one of us (van Noord 1989b) has developed a
general proof procedure for Horn clauses that can serve as
a skeleton for both a semantic-head-driven generator and a
left-corner parser. However, the parameterization is much
more broad than for the uniform Earley architecture (Shie-
ber 1988).

Further enhancements to the algorithm are envisioned.
First, any system making use of a tabular link predicate
over complex nonterminals (like the chained_ nodes pred-
icate used by the generation algorithm and including the
link predicate used in the BUP parser; Matsumoto et al.
1983) is subject to a problem of spurious redundancy in
processing if the elements in the link table are not mutually
exclusive. For instance, a single chain rule might be consid-
ered to be applicable twice because of the nondeterminism
of the call to chained_ nodes. This general problem has to
date received little attention, and no satisfactory solution is
found in the logic grammar literature.

More generally, the backtracking regimen of our imple-
mentation of the algorithm may lead to recomputation of
results. Again, this is a general property of backtrack
methods and is not particular to our application. The use of
dynamic programming techniques, as in chart parsing,
would be an appropriate augmentation to the implementa-
tion of the algorithm. Happily, such an augmentation
would serve to eliminate the redundancy caused by the
linking relation as well.

Finally, to incorporate a general facility for auxiliary
conditions in rules, some sort of delayed evaluation trig-
gered by appropriate instantiation (e.g. wait declarations;
Naish 1986) would be desirable, as mentioned in Section
3.4. None of these changes, however, constitutes restructur-
ing of the algorithm; rather, they modify its realization in
significant and important ways.

ACKNOWLEDGMENTS

The research reported herein was primarily completed while Shieber and
Pereira were at the Artificial Intelligence Center, SRI International. They
and Moore were supported in this work by a contract with the Nippon
Telephone and Telegraph Corporation and by a gift from the Systems
Development Foundation as part of a coordinated research effort with the
Center for the Study of Language and Information, Stanford University;
van Noord was supported by the European Community and the Neder-
lands Bureau veer Bibliotheekwezen en Informatieverzorgin through the
Eurotra project. We would like to thank Mary Dalrymple and Louis des
Tombe for their helpful discussions regarding this work, the Artificial
Intelligence Center for their support of the research, and the participants
in the MiMe2 project, a research machine translation project of some
members of Eurotra-Utrecht.

REFERENCES

Calder, J.; Reape, M.; and Zeevat, H. 1989 "An Algorithm for Genera-
tion in Unification Categorial Grammar." In Proceedings of the 4th
Conference of the European Chapter of the Association for Computa-
tional Linguistics, 233-240.

Colmerauer, A. 1982 PROLOG II: Manuel de R6ference et Mod61e
Th6orique. Technical report, Groupe de'Intelligence Artificielle, Fa-
cult6 des Sciences de Luminy, Marseille, France.

Cooper, R. 1983 "Quantification and Syntactic Theory," Volume 21 of
Synthese Language Library. D. Reidel, Dordrecht, the Netherlands.

Dymetman, M. and Isabelle, P. 1988 "Reversible Logic Grammars for
Machine Translation." In Proceedings of the Second International
Conference on Theoretical and Methodological Issues in Machine
Translation of Natural Languages.

Computational Linguistics Volume 16, Number 1, March 1990 41

Shieber et al. Semantic Head-Driven Grammar

Evers, A. 1975. The Transformational Cycle in German and Dutch.
Ph.D. Thesis, University of Utrecht, Utrecht, the Netherlands.

Fodor, J. D. In press. "Cross Serial Dependencies and Subcategorization
Percolation." In R. Rieber (ed.), CUNYForum, Volume 15. City
University of New York, New York.

Halvorsen, P.-K. and Kaplan, R.M. 1988 "Projections and Semantic
Description in Lexieal-Functional Grammar." In Proceedings of the
International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, 1116-1122.

Hirsh, S. 1987 "P-PATR, a Compiler for Unification Based Grammars,"
In V. Dahl and P. Saint-Dizier (eds.), Natural Language Understand-
ing and Logic Programming, H. Elsevier Science Publishers, New
York, NY: 63-78.

Hobbs, J.R. and Shieber, S.M. 1987 An Algorithm for Generating
Quantifier Scopings." Computational Linguistics, 13:47-63.

Huybrechts, R.A.C. 1984 "The Weak Inadequacy of Context-Free Phrase
Structure Grammars," In G. de Haan, M. Trommelen, and W.
Zonneveld (eds.), Van Periferie naar Kern. Foris, Dordrecht, the
Netherlands.

Kay, M. 1990 "Head-Driven Parsing." In M. Tomita (ed.), Currentlssues
in Parsing Technology. Klumer Academic Publishers, Dordrecht, the
Netherlands.

Koster, J. 1975 "Dutch as an SOV Language." Linguistic Analysis,
1:(2):111-136.

Matsumoto, Y.; Tanaka, H.; Hirakawa, H.; Miyoshi, H.; and Yasukawa,
H. 1983 "BUP: A Bottom-Up Parser Embedded in Prolog." New
Generation Computing, 1 (2): 145-158.

Moortgat, M. 1984 "A Fregean Restriction on Meta-Rules" In Proceed-
ings of New England Linguistic Society, 14:306-325.

Naish, L. 1986 "Negation and Control in Prolog," Volume 238 of Lecture
Notes in Computer Science. Springer-Verlag Berlin, F.R.G.

van Noord, G. 1989a "BUG: A Directed Bottom-Up Generator for
Unification Based Formalisms." Working Papers in Natural Language
Processing 4, Katholieke Universiteit Leuven, Stichting Taaltechnolo-
gie Utrecht, Utrecht, the Netherlands.

van Noord, G. 1989b "An Overview of Head-Driven Bottom-Up
Generation." In Proceedings of the Second European Workshop on
Natural Language Generation, Edinburgh, Scotland.

Pereira, F.C.N. and Shieber, S.M. 1985 "Prolog and Natural-Language
Analysis," Volume 10 of CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford, CA.

Pereira, F.C.N. and Warren, D.H.D. 1983 "Parsing as Deduction." In
Proceedings of the 21st Annual Meeting of the Association for Compu-
tational Linguistics, 137-144.

Pereira, F.C.N. 1981 "Extraposition Grammars." Computational Linguis-
tics, 7(4):243-256.

Po'ilard, C. 1988 "Categorial Grammar and Phrase Structure Grammar:
An]Excursion on the Syntax-Semantics Frontier," In R. Oehrle, E.
Bach, and D. Wheeler (eds.), Categorial Grammars and Natural
Language Structures. D. Reidel, Dordrecht, the Netherlands.

Shieber, S.M. 1985a "An Introduction to Unification-Based Approaches
to Grammar," Volume 4 of CSLI Lecture Notes. Center for the Study
of Language and Information, Stanford, CA.

Shieber, S.M. 1985b "Using Restriction to Extend Parsing Algorithms for
Complex-Feature-Based Formalisms." In Proceedings of the 23rd An-
nual Meeting of the Association for Computational Linguistics, 145-
152.

Shieber, S.M. 1988 "A Uniform Architecture for Parsing and Generation."
In Proceedings of the 12th International Conference on Computational
Linguistics, 614-619.

Stcedman, M. 1985 "Dependency and Coordination in the Grammar of
Dutch and English." Language, 61 (3):523-568.

Strzalkowski, T. 1989 Automated Inversion of a Unification Parser into a
Unification Generator. Technical Report 465, Department of Com-
puter Science, New York University, New York.

Wedekind, J. 1988 "Generation as Structure Driven Derivation." In
Proceedings of the 12th International Conference on Computational
Linguistics, 732-737.

NOTES

1. See for instance the text by Pereira and Shieber (1985) for an
overview and further references.

2. Again, see the text by Pereira and Shieber (1985, p. 172ff.) and
references therein.

3. Pereira and Warren (1983) point out that Earley deduction is not
restricted to a left-to-right expansion of goals, but this suggestion was
not followed up with a specific algorithm addressing the problems
discussed here.

4. We use the term "analysis tree" rather than the more familiar "parse
tree" to make clear that the source of the tree is not necessarily a
parsing process; rather the tree serves only to codify a particular
analysis of the structure of the string.

5. Further details of the use of shuffle in scoping are given by Pereira and
Shieber (1985).

6. This compels us to represent logical form bound variables as Prolog
constants, in contrast to the standard practice in logic grammars.

7. For simplicity the grammar does not handle topicalization, but (coun-
te:rfactually) assumes that the topic is some adverbial constituent.
Topicalization can be handled by gap-threading (Pereira 1981; Pereira
arid Shieber 1985).

42 Computational Linguistics Volume 16, Number 1, March 1990

