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Abbreviated text input using language modeling
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Abstract

We address the problem of improving the efficiency of natural language text input under
degraded conditions (for instance, on mobile computing devices or by disabled users), by
taking advantage of the informational redundancy in natural language. Previous approaches
to this problem have been based on the idea of prediction of the text, but these require
the user to take overt action to verify or select the system’s predictions. We propose taking
advantage of the duality between prediction and compression. We allow the user to enter text
in compressed form, in particular, using a simple stipulated abbreviation method that reduces
characters by 26.4%, yet is simple enough that it can be learned easily and generated relatively
fluently. We decode the abbreviated text using a statistical generative model of abbreviation,
with a residual word error rate of 3.3%. The chief component of this model is an n-gram
language model. Because the system’s operation is completely independent from the user’s,
the overhead from cognitive task switching and attending to the system’s actions online is
eliminated, opening up the possibility that the compression-based method can achieve text
input efficiency improvements where the prediction-based methods have not. We report the
results of a user study evaluating this method.

1 Introduction

The problem of text input with devices under degraded conditions is not new;

disabled users, for instance, have had to interact with computers using sometimes

severely degraded means, including mouth sticks, symbol-scanning systems, eye-

gaze tracking, and so forth. The problem has renewed currency, however, because

of the increased prevalence of small and embedded computing systems (handheld

computers, cell phones, digital video recorders, and the like) for which traditional

text input and verification modalities (keyboard and monitor) are impractical.

Natural language text is highly redundant; Shannon’s estimates (1951) place the

entropy of English text at below a bit and a half per character. Theoretically, this

invites the possibility that the redundancies could be used to allow more efficient

text entry. The traditional approach to take advantage of this redundancy relies on

prediction of the user’s text. For instance, many cell phones have the technology to

predict the most likely word based on the initial letters typed by the user. The user is

required to merely verify the prediction rather than typing the remaining characters.

Other methods dynamically predict the next character. A paradigm example is the
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Reactive Keyboard of Darragh and Witten (1992) though the approach arose as

early as the early 1970’s.

Though intuitively plausible, prediction suffers in practice from severe problems:

Because users must take overt action to verify or select, they must be constantly

attending to the system’s predictions. Typing moves from a fluent, unconscious task

to one in which each keystroke requires a significant cognitive load. Previous research

(Goodenough-Trepagnier et al., 1986) has shown that the overheads involved swamp

any advantages in speed gained unless the keystroke rate is extremely slow. For this

reason, these predictive methods are only useful and have only found acceptance

among severely disabled users.1

Our approach is based on the duality of prediction and compression (Bell, Cleary

and Witten, 1990). A good statistical model of language, one that can generate good

predictions, can inherently be used for compression as well. If we can have the

user enter compressed text, the compression of which is based on a good predictive

model, we can then use that model to decode the compressed text into the intended

full text. The advantage of the compression approach over the previous prediction

approach is clear: The generation of the (compressed) text is not an interactive task

that requires task switching, verification of system proposals, selection of options,

and so forth. The cognitive load increase is limited to that induced by the ability to

fluently generate compressed text.

Because a person must generate the compressed text fluently, we require a human-

centered compression method. As a reductio, imagine choosing a standard “computer-

centered” method, say, some Lempel-Ziv (LZ) variant, as used in the standard

gzip compression facility. We might expect to obtain a two to one reduction in

keystrokes or more, at the cost of requiring a user to compute the LZ compression

of the original text mentally, an obvious absurdity. The question arises, then, as to

how to devise a human-centered compression method to limit this cognitive load.

Conceptually, there are two possibilities.

Stipulated compression First, we can conform the user’s behavior to a particular

model by stipulating a compression method, so long as the stipulated method

(unlike LZ) is simple and easily learnable. In practice, the learnability re-

quirement means that the compressed forms of words must be abbreviations

of some sort. In fact, the literature has traditionally distinguished prediction

approaches from abbreviation approaches (Vanderheiden and Kelso, 1987),

which have been taken to be of this stipulated variety.

Natural compression Alternatively, we can try to conform the model to the user’s

natural behavior by allowing a natural compression method, one that users

would naturally turn to when compressing text.

As it turns out, there seems to be a more or less standard compression method,

a kind of ad hoc abbreviation form, well understood by average writers of

1 The exception that proves this rule is the use of auto-completion for very specific tasks,
such as entering long URLs into web browsers, which can be seen as a kind of dilute
version of predictive typing. In this application the payoff in terms of keystrokes saved
may be so large that the overheads can be tolerated.
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English, and best exemplified by the old advertising slogan “If u cn rd ths, u

cn gt a gd jb”.2

In this paper we report our experiments with a human-centered simple stipulated

word abbreviation method. A method relatively well matched to the natural method,

is simply to drop all vowels.3 (We always treat “y” as a consonant.) Noting that

letters early in the word are most predictive of the remainder, we retain the first

letter even when it is a vowel. (This solves the problem of what to do with words

consisting of only a single vowel as well.) In addition, we drop consecutive duplicate

consonants. Thus, the word “association” would be abbreviated “asctn” under this

method, and the sentence

We have conducted a thorough evaluation of this disabbreviation method.

would be abbreviated as

W hv cndctd a thrgh evltn of ths dsbrvtn mthd.

with 24 fewer characters, 33.8% of the 71 in the original.

We describe the abbreviation method in section 2, including a presentation of the

basic method, its implementation, its evaluation, and several extensions. Section 3

details the user study. Finally, a review of related research is given in section 4.

2 Method

To decode text that has been abbreviated using the stipulated method, we have cre-

ated a generative probabilistic model of the abbreviation process as a weighted finite

state transducer (Pereira and Riley, 1997). The model transduces word sequences,

weighted according to a language model, to the corresponding abbreviated character

sequences. The model is explicitly constructed by composing a language model,

representing the probability of a word-sequence, p(W ), and an abbreviation model

(or “channel” model), representing the conditional probability of the abbreviation,

A, given W , p(A | W ). The composed model therefore models the joint probability,

p(W,A) = p(W )p(A | W ).

Given a particular abbreviated form, A, we seek the most likely word-sequence,

W , that could have generated it, i.e., argmaxW p(W | A). By Bayes’ rule,

argmaxW p(W | A) = argmaxW
p(W,A)

p(A)
.(1)

Since A is given, and is the same for all disabbreviations, we can ignore the

denominator. Hence, finding the most likely sequence of words W through the

2 This was a marketing slogan for a shorthand technique called “Speedwriting” that
incorporates, in part, a stipulated abbreviation model with a small set of rules that include,
among others, dropping silent letters, replacing letters with phonetic equivalents (k for c
in “cat” for instance), dropping short vowels unless at the beginning of the word, using
special symbols for frequent words, and so forth. Though more complex and difficult to
learn than the abbreviation methods we discuss below, the system bears some similarities.

3 Something like this has been proposed by Tanaka-Ishii (2001) for Japanese.
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Fig. 1. Spelling model.

model yields the most likely disabbreviation. We use Viterbi decoding, a standard

algorithm for efficiently computing the best path through an automaton, to find W .

2.1 Component transducers

Weighted finite-state transducers constitute a simple general technology for modeling

probabilistic string-to-string transformations. Their nice closure properties, especially

closure under composition, make them ideal for the present application in that the

model can be composed as a cascade of simpler transducers in an elegant fashion.

These include:

An n-gram language model (LM) The language model, which implements the p(W )

component of the generative model, was trained on a text of size 1.8 million

words from Wall Street Journal articles (from July 1994), and implemented as

a finite-state acceptor. Numbers and unknown words are replaced by special

tokens.

A spelling model (SP ) This transducer serves the purely technical purpose of con-

verting words into the sequence of characters that compose them. This change

in token resolution is required since the language model operates on word

tokens and the following transducers in the cascade operate on character

tokens. This transducer is constructed by creating a separate path of states

for each word, in which the word is first transduced to the null symbol, ε,

followed by the transduction of ε to each of the word’s letters, as illustrated

for two words in Figure 1. To complete the loop, there is an added transition

from the final state to the initial state that generates a space (represented as

" in Figure 1). To compact the transducer, we determinize it on the input

symbols.4

A compression model (CMP ) This transducer implements the stipulated abbre-

viation model, removing non-initial vowels and doubled consonants. The

transducer has a unigram memory of the last character seen. Starting from

the second letter, any vowel is transduced to ε. A consonant is transduced

to ε, if it is the same as the previous letter. This is illustrated in Figure 2,

for an alphabet restricted to two letters—a vowel (a) and a consonant (b).

4 For large training data sets (see below) determinization became infeasible due to memory
usage, in which case we used the undeterminized transducer.
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Fig. 2. Compression model.

Fig. 3. Abbreviation model.

Special symbols for unknowns and numbers, as well as punctuation marks

are left intact. CMP implements the p(A | W ) component of the model, and

is deterministic, i.e., for any W and abbrev, it is either 0 or 1, depending on

whether that sequence of words can be abbreviated as that sequence of letters.

An unknowns model (UNK) This transducer replaces the special tokens for un-

knowns and numbers with sequences of characters or digits, according to a

simple generative model: reading the token 〈num〉 or 〈unk〉 as input, it enters

a loop emitting arbitrary digits or characters, respectively.

The composition of these four transducers forms the entire abbreviation model as

illustrated in Figure 3 (but see below for extensions). The composed transducer is

deterministic in the forward direction (with the exception of UNK), i.e., a given

sequence of words has a single abbreviation. It is nondeterministic in the backward

direction; multiple word sequences may yield the same abbreviation. Viterbi decoding

chooses the most probable of these.

For instance, the string of words “〈an〉 〈example〉 〈of 〉 〈num〉 〈words〉” would

be successively assigned a probability according to the language model (LM);

converted to the sequence of characters “an!example!of!〈num〉!words” (SP );

abbreviated to the sequence “an!exmpl!of!〈num〉!wrds” (CMP ); and completed

by instantiation of the special token 〈num〉 to, e.g., “an exmpl of 5 wrds” (UNK).

Through this transduction, then, the model associates the word sequence “〈an〉
〈example〉 〈of 〉 〈num〉 〈words〉” as the underlying source for the abbreviation:

“an exmpl of 5 wrds”. Of course, other word sequences may also be transduced to

the same character sequence, for instance, “〈an〉 〈example〉 〈off 〉 〈num〉 〈wards〉”. The

transducer, through the probabilities manifest in the submodels, most importantly

LM, assigns different probabilities to the various sources of the abbreviated string.

Viterbi decoding efficiently selects the most likely source. Once the proposed source

for the string is computed by this method, the final decoded string is generated by
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a simple post-processing step that replaces the special tokens 〈num〉 and 〈unk〉 with

the corresponding tokens from the abbreviated form.

The model uses lower case for all text. To handle input text that includes capital

letters, we fold its case as a pre-processing step, and then restore the capitals by

comparison with the original input, as a post-processing step.

2.2 Implementation

The system is implemented using the AT&T FSM and GRM libraries (Mohri,

Pereira, and Riley, 2000; Allauzen, Mohri and Roark, 2003). The FSM library

provides a collection of tools for constructing weighted finite-state transducers,

including their specification, compilation, composition, and Viterbi decoding. The

GRM library provides tools for constructing finite-state language models. Additional

code for gluing together the library processes for transducer construction, decoding

and evaluation was implemented as a series of Perl scripts.

We trained the language model on a training set of Wall Street Journal articles,

after performing several preprocessing steps, including

• stripping any markup information (such as headers, article identifiers, para-

graph separation markers, etc.);

• splitting the text into sentences using the Alembic workbench (Aberdeen

et al., 1995);

• replacing numbers with the special token 〈num〉.

We limit the vocabulary of the model to about 97,000 most frequent words. Words

are counted using the CMU-Cambridge Statistical Language Modeling Toolkit

(Clarkson and Rosenfeld, 1997). All other words in the model are considered

unknown and automatically replaced by the 〈unk〉 token. Increasing vocabulary size

improves decoding accuracy but increases the language model size and consequently

decoding time.

After preprocessing, we train an n-gram model (up to trigrams) using the

AT&T GRM library. We use Katz backoff discounting (Allauzen et al., 2003) for

smoothing.5 The other models (SP , CMP , UNK) are all straightforwardly imple-

mented using the AT&T FSM package.

To run Viterbi decoding on an abbreviated text, we represent the text as an

automaton, TXT , which consists of a linear sequence of states, one per character

instance. Composing the transducer cascade with TXT yields a stochastic generative

model of this abbreviation text. In theory, it would seem more effective to compile

the composed cascade in advance, and then vary the input abbreviated text, as

follows: (LM ◦ SP ◦ CMP ◦ UNK) ◦ TXT . In practice, however, the size of the

composed transducer cascade quickly becomes prohibitive. Instead, we found it

much more tractable to incrementally compose the transducers in pairs in reverse

order: (LM◦(SP ◦(CMP ◦(UNK◦TXT )))), constructing the composition on-the-fly

5 We have also experimented with other smoothing methods such as Kneser-Ney with only
negligible variation in accuracy.
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Table 1. Performance of the disabbreviation method using a variety of

language models

Model Average error rate Standard deviation of error

uniform 51.36% 0.36%
unigram 8.49% 0.25%
bigram 4.67% 0.25%
trigram 4.57% 0.25%

for each new input text. We start from the last transducer in the cascade, UNK ,

and compose it with TXT , then compose the previous transducer, CMP , with the

result, and so forth. This approach prunes a large number of states and transitions

corresponding to character sequences that are never manifested in the abbreviated

text input. This is most apparent for words and word n-grams in the language model

that do not appear in abbreviated form in the input (i.e., sequences W , such that

p(A | W ) = 0). Composing the cascade in the forward direction, we would have

to carry the states for these words, and compose them with their spellings, and

abbreviations. Composing in the reverse direction, these words are eliminated, since

they are never represented in TXT .

2.3 Evaluation

We performed evaluation studies on a held-out corpus of 10 sections of Wall Street

Journal text (from August 1994) of about 80,000 words each, for a total of roughly

840,000 words. We abbreviated each text by running CMP in the forward direction.

We then ran the disabbreviation procedure, comparing the resulting decoding with

the original text. We report two main dimensions of evaluation: keystroke reduction

and error rate.

The stipulated abbreviation model achieves 26.4% reduction at 4.57% error rate,

measured as percentage of word instances incorrectly decoded averaged over the 10

text sections (and standard deviation of 0.25% in error rate). As a reference upper

bound, Lempel-Ziv 77 compression on this corpus (in its entirety) provides a 62.7%

reduction and is lossless (though of course, this is not a realistic text-entry method).

Traditional predictive methods, such as antic, anticipator, pal, and, predict, have

reported maximal keystroke savings of 20 to 50%. See the discussion by Soede and

Foulds (1986) and references cited therein.

The benefits of language modeling can be clearly seen by comparing performance

against cascades using simpler language models. Table 1 provides the performance of

the system under increasingly complex language models, from uniform to unigram,

bigram, and trigram. Of particular importance is the improvement of the bi- and

trigram models over the unigram model, demonstrating that this approach is likely to

have application to any abbreviation method that ignores context, as prior methods

do.
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Table 2. Performance of the disabbreviation method using a variety of

language models

Model Average error rate Standard deviation of error

trigram 4.57% 0.25%
forgiving 4.61% 0.24%
keypad hashing standalone 5.61% 0.22%
keypad hashing and abbreviation 13.89% 0.45%
capitalization 4.39% 0.21%
7-gram standalone letter 7.10% 0.32%
full model 4.01% 0.17%

The high success rate of the method illustrates the effectiveness of using local

context for reconstructing the words. Conversely, many of the errors can be

attributed to cases where the local context is not informative enough. Here are

some examples:

• “just a guy, a dog and a couple of boris . . . .” (should have been: beers),

• “skilled in the art of copper, they remove your shirt and prepare to revive

you” (should have been: cpr),

• “hold on to your bats” (should have been: boots),

• “dancers do too, but if they’re lucky, they get old frost” (should have been:

first),

• “the agency named several beer heads” (should have been: bureau).

As can be expected, accuracy is maximized when the test texts stay within typical

standard Wall Street Journal topics and vocabulary. Texts that stray towards less

typical topics, such as the occasional art review, yield more errors.

The confusion of “these” and “this” is a recurring error, as the system has no

knowledge of grammatical factors such as number. In addition, unknown words are

a major source of errors. We discuss improved handling of them below.

2.4 Extensions

The remarkable simplicity and modularity of the finite-state architecture enable

modifications and extensions to the basic model described above to be easily

performed. We have experimented with the following changes. Evaluation results

are given in Table 2.

“Forgiving” abbreviation model Informal user experimentation has shown that

whereas the stipulated model is fairly simple to learn, users will sometimes

forget to drop all of the vowels or repeated consonants. Unfortunately, this

leads to a failure to decode, as the basic model assumes strict adherence

to deterministic letter dropping rules. A minimal change to the original

compression model makes it nondeterministic in the forward direction by

allowing a small probability, δ, of not dropping the required vowels and
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Fig. 4. “Forgiving” abbreviation model.

repeated consonants. Graphically, this requires changing the transducer in

Figure 2 by adding a self transition of the form a : a in state [a] with probability

δ and setting the probability of dropping the vowel, a : ε to the complemen-

tary 1 − δ. Likewise for dropping the b in state [b]. The result is shown in

Figure 4.

Note that the forgiving model’s nondeterminism has a subtle effect on decoding.

For instance, consider the abbreviated sequence of characters “ths”, which may

be generated by the words “this”, and “these” (inter alia). In the original model,

abbreviation is deterministic, hence p(ths | this) = p(ths | these) = 1. Thus, the

difference between the likelihood of the two options depends solely on the

relative probabilities of the two words. Here, we have to take into account the

probabilities of dropping the vowels too, p(ths | this) = 1 − δ '= p(ths | these) =

(1 − δ)2. Thus, there is a slight bias towards shorter words. Evaluation shows

that this leads to only a negligible degradation in decoding accuracy, as shown

in Table 2.

In addition to allowing users to inadvertently retain some of the vowels and

repeated consonants, the forgiving model also allows users to purposely keep

some of these letters. A user may want to do so to ensure that rare or highly

ambiguous words and phrases would be correctly decoded with only a small

loss in compression rate.

Keypad Hashing As an additional compression method, we allow users to replace

letters by the standard digit equivalent on a 12-key telephone keypad (that is,

the letters ‘a’, ‘b’, and ‘c’ with the digit ‘2’, the letters ‘e’, ‘f ’, and ‘g’ with ‘3’, etc.

punctuation marks are replaced by ‘∗’, and spaces by ‘#’) to support cell-phone

text input. Since this mapping is many-to-one, most methods for cell phone text

entry require multiple keystrokes per character. By contrast, we allow hashed

input using a single keystroke per character. Dehashing is performed using the

same method, relying on the language model to disambiguate. Keypad hashing

is straightforwardly implemented as a transducer, KEY . We allow hashing to

be used either in isolation (by replacing CMP with KEY ) or on top of

abbreviation (by composing KEY and CMP ). Results for both configurations
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Table 3. Keypad hash sample decodings

hashed form decoding correct decoding correct?

22253 cable cable
√

38 eu 38 ×
786733 pumped stored ×
∗ , . ×

are given in Table 2 and some example decodings (without abbreviation) are

shown in Table 3.

Whereas in the original model, the ambiguity in the input stems from missing

letters, when keypad hashing is used, the actual identity of characters becomes

a major source of ambiguity. For instance, as shown in the table, the model

confused “38” with “EU”. Likewise, punctuation marks, which are uniformly

replaced by ‘∗’, are a cause of many errors. Finally, the post-processing step of

replacing 〈num〉 and 〈unk〉 with the original input string is also complicated.

For numbers, we reconstruct the digits from the input, and use a heuristic

to choose between commas (as in 3,500) and decimal points (as in 3.500).

Unknown words, however, cannot be reconstructed from the hashed input.

Unsurprisingly, when hashing and abbreviation are combined, the results are

severely degraded.

Capitalization In the basic model we use lower case for all text. A more refined

model can be obtained by using the true case of the words, for instance

distinguishing between “exchange” (the action) and “Exchange” (the institu-

tion). A straightforward approach to adding case distinctions would simply

use the true case of the letters in both the training and the input. This method,

however, runs into data-sparseness problems with respect to the first word of

the sentence. We wish to be able to decode first words even if they do not

appear capitalized in the training set. For instance, consider an input sentence

beginning in “Cbl”, which should be decoded as “Cable”. We wish to decode

this word correctly even if the training set contains the word “cable” in lower

case, but not the capitalized version. To handle this, we fold the case of the

sentence-initial word in both the training and the input texts. This is done

using an additional transducer, CAP , which is added at the end of the cascade.

Letter model for out-of-vocabulary words A major source of errors in the basic

system is the occurrence of unknown words in the text to be abbreviated.

Clearly, if a word is not included in the language model’s training text, the

system will not be able to correctly disabbreviate it. Increasing the vocabulary

helps mitigate the problem, but cannot solve it completely. We have therefore

added a letter model as an alternative generative model of the abbreviated

sequences. The letter model is constructed very similarly to the basic cascade

described in section 2. The n-gram word model is replaced by an n-gram

character model. In addition, the need for SP is obviated. We train the
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Table 4. Letter model sample decodings

abbreviated form decoding correct decoding correct?

pltyps platypus platypus
√

sympthzng sympathizing sympathizing
√

mscmnctn miscommunication miscommunication
√

mrspl marsupial marsupial
√

rclctrnc recalcitrance recalcitrance
√

antltst antilatest antielitist ×
strptkns stripteakens streptokinase ×
mldns mouldens mildness ×
Aljndr Alojoinder Alejandro ×
McWrld MacaWirled MacWorld ×

character model on (character sequences that form) words in the vocabulary

extracted from the same Wall Street Journal training texts. After running an

abbreviated text through the Viterbi decoder on the main transducer, any

remaining unknown words (decoded as 〈unk〉) are run through the letter

model.

Our usage of the letter model is restricted to out-of-vocabulary words, and so

we only consider character sequences corresponding to words. Alternatively, we

could use a letter model in isolation, replacing the word model altogether. This

requires training the letter model not only on single words, but on character

sequences transcending word boundaries. Using n-grams of high enough order,

a letter model can cover on average the same span as a bigram or trigram word

model. Experimental results with a 7-gram standalone model, also smoothed

using Katz backoff, are given in Table 2. Taking word tokens into account,

however, leads to more parsimonious models and improved accuracy.

Some examples of decodings of the letter model are given in Table 4. These

examples illustrate that the letter model reflects a good approximation of the

letter patterns of English. In particular, the model tries to force names of

foreign origin into these patterns.

We achieved the best accuracy results by combining several of these extensions,

denoted by “full model” in Table 2. This model incorporates a trigram model,

capitalization, and a 10-gram letter model for unknown words.

Finally, we experimented with enlarging the training dataset size for the word

language model, using additional Wall Street Journal text as shown in Table 5. As

can be expected, accuracy improves with training data size. At 3.68 million words,

the full model achieves 3.30% accuracy rather than the original simple trigram’s

4.57%. Despite appearances, this is a relatively large reduction in error of 27.8%.

Enlarging the training dataset size to 24.81 million words reduces the error even

further. Since there is no shortage of plain English text, the only bounds on the

training data sizes are dictated by performance considerations. At 3.68M words, the

system still disabbreviates at rates well below 1 second per sentence. At 24.81M
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Table 5. Performance of the the full model as a factor of training dataset size

Training data size
(million words) Average error rate Standard deviation of error

1.80 4.01% 0.25%
3.68 3.30% 0.22%

24.81 2.67% 0.19%

words, disabbreviation takes several seconds per sentence, which is an unreasonable

time for a user to wait.

3 User study

To assess the practicality and efficiency of our abbreviation method, we conducted

a user study in which human subjects (with no prior knowledge of either the project

or the underlying technology) were asked to abbreviate sentences, and their typing

speeds were recorded. As a control, we also asked the participants to copy sentences

without dropping any vowels, and compared the average typing speeds.

3.1 Experimental design

The experiment proceeded in two stages, and was directed from a specially designed

Web site. In the first stage, devoted to training, we first gave subjects a set of

instructions explaining the stipulated abbreviation method, and then allowed them

to experiment with the abbreviation and copying procedures. The Web site presented

participants with sentences and asked them to abbreviate them or to copy them fully.

We chose sentences from the Wall-Street Journal corpus, for which the decoding

error rate was similar to the average error rate.6 Once a user submits an abbreviated

sentence, the system automatically calls the decoding procedure, to find the most

likely disabbreviation of that sentence. Crucially, this usage method is quite different

from the constant task-switching required by prediction-based methods. The result

is compared with the original sentence and checked for discrepancies, which may

arise either from user typing errors, or from system decoding errors. Subjects are

displayed the decoded text with the errors highlighted, and are asked to correct the

errors and resubmit the text. This process is repeated until the submitted text agrees

completely with the original. Likewise, for copying, once the user submits the copied

text, any copying errors are highlighted, and the user is asked to correct them. Users

were given one set of sentences to abbreviate and one set to copy. The choice of

which set of sentences was abbreviated and which was copied was randomly varied

between participants as were the order of abbreviation and copying as well as the

order of the sentences within each set.

6 A 3.3% error rate corresponds roughly to either one or no error for an average length
sentence.



Abbreviated text input 177

Fig. 5. Average speedup of abbreviation over copying.

Since our method is geared towards user input with devices that lack an ordinary

keyboard, we disabled the regular computer keyboard in our experiments, replacing

it with a software-based on-screen keyboard, controlled by mouse clicks. Using

a virtual keyboard also eliminates any bias towards copying offered by users’

familiarity with touch typing. Since users might be accustomed with quickly typing

letter combinations corresponding to regular words but not their abbreviations, such

bias might arise with a regular keyboard.

After participants successfully completed several rounds of copying and abbrevi-

ation for the training sentences, they were given a chance to ask clarifying questions,

and then moved on to the evaluation stage. In this stage, participants were presented

with two sets of ten sentences to abbreviate and to copy, respectively (again, we

randomly varied the order between subjects), and the Web site kept track of

the typing and correction times. We report results only for the evaluation stage.

The entire interaction took roughly one hour on average.

3.2 Results

We ran experiments with 16 subjects. We define the copying speed as the number

of characters in the original sentence divided by the time in minutes it took the

subject to submit the typed sentence. Similarly, we define the abbreviation speed as

the number of original characters divided by the time it took the user to enter the

abbreviation.

Averaged over the 16 participants, and without taking correction times into

account, abbreviation yields an average speed-up of 12.24% (standard deviation=

4.97%). Tracking these results over the ten abbreviation/copying rounds, the average

speed-up increases, as illustrated in Figure 5, which shows the average relative

speedup of abbreviation over copying for each round. Abbreviation speeds improve
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Fig. 6. Copy vs. abbreviation speeds without correction.

over the rounds, reaching a maximum of 18.63%. A closer look at the raw results

shows that whereas copying speeds remain relatively constant, abbreviation speeds

improve from round to round, as shown in Figure 6.

Theoretically, the “Power law of learning” (Newell and Rosenbloom, 1981) would

predict the logarithm of the abbreviation speed at round n, which we denote by ASn
to increase linearly with the logarithm of n:

log(ASn) = A log(n) + B

where A and B are parameters. The best fit parameters are A = 5.4821, B = 88.956,

with r2 = 0.7034, a reasonable though imperfect fit.

As a yardstick to assess these results, note that the abbreviated sentences contained

28.3% less characters than the original. Thus, a user who would assimilate the

abbreviation method perfectly can be expected to achieve this level of speed-up.

Once we take correction times into account, both for abbreviation and for copying,

the abbreviation speed-ups become much more modest. Averaging over all rounds,

abbreviation with correction is in fact slightly slower by 1.04% than copying with

correction. Abbreviation speeds improve over the rounds for this setting as well,

reaching a maximum improvement of 8.98% in the last round.

Correction clearly impedes the overall performance gains of the compression

system. Note however that the simplistic correction method we use—asking the user

to correct highlighted errors—is far from optimal (and of course unrealistic in that

we cannot automatically identify errors in user-generated text). We are currently

exploring improved correction methods that would decrease the user’s cognitive

load and take advantage of previously computed information. One approach in this

direction would present the user not only with the best path through the transducer,

but with the top n paths for some suitable value of n. Figure 7 shows the average

error rate for the top n most probable decodings, where we count an error only if it
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Fig. 7. Performance of the disabbreviation method for the top n readings.

is erroneous in all top n decodings where n ranges from 1 to 10 (1 corresponds to

the single best path as above).7 Clearly, increasing the range of accepted possibilities

leads to improved accuracy. Thus, there is hope that this information could be

utilized in an interface that will improve correction times over the näıve approach

we used in the user study.

As an alternative to actively correcting errors by the sender, one may also envision

relying on the recipient’s capacity to recognize disabbreviation errors and guess the

original words. We performed a second user study to assess whether users would be

able to do so.8 We selected a random contiguous section of Wall Street Journal text

spanning 150 sentences, abbreviated it and then disabbreviated it. The result included

59 wrongly disabbreviated words. We gave 8 participants this disabbreviated text

with a very rudimentary description of the kind of errors they might encounter—

explaining merely that while the consonants are always correct, some of the vowels

might not be. We asked participants to mark any errors they can find and to suggest

a correction for them. On average, the participants correctly identified 71.4% of the

errors. 95.2% of their suggested corrections for these errors were the right ones. In

addition, they wrongly marked an average of 4.4 correct words as errors (of the

whole text). Thus, it is likely that recipients would be able to correctly identify the

vast majority of disabbreviation errors.

4 Review of related research

As noted above, text input methods based on predicting what the user is typing

have been widely investigated; see the work by Darragh and Witten (1992) and

7 In case the decoder can find only n′ unique decodings where n′ < n, we use the top n′

decodings instead of the top n.
8 We thank an anonymous reviewer for suggesting this experiment.
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references cited therein. Such systems can be found in a variety of tools for

the disabled, and some commercial software, most notably the T9 system from

Tegic. Methods based on static lookup in a fixed dictionary of codes for words

or phrases include Vanderheiden’s Speedkey (1987), along with a wide range of

commercial keyboard macro tools that require user customization. All rely on

the user’s memorization of the codes, which must be extensive to provide much

compression advantage. Systematic stipulated compression models can be found

hidden in stenographic methods such as Speedwriting, though there is no provision

for automated decompression.

A recent dynamic prediction approach is used by Dasher (Ward and MacKay,

2002), a system in which the predicted characters stream onto the screen towards the

constructed sentence, in shaded boxes of sizes proportional to their likelihood, and

the user has to choose the next character using a mouse or an eye-tracking device.

Dasher’s predictions are based on a text compression algorithm called Prediction by

Partial Match (PPM) (Cleary and Witten, 1984; Moffat, 1990).

Some human factors research on the design of command abbreviations for small

vocabularies has been performed. John et al. (1985), for instance, show that vowel-

dropping leads to more easily recalled abbreviations but slower throughput than

abbreviations based on escaped special characters. Extrapolation of such results to

abbreviation of arbitrary text is problematic, but the results are not inconsistent

with the possibility of throughput benefits under reasonable conditions.

Study of the structure of natural abbreviation behavior has been limited: Rowe

and Laitinen (1995) describe a system for semiautomatic disabbreviation of variable

names (such as “tempvar” for “temporary variable”) in computer programs, based

on their analysis of attested rules for constructing such abbreviations. Stum and

Demasco (1992) investigate a variety of rules that people seem to use in generating

abbreviations, but do not place the rules in a system that allows the kind of

automated disabbreviation we are able to perform.

Abbreviation methods at the sentence level include the “compansion” method of

Demasco, McCoy, and colleagues (Demasco and McCoy, 1992; McCoy et al., 1994)

and the template approach of Copestake (1997). These techniques, though bearing

their own limitations, are fully complementary to the character-based disabbreviation

techniques proposed here, and the user interface techniques for error correction

developed for our application may be applicable there as well.

To learn a more natural abbreviation model, it would be necessary to collect a

corpus of abbreviation patterns in actual use. Willis et al. (2002) performed a study

in which participants were given a fixed-length text, and were asked to abbreviate

it into progressively shorter texts using whatever abbreviation method they prefer.

Several abbreviation patterns emerged, which are compatible with our stipulated

abbreviation method. For instance, subjects showed a preference for dropping vowels

over consonants, a preference for preserving letters in the beginning of the word, and

dropping repeated letters. In addition, subjects also used more large-scale deletions,

such as truncating the end letters of a word, using phonetic shorthands (such as

replacing “ch” with “k”) and omitting phonetically silent letters. Another step in

this direction was carried out by How (2004), who has collected some 10,000 SMS
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messages exchanged by students at the University of Singapore. The corpus contains

many abbreviations, but unfortunately not their decodings.

5 Conclusion

Our approach to reducing the effort for natural-language text input by using abbre-

viation as a human-centered compression method, rather than prediction, provides

a simple method to attain both reasonable keystroke (or equivalent) reduction and

reduced task-switching cognitive load.

In this study we have focused on a simple stipulated abbreviation method.

Even with the forgiving model, our method requires users to follow the stipulated

abbreviation method fairly rigidly. Further work is required for gracefully recovering

from other deviations from the instructions, such as spelling mistakes. The benefit in

user flexibility should be balanced with the increase in the potential disabbreviation

search space that would stem from such deviations. Ultimately, one would like

to to have a much more flexible abbreviation capability, allowing users to enter

free-form abbreviations, and employing a decoder trained on a corpus of such

naturally abbreviated text. Alternatively, more sophisticated stipulated abbreviation

methods can be tested, which might provide better compression ratios at the cost of

learnability and fluency of generation.

The approach to text input described in this paper is an instance of the more

general paradigm of collaborative user interfaces (Shieber, 1996). According to

this view, interfaces should be designed as means for human users and computers

to collaborate towards solving a mutual problem, in this case efficient text entry.

Unlike predictive methods, which require a high cognitive load on the user, our

approach strives towards an optimized split in responsibilities between the user and

the computer.
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